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Abstract

Python is a general purpose language for use in many
applications. In this work we have used Python as
the input scene and model description language for a
suite of rendering and modeling tools developed at the
University of Calgary. Little languages have been used
extensively in this arena. Most notably Lua [7, 5], and
the Renderman Languages [16].

Python has been used at the University of Calgary for
the construction of very complex models. We describe a
set of software tools for interactive rendering of models
and the description of scenes built up from these models.
We also describe a parallel rendering system all based
on Python. Parallel renderings are computed on a 30
node distributed memory computer, a discussion of using
MPI [6] in concert with Python is given.

1 Introduction

One of the major problems of building complex digital
scenes for the rendering of synthetic images, is that
model descriptions often come from a wide variety of
different sources and output needs to be customized
to different rendering software depending on user
requirements. Thus it is necessary to handle a wide
variety of input and output formats. These formats result
from complex GUI applications for both modeling and
animation, input formats for rendering packages, and
special purpose languages for physically correct scene
description [18]. There are many aspects to consider.
One of these aspects should be the programmibility
of the description format. This essentially implies a
format which generates models. Flexibility can mainly
be achieved through parameterization of all aspects of
the model. Some scene description systems support this
very well and others do not.

Research in the GraphicsJungle laboratory [8] is partly
focused on shape description with implicit surfaces. An
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implicit surface is a point set which satisfies some non-
trivial implicit function. The typical implicit surface uses
a function similar to function 1.

F (x; y; z) =
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Where si returns the distance to a skeleton (point, line,
circle etc.), f is a (usually sigmoidal) field function
which when summed with others produces soft blending
between the influences of sibling skeletons, and ci is
a skeleton dependent scalar coefficient. This definition
implies a set of geometric elements (point, line, circle
etc.), which form the user defined skeleton. For any point
in space, the function F , returns a scalar value. This
value is a measure relative to the weighting supplied by
f of the influence of the skeleton for the given point. To
define a surface using this definition a particular value
can be chosen in the range of F , called the iso-value.
When F is applied to the volume of space surrounding
the skeleton a set of iso-valued points is found which lie
in the surface of interest (see [4] for details of implicit
surface models).

1.1 Problem Statement

The problem being addressed by this paper is how to
specify the primitive user defined skeletons. Of course
this problem is not unique to implicit surfaces. The
same problem exists when modeling with any other
paradigm (CSG1, subdivision2 etc). The varied solutions
for the specification of models break down as follows.
First, a GUI program can be written. Such a program

1CSG: Constructive solid geometry, the construction of complex
volumes through boolean operations of more simpler volumes.

2Inferrance of a complex surface by subdivision and refinement of
a complex of polygons
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allows the interactive construction of a model and a scene
graph. Second, a declarative text file can be used to
specify in serial the structure of the model. Third, a full
programming language can be used. This in fact exists
by default in our system, since the data structures and
algorithms are implemented in C++. However the raw
implementation in a compiled language is likely not as
flexible as it could be, nor is the compile/link/run cycle
advantageous for efficient development of a geometric
model.

The GUI solution suffers from flexibility. A user is
constrained to working within the GUI which is constric-
tive for an expert user and is often more applicable in a
production environment. In contrast we work within a
research environment where experimentation at a variety
of levels within the system requires a programattic inter-
face such as provided by Python. The vast majority of
contemporary computer users balk at the suggestion that
any meaningful and efficient work can be done through
any non graphical user interface.

The purpose of a GUI is to handhold. A brand
new computer user will be able to compose and print
a document using a GUI word processor. If the same
user begins with LATEX nothing will be done without
serious consultation with documentation. For modeling
and scene description the same holds true however it
becomes extremely difficult to produce a GUI which
is immediately comfortable. For graphics one need
only look at the GUIs that exist. It is very difficult
to construct a comprehensive GUI whereas it is easy
to produce parameteric or procedural models using
application specific tools. With the release to the
public of Blender [11], a high end modeling, animation
and rendering package, eveybody has the technical
capability to create first rate images and animations.
The learning curve of the GUI for this software (and
its competetitors) is extremely steep. The nature of the
problem of specifiying three dimensional models and
changes to them over time is such an inherently complex
problem that creating a simple yet comprehense GUI has
proven formidable. It is not at all clear though that a
programmatic paradigm is inherently better, what is clear
though is that for users who are doing graduate level
research on implicit surfaces it is far better.

