Python Frequently Asked Questions
Release 3.9.6

Guido van Rossum
and the Python development team

June 28, 2021

Python Software Foundation
Email: docs@python.org

CONTENTS

1 General Python FAQ
General Information e e e e e e e e e e

1.1

1.2

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9
1.1.10
1.1.11
1.1.12
1.1.13
1.1.14
1.1.15
1.1.16
1.1.17

What is the Python Software Foundation?
Are there copyright restrictions on the use of Python?,
Why was Python created in the first place?
What is Python good for? oo
How does the Python version numbering scheme work?
How do I obtain a copy of the Python source?
How do I get documentation on Python?
I've never programmed before. Is there a Python tutorial?

Do I have to like “Monty Python’s Flying Circus™?

Pythoninthereal world

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

What new developments are expected for Python in the future?
Is it reasonable to propose incompatible changes to Python?
Is Python a good language for beginning programmers?

2 Programming FAQ
General QUESHIONS L e e e e e e e

2.1

22

2.1.1
2.1.2
2.13
2.14

Is there a source code level debugger with breakpoints, single-stepping, etc.?

How can I create a stand-alone binary from a Python script?
Are there coding standards or a style guide for Python programs?

Core Language o . e e e e e

221
222
223
224
225
226
227
228
229
2.2.10

How do I share global variables across modules?
What are the “best practices” for using import in a module?
Why are default values shared between objects?

What is the difference between arguments and parameters?
Why did changing list ‘y’ also change list X’?
How do I write a function with output parameters (call by reference)?

— e

2.2.11 How do you make a higher order function in Python? 15
2.2.12 HowdoIcopyanobjectinPython? 16
2.2.13 How can I find the methods or attributes of an object? 16
2.2.14 How can my code discover the name of anobject? 16
2.2.15 What’s up with the comma operator’s precedence? 17
2.2.16 Is there an equivalent of C’s “?:” ternary operator? 17
2.2.17 Isit possible to write obfuscated one-liners in Python? 17
2.2.18 What does the slash(/) in the parameter list of a function mean? 18
2.3 Numbersand strings e e e e 18
2.3.1 How do I specify hexadecimal and octal integers? 18
232 Whydoes-22//10return-37 19
233 HowdolIconvertastringtoanumber? 19
2.3.4 HowdolIconvertanumbertoastring? v v i i v it 19
235 HowdoImodify astringinplace? 19
2.3.6 How do I use strings to call functions/methods? 20
2.3.7 s there an equivalent to Perl’s chomp() for removing trailing newlines from strings? 21
2.3.8 Isthere ascanf() or sscanf() equivalent? 21
2.3.9 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean? 21
24 Performance e e e e e e 21
24.1 My program is too slow. Howdo Ispeeditup? 21
2.4.2 What is the most efficient way to concatenate many strings together? 22
2.5 Sequences (Tuples/Lists) o o i i i e e e e e 22
2.5.1 How do I convert between tuples and lists? 22
2.5.2 What'sanegative index? e e e e e 23
2.5.3 How do Iiterate over a sequence in reverse order? 23
2.54 How do you remove duplicates fromalist? 23
2.5.5 How do you remove multiple items fromalist, 23
2.5.6 How do youmake an array in Python? 24
2.5.7 How do I create a multidimensional list? 24
2.5.8 How do I apply a method to a sequence of objects? 25
2.5.9 Why does a_tuple[i] += [‘item’] raise an exception when the addition works? 25
2.5.10 I want to do a complicated sort: can you do a Schwartzian Transform in Python? 26
2.5.11 How can I sort one list by values from another list? 26
2.6 ODJECES . . v o i e e e e e e e e e e e e e e e e 26
2.6.1 Whatisaclass? 26
2.6.2 Whatisamethod?. 27
2.6.3 Whatisself?. e 27
2.6.4 How do I check if an object is an instance of a given class or of a subclass of it? 27
2.6.5 Whatisdelegation? e e e e e e e e e e 28
2.6.6 How do I call a method defined in a base class from a derived class that overrides it? . . . 29
2.6.7 How can I organize my code to make it easier to change the base class? 29
2.6.8 How do I create static class data and static class methods? 29
2.6.9 How can I overload constructors (or methods) in Python? 30
2.6.10 Itrytouse __spam and I get an error about _SomeClassName__spam. 30
2.6.11 My class defines __del__ but it is not called when I delete the object. 30
2.6.12 How do I getalist of all instances of a givenclass? 31
2.6.13 Why does the result of 1d () appear to be notunique? 31
2.6.14 When can I rely on identity tests with the is operator? 31
277 Modules. 32
2.7.1 HowdolIcreatea.pycfile? e 32
2.7.2 How do I find the current module name? 33
2.7.3 How can I have modules that mutually import each other? 33
2.74 __import__(‘x.y.z’) returns <module x’>; howdoIgetz? 34

2.7.5 When I edit an imported module and reimport it, the changes don’t show up. Why does
thishappen? o e e e e e e 34
3 Design and History FAQ 37

3.1 Why does Python use indentation for grouping of statements? 37

3.2 Why am I getting strange results with simple arithmetic operations? 37
3.3 Why are floating-point calculations so inaccurate?o 37
3.4 Why are Python strings immutable? L 38
3.5 Why must ‘self” be used explicitly in method definitionsand calls? 38
3.6 Why can’t [use an assignment in an eXpression?o e e e e e e 39
3.7 Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g.
Ien(list))? e e e e e e e e e 39
3.8 Why is join() a string method instead of a list or tuple method? 39
3.9 Howfastare exceptions? e e e e e 40
3.10 Why isn’t there a switch or case statement in Python? 40
3.11 Can’tyou emulate threads in the interpreter instead of relying on an OS-specific thread implementation? 41
3.12 Why can’t lambda expressions contain statements?ol 41
3.13 Can Python be compiled to machine code, C or some other language? 41
3.14 How does Python manage memory? e e 41
3.15 Why doesn’t CPython use a more traditional garbage collection scheme? 42
3.16 Why isn’t all memory freed when CPython exits? 42
3.17 Why are there separate tuple and list data types? oL 42
3.18 How are lists implemented in CPython?, 43
3.19 How are dictionaries implemented in CPython? 43
3.20 Why must dictionary keys be immutable? 0oL oL 43
3.21 Why doesn’t list.sort() return the sorted list? L. oL 44
3.22 How do you specify and enforce an interface spec in Python? 44
3.23 Whyisthere no goto? o v v it e e e e e e e e e e e e e e e e 45
3.24 Why can’t raw strings (r-strings) end with a backslash? 45
3.25 Why doesn’t Python have a “with” statement for attribute assignments? 46
3.26 Why don’t generators support the with statement?o 47
3.27 Why are colons required for the if/while/def/class statements? 47
3.28 Why does Python allow commas at the end of lists and tuples? 47
Library and Extension FAQ 49
4.1 General Library QUestions i e e 49
4.1.1 How do I find a module or application to perform task X? 49
4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file? 49
4.1.3 How do I make a Python script executable on Unix? 49
4.1.4 Is there a curses/termcap package for Python? 00, 50
4.1.5 Isthere an equivalent to C’s onexit() in Python? 50
4.1.6 Why don’t my signal handlers work? oo, 50
42 Commontasks 50
42.1 How do I test a Python program or component? 50
4.2.2 How do I create documentation from doc strings? 51
423 HowdoIgetasingle keypressatatime? 51
43 Threads o 51
43.1 Howdolprogramusing threads? 51
4.3.2 None of my threads seem torun: why? 51
4.3.3 How do I parcel out work among a bunch of worker threads? 52
4.3.4 What kinds of global value mutation are thread-safe? 53
4.3.5 Can’t we get rid of the Global Interpreter Lock? 54
4.4 Inputand OULPUL o it e e e e e e e e e e e e e e e e 54
4.4.1 How do I delete a file? (And other file questions...) 54
442 Howdolcopyafile? e 55
443 Howdolread (or write) binary data? L oL 55
444 Tcan’t seem to use os.read() on a pipe created with os.popen(); why? 55
4.4.5 Howdo Iaccess the serial (RS232) port? 55
4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it? 55
4.5 Network/Internet Programming L e e 56
4.5.1 What WWW tools are there for Python? 56
4.5.2 How can I mimic CGI form submission (METHOD=POST)? 56

