
Using Python in a High School Computer Science Program

Jeffrey Elkner
Yorktown High School, Arlington, Virginia

December 6, 1999

Abstract

Yorktown High School, in Arlington Virginia,
has begun a large scale experiment using the
Python programming language in a high
school computer science environment.
Motivated by the need to find an alternative to
C++, which was not meeting the needs of our
first year students, and inspired by Computer
Programming for Everybody, we are using
Python with all levels of students, from our
beginning programmers to our most
experienced. We are using Python both as an
instructional and productivity tool, and we are
helping to develop the educational resources
needed to make the use of Python practical in
a school environment.

How and Why We Came to Use
Python

In 1999, the College Board’s Advanced
Placement Computer Science exam was given
in C++ for the first time. The 1996 Advanced
Placement Course Description for Computer
Science had this to say about the new
language choice:

The committee recognizes that no
single programming language satisfies
all needs ideally. However, C++
provides a standard mechanism for
emphasizing and implementing
modularity and abstraction, which are
key concepts in introductory computer

science. Moreover, students
completing an AP course using C++
are likely to receive credit or
placement at a wide range of colleges
[College Board].

As in many high schools throughout the
country, the decision to change languages had
a direct impact on the computer science
curriculum at Yorktown High. Up to this
point, Pascal was the language of instruction
in both our first year and AP courses. In
keeping with our past practice of giving our
students two years of exposure to the same
language, we made the decision to switch to
C++ in our first year course for the 1997-98
school year, so that they would be in step with
the College Board’s change for the AP course
the following year.

Two years later, I was convinced that C++
was a poor choice to use for introducing
students to computer science. While it is
certainly a very powerful programming
language, it is also an extremely difficult
language to learn and teach. I found myself
constantly fighting with C++’s difficult syntax
and multiple ways of doing things, and I was
losing many students unnecessarily as a result.
Convinced there had to be a better language
choice for our first year class, I went looking
for an alternative to C++.

A discussion on the High School Linux Users’
Group mailing list provided me with a
possible solution. A very exciting thread
emerged during the latter part of January,
1999 concerning the best programming

language for use with first time high school
computer science students. In a posting on
January 30th, Brendon Ranking said:

I believe that Python is the best choice
for any entry-level programming class.
It teaches proper programming
principles while being incredibly easy
to learn. It is also designed to be
object oriented from its inception so it
doesn’t have the add-on pain that both
Perl and C++ suffer from...... It is also
very widely supported and very
much web-centric, as well [Ranking].

I had first heard of Python a few years earlier
at a Linux Install Fest, when a very
enthusiastic Michael McLay told me about
Python’s many merits. He and Brendon had
now convinced me that I needed to look into
Python as the possible solution to our first
language problem. As a high school teacher
with all the obligations that entails, however, I
was not in a position to drop everything and
give myself a crash course in Python.

Unable to check out Python myself, I did what
I often do when there is something important
to learn and I am not able to learn it; I asked
one of Yorktown’s many bright young minds
to check it out for me. Matt Ahrens was a
student who I had introduced to Linux a few
years before, and who in two years had gone
from being my student to my teacher on all
matters relating to Linux. He jumped at the
chance to try out Python, and in the final two
months of the school year he not only learned
the language but wrote an application called
pyTicket that allowed staff at our school to
use the web to report technology problems by
creating "tickets" which student volunteers
could handle. I knew that it would not have
been possible for Matt to finish an application
like that in C++, and this accomplishment
combined with Matt’s very positive
assessment of Python brought us to the next
step in the investigation.

Matt wrote to Guido Van Rossum, who soon
told us about a very exciting project underway

at CNRI to develop materials which would use
Python to make "Computer Programming for
Everybody" a realistic possibility [Van
Rossum]. It was the existence of this project
that finally convinced me to use Python the
following year. The one concern I had once I
started investigating Python was the apparent
lack of resources that would be available to
me using Python in a classroom setting. There
was no text book for starters, nor were there
lesson plans, teaching guides, or any of the
other teaching materials to which teachers are
accustomed.

The prospect of "Computer Programming for
Everybody" (CP4E) meant that help would be
available, and turned what might have
otherwise been an insurmountable obstacle
into an opportunity. The sixth paragraph of
CP4E lists its three components:

• Develop a new computing curriculum
suitable for high school and college
students.

• Create better, easier to use tools for
program development and analysis.

• Build a user community around all of
the above, encouraging feedback and
self-help.

The first two components held out the promise
that the missing tools would soon be
forthcoming, and the third component offered
the opportunity to be an early entrant into this
new user community as well as the challenge
to begin the "self-help" that would make the
community viable.