The declarative text file format fares a bit better
than the GUI. It is the most common format, a prime
example is the input format for Rayshade [9] or POV-
Ray [14]. The obvious problem with this method is
that it is difficult for novice users. Evidence to support
this is the existence of a large number of tools (of
varying usefulness) which provide a GUI frontend to
the specification file format. In our case this isn’t that
large a consideration since as noted above it is mostly
graduate students and researchers who use the system.

Parameteric models can be defined in such a declarative
text file by using a preprocessor like M4 [12] or the C

preprocessor.

1.2 Language Choice

Besides Python, the choices for this project included
Lua [7], Scheme, Java and Tcl. Lua was an obvious
choice for the simple reason that it is small, fast and
originally developed by computer graphics researchers.
Two choices not enumerated were VB and Perl, these
were trivially rejected due to either not being available
on Unix, or seemingly too steep a learning curve for
people whose only interest in the chosen language is
to use the modeling suite. Scheme would have been a
good choice due to the large amount of documentation
available for it and its ease of expression construction.
Java also supports a large amount of documentation and
is relatively easy to learn, the difficulty in embedding it
in an application ultimately caused its dismissal. Tcl was
rejected due to the expressiveness of the language not
being suitable for the hierarchical structures we wanted
to be able to define.

This left the final choice being between Lua and
Python. Ultimately the choice was made in Python’s
favour because it seemed that everyone could program
with Python [17]. The lack of Lua documentation made
its learning curve too steep for use only as a modeling
tool.

1.3 Outline

In order to use any programming language for the task
of model and scene description, several pieces of soft-
ware are required. For our case of scene description of
implicit surface models the most obvious piece was the
Python extension modules which expose the C++ API
for the implicit surface and scene graph data structures to
accessible types. Since the nature of the development of
a geometric model is evolutionary, it is extremely likely
that the model will need to be refined many times. A
prototyping tool for interactive viewing of a model was
also developed and necessarily embeds the language of
choice in order to execute the model code. The last piece
of software required was a modified interpreter which
could orchestrate inter-process communication across a
network of workstations. This requirement was so that
we could take advantage of the high performance com-
puting cluster system available at our University. Both
Python and Lua satisfied all of these requirements. The
availability of “Programming Python” [13] influenced
our choice of Python considerably.

The remainder of this paper is organized in the
following manner. The extension modules are discussed



in section 2. The interactive program pybv is discussed
in section 3. A description of the use of Python with
MPI is given in section 4. Finally, conclusions and future
work are discussed in section 5.

2 Extension Modules

This section discusses the extension modules that
provide the framework for the construction of Python
objects which encapsulate implicit surfaces and the
scene graphs used to display them. Both the implicit
surface software and the scene graph software are
C++ hierarchies. Therefore the modules which
encapsulate them must provide the ability to create
instances and the ability to manipulate the public
interface of the instances.

There are two possibilities for wrapping these hierar-
chies for use in Python. The first is to use a tool like
SWIG [1] to completely wrap the data structures. The
second is to generate the wrapper by hand providing
a completely different interface suited only to model
definition. The trade off between these two is essentially
one of flexibility and ease of use. The choice made for
our project is the latter.

The reason for choosing a minimally exposing
wrapper of the underlying API was simple. Computer
graphics is a compute intensive application and contrary
to the example set by the Renderman [16] shading
language the systems for modeling and rendering should
not be implemented in an interpreted language. If we
were to use a tool like SWIG and mirror the complete
modeling and rendering API’s then there would be no
reason for a user to not use Python for everything. This
would include creating new types of implicit functions to
be used inside composite implicit surface models. This
is not a recommended practice since it is very expensive
to create polygonal approximations and compute line
intersections with these models, both of which are
required for rendering images of the models. If the
image synthesis includes interpreting some code the
time to render an image increases unacceptably. The
extension modules only expose the construction of the
hierarchies to facilitate the eventual rendering of images.
Anything more would be beside the point and allow
Python code to execute during rendering rather than just
scene construction causing interminably long rendering
times.

