Python Setup and Usage
Release 3.7.2

Guido van Rossum
and the Python development team

December 23, 2018

Python Software Foundation
Email: docs@python.org

1 Command line and environment

1.1 Command line e e
1.2 Environment variables

2 Using Python on Unix platforms

2.1 Getting and installing the latest version of Python
2.2 Building Python
2.3 Python-related paths and files
2.4 Miscellaneous oL
2.5 Editorsand IDEs e
3 Using Python on Windows
3.1 The fullinstaller e
3.2 The Microsoft Store package
3.3 The nuget.org packages L Lo
3.4 The embeddable package 0.
3.5 Alternative bundles L L L
3.6 Configuring Python
3.7 Python Launcher for Windows
3.8 Findingmodules L oL L
3.9 Additional modules
3.10 Compiling Python on Windows
3.11 Other Platforms
4 Using Python on a Macintosh
4.1 Getting and Installing MacPython
4.2 ThelDE e
4.3 Installing Additional Python Packages
4.4 GUI Programming on the Mac
4.5 Distributing Python Applications on the Mac
4.6 Other Resources i
A Glossary

About these documents

B.1 Contributors to the Python Documentation

C History and License

C.1 History of the software

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software

CONTENTS

............. 31

35

............. 35
............. 36
............. 36
............. 36
............. 37
............. 37

39

53

............. 53

D Copyright

Index

73

75

Python Setup and Usage, Release 3.7.2

This part of the documentation is devoted to general information on the setup of the Python environment
on different platforms, the invocation of the interpreter and things that make working with Python easier.

CONTENTS 1

Python Setup and Usage, Release 3.7.2

2 CONTENTS

CHAPTER
ONE

COMMAND LINE AND ENVIRONMENT

The CPython interpreter scans the command line and the environment for various settings.

CPython implementation detail: Other implementations’ command line schemes may differ. See imple-
mentations for further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

python [-bBdEhiIOgsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invo-
cation:

e When called with standard input connected to a tty device, it prompts for commands and executes
them until an EOF (an end-of-file character, you can produce that with Ctr1-D on UNIX or Ctrl-Z,
Enter on Windows) is read.

e When called with a file name argument or with a file as standard input, it reads and executes a script
from that file.

e When called with a directory name argument, it reads and executes an appropriately named script
from that directory.

e When called with -c command, it executes the Python statement(s) given as command. Here command
may contain multiple statements separated by newlines. Leading whitespace is significant in Python
statements!

e When called with -m module-name, the given module is located on the Python module path and
executed as a script.

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments
will end up in sys.argv — note that the first element, subscript zero (sys.argv[0]), is a string reflecting
the program’s source.

Python Setup and Usage, Release 3.7.2

-c <command>
Execute the Python code in command. command can be one or more statements separated by newlines,
with significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "-c" and the current directory will be added
to the start of sys.path (allowing modules in that directory to be imported as top level modules).

-m <module-name>
Search sys.path for the named module and execute its contents as the __main__ module.

Since the argument is a module name, you must not give a file extension (.py). The module name
should be a valid absolute Python module name, but the implementation may not always enforce this
(e.g. it may allow you to use a name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied
instead of a normal module, the interpreter will execute <pkg>.__main__ as the main module. This
behaviour is deliberately similar to the handling of directories and zipfiles that are passed to the
interpreter as the script argument.

Note: This option cannot be used with built-in modules and extension modules written in C, since
they do not have Python module files. However, it can still be used for precompiled modules, even if
the original source file is not available.

If this option is given, the first element of sys.argv will be the full path to the module file (while the
module file is being located, the first element will be set to "-m"). As with the -c option, the current
directory will be added to the start of sys.path.

Many standard library modules contain code that is invoked on their execution as a script. An example
is the timeit module:

python -mtimeit -s 'setup here' 'benchmarked code here'
python -mtimeit -h # for details

See also:
runpy.run_module() Equivalent functionality directly available to Python code

PEP 338 — Executing modules as scripts
Changed in version 3.1: Supply the package name to run a __main__ submodule.

