
Python Vuh: Mayan Calendrical Mathematics with Python

Ivan Van Laningham (ivanlan@callware.com)
Callware Technologies, Inc.

In the beginning, there was nothing but sky. Sovereign Plumed Serpent, God L, and
other Creator Gods were sitting around in the ocean-sky, smoking their cigars and

drinking pulque. Whatever might yet be was simply not there: no animals, no
people, no rocks, nothing but white noise, nothing but boredom. Sovereign

Plumed Serpent and his friends talked and thought and worried, then they joined
their thoughts and words, then they agreed. They knew what to do: they

conceived the growth of trees, of bushes, of the growth of life, of humankind,
there in the blackness, in the early dawn. They invented the universe, those

great knowers, those great thinkers in their very being.
Suggested by the Popol Vuh1

Abstract
The Mayan calendar is well suited to computer calculation, but existing programs are not extensible and are
generally written in compiled languages, which limits their portability. Python is portable, extensible, and
has builtin features that make processing dates in the Mayan calendar reasonably straightforward. A basic
introduction to the Mayan calendar is presented, followed by discussion of some of the problems
encountered using conventional languages, and some alternative approaches using Python are given. The
areas of computerized parsing and special class methods in Python are covered. A discussion of recovering
dates from partial inscriptions follows, with highlights of a CGI program to allow users to enter such partial
dates and receive a list of possible solutions. Future directions for Mayan calendrical research with Python
are suggested. The conclusion suggests that archaeologists and epigraphers in the field could use Python to
help them pin down otherwise indeterminate dates in the Mayan inscriptions.

1 Introduction

When I told my wife that I was going to write a paper
for the Python Conference in Houston, she asked
what I was going to write about, and I said, ‘‘The
Mayan calendar.’’ Not being familiar with
Pythonists, she said ‘‘I thought that they wanted
articles about practical applications for Python?’’

While many people would not think of arcane
calendars as a practical application for a tool, the
Mayan calendar lends itself rather well to computer
calculation, and there are some Mayanists out there
now who know enough about computers to write
programs; there are even more that are able to use the
software once it exists.

My guess is that there are around 1000 people
worldwide who consider themselves Mayanists; of
these, perhaps half are ‘‘field archaeologists,’’
scientists not directly concerned with epigraphy or
the calendar, except insofar as such collateral
information helps date an excavation or dig. Of the
500 or so left, perhaps 20-50 are able to make their
living in the field of epigraphy; another one or two
hundred professionals’ lives are affected by advances
in epigraphy; while the remainder are either students
or, like myself, enthusiastic (sometimes obsessive)
amateurs. Epigraphers are concerned not with the
quotidian phenomena that interest field
archaeologists, but with the texts the Mayans left us.
Since so many of the inscriptions contain dates
referring to contemporary elite persons, to cosmology
or to gods in that cosmology, the study of the Mayan

writing system is intertwined with and inextricable
from the study of their calendar.

Many epigraphers study Mayan political history and
the ways in which the Mayan elite legitimized their
temporal, secular power through the use of spiritual,
sacred, location (Culbert, 1991; Schele, Grube and
Martin, 1998). One of the ways the elite did this was
to contrive large numbers representing time passed
and then state on public monuments that such-and-
such a ruler acquired great power because he was
born exactly so many days after a particular deity was
born, which just happened to be a nice round number
of several sacred cycles (Lounsbury, 1978; Schele
and Freidel, 1990; Schele and Mathews, 1998).
Given such a world view, it is not surprising that
calendrical statements permeate the monuments and
codices. Familiarity with the Mayan calendar,
therefore, is a prerequisite for epigraphic study.

While many epigraphers can use programs, and some
can write them, most of these programs aren’t very
convenient. They have been written in conventional
languages like C, C++, Pascal or Visual Basic, and
such languages have little or no support for the
multitrillion year calculations that can be
commonplace in Mayan calendrical mathematics.
Additionally, since these are all compiled languages,
and compilers differ drastically between platforms,
many routines are ‘‘write once, rewrite forever.’’ It
can be nearly impossible to get the algorithms to
behave properly on a new platform.

I spent years (and I don’t really want to admit how
many years) writing libraries of C routines useful in
working with the Mayan calendar. Among other fun
tasks, I had to track down a multiprecision arithmetic
library and then port it to my current Unix platform.
Since it wasn’t written very well, I spent a lot of time
fixing bugs. When I moved to different Unices, I
spent even more time porting the library. I am

reminded of the time in high school when I bought a
59-cent ship model that came with no detailing: it
was maybe 4 inches long, and I decided to add full
rigging. I spent the entire summer rebuilding that
thing, and I ended up with a 59-cent model ship with
$2000 rigging.

In the same way, the C libraries I wrote for my
Mayan calendar programs provided an interesting
project for a very long time, but have fulfilled their
purpose. The math functions provide a place to start,
but they are only a starting point; it usually makes
more sense to reevaluate what I'm trying to do and
write something new in Python, which generally
forces a cleaner, and almost always more accurate,
solution.

The source code for Mayan dates (class mayanum),
which is the Python replacement for and improve-
ment of the C libraries, can be found at my website,
along with some documentation: mayalib.py.