4.5.3 What module should I use to help with generating HTML? 57

4.5.4 How do I'send mail from a Python script? 57

4.5.5 How do I avoid blocking in the connect() method of a socket? 57
4.6 Databases 58
4.6.1 Are there any interfaces to database packages in Python? 58
4.6.2 How do you implement persistent objects in Python? 58
4.7 Mathematics and NUmMerics e e e e e e e e e e e 58
47.1 How do I generate random numbers in Python? 58
Extending/Embedding FAQ 59
5.1 Canlcreate myown functionsinC? 59
5.2 Canlcreate my own functions in C++? e e e 59
5.3 Writing C is hard; are there any alternatives? e 59
5.4 How can I execute arbitrary Python statements from C?, 59
5.5 How can I evaluate an arbitrary Python expression from C? 60
5.6 How do I extract C values from a Python object? 60
5.7 How do I use Py_BuildValue() to create a tuple of arbitrary length? 60
5.8 HowdoIcall an object’s method from C? 60
5.9 How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)? 61
5.10 How do I access a module written in Python from C? 61
5.11 How do Iinterface to C++ objects from Python?, 62
5.12 Tadded a module using the Setup file and the make fails; why? 62
5.13 How doIdebugan extension? i i v it it i e e e e e 62
5.14 I want to compile a Python module on my Linux system, but some files are missing. Why? 62
5.15 How do I tell “incomplete input” from “invalid input™? L. 62
5.16 How do I find undefined g++ symbols __builtin_new or __pure_virtual? 65
5.17 CanIcreate an object class with some methods implemented in C and others in Python (e.g. through
INhEritance)? e e e e e e e e e e e e e 65
Python on Windows FAQ 67
6.1 How do I run a Python program under Windows? 67
6.2 How do I make Python scripts executable? e 68
6.3 Why does Python sometimes take so longtostart? 68
6.4 How do I make an executable from a Python script? 68
6.5 Isa*.pydfilethesameasaDLL? e, 68
6.6 How can I embed Python into a Windows application? 69
6.7 How do I keep editors from inserting tabs into my Python source? 70
6.8 How do I check for a keypress without blocking? 70
Graphic User Interface FAQ 71
7.1 General GUIQUESIONS o v v v i e e e e e e e e e e e e e e e 71
7.2 What platform-independent GUI toolkits exist for Python? 71
721 TKINEro e e e e e 71
7.22 wxWIAgets e e 71
T23 QU oo 71
724 Gtk . . o oo 72
725 KiVY . oo o e e e e 72
7.2.6 FLTK e 72
727 0penGL o e e e e 72
7.3 What platform-specific GUI toolkits exist for Python? 72
7.4 TKInter qUESLIONS« v v i et e e e e e e e e e e e e e e e e e e 72
7.4.1 How do I freeze Tkinter applications? v i v v i v e v 72
7.4.2 CanlIhave Tk events handled while waiting for /O? 73
7.4.3 Ican’t get key bindings to work in Tkinter: why? 73
“Why is Python Installed on my Computer?” FAQ 75
8.1 Whatis Python? e 75
8.2 Why is Python installed on my machine?o oo 75
8.3 Canldelete Python? e 75

A Glossary 77
B About these documents 89
B.1 Contributors to the Python Documentation 89
C History and License 91
C.1 Historyof the software e 91
C.2 Terms and conditions for accessing or otherwise using Python 92
C.2.1 PSFLICENSE AGREEMENT FORPYTHON 396 92
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 93
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 94
C.24 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 95
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.6 DOCUMENTA-
TION . . 95
C.3 Licenses and Acknowledgements for Incorporated Software 96
C3.1 Mersenne TWiSter o i e e e 96
C.3.2 Sockets e e e e 97
C.3.3 Asynchronous socket serviceso oo i i e e 97
C34 Cookie management v v vttt e e e e e e e e e e e 98
C.3.5 EXecution tracing v v v v v it e e e e e e e e e e e e e e e e e e 98
C.3.6 UUencode and UUdecode functions 99
C.3.7 XML Remote Procedure Calls 99
C.3.8 test_epoll L e e e 100
C39 Selectkqueue e e 100
C.3.10 SipHash24 e 101
C3.11 strtodanddtoa. L. e e 101
C.3.12 OpenSSL e e e e e 102
C3I3 expat. ot 104
C3.14 Lbfli e e 104
C3.05 zlib . . e e 105
C3.16 cfuhash e 105
C3.17 Hbmpdec e e e e e e 106
C3.18 W3CCIANTeSt SUIte v v v v v e e e e e e e e e e e e e e e e e 106
D Copyright 109
Index 111

vi

CHAPTER
ONE

GENERAL PYTHON FAQ

1.1 General Information

1.1.1 What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, exceptions,
dynamic typing, very high level dynamic data types, and classes. It supports multiple programming paradigms beyond
object-oriented programming, such as procedural and functional programming. Python combines remarkable power
with very clear syntax. It has interfaces to many system calls and libraries, as well as to various window systems,
and is extensible in C or C++. It is also usable as an extension language for applications that need a programmable
interface. Finally, Python is portable: it runs on many Unix variants including Linux and macOS, and on Windows.

To find out more, start with tutorial-index. The Beginner’s Guide to Python links to other introductory tutorials and
resources for learning Python.

1.1.2 What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that holds the copyright on Python versions
2.1 and newer. The PSF’s mission is to advance open source technology related to the Python programming language
and to publicize the use of Python. The PSF’s home page is at https://www.python.org/psf/.

Donations to the PSF are tax-exempt in the US. If you use Python and find it helpful, please contribute via the PSF
donation page.

1.1.3 Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the copyrights in and display those copyrights
in any documentation about Python that you produce. If you honor the copyright rules, it’s OK to use Python for
commercial use, to sell copies of Python in source or binary form (modified or unmodified), or to sell products that
incorporate Python in some form. We would still like to know about all commercial use of Python, of course.

See the PSF license page to find further explanations and a link to the full text of the license.

The Python logo is trademarked, and in certain cases permission is required to use it. Consult the Trademark Usage
Policy for more information.

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://www.python.org/psf/donations/
https://www.python.org/psf/license/
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, Release 3.9.6

1.1.4 Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at CWI, and
from working with this group I had learned a lot about language design. This is the origin of many Python
features, including the use of indentation for statement grouping and the inclusion of very-high-level data
types (although the details are all different in Python).