Changed in version 3.4: namespace packages are also supported

Read commands from standard input (sys.stdin). If standard input is a terminal, -7 is implied.

If this option is given, the first element of sys.argv will be "-" and the current directory will be added
to the start of sys.path.

<script>
Execute the Python code contained in script, which must be a filesystem path (absolute or relative)
referring to either a Python file, a directory containing a __main__.py file, or a zipfile containing a
__main__.py file.

If this option is given, the first element of sys.argv will be the script name as given on the command
line.

If the script name refers directly to a Python file, the directory containing that file is added to the
start of sys.path, and the file is executed as the __main__ module.

4 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0338

Python Setup and Usage, Release 3.7.2

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path
and the __main__.py file in that location is executed as the __main__ module.

See also:
runpy.run_path() Equivalent functionality directly available to Python code

If no interface option is given, -4 is implied, sys.argv[0] is an empty string ("") and the current directory
will be added to the start of sys.path. Also, tab-completion and history editing is automatically enabled,
if available on your platform (see rlcompleter-config).

See also:
tut-invoking

Changed in version 3.4: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-7
-h
--help
Print a short description of all command line options.
-V
--version
Print the Python version number and exit. Example output could be:

Python 3.7.0b2+

When given twice, print more information about the build, like:

Python 3.7.0b2+ (3.7:0c076caaa8, Sep 22 2018, 12:04:24)
[GCC 6.2.0 20161005]

New in version 3.6: The -VV option.

1.1.3 Miscellaneous options

-b
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error when
the option is given twice (~bb).
Changed in version 3.5: Affects comparisons of bytes with int.

-B

If given, Python won’t try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.

--check-hash-based-pycs default|always|never
Control the validation behavior of hash-based .pyc files. See pyc-invalidation. When set to default,
checked and unchecked hash-based bytecode cache files are validated according to their default se-
mantics. When set to always, all hash-based .pyc files, whether checked or unchecked, are validated
against their corresponding source file. When set to never, hash-based .pyc files are not validated
against their corresponding source files.

The semantics of timestamp-based .pyc files are unaffected by this option.

1.1. Command line 5

Python Setup and Usage, Release 3.7.2

-d
Turn on parser debugging output (for expert only, depending on compilation options). See also
PYTHONDEBUG.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

-i
When a script is passed as first argument or the -c option is used, enter interactive mode after
executing the script or the command, even when sys.stdin does not appear to be a terminal. The
PYTHONSTARTUP file is not read.
This can be useful to inspect global variables or a stack trace when a script raises an exception. See
also PYTHONINSPECT.

-I
Run Python in isolated mode. This also implies -E and -s. In isolated mode sys.path contains neither
the script’s directory nor the user’s site-packages directory. All PYTHON* environment variables are
ignored, too. Further restrictions may be imposed to prevent the user from injecting malicious code.
New in version 3.4.

-0
Remove assert statements and any code conditional on the value of __debug__. Augment the filename
for compiled (bytecode) files by adding .opt-1 before the .pyc extension (see PEP 488). See also
PYTHONOPTIMIZE.
Changed in version 3.5: Modify .pyc filenames according to PEP 488.

-00
Do -0 and also discard docstrings. Augment the filename for compiled (bytecode) files by adding
.opt-2 before the .pyc extension (see PEP 488).
Changed in version 3.5: Modify .pyc filenames according to PEP 488.

-q
Don’t display the copyright and version messages even in interactive mode.
New in version 3.2.

-R
Turn on hash randomization. This option only has an effect if the PYTHONHASHSEED environment
variable is set to 0, since hash randomization is enabled by default.
On previous versions of Python, this option turns on hash randomization, so that the __hash__ () values
of str, bytes and datetime are “salted” with an unpredictable random value. Although they remain
constant within an individual Python process, they are not predictable between repeated invocations
of Python.
Hash randomization is intended to provide protection against a denial-of-service caused by carefully-
chosen inputs that exploit the worst case performance of a dict construction, O(n"2) complexity. See
http://www.ocert.org/advisories/ocert-2011-003.html for details.
PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.
Changed in version 3.7: The option is no longer ignored.
New in version 3.2.3.