Before I can give examples of the benefits of using
Python for the calculation of Mayan dates, some
basic principles of Mayan calendrical mathematics
need to be explained. In the interests of economy, I
do not give a complete description here: for (many)
more details, you may wish to refer to An
Introduction to the Mayan Calendar and The
Calendar Round on my website. Other websites are
linked from there; however, the best references
remain the original sources. I cite some of these
sources below and in the two pages just mentioned.

2 Basics of the Mayan Calendar

2.0 An Example Date

An example of a Mayan date is ‘‘12.19.5.5.0 8
‘Ahaw 13 Sots’’. This date is shown in Mayan
hieroglyphic writing in Table 1.

The Long Count The Calendar Round

12.19.5.5.0 8 ‘Ahaw 13 Sots

Table 1: A Mayan Date

2.1 The Long Count

The ‘‘12.19.5.5.0’’ part (the first 10 glyphs in the
diagram above) is known as the Long Count (LC).
The Long Count is known as such because it is a
linear count of days from a base date, which is
usually taken to be Wednesday, August 13, -3,113 in
our calendar, the Gregorian. There is some debate
about the exact correlation date between the two
calendars, but a majority of Mayanists prefer this
one. Of the first ten glyphs above, the five that look
like pictures are glyphs that stand for periods of time,
and the bar-and-dot symbols are numbers. A dot is
one, a bar is five, and the lobed symbol is zero.
Mayan numbers are base (radix), 20, and are read
either left-to-right as are our numbers, or from top to

bottom when numbers appear vertically. Mayan
dates, however, modify the pure base 20 convention
by using base 18 in the second position. Apparently,
the motivation for this was to make certain
calendrical calculations simpler, as it means that each
unit of the third place had a value of 360 days instead
of the expected 400, thus giving an approximation of
the solar year.

Formulae ordinarily treat the Long Count positions as
numbered from left to right starting at one, but it
makes more sense, computationally, to begin
numbering these positions at the right and start with
an index of zero, as in Table 2, which shows the
glyphs for the time periods as well as their names.

LC Digit Mayan Digit LC Position Name Glyph Radix Number of Days Years

0 0 k’in 20 1

5 1 winal 18 20

5 2 tun 20 360 ~1

19 3 k’atun 20 7200 ~20

12 4 bak’tun2 20 144000 ~400

Table 2: The Long Count

The Tzolk’in (260 days) The Haab (360 days)

The Trecena The Veintena The Haab Day The Haab Month

Value Ranges

1-13
(8 shown)

0-19
(0 shown)

0-19, or 0-4
(13 shown)

0-18
(3 shown)

Table 3: The Calendar Round

2.2 The Calendar Round

The ‘‘8 ‘Ahaw 13 Sots’’ part of the date shown in
Table 1 is called the Calendar Round (CR), and the
various parts are shown in Table 3. It is a cycle of
18,980 days, about 52 years; its use was widespread
throughout Mesoamerica, in many different forms.
For a sweeping review of these many other calendars,
see Edmonson, 1988.

While the Long Count is a strictly linear count from a
base date, which is ordinarily written as ‘‘0.0.0.0.0 4
‘Ahaw 8 Kumk’u ,’’ arithmetic for computations
involving the Calendar Round is mostly modular,
that is, the four parts of the Calendar Round are not
all positional numbers similar to what is used in the
Gregorian calendar (or any ordinary numbers in
everyday use), but represent remainders that result
from the division of a number. The closest thing we
have in the Gregorian calendar is the 7-day cycle of
the days of the week. The four units that make up the
Calendar Round are called the coordinates of the
Calendar Round.

The Calendar Round consists of two cycles, one of
260 days (the tzolk’in) and another of 365 days (the
haab). While 260 ⋅ 365 is 94,900, 260 and 365 have a
greatest common divisor of 5, which means that you
can divide either 260 or 365 by 5 and multiply the
answer times the other number. That is, the length of
the Calendar Round is 18,980 days, since 260 ⋅ 73
and 365 ⋅ 52 both equal 18,980.

The tzolk’in is made up of a cycle of 13 day numbers,
called the trecena, and a cycle of 20 day names,
called the veintena. The tzolk’in and its constituent
parts, the trecena and the veintena, are shown in
Table 3 in the leftmost half. The haab contains 18
named months, each of which has 20 days, numbered
from 0 to 19. The last month, Wayeb, has only 5 days
numbered 0-4. The tzolk’in is a modular, reentrant
cycle, while the haab is an ordinary linear cycle, just
like our year.

A cycle that is modular and reentrant is a cycle in
which it is never necessary to resort to summing
terms in order to find the position in the cycle, as one
must for a linear cycle. For example, to find the
number of the day of the year in the Gregorian
calendar, you have to know the lengths of all the
months in the year, add up all the whole months
before the current month, and then add the number of
the current day in the current month. In the haab,
while we have to do basically the same thing, it is a
little easier because all months are the same length,
except the last. To find the a position in the tzolk’in,

we do not have to add; this position may always be
recovered by the application of a modular arithmetic
formula. This is discussed in more detail in section
2.4, below.

Whereas we stuff extra days into our years now and
then, the length of the Mayan haab never changed.
Since the haab drifts through the seasons in a 1460
year cycle, it is sometimes referred to as the ‘‘vague
year,’’ because it has only a vague connection to the
tropical year. The haab and its parts, the haab day
and the haab month, are shown in the rightmost half
of Table 3.