I had a number of gripes about the ABC language, but also liked many of its features. It was impossi-
ble to extend the ABC language (or its implementation) to remedy my complaints — in fact its lack of
extensibility was one of its biggest problems. I had some experience with using Modula-2+ and talked
with the designers of Modula-3 and read the Modula-3 report. Modula-3 is the origin of the syntax and
semantics used for exceptions, and some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We needed a better way to
do system administration than by writing either C programs or Bourne shell scripts, since Amoeba had
its own system call interface which wasn’t easily accessible from the Bourne shell. My experience with
error handling in Amoeba made me acutely aware of the importance of exceptions as a programming
language feature.

It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba system
calls would fill the need. I realized that it would be foolish to write an Amoeba-specific language, so I
decided that I needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the Amoeba project
with increasing success, and the feedback from colleagues made me add many early improvements.

In February 1991, after just over a year of development, I decided to post to USENET. The rest is in
the Misc/HISTORY file.

1.1.5 What is Python good for?

Python is a high-level general-purpose programming language that can be applied to many different classes of prob-
lems.

The language comes with a large standard library that covers areas such as string processing (regular expressions,
Unicode, calculating differences between files), Internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP,
CGI programming), software engineering (unit testing, logging, profiling, parsing Python code), and operating system
interfaces (system calls, filesystems, TCP/IP sockets). Look at the table of contents for library-index to get an idea
of what’s available. A wide variety of third-party extensions are also available. Consult the Python Package Index to
find packages of interest to you.

1.1.6 How does the Python version numbering scheme work?

Python versions are numbered A.B.C or A.B. A is the major version number — it is only incremented for really major
changes in the language. B is the minor version number, incremented for less earth-shattering changes. C is the
micro-level — it is incremented for each bugfix release. See PEP 6 for more information about bugfix releases.

Not all releases are bugfix releases. In the run-up to a new major release, a series of development releases are made,
denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet finalized; it’s
not unexpected to see an interface change between two alpha releases. Betas are more stable, preserving existing
interfaces but possibly adding new modules, and release candidates are frozen, making no changes except as needed
to fix critical bugs.

Alpha, beta and release candidate versions have an additional suffix. The suffix for an alpha version is “aN” for some
small number N, the suffix for a beta version is “bN” for some small number N, and the suffix for a release candidate
version is “rcN” for some small number N. In other words, all versions labeled 2.0aN precede the versions labeled
2.0bN, which precede versions labeled 2.0rcN, and those precede 2.0.

2 Chapter 1. General Python FAQ

https://pypi.org
https://www.python.org/dev/peps/pep-0006

Python Frequently Asked Questions, Release 3.9.6

You may also find version numbers with a “+” suffix, e.g. “2.2+”. These are unreleased versions, built directly from
the CPython development repository. In practice, after a final minor release is made, the version is incremented to
the next minor version, which becomes the “a0” version, e.g. “2.4a0”.

See also the documentation for sys.version, sys.hexversion,and sys.version_info.

1.1.7 How do | obtain a copy of the Python source?
The latest Python source distribution is always available from python.org, at https://www.python.org/downloads/.
The latest development sources can be obtained at https://github.com/python/cpython/.

The source distribution is a gzipped tar file containing the complete C source, Sphinx-formatted documentation,
Python library modules, example programs, and several useful pieces of freely distributable software. The source
will compile and run out of the box on most UNIX platforms.

Consult the Getting Started section of the Python Developer’s Guide for more information on getting the source code
and compiling it.

1.1.8 How do | get documentation on Python?
The standard documentation for the current stable version of Python is available at https://docs.python.org/3/. PDF,
plain text, and downloadable HTML versions are also available at https://docs.python.org/3/download.html.

The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The reStruc-
turedText source for the documentation is part of the Python source distribution.

1.1.9 I've never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation includes tutorial-index.

Consult the Beginner’s Guide to find information for beginning Python programmers, including lists of tutorials.

1.1.10 Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp. lang.python, and a mailing list, python-list. The newsgroup and mailing list are
gatewayed into each other — if you can read news it’s unnecessary to subscribe to the mailing list. comp. Iang.
python is high-traffic, receiving hundreds of postings every day, and Usenet readers are often more able to cope
with this volume.

Announcements of new software releases and events can be found in comp.lang.python.announce, a low-traffic mod-
erated list that receives about five postings per day. It’s available as the python-announce mailing list.

More info about other mailing lists and newsgroups can be found at https://www.python.org/community/lists/.

1.1.11 How do | get a beta test version of Python?

Alpha and beta releases are available from https://www.python.org/downloads/. All releases are announced on the
comp.lang.python and comp.lang. python.announce newsgroups and on the Python home page at https://www.python.
org/; an RSS feed of news is available.

You can also access the development version of Python through Git. See The Python Developer’s Guide for details.

1.1. General Information 3

https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/download.html
http://sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman/listinfo/python-announce-list
https://www.python.org/community/lists/
https://www.python.org/downloads/
https://www.python.org/
https://www.python.org/
https://devguide.python.org/

Python Frequently Asked Questions, Release 3.9.6

1.1.12 How do | submit bug reports and patches for Python?

To report a bug or submit a patch, please use the Roundup installation at https://bugs.python.org/.

You must have a Roundup account to report bugs; this makes it possible for us to contact you if we have follow-
up questions. It will also enable Roundup to send you updates as we act on your bug. If you had previously used
SourceForge to report bugs to Python, you can obtain your Roundup password through Roundup’s password reset
procedure.

For more information on how Python is developed, consult the Python Developer’s Guide.

1.1.13 Are there any published articles about Python that | can reference?

It’s probably best to cite your favorite book about Python.
The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers Using the Python Pro-
gramming Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283-303.

1.1.14 Are there any books on Python?

Yes, there are many, and more are being published. See the python.org wiki at https://wiki.python.org/moin/
PythonBooks for a list.

You can also search online bookstores for “Python” and filter out the Monty Python references; or perhaps search for
“Python” and “language”.
1.1.15 Where in the world is www.python.org located?

The Python project’s infrastructure is located all over the world and is managed by the Python Infrastructure Team.
Details here.

1.1.16 Why is it called Python?

When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty
Python’s Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was
short, unique, and slightly mysterious, so he decided to call the language Python.

1.1.17 Do | have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

1.2 Python in the real world

1.2.1 How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this seems
likely to continue. As of version 3.9, Python will have a major new release every 12 months (PEP 602).

The developers issue “bugfix” releases of older versions, so the stability of existing releases gradually improves. Bugfix
releases, indicated by a third component of the version number (e.g. 3.5.3, 3.6.2), are managed for stability; only
fixes for known problems are included in a bugfix release, and it’s guaranteed that interfaces will remain the same
throughout a series of bugfix releases.

4 Chapter 1. General Python FAQ

https://bugs.python.org/
https://bugs.python.org/user?@template=forgotten
https://bugs.python.org/user?@template=forgotten
https://devguide.python.org/
https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
http://infra.psf.io
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python
https://www.python.org/dev/peps/pep-0602

Python Frequently Asked Questions, Release 3.9.6

The latest stable releases can always be found on the Python download page. There are two production-ready versions
of Python: 2.x and 3.x. The recommended version is 3.x, which is supported by most widely used libraries. Although
2.x is still widely used, it is not maintained anymore.

1.2.2 How many people are using Python?

There are probably millions of users, though it’s difficult to obtain an exact count.

Python is available for free download, so there are no sales figures, and it’s available from many different sites and
packaged with many Linux distributions, so download statistics don’t tell the whole story either.

The comp.lang.python newsgroup is very active, but not all Python users post to the group or even read it.