Finding a Text Book: Help and Self-
help

Having decided to use Python in both of my
introductory computer science classes the
following year, the most pressing problem was
the lack of an available text book. I had taught
without a text book before, and actually
enjoyed doing so, but given the general lack of

entry level resources in Python it did not seem
prudent to go forward without something that
students could use to support what they were
learning in class.

The solution to this problem came in the form
of help that would in turn require self-help.
Earlier in the year Richard Stallman had
introduced me to Allen Downey, a computer
science professor at Colby College. Both of us
had written to Richard expressing an interest
in developing free educational content. Allen
had already written a first year computer
science text book, How to Think Like a
Computer Scientist [Downey]. When I read
this text book I knew immediately that I
wanted to use it in my class. It was the clearest
and most helpful computer science text I had
ever read. It emphasized the processes of
thought involved in programming, rather than
the features of a particular language. Reading
it immediately made me a better teacher.

Not only was "How to Think Like a Computer
Scientist" an excellent book, but it was also
released under the GNU General Public
License, which meant it could be used freely
and modified to meet the needs of its user. I
set about creating an on line version of it, and
while writing to Allen about that project, he
told me that he would be doing an AP C++
version over the following summer. I did not
hesitate in telling him that I would use it in my
Advanced Placement Computer Science class.

Once I decided to use Python, it occurred to
me that I could translate Allen’s book into the
new language. This would offer yet another
exciting opportunity. While I would not have
been capable of writing a text book on my
own, having Allen’s book to work from would
make it possible for me to do so, at the same
time demonstrating that the cooperative
development model used so well in software
would also work for educational content.

I have currently completed translating six
chapters. The book is available on line at
http://yhslug.tux.org/obp/thinkCS/thinkCSpy
and I have been using it with my introductory

computer science classes as planned. I have
been writing each chapter in time to use it in
class in what might be called a "just in time"
translation system ;-) It is apparent that my
students enjoy using the book. Many of them
have expressed to me how much they like
both the C++ version and the new Python one.
Having it on line has the added advantage that
I can make instant changes whenever a student
finds a spelling error or difficult passage. I
encourage students to look for errors in the
book by giving them a bonus point every time
they find or suggest something that results in a
change in the text. This has the double benefit
of encouraging them to read the text more
carefully, and of getting the text thoroughly
reviewed by its most important critics, the
students who will be using it to learn computer
science.

Into the Classroom: Preliminary
Thoughts on Python as a High School
Programming Language

From the process of translating and using
"How to Think Like a Computer Scientist", I
can already reach some preliminary
conclusions about Python’s suitability to
teaching beginning students. The first and
most obvious conclusion is extremely
encouraging: Python greatly simplifies
programming examples and makes important
programming ideas easier to teach.

The first example from the text dramatically
illustrates this point. It is the traditional "hello,
world" program, which in the C++ version
looks like this:

 #include <iostream.h>

 \\ main:generate some simple output

 void main()
 {
 cout << "Hello, world." << endl;

 }

and which in the Python version becomes:

 print "Hello, World!"

Even though this is a trivial example, the
advantages to Python stand out. There are no
prerequisites to Yorktown’s Computer
Science I course, so many of the students
seeing this example are looking at their first
program. Some of them are undoubtedly a
little nervous, having heard that computer
programming is difficult to learn. The C++
version has always forced me to choose
between two unsatisfying options: either to
explain the #include, void main(),
{, and } statements, and risk confusing or
intimidating some of the students right at the
start, or to tell them "just don’t worry about all
of that stuff now, we will talk about it later"
and risk the same thing. The educational
objectives at this point in the course are to
introduce students to the idea of a
programming statement and to get them to
make their first program, thereby introducing
them to the programming environment. The
Python program has exactly what is needed to
do these things, and nothing more.

Comparing Section 1.5 of each version of the
book, where this first program is located,
further illustrates what this means to the
beginning student. There are thirteen
paragraphs of explanation of "Hello, world" in
the C++ version, in the Python version there
are only three. More importantly, the missing
ten paragraphs do not deal with the "big ideas"
in computer programming, but with the
minutia of C++ syntax. I found this same
thing happening throughout the chapters that I
have completed so far. Whole paragraphs
simply disappear from the Python version of
the text because Python’s much simpler
syntax renders them unnecessary.