If we know all four coordinates of the Calendar
Round, there a several pieces of information we can
derive from them.

1. Numeric values representing each
coordinate; once we have these, we can
determine

2. The numeric position in the tzolk’in, and

3. The numeric position in the haab, and from
those two positions,

4. The numeric position in the Calendar
Round.

2.3 Conversion of Calendar Round Coordinates
into Their Mathematical Equivalents

In Mayan calendrical mathematics as practiced by
Mayanists today, the names of the veintena days and
the names of the haab months are to be converted to
their numeric equivalents; ‘‘’Ahaw’’ is,
mathematically, 0; the day name occupying position
1 is ‘‘’Imix.’’ A complete list of veintena day names
is available on my website. The trecena, ‘‘8,’’ is
directly usable as a number. The haab components
are just as simple; ‘‘13’’ is just 13, while ‘‘Sots’’ is
the fourth month of the vague year. ‘‘Pohp’’ is month
0, so Sots is, numerically, 3. A complete list of the
haab month names is also available on my website.

Conversion of our sample Calendar Round into its
mathematical equivalent, then, gives us (in Pythonic
terms) (8, 0, 13, 3). In the downloadable
code, the function parsecrt() will convert any
reasonable Calendar Round string into a 4-tuple; the
parsecr() function takes the process further, and
converts the 4-tuple into a position in the Calendar
Round.

2.4 Finding the Position in the Tzolk’in

Given the tzolk’in coordinates (8, 0) from section 2.3,
we can determine the numerical position they refer

to. What we are doing here is recovering a positional
number from two remainders obtained by dividing by
two moduli; Knuth (1998) has a full discussion.
Floyd Lounsbury (n.d.) provided several widely used
formulae for working with the Mayan calendar; all
the formulae here in section 2 are Python translations
of these.

def p260l (tr, v):
 return((40*((tr-1)-(v-1)))+(v-1))%260

For the example (8, 0):

tz = ((40 ⋅ ((tr - 1)-(v - 1))) + (v - 1))%260
tz = ((40 ⋅ ((8 - 1)-(0 - 1))) + (0 - 1))%260

tz = 59

Thus, converting ‘‘8 ‘Ahaw’’ to its mathematical
equivalent gives us 59, our position in the tzolk’in.

2.5 Finding the Position in the Haab

With the haab coordinates (13, 3) obtained in section
2.3, we can likewise determine the position in the
haab, but with a simpler formula (again taken from
Lounsbury, n.d.):

def phaabl(hd, hm):
 return(hm * 20)+hd

For the example (13, 3):

h = (hm ⋅ 20) + hd
h = (3 ⋅ 20) + 13

h = 73

2.6 Finding the Position in the Calendar Round

There are two steps in this process, the first of which
involves finding the minimum number of 365-day
units that separate the day we are interested in (8
‘Ahaw 13 Sots) and the day that begins the Calendar
Round: this is the number of whole haabs (nH).
Finding nH requires the coordinates we found in the
previous two steps, the position in the tzolk’in (tz)
and the position in the haab (h), or (59, 73).

def nHl(tz, h):
 return(tz - h)%52

For the example (59, 73):

nH = (tz - h) % 52
nH = (59 - 73) % 52

nH = 38

The second step requires only two of the answers
from the previous steps, the number of whole haabs

and the position in the haab:

def pCRl(tz, h):
 nH = nHl(tz, h)
 return(365 * nH)+h

For the example (38, 73):

cr = (365 ⋅ nH) + h
cr = (365 ⋅ 38) + 73

cr = 13943

Thus, the day ‘‘8 ‘Ahaw 13 Sots’’ is equivalent to
position 13943 in the 18980-day Calendar Round. It
is also quite important to realize that the Calendar
Round is locked to the Long Count in a particular
way. Day 0 of the Long Count, ‘‘0.0.0.0.0,’’ is set to
day ‘‘4 ‘Ahaw 8 Kumk’u’’ of the Calendar Round,
which is position 7283. As each day goes by both the
Long Count and the Calendar Round advance by one.
More details are available on my website.

Moreover, since the Mayan calendar is rivaled in
complexity only by the Gregorian (did you ever study
epacts3?), it can have many more cycles and periods
than I have described here (Carlson, 1981). I will
mention just two additional cycles which can be
useful in determining a precise Mayan date:

1. The nine-day Lord of the Night cycle, which
operates much like the 7 days of the
Gregorian week (Thompson, 1929); and

2. The 819-day cycle, containing 7 co-
ordinates: four Calendar Round coordinates
and a three-digit backward count of days
(Thompson, 1943).