1.2.3 Have any significant projects been done in Python?

See https://www.python.org/about/success for a list of projects that use Python. Consulting the proceedings for past
Python conferences will reveal contributions from many different companies and organizations.

High-profile Python projects include the Mailman mailing list manager and the Zope application server. Several Linux
distributions, most notably Red Hat, have written part or all of their installer and system administration software in
Python. Companies that use Python internally include Google, Yahoo, and Lucasfilm Ltd.

1.2.4 What new developments are expected for Python in the future?

See https://www.python.org/dev/peps/ for the Python Enhancement Proposals (PEPs). PEPs are design documents
describing a suggested new feature for Python, providing a concise technical specification and a rationale. Look for
a PEP titled “Python X.Y Release Schedule”, where X.Y is a version that hasn’t been publicly released yet.

New development is discussed on the python-dev mailing list.

1.2.5 Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the world, so any change in the language
that invalidates more than a very small fraction of existing programs has to be frowned upon. Even if you can provide
a conversion program, there’s still the problem of updating all documentation; many books have been written about
Python, and we don’t want to invalidate them all at a single stroke.

Providing a gradual upgrade path is necessary if a feature has to be changed. PEP 5 describes the procedure followed
for introducing backward-incompatible changes while minimizing disruption for users.

1.2.6 Is Python a good language for beginning programmers?

Yes.

It is still common to start students with a procedural and statically typed language such as Pascal, C, or a subset of
C++ or Java. Students may be better served by learning Python as their first language. Python has a very simple and
consistent syntax and a large standard library and, most importantly, using Python in a beginning programming course
lets students concentrate on important programming skills such as problem decomposition and data type design. With
Python, students can be quickly introduced to basic concepts such as loops and procedures. They can probably even
work with user-defined objects in their very first course.

For a student who has never programmed before, using a statically typed language seems unnatural. It presents
additional complexity that the student must master and slows the pace of the course. The students are trying to learn
to think like a computer, decompose problems, design consistent interfaces, and encapsulate data. While learning
to use a statically typed language is important in the long term, it is not necessarily the best topic to address in the
students’ first programming course.

1.2. Python in the real world 5

https://www.python.org/downloads/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
http://www.list.org
http://www.zope.org
https://www.redhat.com
https://www.python.org/dev/peps/
https://mail.python.org/mailman/listinfo/python-dev/
https://www.python.org/dev/peps/pep-0005

Python Frequently Asked Questions, Release 3.9.6

Many other aspects of Python make it a good first language. Like Java, Python has a large standard library so
that students can be assigned programming projects very early in the course that do something. Assignments aren’t
restricted to the standard four-function calculator and check balancing programs. By using the standard library,
students can gain the satisfaction of working on realistic applications as they learn the fundamentals of programming.
Using the standard library also teaches students about code reuse. Third-party modules such as PyGame are also
helpful in extending the students’ reach.

Python’s interactive interpreter enables students to test language features while they’re programming. They can keep
a window with the interpreter running while they enter their program’s source in another window. If they can’t
remember the methods for a list, they can do something like this:

>>> L = []

>>> dir (L)

['_add__"', '__class__', '__contains_ ', '__delattr__', '__delitem__"',
' dir__ ', '__doc__', '_eq ', '__format__', '_ge__"',
'__getattribute__', '__getitem__', '_gt__ ', '__hash__', '__iadd__"',
' dmul_ ', '__dinit_ ', '__iter_ ', '_le_ ', '_len_ ', '__1t__"',

' mul_ ', '_ne_ ', '_new__', '_ _reduce_ ', '_ reduce_ex__ ',

' _repr_ ', '__reversed__ ', '_rmul__ ', '__setattr__', '__setitem__',
' _sizeof ', '_str__', '__subclasshook__', 'append',6 'clear',

'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',

'reverse', 'sort']

>>> [d for d in dir (L) if ' ' not in d]

['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
—'reverse', 'sort']

>>> help (L.append)
Help on built-in function append:

append (...)
L.append(object) —-> None —-- append object to end

>>> L.append (1)
>>> L

[1]

With the interpreter, documentation is never far from the student as they are programming.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python using Tkinter.
PythonWin is a Windows-specific IDE. Emacs users will be happy to know that there is a very good Python mode
for Emacs. All of these programming environments provide syntax highlighting, auto-indenting, and access to the
interactive interpreter while coding. Consult the Python wiki for a full list of Python editing environments.

If you want to discuss Python’s use in education, you may be interested in joining the edu-sig mailing list.

6 Chapter 1. General Python FAQ

https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

CHAPTER
TWO

PROGRAMMING FAQ

2.1 General Questions

2.1.1 Is there a source code level debugger with breakpoints, single-stepping,
etc.?

Yes.

Several debuggers for Python are described below, and the built-in function breakpoint () allows you to drop
into any of them.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by
using the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available
as Tools/scripts/idle), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The PythonWin debugger colors breakpoints
and has quite a few cool features such as debugging non-PythonWin programs. PythonWin is available as part of
pywin32 project and as a part of the ActivePython distribution.

Eric is an IDE built on PyQt and the Scintilla editing component.
trepan3k is a gdb-like debugger.
Visual Studio Code is an IDE with debugging tools that integrates with version-control software.
There are a number of commercial Python IDEs that include graphical debuggers. They include:
* Wing IDE
e Komodo IDE
e PyCharm

2.1.2 Are there tools to help find bugs or perform static analysis?

Yes.
Pylint and Pyflakes do basic checking that will help you catch bugs sooner.
Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

https://github.com/mhammond/pywin32
https://www.activestate.com/products/python/
http://eric-ide.python-projects.org/
https://github.com/rocky/python3-trepan/
https://code.visualstudio.com/
https://wingware.com/
https://www.activestate.com/products/komodo-ide/
https://www.jetbrains.com/pycharm/
https://www.pylint.org/
https://github.com/PyCQA/pyflakes
http://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype

Python Frequently Asked Questions, Release 3.9.6

2.1.3 How can | create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can
download and run without having to install the Python distribution first. There are a number of tools that determine
the set of modules required by a program and bind these modules together with a Python binary to produce a single
executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python
byte code to C arrays; a C compiler you can embed all your modules into a new program, which is then linked with
the standard Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program.
It then compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained
binary which acts exactly like your script.

The following packages can help with the creation of console and GUI executables:
* Nuitka (Cross-platform)
* Pylnstaller (Cross-platform)
¢ PyOxidizer (Cross-platform)
¢ cx_Freeze (Cross-platform)
e py2app (macOS only)
* py2Zexe (Windows only)

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am | getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an
assignment statement somewhere in the body of a function.