2.1 BlobTree

Our implicit surface system implements the Blob-
Tree [19]. This is a hierarchically based data structure.
An example is shown in figure 1. An instance of a

Figure 1: An example BlobTree.

BlobTree is an n-ary tree. The leaves of the tree form
the user defined skeleton of geometric primitives. The
interior nodes are either transformation operations or
they are blending operations. A transformation node
may be as simple as a translation, or rotation, or it may
be as complex as a non-linear warping of the space. A
blending operation in effect specifies what exactly F ,
(equation 2), looks like. In section 1, summation was
used. However, some other function can also be used
to implement varying degrees of blending, or in fact, in
the extreme, the CSG operators: difference, intersection
and union. Boolean operations which combine sub-
BlobTree using the inferred operation producing a more
complicated surface.

Exposing a minimum of the underlying API in the
extension module which wraps this data structure is not
very difficult. A simple procedural stack based approach
is taken to define objects. For those familiar with the
programmatic interface of OpenGL this is clear, for
those who are not the following example illustrates the
approach.

Example 1 The Python function defining the model
shown in figure 1.

def half peanut(dx,dy):

o = pyjbt.BlobTree()
o.intersection()
o.blend()
o.push()
o.translate(-dx,0,0)
o.point()
o.pop()
o.push()
o.translate(dx,0,0)
o.point()



o.pop()
o.end()
o.translate(0,dy,0)
o.plane()
o.end()
return o

The above example shows how the definition of an
implicit surface using our system is accomplished. The
extension module is named pyjbt and exposes the
BlobTree data type. Interior nodes in the hierarchy
are constructed through maintained levels in a stack of
composite nodes (eg. blend, intersection etc.), using the
push and pop functions. The leaf nodes are always the
skeletons, in this case point and plane. This example is
a parameterized model. Namely it is parameterized on
how far apart the point skeletons are from the origin and
at what position along the y-axis the intersection should
take place.

The reason for choosing this stack based approach is
mostly due to its traditional use in this role in computer
graphics. However that statement does not do justice
to why it is the traditional choice. The extension
module provides a procedural interface to what in the
C++ implementation is an object hierarchy. For the
construction of a tree of instances of types in this
hierarchy where each level of the tree defines attributes
inherited by subtrees the stack based approach is the
most natural. See [3] for a complete discussion on this
topic.

This module has been successfully used to build very
complex models. In figure 2 a rendering is given
of a model which is built from well over 500 nodes.
The Python code for this model is nearly 800 lines.
Every aspect of the model has been parameterized.
A considerable portion of the model is procedural.
Rather than directly specfying the points the author
implemented algorithms in Python to compute the
desired effect. For instance the helical structure of the
shell is computed using mathematical models described
by Meinhardt et al. [10], the placement of the spikes are
also due to procedural codes.

2.2 Scene Graph

A scene graph is a data structure which encodes the
geometry and reflectance information used to render
a digital image. The rendering software used at the
University of Calgary is a distributed ray tracing system
developed in our lab. It serves as a platform for
experimentation for new ray intersection algorithms for
implicit surfaces.

In order to render scenes easily one needs a very
simple interface to specify the scene graph. Input formats
such as seen in the POV-ray [14] and Rayshade [9]

Figure 2: A procedurally defined model of the Cabrets
Murex seashell.

systems are not very flexible. The specification of the
scene graph is given in a very serial manner. There is no
break up of the graph into logical units. Python provides
three levels of abstraction for components of the scene
graph: modules, functions and classes. A very simple
Python extension module for generating a scene graph
can be used in any of these three manners. At the module
level a user specifies the scene in a completely serial
fashion. At the functional level the scene graph can be
composed of a set of function calls, and similarly for
the class level, conviently segmenting the graph into a
coherent group of components, easily written and easily
understood.