3 Representation and Conversion of
Mayan Dates

Mayan dates, then, are composed of two major parts;
a mixed-radix portion (the Long Count) and a
modular portion (the Calendar Round). For use in
computer programs, we need to convert user friendly
(or at least Mayanist friendly) strings such as
‘‘12.19.5.5.0’’ and ‘‘8 ‘Ahaw 13 Sots’’ into arrays,
lists, structs or classes, and we need to be able to add,
subtract, occasionally multiply, convert to Gregorian,
and perform other functions on the resulting objects.
Computer representation of these date objects is not
simple; in C we could use structs, in C++, classes. In
either one, converting from a string representation
would require parsing the ‘‘12.19.5.5.0’’ input string,
allocating memory and/or creating an instance of the
struct or class, and filling in the appropriate fields in
the struct/class from parsed values found in the

string. While it is possible to create a class
constructor in C++ such that one could say

 m = new mayanum("12.19.5.5.0");

and one could even extend the notation to the natural

 m = m + "1.0.0";

but the equally natural

 m = "1.0.0" + m;

is illegal, because the rules for operator overloading
in C++ do not allow the first argument to be anything
but the class for which the operator is defined. In
Python the special class method mechanism,
specifically __radd__, invites such intuitive usage,
and the algorithms become simple to implement.
Converting the Calendar Round string ‘‘8 ‘Ahaw 13
Sots’’ is not quite as simple, but is certainly far easier
than the equivalent method from C. Strings can be
used as dictionary keys, so it is easy to allow users to
type in names in several variant spellings and still be
able to convert the names to numbers; the functions
matchveintena() and matchhaabmonth() in the
supplied code do exactly this.

Although most Mayan dates encountered have only 5
places, as seen above, these dates are essentially
unbounded. One example, from Coba4, is
‘‘ 13.0.
0.0.0;’’ this represents about 28 octillion years. (This
date used to break nearly all PC programs; with
Python, calculation is not difficult because of the
built in support for long integers.)

In C, we could declare an array to store 5 places:
(int x[5];) then, when parsing the input string
given above, just ensure that we store the final ‘‘0’’
in x[0]. Not too difficult, but what about times
when we have to evaluate a string like the date from
Coba? Or one even longer? During parsing, we
would have to figure out how many places, allocate
the appropriate memory, and so on. If we added two
such dates, then some routine would have to
reallocate memory somewhere. Making sure that all
the bases (pun intended) are covered isn’t
easyexcept in Python. Parsing and conversion of
unlimited Long Count strings can be accomplished
with very few lines of code:

def stringtomaya(s):
 list = string.splitfields(s, ".")
 lcl = map(string.atoi, list)
 lcl.reverse()
 return lcl # Put k’in in slot 0

In the supplied code, stringtomaya() is a class
method. In order to deal with negative Mayan dates,
the method is slightly longer than shown here.

4 Special Class Methods for Mayan
Dates

Because Python has special class methods
(‘‘ __add__,’’ etc.), it is almost trivial to implement
the methods required to convert various
representations to Mayan dates, and little more work
to implement the actual addition, subtraction and
multiplication methods that automatically convert
those representations to the required Mayan dates and
perform the appropriate functions. For example, one
way addition could be built is to first convert Mayan
dates to the equivalent long:

def mayatolong(m): # Reversed list
 n = long(0)
 bs = 20
 i = 0
 j = len(m)
 while i<j:

if(i == 1):
bs = 18

else:
bs = 20

n = n+(m[i]*bs)
 return n

and then just add the two longs:

def addmaya(n, m):
 n1 = mayatolong(n)
 m1 = mayatolong(m)
 return n1 + m1

This would certainly work, but what if we wanted to
perform the addition using something like the
methods employed by Mayans? We know perfectly
well that they did not convert their mixed radix
numbers to base 10; we also know that they were
more than capable of adding and subtracting huge,
multiplace numbers without error, casting forward
and backward enormous distances in time. In the
following discussion, I will ignore complications like
signs and negative numbers; Mayans could and did
deal with negative numbers, but not the way we
would. What they usually did was to say ‘‘count
backwards so many days from a date, and you will
arrive at a Calendar Round with coordinates so-and-
so.’’ This is somewhat like saying, ‘‘count backwards
100 digits from +10, and the place you get to has a
final digit of 0.’’ The actual location reached, -90,
would never be written down that way, but it would
be quite obvious that that was indeed the value we
meant. Given that the Mayans seemed to view the
integers as gods, referring to negative values without

ever writing down their names appears quite logical.

From various indications (Thompson, 1936; Justeson,
1989), we can infer that Mayan methods for adding
were not too different from our own. That is, write
the two numbers down, one above the other, and add
each column. If the total is more than the maximum
value for that column, depending on the radix, then
simply carry to the next column. A simple
implementation might look like this:

def addmaya(lcl,plus):
 t = []
 bs = 20
 carry = 0
 j = 0
 for i in lcl:
 n = i + plus[j] + carry
 carry = 0
 if j == 1:

bs = 18
 else:
 bs = 20
 if (n > (bs - 1)):
 carry = n / bs
 n = n % bs
 j = j + 1
 t.insert(0, n)
 while(carry > 0):
 if j == 1:
 bs = 18
 else:
 bs = 20
 t.insert(0, carry % bs)
 carry = carry / bs
 j = j + 1
 return t