This code:

>>> x = 10

>>> def bar():
print (x)

>>> bar ()

10

works, but this code:

>>> x = 10

>>> def foo():
print (x)
x += 1

results in an UnboundLocalError:

8 Chapter 2. Programming FAQ

https://nuitka.net/
http://www.pyinstaller.org/
https://pyoxidizer.readthedocs.io/en/stable/
https://marcelotduarte.github.io/cx_Freeze/
https://github.com/ronaldoussoren/py2app
http://www.py2exe.org/
https://www.python.org/dev/peps/pep-0008

Python Frequently Asked Questions, Release 3.9.6

>>> foo ()
Traceback (most recent call last):

UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope
and shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to
%, the compiler recognizes it as a local variable. Consequently when the earlier print (x) attempts to print the
uninitialized local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():
global x
print (x)

C. x += 1

>>> foobar ()

10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class
and instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print (x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def foo():

x = 10
def bar():
nonlocal x
print (x)
X += 1
bar ()
print (x)
>>> foo()
10
11

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you'd be using global all the time. You'd have to declare as global every reference to a built-in function
or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2. Core Language 9

Python Frequently Asked Questions, Release 3.9.6

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
squares.append (lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x**2. You might expect that, when called, they would
return, respectively, 0, 1, 4, 9, and 1 6. However, when you actually try you will see that they all return 1 6:

>>> squares[2] ()
16
>>> squares[4] ()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the
lambda is called — not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return
4**2 i.e. 16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2] ()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value
of the global x:

>>> squares = []
>>> for x in range(5):
squares.append (lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the
same value that x had at that point in the loop. This means that the value of n will be O in the first lambda, 1 in the
second, 2 in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares|[2] ()
4

>>> squares[4] ()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

2.2.4 How do | share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often
called config or cfg). Just import the config module in all modules of your application; the module then becomes
available as a global name. Because there is only one instance of each module, any changes made to the module
object get reflected everywhere. For example:

config.py:

x =0 # Default value of the 'x' configuration setting
mod.py:

import config

config.x = 1

main.py:

10 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.9.6

import config
import mod
print (config.x)

Note that using a module is also the basis for implementing the Singleton design pattern, for the same reason.

2.2.5 What are the “best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the importer’s namespace, and makes it
much harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids
questions of whether the module name is in scope. Using one import per line makes it easy to add and delete module
imports, but using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:
1. standard library modules — e.g. sys, os, getopt, re

2. third-party library modules (anything installed in Python’s site-packages directory) — e.g. mx.DateTime,
ZODB, PIL.Image, etc.

3. locally-developed modules

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports. Gordon
McMillan says:

Circular imports are fine where both modules use the “import <module>" form of import. They fail
when the 2nd module wants to grab a name out of the first (“from module import name”) and the import
is at the top level. That’s because names in the 1st are not yet available, because the first module is busy
importing the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function.
By the time the import is called, the first module will have finished initializing, and the second module can do its
import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific.
In that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the
correct modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such
as avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially
helpful if many of the imports are unnecessary depending on how the program executes. You may also want to
move imports into a function if the modules are only ever used in that function. Note that loading a module the first
time may be expensive because of the one time initialization of the module, but loading a module multiple times
is virtually free, costing only a couple of dictionary lookups. Even if the module name has gone out of scope, the
module is probably available in sys .modules.

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo (mydict={}): # Danger: shared reference to one dict for all calls
. compute something ...
mydict [key] = value

return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo () begins executing, mydict starts out with an item already in it.

2.2. Core Language 11

Python Frequently Asked Questions, Release 3.9.6

It is often expected that a function call creates new objects for default values. This is not what happens. Default values
are created exactly once, when the function is defined. If that object is changed, like the dictionary in this example,
subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to
mutable objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable objects as default values. In-
stead, use None as the default value and inside the function, check if the parameter is None and create a new
list/dictionary/whatever if it is. For example, don’t write:

def foo(mydict={}):

but:

def foo (mydict=None) :
if mydict is None:
mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is
to cache the parameters and the resulting value of each call to the function, and return the cached value if the same
value is requested again. This is called “memoizing”, and can be implemented like this:

Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(argl, arg2, *, _cache={}):
if (argl, arg2) in _cache:
return _cache[(argl, arg2)]

Calculate the value

result = ... expensive computation

_cache|[(argl, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

2.2.7 How can | pass optional or keyword parameters from one function to an-
other?

Collect the arguments using the * and ** specifiers in the function’s parameter list; this gives you the positional
arguments as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling
another function by using * and **:

def f(x, *args, **kwargs):
kwargs['width'] = "14.3c’

g(x, *args, **kwargs)

12 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.9.6

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually
passed to a function when calling it. Parameters define what types of arguments a function can accept. For example,
given the function definition:

def func(foo, bar=None, **kwargs):
pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

func (42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list ‘y’ also change list ‘x’?

If you wrote code like:

>>>

= Il
>>> = X
>>> .append (10)
>>>
[10]
>>> x

[10]

MKOKRRX

you might be wondering why appending an element to y changed x too.
There are two factors that produce this result:

1) Variables are simply names that refer to objects. Doing y = x doesn’t create a copy of the list — it creates a
new variable y that refers to the same object x refers to. This means that there is only one object (the list), and
both x and y refer to it.

2) Lists are mutable, which means that you can change their content.

After the call to append (), the content of the mutable object has changed from [] to [10]. Since both the
variables refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

>>> = 5 # ints are immutable

>>> = X

>>> =x + 1 # 5 can't be mutated, we are creating a new object here

XXX

>>>
6
>>> y

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do
x = x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int
6) and assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the
ints 6 and 5) and two variables that refer to them (x now refers to 6 but y still refers to 5).

Some operations (for example y . append (10) and y.sort ()) mutate the object, whereas superficially similar
operations (for example y = y + [10] and sorted (y)) create a new object. In general in Python (and in all
cases in the standard library) a method that mutates an object will return None to help avoid getting the two types
of operations confused. So if you mistakenly write v .sort () thinking it will give you a sorted copy of y, you'll
instead end up with None, which will likely cause your program to generate an easily diagnosed error.

However, there is one class of operations where the same operation sometimes has different behaviors with different
types: the augmented assignment operators. For example, += mutates lists but not tuples or ints (a_1list += [1,

2.2. Core Language 13

Python Frequently Asked Questions, Release 3.9.6

2, 3] isequivalentto a_list.extend([1, 2, 3]) and mutates a_list, whereas some_tuple +=
(1, 2, 3) and some_int += 1 create new objects).

In other words:

 If we have a mutable object (1ist, dict, set, etc.), we can use some specific operations to mutate it and
all the variables that refer to it will see the change.

* If we have an immutable object (str, int, tuple, etc.), all the variables that refer to it will always see the
same value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in
function id ().

2.2.10 How do | write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects,
there’s no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can achieve
the desired effect in a number of ways.

1) By returning a tuple of the results:

>>> def funcl(a, b):

a = 'new-value' # a and b are local names
b =Db + 1 # assigned to new objects
return a, b # return new values

>>> x, y = 'old-value', 99

>>> funcl (x, V)
("new-value', 100)

This is almost always the clearest solution.
2) By using global variables. This isn’t thread-safe, and is not recommended.

3) By passing a mutable (changeable in-place) object:

>>> def func2(a):

al0] 'new-value' # 'a' references a mutable 1ist
all] = a[l1] + 1 # changes a shared object
>>> args = ['old-value', 99]

>>> func?2 (args)
>>> args
['new-value', 100]

4) By passing in a dictionary that gets mutated:

>>> def func3(args):

args['a'] = 'new-value' # args 1is a mutable dictionary
args['b'] = args['b'] + 1 # change it in-place
>>> args = {'a': 'old-value', 'b': 99}

>>> func3(args)
>>> args
{'a': '"nmew-value', 'b': 100}

5) Or bundle up values in a class instance:

>>> class Namespace:
def __init__ (self, /, **args):
for key, value in args.items():
setattr(self, key, wvalue)

(continues on next page)

14 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.9.6

(continued from previous page)

>>> def funcéd (args):
args.a = 'new-value' # args is a mutable Namespace
args.b = args.b + 1 # change object in-place

>>> args = Namespace (a='old-value', b=99)
>>> funcéd (args)

>>> vars (args)

{'a': '"nmew-value', 'b': 100}

There’s almost never a good reason to get this complicated.
Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted
to define 1inear (a,b) which returns a function £ (x) that computes the value a * x+b. Using nested scopes:

def linear(a, b):

def result (x):
return a * x + b

return result

Or using a callable object:

class linear:

def _ init_ (self, a, b):
self.a, self.b = a, b

def _ call_ (self, x):
return self.a * x + self.b

In both cases,

taxes = linear (0.3, 2)

gives a callable object where taxes (10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However,
note that a collection of callables can share their signature via inheritance:

class exponential (linear):
__init__ inherited
def _ call_ (self, x):
return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:

value = 0

def set (self, x):
self.value = x

def up(self):
self.value = self.value + 1

(continues on next page)

2.2. Core Language 15

Python Frequently Asked Questions, Release 3.9.6

(continued from previous page)

def down (self):
self.value = self.value - 1
count = counter ()
inc, dec, reset = count.up, count.down, count.set

Here inc (), dec () and reset () act like functions which share the same counting variable.