-s
Don’t add the user site-packages directory to sys.path.
See also:

6 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
http://www.ocert.org/advisories/ocert-2011-003.html

Python Setup and Usage, Release 3.7.2

PEP 370 — Per user site-packages directory

-S
Disable the import of the module site and the site-dependent manipulations of sys.path that it
entails. Also disable these manipulations if site is explicitly imported later (call site.main() if you
want them to be triggered).
-u
Force the stdout and stderr streams to be unbuffered. This option has no effect on the stdin stream.
See also PYTHONUNBUFFERED.
Changed in version 3.7: The text layer of the stdout and stderr streams now is unbuffered.
-v
Print a message each time a module is initialized, showing the place (filename or built-in module)
from which it is loaded. When given twice (-vv), print a message for each file that is checked for when
searching for a module. Also provides information on module cleanup at exit. See also PYTHONVERBOSE.
-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr. A
typical warning message has the following form:
file:line: category: message
By default, each warning is printed once for each source line where it occurs. This option controls how
often warnings are printed.
Multiple - options may be given; when a warning matches more than one option, the action for
the last matching option is performed. Invalid - options are ignored (though, a warning message is
printed about invalid options when the first warning is issued).
Warnings can also be controlled using the PYTHONWARNINGS environment variable and from within a
Python program using the warnings module.
The simplest settings apply a particular action unconditionally to all warnings emitted by a process
(even those that are otherwise ignored by default):
-Wdefault # Warn once per call location
-Werror # Convert to exceptions
-Walways # Warn every time
-Wmodule # Warn once per calling module
-Wonce # Warn once per Python process
-Wignore # Never warn
The action names can be abbreviated as desired (e.g. -Wi, -Wd, -Wa, -We) and the interpreter will
resolve them to the appropriate action name.
See warning-filter and describing-warning-filters for more details.
-x
Skip the first line of the source, allowing use of non-Unix forms of #!cmd. This is intended for a DOS
specific hack only.
-X

Reserved for various implementation-specific options. CPython currently defines the following possible
values:

e -X faulthandler to enable faulthandler;

1.1. Command line 7

https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.7.2

e -X showrefcount to output the total reference count and number of used memory blocks when
the program finishes or after each statement in the interactive interpreter. This only works on
debug builds.

e -X tracemalloc to start tracing Python memory allocations using the tracemalloc mod-
ule. By default, only the most recent frame is stored in a traceback of a trace. Use -X
tracemalloc=NFRAME to start tracing with a traceback limit of NFRAME frames. See the
tracemalloc.start() for more information.

e -X showalloccount to output the total count of allocated objects for each type when the program
finishes. This only works when Python was built with COUNT_ALLOCS defined.

e -X importtime to show how long each import takes. It shows module name, cumulative time
(including nested imports) and self time (excluding nested imports). Note that its output may
be broken in multi-threaded application. Typical usage is python3 -X importtime -c 'import
asyncio'. See also PYTHONPROFILETMPORTTIME.

e -X dev: enable CPython’s “development mode”, introducing additional runtime checks which are
too expensive to be enabled by default. It should not be more verbose than the default if the
code is correct: new warnings are only emitted when an issue is detected. Effect of the developer
mode:

Add default warning filter, as - default.

Install debug hooks on memory allocators: see the PyMem_SetupDebugHooks () C function.

Enable the faulthandler module to dump the Python traceback on a crash.
— Enable asyncio debug mode.
— Set the dev_mode attribute of sys.flags to True

e -X utf8 enables UTF-8 mode for operating system interfaces, overriding the default locale-aware
mode. -X utf8=0 explicitly disables UTF-8 mode (even when it would otherwise activate auto-
matically). See PYTHONUTFS for more details.

It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.
Changed in version 3.2: The -X option was added.

New in version 3.3: The -X faulthandler option.

New in version 3.4: The -X showrefcount and -X tracemalloc options.

New in version 3.6: The -X showalloccount option.

New in version 3.7: The -X importtime, -X dev and -X utf8 options.