If we put this implementation into a class, then we
can build a __coerce__ method into it, and
automatically have the ability to perform

 n = n + "1.0.0.0"

and

 n = n + 18980

which are both things Mayanists find themselves
frequently having to do. Mayan monuments
(‘‘ stelae’’) usually start off by establishing a base
date, known as the ‘‘Initial Series,’’ and then using
what are called ‘‘Distance Numbers’’ to count from
the Initial Series date, or from any of the secondary
dates reached by counting from the Initial Series date.
Often, these Distance Numbers will count backwards,
so our class needs to support subtraction; sometimes
the dates reached by these Distance Numbers will be
before the zero day (0.0.0.0.0 4 ‘Ahaw 8 Kumk’u). A
Mayan date class must support negative numbers and
therefore signs, along with other attendant baggage.
To fully support addition, we can rewrite our
__add__ method to support signed addition. With a
little forethought, we can determine the cir-

cumstances under which a signed subtraction
becomes a signed addition, and a signed addition
becomes a signed subtraction. As long as simple
addition is always supported by the __add__
method and simple subtraction is always supported
by the __sub__ method, we do not have to worry
about recursion, and can implement parts of each
method in terms of the other. The full implementation
of both __add__ and __sub__ can be found in the
downloadable code.

There are some details found in that code that I have
not talked about here. For instance, there is a class
member, sign, which is the sign of the number; it is
either 1 or -1. There are grow() and shrink() methods
which are used to ensure that numbers subtracted or
added have the same number of places in them. A
radix member allows us to treat Mayan Long Counts
(modified base 20) differently from Mayan numbers
(unmodified base 20) automatically. The method
iszero() lets us ensure that we don’t end up with
something silly like ‘‘-0.’’ Several other special class
methods are provided, such as __abs__,
__coerce__, __radd__, __mul__ and
__cmp__.

Multiplication by a single integer can be done for
mixed radix numbers without much trouble; it is
much like addition, requiring the same attention to
signs and carrying. However, you cannot multiply
two mixed radix numbers directly. The only way it
can be done is to convert both numbers to either the
integer equivalent or to their equivalents in uniform
radix notation; e.g., to multiply 1.0.0 times 2.7.9, we
need to convert either to integers (360 ⋅ 869) or to
pure base 20 (18.0 ⋅ 2.3.9). I believe that the Mayans
had some way to perform multiplication, whatever
the multiplier, so there is no reason we can’t multiply
2.7.9 ⋅ 360. Mayanists have been surprised, many
times over, by the sophistication of the Mayans’
numeric toolbox.

Using the __coerce__ method, we can ensure that
__mul__ never sees numbers, or Mayan dates, it
cannot deal with. We can also define a __div__
method that works the same way, i.e., changes the
divisor to a single integer or converts both the divisor
and dividend to pure base 20. While these
implementations are nontrivial, I won’t describe them
here; they too are in the downloadable code.

Further mathematical operations could be defined,
such as a __pow__ method, but since I’m only
barely convinced of the utility of the __mul__ and
__div__ methods, I have not done so. The most

useful methods when dealing with simple Mayan
dates are __add__, __sub__, __cmp__, and
__coerce__ (and their corresponding __r*
forms)although I have occasionally found use for
__lshift__. None of these methods, however,
requires the coordinates of the Calendar Round to be
either calculated or known for the arithmetic to work
properly. We can supply a calculate() method which,
given a Long Count date, can easily provide
matching Calendar Rounds. This method can be
found in the downloadable code. Another extremely
useful method is gregorian(), which does exactly
what it says: Mayan dates can calculate the Gregorian
calendar equivalent of themselves. Since there is still
much debate over the exact correlation of Mayan
dates and our own, Gregorian, calendar (Thompson,
1937), a means is provided to change the correlation
date. All of these methods are quite useful when most
or all of the various cycles and componenents are
known, but it is an unfortunate truth that very many
Mayan dates from the stelae have partially eradicated
or unreadable dates, in which one can discern only
parts of the Long Count and/or parts of the Calendar
Round. What would be useful, then, is a set of
methods and non-class functions designed
specifically to deal with partial Long Counts and
Calendar Rounds. This is something I always wanted
to do, but could not with C, as the amount of work
required for such a low level language was
overwhelming. Using Python convinced me that the
project could be easily managed, and so it proved.

5 The Recovery of Partial Mayan
Dates

Lounsbury (n.d. and 1978) has described formulae
for determining a set of Long Count dates from any
given Calendar Round coordinates; since the
Calendar Round recurs every 52 years, though, the
formulae expect the user to have at least some idea of
the bak’tun: this is a not unreasonable expectation,
since the vast majority of Mayan dates recorded on
the stelae are within the 9th bak’tun (435-830 CE),
with some few in the 8th (41-435 CE) and some also
in the 10th (830-1224 CE). Once you have such a list
of Long Count dates, additional factors can help to
determine the exact match for any given monument,
the most notable factor being the nine-day cycle of
Lords of the Night, referred to by ‘‘G numbers’’ (G9,
G1, G2 and so on), since we don’t know the names of
these gods. If a Calendar Round, a bak’tun and a
Lord of the Night are known, the exact Long Count
date can be precisely determined.