Teaching with Python is enabling me to
rethink many of the strategies I have used for
the last several years. Because C++ is a
middle level language, I have started the year
with a three week introduction to binary
arithmetic. So much of C++ is close enough to

the hardware of the machine that I found this
to be the only way I could prepare students to
understand what is going on in their programs.
I began the current year with the same binary
unit, but I am now realizing that with Python it
is completely unnecessary to do so. A low
level understanding of how computers work is
very important for computer science students,
and I still plan to teach binary arithmetic next
year. Instead of giving up those most valuable
beginning weeks of the year to it, however,
and putting up a hurdle for students to jump
before they can begin to learn programming, I
will move it to the last quarter of the year,
when I plan to introduce students to C, and at
which time they will already be comfortable
with programming.

Using a very high level language like Python
allows a teacher to postpone talking about low
level details of the machine until students have
the background that they need to better make
sense of the details. It thus creates the ability
to put "first things first" pedagogically. The
clearest example of this is the way in which
Python handles variables. In C++ a variable is
a name for a place which holds a thing.
Variables have to be declared with types at
least in part because the size of the place to
which they refer needs to be predetermined.
Thus the idea of a variable is bound up with
the hardware of the machine. The powerful
and fundamental concept of a variable is
already difficult enough for beginning
students (in both Computer Science and
Algebra). Bytes and addresses do not help the
matter. In Python a variable is a name which
refers to a thing. This is a far more intuitive
concept for beginning students, and one which
is much closer to the meaning of variable that
they learned in their math class. I had much
less difficulty teaching variables this year than
I did in the past, and I spent less time helping
students with problems using them.

Another example of how Python aides in the
teaching and learning of programming is in its
syntax for functions. Of all the things that I
learned by using Python this year, the way in

which the right tool could help in explaining
functions was the most exciting. My students
have always had a great deal of difficulty
understanding functions. The main problem
centers around the difference between a
function definition and a function call, and the
related distinction between a parameter and an
argument. Python comes to the rescue with
syntax that is nothing short of beautiful.
Function definitions begin with the key word
def, so I simply tell my students, "when you
define a function, begin with def, followed
by the name of the function that you are
defining, when you call a function, simply call
(type) out its name." Parameters go with
definitions, arguments go with calls. There are
no return types or parameter types or
reference and value parameters to get in the
way, so I was able to teach functions this year
in less then half the time that it usually took
me, with what appears to be better
comprehension.

One more feature of Python syntax which
ought to be discussed is Python’s use of
indentation to determine program structure. I
had expected this to be a great help in
facilitating the teaching of well formatted,
readable programs. Indeed, it has not
disappointed in this regard. Python’s syntax
makes programs much easier to read, thereby
making it easier to effectively evaluate student
work and to identify problems in student
programs. This is a big plus for teachers using
Python in the classroom. Increased readability
also enables students to work together on
larger and more complex programs. Lex
Berezhny mentions how this has helped with
the two projects on which he is working in the
appendix which follows this paper.

I was caught a bit by surprise, however, by the
way that the absence of explicit begin and end
statements has made it more difficult for
beginning students to understand the idea of a
code block. There has been more problems
then usual with students coding infinite while
loops simply because the increment statement
is outside the body of the loop. The idea of

several statements acting as one takes some
getting used to, and it appears the visual cues
of a begin and an end make it easier to
understand. This is only a temporary
difficulty, however, and one more then
compensated for by the benefits that increased
readability and shorter programs will continue
to bring long after the problem understanding
code blocks has been forgotten.

Translating "How to Think Like a Computer
Scientist" has been a valuable educational
experience for me, and so far it has been a
largely straightforward process. I have been
able to translate all of the sample code through
the first six chapters directly into Python
without changes to either the structure or
logic. The Python code is shorter, easier to
read, and much "prettier" to be sure, but other
than that it is the same.

All that is about to change, however, and a
brief look ahead reveals some challenges. The
next chapter, 7, discusses strings, one of the
uglier topics in C++. This chapter will be so
much shorter in Python that I am planning on
discussing general Python sequences in
addition to strings. After that there are two
chapters on C++ structures. I do not want to
introduce classes at this point, but there is
nothing else in Python that will allow for a
named thing with named parts, so I will either
have to change the way the example programs
are written or come up with entirely new
examples.

This is both exciting and a bit frightening for
me. Up to now I have been relying on Allen
Downey for pedagogy. While I have made
some minor changes in emphasis to
accommodate my less experienced students,
the ideas in the text are his. I plan to continue
to do that as much as possible, but differences
between the languages will now require more
substantial changes.