1.1.4 Options you shouldn’t use

-J
Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line
switches other than -E or -I. It is customary that command-line switches override environmental variables
where there is a conflict.

PYTHONHOME
Change the location of the standard Python libraries. By default, the libraries are searched in

8 Chapter 1. Command line and environment

http://www.jython.org/

Python Setup and Usage, Release 3.7.2

prefiz/lib/pythonversion and exec_prefiz/lib/pythonversion, where prefiz and exzec_prefiz
are installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefiz and ezec_prefiz. To
specify different values for these, set PYTHONHOME to prefiz: ezec_prefiz.

PYTHONPATH
Augment the default search path for module files. The format is the same as the shell’s PATH: one or
more directory pathnames separated by os.pathsep (e.g. colons on Unix or semicolons on Windows).
Non-existent directories are silently ignored.

In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure
Python modules (in either source or compiled form). Extension modules cannot be imported from
zipfiles.

The default search path is installation dependent, but generally begins with prefiz/lib/
pythonwversion (see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above
under Interface options. The search path can be manipulated from within a Python program as the
variable sys.path.

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before the first
prompt is displayed in interactive mode. The file is executed in the same namespace where interactive
commands are executed so that objects defined or imported in it can be used without qualification
in the interactive session. You can also change the prompts sys.psl and sys.ps2 and the hook
sys.__interactivehook__ in this file.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the -0 option. If set to an integer, it
is equivalent to specifying -0 multiple times.

PYTHONBREAKPOINT
If this is set, it names a callable using dotted-path notation. The module containing the callable will be
imported and then the callable will be run by the default implementation of sys.breakpointhook()
which itself is called by built-in breakpoint (). If not set, or set to the empty string, it is equivalent
to the value “pdb.set_trace”. Setting this to the string “0” causes the default implementation of
sys.breakpointhook() to do nothing but return immediately.

New in version 3.7.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the -d option. If set to an integer, it
is equivalent to specifying -d multiple times.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the - option.
This variable can also be modified by Python code using os.environ to force inspect mode on program

termination.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the - option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the -v option. If set to an integer, it
is equivalent to specifying -v multiple times.

PYTHONCASEQOK
If this is set, Python ignores case in import statements. This only works on Windows and OS X.

1.2. Environment variables 9

Python Setup and Usage, Release 3.7.2

PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string, Python won’t try to write .pyc files on the import of source
modules. This is equivalent to specifying the -B option.

PYTHONHASHSEED
If this variable is not set or set to random, a random value is used to seed the hashes of str, bytes and
datetime objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the
types covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a
cluster of python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will disable
hash randomization.

New in version 3.2.3.

PYTHONIOENCODING
If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in
the syntax encodingname:errorhandler. Both the encodingname and the :errorhandler parts are
optional and have the same meaning as in str.encode().

For stderr, the :errorhandler part is ignored; the handler will always be 'backslashreplace’.
Changed in version 3.4: The encodingname part is now optional.

Changed in version 3.6: On Windows, the encoding specified by this variable is ignored for interactive
console buffers unless PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through
the standard streams are not affected.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directory to sys.path.

See also:
PEP 370 — Per user site-packages directory

PYTHONUSERBASE
Defines the user base directory, which is used to compute the path of the user site-packages
directory and Distutils installation paths for python setup.py install --user.

See also:
PEP 370 — Per user site-packages directory

PYTHONEXECUTABLE
If this environment variable is set, sys.argv[0] will be set to its value instead of the value got through
the C runtime. Only works on Mac OS X.

PYTHONWARNINGS
This is equivalent to the -I/ option. If set to a comma separated string, it is equivalent to specifying
- multiple times, with filters later in the list taking precedence over those earlier in the list.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process
(even those that are otherwise ignored by default):

PYTHONWARNINGS=default # Warn once per call location
PYTHONWARNINGS=error # Convert to exzceptions
PYTHONWARNINGS=always # Warn every time
PYTHONWARNINGS=module # Warn once per calling module

(continues on next page)

10 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0370
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.7.2

(continued from previous page)

PYTHONWARNINGS=once # Warn once per Python process
PYTHONWARNINGS=ignore # Never warn

See warning-filter and describing-warning-filters for more details.