However, the condition of some monuments can

reduce the amount of information available.
Sometimes, a full Long Count and a full Calendar
Round are not known. Most such loss of information
is due to erosion or recent vandalism and looting. The
Mayans would sometimes deface public monuments
in such a way that faces and name glyphs of public
personages became unreadable, but never, to my
knowledge, deliberately obscured date glyphs. So I
started to think about this; what is needed is a blank
template into which users could insert all the items of
information about a date that they could find on a
particular monument, submit what they know, and
get back a list of possible candidates. This should
apply to any component of a Mayan Date, not just to
the Calendar Round coordinates and a bak’tun. I
thought about this a little more, and realized that if
people were allowed to input just one number or day
name, for example, the possible candidates would be
infinite without some restrictions; even with
restrictions, the candidate list could be extremely
large, even though technically finite. The problem is
not one of not finding the ‘‘correct’’ answer, but one
of being overwhelmed with too many possibly
correct answers. I then realized that the number of
items in the candidate list could easily be
precomputed; users could submit possibilites
iteratively until the potential list became sufficiently
limited to be comprehensible, and then choose, if
possible, among the short list of choices.

I have implemented such a multistep interactive CGI
program at

 http://www.pauahtun.org/cgi-bin/possible.py.

It allows users to fill in a template which is then used
to precalculate the number of possible answers; if
there are not too many possibilities, it allows users to
view a list of candidates and request more
information on interesting candidates. The program
only provides for five places of the Long Count,
however.

One of Python’s more useful features is run-time
typing; this allowed me to build the input template
with a menu system that lets users specify ‘‘wild
cards’’ as digits in Mayan dates. When querying the
user entries, the program just checks to see if any
digits have been entered as ‘‘None.’’ Those entries
are wild cards, while digits actually entered come
back as numbers. For example, a user might enter a
Long Count as 12.16.13.None.None; a Python
function to calculate the number of possibilities
inherent in this Long Count is actually fairly simple.
You just multiply the possible values in each digit
together; the maximum number of possibilities in

each place is the same as the radix in that place. If a
digit is present, then there is only one possibility for
that place. For the given example, the total is:

 p = 1 ⋅ 1 ⋅ 1 ⋅ 18 ⋅ 20
 p = 360

For Mayan Long Counts in the normal range (1-5
places), the maximum possibilities number
2,880,000, although since Long Counts are
essentially unlimited in length, these maxima
increase greatly with each addition of a digit.
However, while these maxima are easily calculated
for Long Counts, the Calendar Round is another
story. Since the maximum radix is 18980, and there
are only four components making up the Calendar
Round, it turned out that the fastest and simplest way
to determine maxima was to empirically determine
all possible combinations and use a big if

statementthere are only 24 different values that
need to be returned. For example, if the user enters
something like 4 ‘Ahaw 8 None , then we know
that there are only 18 possible dates in the entire
18980-day Calendar Round. This is because Calendar
Round dates with the three coordinates ‘‘4 ‘Ahaw 8’’
((4, 0, 8)) can occur in each month of the haab,
and there are 18 months. Again, we have a relatively
simple procedure that can be implemented in not too
many lines of Python. A method for the calculation
of the combined number of possibilities, however,
was not (and still is not) obvious to me.

Once we have the functions to calculate the number
of possibilities, we need functions to actually build
lists. These turn out to be somewhat harder, although
the function for the Calendar Round is not too
difficult; since there are only four components to the
Calendar Round, the function can be written as four
nested for loops. The complicating factors are:

1. the days of the veintena are legal, because of
the mathematics, only on certain days of the
haab month; and

2. the last month of the haab has only five
days.

Thus, most of the code to return a list of possible
Calendar Round positions is occupied with input
verification.

The Long Count function appears deceptively simple:
just cruise through the places, and, any time a None
is found instead of a digit, use a for loop. But since
the length of the Long Count component is
essentially unlimited, it is somewhat harder than that.
The only way that I think such a function could be
written in C or C++ would be to use recursion, since

those languages cannot compile and execute code
they have written. Python can, and this proved to be
the ideal solution. Two functions were required,
though, not just one; one to look through the Long
Count list and generate the Python code that changes
for each selection depending on which places are
wild cards, and another one to execute the written
code which returns a list of Mayan dates that
represent the possibilities.

Since I was not able to see a means to compute the
number of possibilities using lists of possibilities
from both Long Count and Calendar Round
functions, I decided that the best way to determine
the final list was to:

1. Use a two-step CGI program to precalculate
LC possibilities of 8000 or less5; and CR
possibilities of 949 or less, then

2. determine the actual list of CR possibilities;

3. pass the CR list to the LC function that
writes Python code, which

4. uses the CR list to eliminate Mayan dates
from the final LC list, and

5. executes the Python code to produce a final
short list of Mayan dates, from which the
user can obtain detailed information using
another CGI program, by clicking on the
desired date.