The following example shows why this is so benefi-
cial. The example shows the code needed to produce
a short animation. The animation features an implicit
surface constructed from two point skeletons. The two
skeletons move further apart from each other with each
frame. The ease of use of Python and the readability of it
makes it an extremely valuable tool for this application.

Example 2 A simple scene graph parameterized on
time through the use of function-level modularization.
(The sequence of images can be found at
http://www.cpsc.ucalgary.ca/˜ mtigges/mpipython.html)

import pyjbt, pyrtl



def peanut(x):

o = pyjbt.BlobTree()
o.blend()
o.diffuse((1,1,0))
o.translate(-x,0,0)
o.point()
o.diffuse((0,0,1))
o.translate(2*x,0,0)
o.point()
o.end()
return o

def scene(frame,total frames):

s = pyrtl.World()
s.lookat((0,0,4))
s.soft(peanut(float(frame)/

float(total frames)*1.2))

s.render()
s.save(’frame.%d.ppm’ % frame)

import sys

total frames = sys.argv[1]
frame = 0
while frame <= total frames:

pyrtl.Print(’Rendering frame:%d’ %
frame)
pyrtl.NewAlloc()
scene(frame)
pyrtl.KillAlloc()
frame = frame+1

3 Interactive Renderer

The preceding section outlined our methods for the
description of models and scene graphs. These scene
graphs can only be viewed by rendering with the ray
tracing library. However, using ray tracing to render an
image of a model is not very efficient. In order to build
a model it is more convenient to render it interactively.
This can be done by finding a polgonal approximation
which can be rendered on a workstation at interactive
speeds. This need is filled by pybv [15], an interface
between the rasterization systems windowed output and
a Python interpreter.

The use of Python described in the previous section
extends the language to provide data types and services
for the description and rendering of models and scenes.
In this section the software described embeds the
interpreter. The input for pybv is a Python module. This
module must adhere to a certain form. It must have a
function called blobtrees. This function returns a list
of tuples, each tuple describes one model defined in the
module. This description includes a text string label, a

Figure 3: The pybv main window showing the twisted
blend of two line primitives.

function (which must return a BlobTree, the arguments
to pass to the function and a set of arguments used to
polygonize and view the model).

When pybv is invoked it uses
PyImport ImportModule to load the module
definitions into the dictionary. This dictionary is then
accessed through GUI elements of the application to
invoke the functions described by the return value
of the blobtrees function (see example 3). Each
time one of these functions is invoked the resulting
BlobTree is polygonized and then rasterized to the
display. The cycle to create a model is an edit/reload
cycle. This is in contrast to an edit/compile/run cycle
that would exist if Python were not used as a glue to the
specification of models and users simply written against
the C++ interface.

Example 3 An example blobtrees function. This
function is called by the pybv program through its
embedded python interpreter to query what implicit
surface objects can be constructed by the module. The
returned value is a list of functions which can be called
to construct implicit surface models.

def blobtrees():

return [

(’half-peanut’,
half peanut,
(0.6,0.1))

]

This system was used to create the model in figure 2.
The complexity of this model, in that case, prohibited
the viewing of the entire model at once. There were
two reasons for this restriction. The Python code
executed too slowly for effective interaction, but more
seriously the polygonization of the model took too long
for an accurate representation. The use of pybv and



the extension modules provided an easy and effective
work around. The system afforded the definition of
multiple functions one for each part of the shell. The
blobtrees function gave reference to each major part
that the user wished to be able to view indepently. This
allowed hierarchical abstraction of the entire model to its
constituent parts, something which is quite difficult to do
with a GUI program.

The net result of the combination of extending
and embedding Python is a very convienient rapid
prototyping environment for the development of our
models. To measure its value one could do a user test in
comparison with a GUI designed for the same task. Such
a user test however has not been completed. Personally
the author finds the cycle of text editing the source of
the model with subsequent interpretation of that text
by pybv’s embedded interpreter a very satisfying and
efficient process.