2.2.12 How do | copy an object in Python?

In general, try copy.copy () or copy.deepcopy () for the general case. Not all objects can be copied, but
most can.

Some objects can be copied more easily. Dictionaries have a copy () method:

’newdict = olddict.copy ()

Sequences can be copied by slicing:

’new_l = 1[:]

2.2.13 How can | find the methods or attributes of an object?

For an instance x of a user-defined class, dir (x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2.2.14 How can my code discover the nhame of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to
a value; the same is true of de f and c1ass statements, but in that case the value is a callable. Consider the following
code:

>>> class A:

pass
>>> B = A
>>> a = B()
>>> b = a

>>> print (b)
<__main__.A object at 0x16D07CC>
>>> print (a)
<__main__ .A object at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created
instance is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a
or b, since both names are bound to the same value.

Generally speaking it should not be necessary for your code to “know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself cannot
tell you its name, and it doesn’t really care — so the only way to find out what it’s called is to ask all your
neighbours (namespaces) if it’s their cat (object). ..

....and don’t be surprised if you'll find that it’s known by many names, or no name at all!

16 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.9.6

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "all ln llbll, "all
(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

’(nan in llbll), ngn ‘

not:

’na" in ("b", nan) ‘

The same is true of the various assignment operators (=, += etc). They are not truly operators but syntactic delimiters
in assignment statements.

2.2.16 Is there an equivalent of C’s “?:” ternary operator?

Yes, there is. The syntax is as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25
small x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

[expression] and [on_true] or [on_false]

However, this idiom is unsafe, as it can give wrong results when on_true has a false boolean value. Therefore, it is
always better touse the . .. 1f ... else ... form.

2.2.17 Is it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting 1ambda within 1ambda. See the following three examples, due to Ulf Bartelt:

from functools import reduce

Primes < 1000
print (list (filter (None,map (lambda y:y*reduce (lambda x,y:x*y!=0,
map (lambda x,y=y:y%x,range (2, int (pow(y,0.5)+1))), 1), range(2,1000)))))

First 10 Fibonaccl numbers
print (list (map (lambda x, f=lambda x,f: (f(x-1,f)+f(x-2,f)) if x>1 else 1:
f(x,f), range(10))))

Mandelbrot set

print ((lambda Ru,Ro, Iu,Io, IM, Sx,Sy:reduce (lambda x,y:x+y,map (lambda vy,
Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc, Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx, Sy=Sy:reduce (lambda x,y:x+y,map (lambda x,xc=Ru,yc=yc,Ru=Ru, Ro=Ro,
i=i, Sx=Sx,F=lambda xc,yc,x,vy,k, f=lambda xc,yc,x,v,k,f: (k<=0)or (x*xt+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(
64+F (Ru+x* (Ro-Ru) /Sx,yc,0,0,1)),range (Sx))) :L(Iuty* (Io-Tu)/Sy), range (Sy

y)) (=2.1, 0.7, -1.2, 1.2, 30, 80, 24))

)

\ /N /] / |__ lines on screen

174 \% / / columns on screen

/ / / maximum of "iterations"

(continues on next page)

2.2. Core Language 17

Python Frequently Asked Questions, Release 3.9.6

(continued from previous page)

H

range on y axis
/ range on x axis

Don’t try this at home, kids!

2.2.18 What does the slash(/) in the parameter list of a function mean?

A slash in the argument list of a function denotes that the parameters prior to it are positional-only. Positional-only
parameters are the ones without an externally-usable name. Upon calling a function that accepts positional-only
parameters, arguments are mapped to parameters based solely on their position. For example, divmod () is a
function that accepts positional-only parameters. Its documentation looks like this:

>>> help (divmod)
Help on built-in function divmod in module builtins:

divmod(x, vy, /)
Return the tuple (x//y, x%y). Invariant: div*y + mod == x.

The slash at the end of the parameter list means that both parameters are positional-only. Thus, calling divmod ()
with keyword arguments would lead to an error:

>>> divmod (x=3, y=4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: divmod() takes no keyword arguments

2.3 Numbers and strings

2.3.1 How do | specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase “o”. For example, to set
the variable “a” to the octal value “10” (8 in decimal), type:

>>> a = 0010
>>> a
8

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase “x”.
Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

>>> a = 0xab
>>> a
165
>>> Db
>>> Db
178

0XB2

18 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.9.6

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that i % J have the same sign as j. If you want that, and also want:

i==(// 3 *3+ (1 %3

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate i
// Jjneedtomake i % 7J have the same sign as i.

There are few real use cases for 1 % j when J is negative. When 7j is positive, there are many, and in virtually all
of them it’s more useful for i % j tobe >= 0. If the clock says 10 now, what did it say 200 hours ago? -190 %
12 == 2isuseful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do | convert a string to a number?

For integers, use the built-in int () type constructor, e.g. int ('144') == 144. Similarly, float () converts
to floating-point, e.g. float ('144"') == 144.0.

By default, these interpret the number as decimal, so that int ('0144') == 144 holds true, and
int ('0x144"') raises ValueError. int (string, base) takes the base to convert from as a second
optional argument, so int ('0x144', 16) == 324. If the base is specified as 0, the number is interpreted
using Python’s rules: a leading ‘00’ indicates octal, and ‘0x’ indicates a hex number.

Do not use the built-in function eval () if all you need is to convert strings to numbers. eval () will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side
effects. For example, someone could pass __import__ ('os') .system("rm -rf S$HOME") which would
erase your home directory.

eval () also has the effect of interpreting numbers as Python expressions, so thate.g. eval ('09"') gives a syntax
error because Python does not allow leading ‘0’ in a decimal number (except ‘0’).

2.3.4 How do | convert a number to a string?

To convert, e.g., the number 144 to the string ‘144’ use the built-in type constructor st r () . If you want a hexadec-
imal or octal representation, use the built-in functions hex () or oct () . For fancy formatting, see the f-strings and
formatstrings sections, e.g. "{:04d}".format (144) yields '0144"' and "{:.3f}".format (1.0/3.0)
yields '0.333".

2.3.5 How do | modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from the various
parts you want to assemble it from. However, if you need an object with the ability to modify in-place unicode data,
try using an 1o.StringIO object or the array module:

>>> import io

>>> s = "Hello, world"
>>> sio = i0.StringIO(s)
>>> sio.getvalue ()
'Hello, world'

>>> sio.seek (7)

5

>>> sio.write("there!")
6

>>> sio.getvalue ()
'Hello, there!'!