The final version of the Long Count function
calculates Mayan dates for all possibilities in the
submitted Long Count list, but each time it does so it
checks the list of Calendar Round possibilities to see
if the calculated Mayan date can possibly occur on
any of the given Calendar Rounds; impossible Long
Count/Calendar Round combinations are ignored. In
mayalib.py, the function newwritethecode (llc, crlist)
takes care of writing code from a supplied Long
Count (llc) and passing through a Calendar Round
list (crlist). Here is the function it wrote to run
through all five of the normal positions in the Long
Count ([None,None,None,None,None]):

from mayalib import *
tls = []
for s0 in range(20):
 for s1 in range(20):
 for s2 in range(20):
 for s3 in range(18):
 for s4 in range(20):
 ls = [s0,s1,s2,s3,s4,]
 tmp = mayanum(ls)
 tmp.calculate()
 if tmp.CR in crlist:
 tls.append(tmp)

The function would change ranges if any None were
replaced with a number. In the function to execute
the above code,llc is the Long Count list and tcr
is the Calendar Round list, and these variables are
placed in the namespace of the exec‘ed code:

def newexecthecode(str, llc, tcr):
 xx = [str]
 code = []
 for stmt in xx:

code.append(compile(stmt,\
 "(execthecode)", "exec"))
 ns = {"llc":llc, "crlist":tcr}
 for stmt in code:

exec stmt in ns, ns
 tls = ns["tls"]
 return tls

In mayalib.py, look for the function listactuals() to
see how the actual lists are generated.

6 Future Directions

Knuth (1997) discusses permutations, which might be
a fruitful area of study. Some means is needed to
precalculate a final list of date possibilities from
multiple input lists without generating all possible
Long Count dates and rejecting some (or most).
Such brute force approaches do not take advantage of
the real power of Python.

The function that writes a function could easily be
improved by adding more optional arguments, such
as a list of possibilities for the Lords of the Night G
series and another for the 819-day count. There are
many more cycles which could be incorporated, but

it is not really necessary. The Long Count, Calendar
Round, Lords of the Night and the 819-day count are
the major cycles found on the monuments, and they
are sufficient (without going into further detail6) to
fix any Mayan date precisely within

9305547427296816673725170526315789473684210
5263157894736842105263157894736842105263157

89473682240000
days, or about

2549465048574470321568539870223503965392934
3907714491708723864455659697188175919250180

245133376000
years.

That should do for a while.

7 Conclusion

I’ve described some new methods for Mayan date
calculation in this paper; given access to a computer,
and some training in the use of Python, many
Mayanists may be able to make further discoveries
on their own. With sufficient computing power in a
laptop, some of the programs and Python functions
described here may someday help epigraphers in the
field to pinpoint the date of a newly discovered
Mayan monument.

If that ever happens, I would like them to be able to
say, ‘‘I couldn’t have done it without Python.’’ Or
maybe, ‘‘... not without the Sovereign Plumed
Serpent.’’

8 Notes

1. The Plumed Serpent: I have paraphrased a section here from Dennis Tedlock’s outstanding translation of
the Popol Vuh (Tedlock, 1996: pp. 64-65); without the proper context, isolated quotations from this Mayan
creation story can sound distressingly new age, which is about as far from the Popol Vuh as you can get.
Popol means ‘‘council’’ and ‘‘vuh’’ is ‘‘book.’’ Just as Popol Vuh means ‘‘Council Book,’’ Python Vuh
means ‘‘Serpent Book.’’ In Classic Mayan religion, as near as we can determine, the Plumed Serpent is the
Milky Way, and the Popol Vuh is a sky map in words (Schele, 1992). Python Vuh, then, is a serpent map in
words.

Thanks are due to Lloyd Anderson, who helped me keep some of my estimates honest, and to Karl Taube,
who kindly gave his permission to use the drawing of the Plumed Serpent (other drawings are my own). I
would also like to acknowledge the assistance of Jeremy Hylton and Audrey Thompson, who suggested
many improvements.

2. Bak’tun: While the other terms shown in the table are attested to and used by Mayans, bak’tun seems to be
an invention of Mayanists rather than Mayans. Recent advances in translation have shown that the glyph
for the 144,000-day period should most probably be translated as pi or pih, a term meaning ‘‘bundle.’’
None of the terms for periods greater than 144,000 days (of which there are many) are attested. They
should be recognized for what they are: terms invented for the convenience of Western anthropologists,
archaeologists and epigraphers. See any of the recent Workbooks by Linda Schele for a detailed discussion.

3. Epacts are tables used in the calculation of Easter in the Gregorian calendar. The rules for the use of the
tables are fiendishly difficult; even Karl Friedrich Gauss (1777-1855), one of the greatest mathematicions
who ever lived, was not able to produce an algorithm for the determination of Easter that was accurate past
the year 4200 (later mathematicians have done so, however).

4. Coba is a ruin in northeastern Yucatan, near Tulum, sixty miles or so from Chichén Itza; during Classic
times, it was the largest city in the area (Hunter, 1986).

5. While 8000 possibilities might seem like a fairly large list to go through, the process finishes in acceptable
time even on my 100MHZ home Unix system. Limiting users to less than 8000 LC and 949 CR
possibilities still allows for an extremely wide range of possible candidates for the date(s) in question; users
requiring longer lists can request them in two or more steps.

6. Details: It turns out that the 819-day cycle is much actually much larger than 819 days. The complete
length of the cycle when you look at all the factors is 1,195,740 days, or around 3273 years (Van
Laningham, forthcoming). When this is combined with the Long Count, Calendar Round and Lord of the
Night cycle, the repetition frequency of any given date is this very, very large number. In Mayan
representation, this means that:

 0.0.0.0.0 4 ‘Ahaw 8 Kumk’u G9 CR = 7283 819 = 3

is the same as

 13.\
 13.\
 13.\
 0.0.0.0.0 4 ‘Ahaw 8 Kumk’u G9 CR = 7283 819 = 3

(there are 72 13s). That is, dates where 5 places of the Long Count are zero, the Calendar Round position is
7283, the Lord of the Night is G9 and the 819-day position is three take a long, long time to repeat.