4 Python with MPI

In this section the embedding of Python into a simplified
interpreter is discussed which allows Python to be used
as the input description language in a distributed com-
puting message passing environment. The University of
Calgary is equipped with a 30 node cluster of computers.
Since there are few computing applications which scale
to distributed parallel computing as efficiently as ray
tracing our graphics group was extremely excited at the
availability of this resource.

To take advantage of this hardware system we needed
an interface between the resident message passing
system on the cluster and our python extension modules.
The message passing system resident on the cluster
is MPI [6] a very flexible system in very wide use.
Our extension modules had to be modified to distribute
portions of the scene to render. However in order to use
the extension modules which now used MPI the Python
interpreter needed to be aware of MPI for initialization
and cleanup of the MPI state machine.

When a render job is submitted to the cluster each
machine builds its own data structure for the scene graph.
This infers that each machine runs the Python interpreter
locally. To facilitate this the Python interpreter has
been embedded in a program called mpipython. This
program is assigned the following tasks:

� Initialize the Python interpreter.

� Initialize the MPI library.

� Communicate the Python scene graph input and the
PYTHONPATH variable.

� Execute the script.

The last item is due to the fact that the slave children do
not receive the same run-time environment as the master.
The difference between the above enumeration and
previous work [2] is that there is no parallel execution
of the Python code. Each node in the job executes the
script in serial. The reason for this is that the time to
execute any one line of the script is trivial compared to
the one line which causes the scene to be rendered.

The scene graph extension module implements the
parallel rendering code. The scene graph exposes a
function called prender. This function, instead of
invoking the rendering code from the ray-tracing library
directly, orchestrates the rendering through each of the
child processes. The master process keeps track of which
scan lines have been rendered and sends to each child in
turn a line to render. When a child has finished a line
it sends the information back to the master requesting
a new one. In addition to responding to the completed
lines from the children the master is also rendering its
own lines.

The modeler writing the scene description language
in Python should not be aware that the scene will be
interpreted and rendered in parallel. To this end the
extension modules do not expose the MPI interface
to the modeling environment. The extension modules
render a scene; if a parallel environment exists then
the image synthesis is distributed across the cluster.
The extended Python interpreter ensures that the MPI
environment is initialized and is able to facilitate the
required communication. The choice of MPI is then
reduced to the typical reasons that one would choose
MPI over an alternative, say PVM.

5 Conclusions and Future Work

A set of Python tools developed in the graphics lab at the
University of Calgary has been presented. The tools use
Python in multiple ways.

Python is extended with the atomic data types around
which our research interests centre. This allows us to
use Python for the description of instances of this data
giving us the benefit of the natural expressiveness and
readability of Python. This provides us with a very
efficient and useable system.

Python is embedded in a GUI program which allows
the code describing our models to be executed and
a derived tesselation displayed. This provides an
edit/interpret/view cycle which makes model design
relatively painless. The alternative is a GUI program
which through a point and click interface allows the
construction of a model. Python provides a clear syntax,
which for certain types of models, particularly models
with procedural elements (for example geometric spirals)



makes modeling easier than a full GUI directed interface.
Python is again embedded in order to run the

interpreter coherently across nodes of a distributed
memory computer. This embedding allows the use of
MPI for the communication of data across the child
nodes involved in the rendering of an image.It has been
found in our experience that Python and its associated C
API is very flexible in supporting the variety of design
issues in modeling.

The use of Python as the glue between our modeling
and rendering systems has provided us the benefit of
procedural animation. The Python code allows the
expression of a scene parameterically over time allowing
for very flexible descriptions of animations without any
extension of the underlying languages in their native
C++language.

Future work could centre on providing a complete
wrapper of the API using SWIG [1]. It has been noted
before that this is possibly undesireable due to the fact
that Python should not be used directly in rendering code
due to speed of execution issues. However, it should be
noted that if the user is careful enough, the full flexibility
of exposing the complete C++ hierarchy can be used
without risk.
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