PYTHONFAULTHANDLER
If this environment variable is set to a non-empty string, faulthandler.enable() is called at startup:
install a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python
traceback. This is equivalent to -X faulthandler option.

New in version 3.3.

PYTHONTRACEMALLOC
If this environment variable is set to a non-empty string, start tracing Python memory allocations
using the tracemalloc module. The value of the variable is the maximum number of frames stored
in a traceback of a trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See
the tracemalloc.start() for more information.

New in version 3.4.

PYTHONPROFILEIMPORTTIME
If this environment variable is set to a non-empty string, Python will show how long each import takes.
This is exactly equivalent to setting -X importtime on the command line.

New in version 3.7.

PYTHONASYNCIODEBUG
If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.

New in version 3.4.

PYTHONMALLOC
Set the Python memory allocators and/or install debug hooks.

Set the family of memory allocators used by Python:
e default: use the default memory allocators.

e malloc: use the malloc() function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

e pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_0BJ domains
and use the malloc() function for the PYMEM_DOMAIN_RAW domain.

Install debug hooks:
e debug: install debug hooks on top of the default memory allocators.
e malloc_debug: same as malloc but also install debug hooks
o pymalloc_debug: same as pymalloc but also install debug hooks

See the default memory allocators and the PyMem_SetupDebugHooks () function (install debug hooks
on Python memory allocators).

Changed in version 3.7: Added the "default" allocator.
New in version 3.6.

PYTHONMALLOCSTATS
If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time
a new pymalloc object arena is created, and on shutdown.

1.2. Environment variables 11

Python Setup and Usage, Release 3.7.2

This variable is ignored if the PYTHONMALLOC environment variable is used to force the malloc()
allocator of the C library, or if Python is configured without pymalloc support.

Changed in version 3.6: This variable can now also be used on Python compiled in release mode. It
now has no effect if set to an empty string.

PYTHONLEGACYWINDOWSFSENCODING

If set to a non-empty string, the default filesystem encoding and errors mode will revert to their pre-3.6
values of ‘mbcs’ and ‘replace’, respectively. Otherwise, the new defaults ‘utf-8” and ‘surrogatepass’ are
used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding().
Availability: Windows.
New in version 3.6: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO

If set to a non-empty string, does not use the new console reader and writer. This means that Unicode
characters will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring
to console buffers.

Availability: Windows.

New in version 3.6.

PYTHONCOERCECLOCALE

If set to the value O, causes the main Python command line application to skip coercing the legacy
ASCII-based C and POSIX locales to a more capable UTF-8 based alternative.

If this variable is not set (or is set to a value other than 0), the LC_ALL locale override environment
variable is also not set, and the current locale reported for the LC_CTYPE category is either the default C
locale, or else the explicitly ASCII-based POSIX locale, then the Python CLI will attempt to configure
the following locales for the LC_CTYPE category in the order listed before loading the interpreter runtime:

e C.UTF-8
e C.utf8
e UTF-8

If setting one of these locale categories succeeds, then the LC_CTYPE environment variable will also
be set accordingly in the current process environment before the Python runtime is initialized. This
ensures that in addition to being seen by both the interpreter itself and other locale-aware components
running in the same process (such as the GNU readline library), the updated setting is also seen in
subprocesses (regardless of whether or not those processes are running a Python interpreter), as well
as in operations that query the environment rather than the current C locale (such as Python’s own
locale.getdefaultlocale()).

Configuring one of these locales (either explicitly or via the above implicit locale coercion) automatically
enables the surrogateescape error handler for sys.stdin and sys.stdout (sys.stderr continues to
use backslashreplace as it does in any other locale). This stream handling behavior can be overridden
using PYTHONIOENCODING as usual.

For debugging purposes, setting PYTHONCOERCECLOCALE=warn will cause Python to emit warning mes-
sages on stderr if either the locale coercion activates, or else if a locale that would have triggered
coercion is still active when the Python runtime is initialized.