There is a related issue concerning whether or
not Python’s different way of doing things
will adequately prepare students for the C++
they will be learning if they go on to the

Advanced Placement course the following
year, or that they will likely be using in
college. This is both a practical concern for
the success of the students learning with
Python, as well as a political concern in
getting Python accepted into high schools.
Test scores are an import measure of the
success of high school programs, with
Advanced Placement exams being among the
most import of these. It will need to be
established early on that learning Python in no
way harms AP test results if Python’s use is to
be widely accepted.

Fortunately, my experience even at this early
stage leads me to believe that learning Python
will actually improve the effectiveness of our
computer science program for all students. I
can already see a higher general level of
success and a lower level of frustration from
my students than I experienced during the last
two years using C++. I am moving faster with
better results. More students will leave the
course this year with the ability to create
meaningful programs, and with the positive
attitude toward the experience of
programming that this will generate. Because
we are able to move faster with Python, I fully
expect to be able to teach students to use
classes by the early Spring. This will give
students going on to AP Computer Science the
framework for better understanding things like
structures and classes in C++, and will thus
improve their performance in that important
subject.

Finally, I am also using Python with a number
of Yorktown’s more advanced students in a
variety of different ways. Like the proverbial
man with a hammer who sees every problem
as a nail, my excitement about Python makes
me continually devise new uses for it. Luckily,
this is turning out to be both fun for the
students and consistent with the goal of
investigating Python’s applicability to our
computer science program.

Using Python With Our Advanced
Programmers

Yorktown offers a course called Computer
Information Systems Advanced Topics, which
is providing an opportunity to look at different
ways that using Python could benefit high
school CS programs. This course is offered to
students who have completed the first year
programming course and who want a further
opportunity to study computer science outside
the AP course. Several of these students have
already completed AP Computer Science, and
others are enrolled in it concurrently. The
ways that I am using Python in this course fall
into two broad categories: using Python as an
aide to understanding the AP curriculum, and
using Python as a development tool for our
most advanced programmers.

Two of our students, Louie Corbo and Vipul
Sharma, are using Python in Advanced Topics
as a way to better understand their
assignments from AP CS. The idea is that
seeing the same problem solved in two
different languages will deepen their
understanding of the underlying algorithms
involved. Also, Python’s greater simplicity
will make the solutions easier to understand.
They have just begun doing this, so it is too
early to report on the results.

Three of Yorktown’s top young programmers,
Lex Berezhny, Jonah Cohen, and Stefan
Wrobel, are using Python to develop
application programs which we will use at our
school. An appendix to this paper includes a
description by Lex of the two main projects on
which they are currently working. The idea
here is to give students experience working
together on a large project in an environment
which resembles as much as possible the kind
of environment that they are likely to
encounter as professional programmers.
Nothing could be better in this respect than
writing something which will actually be used.

Again, it is too early analyze results, but one
of programs, which we call pyTicket, is
already in use. This program implements a
web based interface for processing requests by
our staff for technology assistance. The
technologies employed by this program could
be applied to solve several other similar
problems with tracking information in the
school. The other program, Student Portfolio,
if successful, could be adopted by the school
system for use system wide. We are currently
considering getting other students involved in
these and similar projects.

Where To From Here?
Opportunities and Obstacles

Python has already demonstrated that it is well
suited as a programming language for
beginning programmers. My experience using
it at Yorktown confirms this. The possibility
now exists for being able to successfully teach
larger numbers of students the basic ideas of
computer science. With the growing interest
on the part of school systems in all things
related to computer technology, this is a good
time to begin using Python in schools.

The greatest obstacle, however, to using
Python to teach high school students
programming is the almost complete lack of
educational resources. Python’s success in
being accepted by high school CS departments
and teachers will depend on the availability of
these educational support materials. The
current initiative underway at CNRI offers the
promise that the needed resources will soon be
forthcoming, and that "Computer
Programming for Everybody" will move from
being an idea whose time has come to being a
reality.

References

[College Board] College Entrance
Examination Board and Educational Testing
Service (1995), "Advanced Placement Course
Description: Computer Science", p4

[Downey], Allen B. (1999), "How to Think
Like a Computer Scientist"
http://www.cs.colby.edu/~downey/ost
(accessed 11/18/99)

[Rankin], Brendon (1999), "Re: [HS-LUG]
Ok, I’m willing to go there", Discussion on
the HS-LUG mailing list. http://hs-
lug.tux.org/archives/hs-lug-digest.19990130
(accessed 11/13/99)

[Van Rossum] Guido, "Computer
Programming for Everybody"
http://www.python.org/doc/essays/cp4e.html
(accessed 11/17/99) Corporation for National
Research Initiatives (CNRI)