>>> import array
>>> a = array.array('u', s)

(continues on next page)

2.3. Numbers and strings 19

Python Frequently Asked Questions, Release 3.9.6

(continued from previous page)

>>> print (a)

array('u', 'Hello, world'")
>>> af0] = 'y

>>> print (a)

array('u', 'yello, world'")
>>> a.tounicode ()

'yvello, world'

2.3.6 How do | use strings to call functions/methods?

There are various techniques.

The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that
the strings do not need to match the names of the functions. This is also the primary technique used to emulate
a case construct:

def a():
pass

def b():
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input ()] () # Note trailing parens to call function

Use the built-in function getattr ():

import foo
getattr (foo, 'bar') ()

Note that getattr () works on any object, including classes, class instances, modules, and so on.

This is used in several places in the standard library, like this:

class Foo:
def do_foo(self):

def do_bar(self):

f = getattr(foo_instance, 'do_' + opname)
£()

Use locals () to resolve the function name:

def myFunc () :
print ("hello")

fname = "myFunc"
f = locals () [fname]
£()

20

Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.9.6

2.3.7 Isthere an equivalent to Perl’s chomp() for removing trailing newlines from
strings?

Youcanuse S.rstrip ("\r\n") toremove all occurrences of any line terminator from the end of the string S
without removing other trailing whitespace. If the string S represents more than one line, with several empty lines at
the end, the line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
ll\r\nll

C. "\r\n")

>>> lines.rstrip("\n\zr")

'line 1 '

Since this is typically only desired when reading text one line at a time, using S.rstrip () this way works well.

2.3.8 Is there a scanf() or sscanf() equivalent?

Not as such.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split () method of string objects and then convert decimal strings to numeric values using int () or float ().
split () supports an optional “sep” parameter which is useful if the line uses something other than whitespace as
a separator.

For more complicated input parsing, regular expressions are more powerful than C’s sscanf () and better suited
for the task.

2.3.9 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?

See the unicode-howto.

2.4 Performance

2.4.1 My program is too slow. How do | speed it up?

That’s a tough one, in general. First, here are a list of things to remember before diving further:
¢ Performance characteristics vary across Python implementations. This FAQ focuses on CPython.
* Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.

* You should always find the hot spots in your program before attempting to optimize any code (see the profile
module).

* Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the t imeit
module).

e It is highly recommended to have good code coverage (through unit testing or any other technique) before
potentially introducing regressions hidden in sophisticated optimizations.

That being said, there are many tricks to speed up Python code. Here are some general principles which go a long
way towards reaching acceptable performance levels:

* Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying to sprinkle
micro-optimization tricks all over your code.

* Use the right data structures. Study documentation for the bltin-types and the collections module.

2.4. Performance 21

Python Frequently Asked Questions, Release 3.9.6

¢ When the standard library provides a primitive for doing something, it is likely (although not guaranteed) to
be faster than any alternative you may come up with. This is doubly true for primitives written in C, such as
builtins and some extension types. For example, be sure to use either the 1ist.sort () built-in method or
the related sorted () function to do sorting (and see the sortinghowto for examples of moderately advanced
usage).

 Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirection
outweigh the amount of useful work done, your program will be slower. You should avoid excessive abstraction,
especially under the form of tiny functions or methods (which are also often detrimental to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For example,
Cython can compile a slightly modified version of Python code into a C extension, and can be used on many different
platforms. Cython can take advantage of compilation (and optional type annotations) to make your code significantly
faster than when interpreted. If you are confident in your C programming skills, you can also write a C extension
module yourself.

See also:

The wiki page devoted to performance tips.

2.4.2 What is the most efficient way to concatenate many strings together?
str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each concate-
nation creates a new object. In the general case, the total runtime cost is quadratic in the total string length.

To accumulate many st r objects, the recommended idiom is to place them into a list and call str. join () at the
end:

chunks = []

for s in my_strings:
chunks.append (s)

result = ''.join (chunks)

(another reasonably efficient idiom is to use io.StringIO)

To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place
concatenation (the += operator):

result = bytearray/()
for b in my_bytes_objects:
result += b

2.5 Sequences (Tuples/Lists)

2.5.1 How do | convert between tuples and lists?

The type constructor tuple (seq) converts any sequence (actually, any iterable) into a tuple with the same items
in the same order.

For example, tuple ([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c").If
the argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple () when
you aren’t sure that an object is already a tuple.

The type constructor 1ist (seq) converts any sequence or iterable into a list with the same items in the same order.
For example, 1ist ((1, 2, 3)) yields [1, 2, 3] andlist ('abc') yields ['a', 'b', 'c'].If the
argument is a list, it makes a copy just like seq[:] would.

22 Chapter 2. Programming FAQ

http://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, Release 3.9.6

2.5.2 What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the first index
1 is the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last)
index and so forth. Think of seq[—-n] as the same as seg[len (seq) -n].

Using negative indices can be very convenient. For example S [:—-1] is all of the string except for its last character,
which is useful for removing the trailing newline from a string.

2.5.3 How do | iterate over a sequence in reverse order?

Use the reversed () built-in function:

for x in reversed(sequence) :
do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

2.5.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:
https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:
mylist.sort ()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):
if last == mylist[i]:
del mylist[i]
else:
last = mylist[i]

If all elements of the list may be used as set keys (i.e. they are all hashable) this is often faster

mylist = list (set(mylist))

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5.5 How do you remove multiple items from a list

As with removing duplicates, explicitly iterating in reverse with a delete condition is one possibility. However, it is
easier and faster to use slice replacement with an implicit or explicit forward iteration. Here are three variations.:

mylist[:] = filter (keep_function, mylist)
mylist[:] = (x for x in mylist if keep_condition)
mylist[:] = [x for x in mylist if keep_condition]

The list comprehension may be fastest.

2.5. Sequences (Tuples/Lists) 23

https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, Release 3.9.6

2.5.6 How do you make an array in Python?

Use a list:

["thj.S", 1, "j.S", llanu, "array"]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can
contain objects of many different types.

The array module also provides methods for creating arrays of fixed types with compact representations, but they
are slower to index than lists. Also note that the Numeric extensions and others define array-like structures with
various characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the analogue of lisp caris 1isp_list [0] and
the analogue of cdris 1isp_list[1]. Only do this if you're sure you really need to, because it’s usually a lot
slower than using Python lists.

2.5.7 How do | create a multidimensional list?

You probably tried to make a multidimensional array like this:

>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, None]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The
* 3 creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows,
which is almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then fill in each element with a newly created
list:

A = [None] * 3
for i in range(3):
A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h =2, 3
A = [[None] * w for i in range (h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

24 Chapter 2. Programming FAQ

http://www.numpy.org/

Python Frequently Asked Questions, Release 3.9.6

2.5.8 How do | apply a method to a sequence of objects?

Use a list comprehension:

result = [obj.method() for obj in mylist]

2.5.9 Why does a_tuple[i] += [‘item’] raise an exception when the addition
works?

This is because of a combination of the fact that augmented assignment operators are assignment operators, and the
difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point
to mutable objects, but we’ll use a 11 st and += as our exemplar.

If you wrote:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple[0] points to (1),
producing the result object, 2, but when we attempt to assign the result of the computation, 2, to element O of the
tuple, we get an error because we can’t change what an element of a tuple points to.

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

It is the assignment part of the operation that produces the error, since a tuple is immutable.