Also note that even when locale coercion is disabled, or when it fails to find a suitable target locale,
PYTHONUTFS8 will still activate by default in legacy ASCII-based locales. Both features must be disabled
in order to force the interpreter to use ASCII instead of UTF-8 for system interfaces.

12

Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0529

Python Setup and Usage, Release 3.7.2

Availability: *nix.
New in version 3.7: See PEP 538 for more details.

PYTHONDEVMODE
If this environment variable is set to a non-empty string, enable the CPython “development mode”.
See the -X dev option.

New in version 3.7.

PYTHONUTFS8
If set to 1, enables the interpreter’s UTF-8 mode, where UTF-8 is used as the text encoding for system
interfaces, regardless of the current locale setting.

This means that:
o sys.getfilesystemencoding() returns 'UTF-8' (the locale encoding is ignored).

e locale.getpreferredencoding() returns 'UTF-8' (the locale encoding is ignored, and the func-
tion’s do_setlocale parameter has no effect).

e sys.stdin, sys.stdout, and sys.stderr all use UTF-8 as their text encoding, with the
surrogateescape error handler being enabled for sys.stdin and sys.stdout (sys.stderr con-
tinues to use backslashreplace as it does in the default locale-aware mode)

As a consequence of the changes in those lower level APIs, other higher level APIs also exhibit different
default behaviours:

e Command line arguments, environment variables and filenames are decoded to text using the
UTF-8 encoding.

e os.fsdecode() and os.fsencode() use the UTF-8 encoding.

e open(), io.open(), and codecs.open() use the UTF-8 encoding by default. However, they still
use the strict error handler by default so that attempting to open a binary file in text mode is
likely to raise an exception rather than producing nonsense data.

Note that the standard stream settings in UTF-8 mode can be overridden by PYTHONIOENCODING (just
as they can be in the default locale-aware mode).

If set to 0, the interpreter runs in its default locale-aware mode.
Setting any other non-empty string causes an error during interpreter initialisation.

If this environment variable is not set at all, then the interpreter defaults to using the current lo-
cale settings, unless the current locale is identified as a legacy ASCII-based locale (as described for
PYTHONCOERCECLOCALE), and locale coercion is either disabled or fails. In such legacy locales, the
interpreter will default to enabling UTF-8 mode unless explicitly instructed not to do so.

Also available as the -X ut£8 option.
Availability: *nix.

New in version 3.7: See PEP 540 for more details.

1.2.1 Debug-mode variables

Setting these variables only has an effect in a debug build of Python, that is, if Python was configured with
the ——with-pydebug build option.

PYTHONTHREADDEBUG
If set, Python will print threading debug info.

PYTHONDUMPREFS
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

1.2. Environment variables 13

https://www.python.org/dev/peps/pep-0538
https://www.python.org/dev/peps/pep-0540

Python Setup and Usage, Release 3.7.2

14 Chapter 1. Command line and environment

CHAPTER
TWO

USING PYTHON ON UNIX PLATFORMS

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However
there are certain features you might want to use that are not available on your distro’s package. You can
easily compile the latest version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make
packages for your own distro. Have a look at the following links:

See also:
https://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users
https://en.opensuse.org/Portal:Packaging for OpenSuse users

https://docs-old.fedoraproject.org/en-US /Fedora_ Draft_ Documentation/0.1/html/RPM__Guide/ch-creat;
for Fedora users

http://www.slackbook.org/html/package-management-making-packages.html for Slackware
users

2.1.2 On FreeBSD and OpenBSD
e FreeBSD users, to add the package use:

pkg install python3

e OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture
—here>/python-<version>.tgz

For example i386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

2.1.3 On OpenSolaris

You can get Python from OpenCSW. Various versions of Python are available and can be installed with e.g.
pkgutil -i python27.

15

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs-old.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html
https://www.opencsw.org/

Python Setup and Usage, Release 3.7.2

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download
either the latest release’s source or just grab a fresh clone. (If you want to contribute patches, you will need
a clone.)

The build process consists in the usual

./configure
make
make install

invocations. Configuration options and caveats for specific Unix platforms are extensively documented in
the README.rst file in th