9 References

Carlson, John B. ‘‘Numerology and the Astronomy of the Maya’’. In Archaeoastronomy in the Americas, edited
by Ray A. Williamson (pp. 205-214). College Park, MD: Center for Archaeoastronomy, 1981.

Culbert, T. Patrick, ed. Classic Maya Political History: Hieroglyphic and Archaeological Evidence. Cambridge:
Cambridge University Press, 1991.

Edmonson, Munro S., The Book of the Year: Middle American Calendrical Systems. Salt Lake City: University
of Utah Press, 1988.

Hunter, C. Bruce. A Guide to Ancient Maya Ruins, Second edition. Norman: University of Oklahoma, 1986.

Justeson, John S. ‘‘Ancient Maya Ethnoastronomy: An Overview of Hieroglyphic Sources.’’ In World
Archaeoastronomy, edited by A. F. Aveni (pp. 76-129). Cambridge: University of Cambridge Press, 1989.

Knuth, Donald E. The Art of Computer Programming, Volume 1, Fundamental Algorithms, Third edition.
Reading, Massachusetts: Addison-Wesley, 1997.

Knuth, Donald E. The Art of Computer Programming, Volume 2, Seminumerical Algorithms, Third edition.
Reading, Massachusetts: Addison-Wesley, 1998.

Lounsbury, F. G. ‘‘Formulae for Maya Calendrical Computations.’’ Austin, TX: Kinko’s, n.d. Maya File 124.

Lounsbury, Floyd G. ‘‘Maya Numeration, Computation, and Calendrical Astronomy.’’ In Dictionary of
Scientific Biography, Vol. 15, Supplement 1, edited by Charles Coulston Gillespie (pp. 759-818). New York:

Scribners, 1978. Maya File 316e.

Schele, Linda and David Freidel. A Forest of Kings: The Untold Story of the Ancient Maya, New York: William
Morrow, 1990.

Schele, Linda. Workbook for XVIth Maya Hieroglyphic Workshop at Texas: Origins. Austin, TX: Department
of Art and Art History and The Institute of Latin American Studies, University of Texas, 1992.

Schele, Linda, Nikolai Grube and Simon Martin. Notebook for the XXIIst Maya Hieroglyphic Forum:
Deciphering Maya Politics. Austin, TX: Department of Art and Art History, The College of Fine Arts, and The
Institute of Latin American Studies, University of Texas, 1998.

Schele, Linda and Peter Mathews. The Code of Kings: The Language of Seven Sacred Maya Temples and
Tombs. New York: Scribners, 1998.

Taube, Karl Andreas. The Major Gods of Ancient Yucatan (Studies in Pre-Columbian Art & Archaeology
Number Thirty-Two). Washington, DC: Dumbarton Oaks Research Library and Collection, 1992.

Tedlock, Dennis. Popol Vuh: The Definitive Edition of the Mayan Book of the Dawn of Life and the Glories of
Gods and Kings, Revised and expanded. New York: Simon and Schuster, 1996.

Thompson, J. Eric. ‘‘Maya Chronology: Glyph G of the Lunar Series.’’ American Anthropologist n.s., 31, 1929:
223-31.

Thompson, J. Eric. ‘‘Maya Chronology: The Correlation Question.’’ Contributions to American Archaeology,
Volume III, Nos. 13 to 19; No. 14 (pp. 51-104). Washington, DC: Carnegie Institution of Washington, 1937.

Thompson, J. Eric S. ‘‘Maya Arithmetic.’’ Contributions to American Archaeology, Volume VII, No. 36 (pp.
34-67). Washington, DC: Carnegie Institution of Washington, 1941.

Thompson, J. Eric S. ‘‘Maya Epigraphy: A Cycle of 819 Days.’’ Notes on Middle American Archaeology and
Ethnology No. 22, October 30, 1943: 122-151.

Thompson, J. Eric S. Maya Hieroglyphic Writing: An Introduction, Third edition. Norman: University of
Oklahoma Press, 1971.

Van Laningham, Ivan. ‘‘Somewhere in Time: New Mathematical Methods for the 819-Day Count.’’
Forthcoming in U Mut Maya VII, edited by Tom and Carolyn Jones. Arcata, CA: Humboldt State University
Press.

The notation ‘‘Maya File’’ indicates that the paper so marked is available for a nominal fee from Kinko’s, 2901-C
Medical Arts Boulevard, Austin, TX (512 476-3242).

Those reading this paper in hardcopy may have difficulty clicking on the links. These are:

• An Introduction to the Mayan Calendar: http://www.pauahtun.org/basic.html

• The Calendar Round: http://www.pauahtun.org/calround.html

• The downloadable code: ftp://www.pauahtun.org/mayalib.py

• Numerology and the Astronomy of the Maya: http://www.pauahtun.org/carlson_table.html

• Interactive CR and LC Guessing program: http://www.pauahtun.org/cgi-bin/possible.py

• Other Python-powered cgi tools: http://www.pauahtun.org/tools.html

• The home page for the site is: http://www.pauahtun.org/Default.htm