When you write something like:

>>> a_tuple = (['foo']l, 'bar'")
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the
append worked:

>>> a_tuple[0]
["foo', 'item']

To see why this happens, you need to know that (a) if an object implements an ___iadd__ magic method, it gets
called when the += augmented assignment is executed, and its return value is what gets used in the assignment
statement; and (b) for lists, ___iadd___is equivalent to calling ext end on the list and returning the list. That’s why
we say that for lists, += is a “shorthand” for 1ist .extend:

>>> a_list = []
>>> a_list += [1]
>>> a_list

(1]

This is equivalent to:

2.5. Sequences (Tuples/Lists) 25

Python Frequently Asked Questions, Release 3.9.6

>>> result = a_list.__diadd__ ([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_list.
The end result of the assignment is a no-op, since it is a pointer to the same object that a_ 1ist was previously
pointing to, but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__ (['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The __iadd__ succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple[0] already points to, that final assignment still results in an error, because tuples are immutable.

2.5.10 | want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which
maps each element to its “sort value”. In Python, use the key argument for the 1ist.sort () method:

Isorted = L[:]
Isorted.sort (key=lambda s: int(s[10:15]))

2.5.11 How can | sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> listl = ["what", "I'm", "sorting", "by"]

>>> 1ist2 = ["something", "else", "to", "sort"]

>>> pairs = zip(listl, list2)

>>> pairs = sorted(pairs)

>>> pairs

[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]
>>> result = [x[1] for x in pairs]

>>> result
['else', 'sort', 'to', 'something']

2.6 Objects

2.6.1 What is a class?

A class is the particular object type created by executing a class statement. Class objects are used as templates to
create instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and meth-
ods of its base classes. This allows an object model to be successively refined by inheritance. You might have a
generic Mailbox class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox,
MaildirMailbox, OutlookMailbox that handle various specific mailbox formats.

26 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.9.6

2.6.2 What is a method?

A method is a function on some object x that you normally call as x.name (arguments. ..). Methods are
defined as functions inside the class definition:

class C:
def meth(self, arg):
return arg * 2 + self.attribute

2.6.3 What is self?

Self is merely a conventional name for the first argument of a method. A method defined asmeth (self, a, b,
c) should be called as x .meth (a, b, c) for some instance x of the class in which the definition occurs; the
called method will think it is called as meth (x, a, b, c).

See also Why must ‘self’ be used explicitly in method definitions and calls?.

2.6.4 How do | check if an object is an instance of a given class or of a subclass
of it?

Use the built-in function isinstance (obj, cls). Youcan check if an object is an instance of any of a number
of classes by providing a tuple instead of a single class, e.g. isinstance (obj, (classl, class2,

.)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance (obj, str) or
isinstance (obj, (int, float, complex)).

Note that isinstance () also checks for virtual inheritance from an abstract base class. So, the test will return
True for a registered class even if hasn’t directly or indirectly inherited from it. To test for “true inheritance”, scan
the MRO of the class:

from collections.abc import Mapping

class P:
pass

class C(P):
pass

Mapping.register (P)

>>> ¢ = C()

>>> isinstance(c, C) # direct
True

>>> isinstance(c, P) # indirect
True

>>> isinstance(c, Mapping) # virtual
True

Actual inheritance chain
>>> type(c).__mro_
(<class 'C'>, <class 'P'>, <class 'object'>)

Test for "true inheritance"
>>> Mapping in type(c)._ _mro
False

Note that most programs do not use isinstance () on user-defined classes very often. If you are developing the
classes yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular
behaviour, instead of checking the object’s class and doing a different thing based on what class it is. For example, if
you have a function that does something:

2.6. Objects 27

Python Frequently Asked Questions, Release 3.9.6

def search (obj):
if isinstance(obj, Mailbox) :
code to search a mailbox
elif isinstance (obj, Document) :
. # code to search a document
elif

A better approach is to define a search () method on all the classes and just call it:

class Mailbox:
def search(self):
code to search a mailbox

class Document:
def search(self):

code to search a document

obj.search()

2.6.5 What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to
change the behaviour of just one of its methods. You can create a new class that provides a new implementation of
the method you’re interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that
behaves like a file but converts all written data to uppercase:

class UpperOut:

def _ init_ (self, outfile):
self._outfile = outfile

def write(self, s):
self._outfile.write (s.upper())

def _ _getattr__ (self, name):
return getattr(self._outfile, name)

Here the UpperOut class redefines the write () method to convert the argument string to uppercase before calling
the underlying self._outfile.write () method. All other methods are delegated to the underlying self.
_outfile object. The delegation is accomplished via the ___getattr___ method; consult the language reference
for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved, the
class mustdefinea ___setattr__ () method too, and it must do so carefully. The basic implementation of __se—
tattr__ () is roughly equivalent to the following:

class X:

def _ setattr_ (self, name, value):
self. dict_ [name] = value

Most __setattr__ () implementations must modify self.__dict__ tostore local state for self without caus-
ing an infinite recursion.

28 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.9.6

2.6.6 How do | call a method defined in a base class from a derived class that
overrides it?

Use the built-in super () function:

class Derived (Base) :
def meth (self):
super (Derived, self) .meth()

For version prior to 3.0, you may be using classic classes: For a class definition suchas class Derived (Base) :
. you can call method meth () defined in Base (or one of Base’s base classes) as Base.meth (self,
arguments. . .). Here, Base.meth is an unbound method, so you need to provide the self argument.

2.6.7 How can | organize my code to make it easier to change the base class?

You could assign the base class to an alias and derive from the alias. Then all you have to change is the value assigned
to the alias. Incidentally, this trick is also handy if you want to decide dynamically (e.g. depending on availability of
resources) which base class to use. Example:

class Base:

BaseAlias = Base

class Derived (BaseAlias):

2.6.8 How do | create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the
class name in the assignment:

class C:
count = 0 # number of times C.__init___ called

def _ init_ (self):
C.count = C.count + 1

def getcount (self):
return C.count # or return self.count

c.count also refers to C. count for any c such that isinstance (¢, C) holds, unless overridden by c itself
or by some class on the base-class search path from c.__class__ backto C.

Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance named
“count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether inside a
method or not:

C.count = 314

Static methods are possible:

class C:
@staticmethod
def static(argl, arg2, arg3):
No 'self' parameter!

2.6. Objects 29

Python Frequently Asked Questions, Release 3.9.6

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount () :
return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the
desired encapsulation.

2.6.9 How can | overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

In C++ you'd write

class C {
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

}

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
def _ init_ (self, i=None):
if i is None:
print ("No arguments")
else:
print ("Argument is", 1)

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def _ init_ (self, *args):

The same approach works for all method definitions.

2.6.10 I try to use __spam and | get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class
private variables. Any identifier of the form ___spam (at least two leading underscores, at most one trailing under-
score) is textually replaced with _classname__spam, where classname is the current class name with any
leading underscores stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the “_classname__spam” attribute, and
private values are visible in the object’s __dict___. Many Python programmers never bother to use private variable
names at all.

2.6.11 My class defines __del__ but it is not called when | delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__ () — it simply decrements the object’s reference count, and if
this reaches zero ___del__ () is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del__ () method may be called at an inconvenient and random time. This is inconvenient if you're trying

30 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.9.6

to reproduce a problem. Worse, the order in which object’s __del__ () methods are executed is arbitrary. You can
run gc.collect () to force a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close () method on objects to be called
whenever you're done with them. The close () method can then remove attributes that refer to subobjects. Don’t
call __del__ () directly — __d