The Python Library Reference
Release 3.7.15

Guido van Rossum
and the Python development team

October 10, 2022

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Notesonavailability e 3
2 Built-in Functions 5
3 Built-in Constants 25
3.1 Constants added by the sitemodule 26
4 Built-in Types 27
4.1 Truth Value Testing o i e e e e e e 27
4.2 Boolean Operations — and, 0T, NOT + v v v v v v v v v e e e et e e e e e e e e e e 27
4.3 COMPAriSONS « v v v v v e 28
4.4 Numeric Types — int, float,complexo v v ittt 28
45 Tterator Types o oL e 34
4.6 Sequence Types — list, tuple, range v vv i vttt 34
477 TextSequence Type — STT . . . v v i v v i i e e e e e e e e e e e e e e e e 40
4.8 Binary Sequence Types — bytes, bytearray, memoryview 49
49 SetTypes — set, frozenset v v i v i it i e e e e e e 69
4.10 Mapping Types — dict o e 71
4.11 Context Manager TYPES o o v i it e e e e e e e e e e e e e 75
4.12 Other Built-in Types o e e e 76
4.13 Special Aributes o e e e e e e e e e e e e e e e e e e 78
4.14 Integer string conversion length limitation Lo oL, 79
5 Built-in Exceptions 83
S0 Baseclasses e 84
5.2 Concrete eXCePHioNSt it e e e e e e e e e e e e e e e e e e 84
53 Warningsl 90
54 Exceptionhierarchy 90
6 Text Processing Services 93
6.1 string— Common String OPerations oot e e e 93
6.2 re — Regular expression Operations o.i ot e e e e e e e e 103
6.3 difflib — Helpers for computingdeltas 121
6.4 textwrap — Textwrappingandfilling. 131
6.5 unicodedata—Unicode Database 134
6.6 stringprep — Internet String Preparation oL 136
6.7 readline —GNUreadlineinterface 137
6.8 rlcompleter — Completion function for GNU readline 141
7 Binary Data Services 143
7.1 struct — Interpret bytes as packed binarydata L. 143
7.2 codecs — Codecregistryand base classes oo 148
8 Data Types 165

8.1 datetime —Basicdateand timetypes 165
8.2 calendar — General calendar-related functions oL 194
83 collections— Container datatypes v v v v vt it e e e e e e e e 198
84 collections.abc — Abstract Base Classes for Containers 214
8.5 heapg—Heapqueuealgorithm oo o 218
8.6 Dbisect — Arraybisectionalgorithm oL 222
8.7 array — Efficient arrays of numericvalues e 224
8.8 weakref —Weakreferences L e 227
8.9 types — Dynamic type creation and names for built-in types 233
8.10 copy — Shallow and deep copy operations e 238
8.11 pprint —Datapretty prinfer 239
8.12 reprlib — Alternate repr () implementation L 244
8.13 enum — Support for enuMerations oLt e e e e e e e e e e e 245
9 Numeric and Mathematical Modules 263
9.1 numbers — Numeric abstractbase classes 263
9.2 math— Mathematical functions L 266
9.3 cmath — Mathematical functions for complex numbers 271
9.4 decimal — Decimal fixed point and floating point arithmetic 274
9.5 fractions—Rationalnumbers e 300
9.6 random — Generate pseudo-random numbersol 302
9.7 statistics — Mathematical statistics functions oL 308
10 Functional Programming Modules 315
10.1 itertools — Functions creating iterators for efficient looping 315
10.2 functools — Higher-order functions and operations on callable objects 329
10.3 operator — Standard operators as functions oL 0oL 335
11 File and Directory Access 343
11.1 pathlib — Object-oriented filesystem paths 343
11.2 os.path — Common pathname manipulations 358
11.3 fileinput — Iterate over lines from multiple input streams 363
11.4 stat —Interpreting stat () results L 365
11.5 filecmp — File and Directory Comparisons« .o v v v v v v v v v oo o 369
11.6 tempfile — Generate temporary files and directories 371
11.7 glob — Unix style pathname pattern eXpansion v .. 375
11.8 fnmatch — Unix filename pattern matching 376
11.9 linecache —Randomaccesstotextlines 377
11.10 shutil — High-level file operations 378
11.11 macpath — Mac OS 9 path manipulation functions 386
12 Data Persistence 387
12.1 pickle — Pythonobject serialization i e 387
12.2 copyreg— Register pickle supportfunctions L oo 399
12.3 shelve — Python object persistence e 400
12.4 marshal — Internal Python object serialization 402
12.5 dbm — Interfaces to Unix “databases” 403
12.6 sglite3 — DB-API 2.0 interface for SQLite databases 407
13 Data Compression and Archiving 429
13.1 zlib — Compression compatible withgzip 429
13.2 gzip—Supportforgzipfiles e 432
13.3 bz2 — Support for bzip2 compressiono e e e 435
13.4 1zma — Compression using the LZMA algorithm 439
13,5 zipfile— Work withZIP archives it 444
13.6 tarfile —Read and write tar archivefiles L oL 451
14 File Formats 461
14.1 csv— CSV File Readingand Writing 461

15

16

17

18

19

20

142 configparser — Configuration file parser oo
143 netrc—netrcfile processing o oL e e e e e e e e e
144 xdrlib —Encodeand decode XDRdata
145 plistlib — Generate and parse Mac OS X .plistfiles

Cryptographic Services

15.1 hashlib — Secure hashes and message digests
15.2 hmac — Keyed-Hashing for Message Authentication
15.3 secrets — Generate secure random numbers for managing secrets

Generic Operating System Services

16.1 os — Miscellaneous operating system interfaces
16.2 io— Core tools for working with streams oL
16.3 time — Time access and CONVEISIONS« v v v v v v v v v e e e e e e e e e e e e e e
16.4 argparse — Parser for command-line options, arguments and sub-commands
16.5 getopt — C-style parser for command line options
16.6 logging — Logging facility for Python 0o
16.7 logging.config— Logging configuration
16.8 logging.handlers—Logginghandlers
16.9 getpass — Portable password input e e e e
16.10 curses — Terminal handling for character-cell displays
16.11 curses.textpad — Text input widget for curses programs
16.12 curses.ascii — Utilities for ASCII characters
16.13 curses.panel — A panel stack extension forcurses
16.14 plat form — Access to underlying platform’s identifyingdata
16.15 errno — Standard errno system symbols L.
16.16 ctypes — A foreign function library for Python 0o

Concurrent Execution

17.1 threading— Thread-based parallelism
17.2 multiprocessing — Process-based parallelism
17.3 The concurrent package e e
17.4 concurrent.futures — Launching parallel tasks
17.5 subprocess — Subprocess managemento
17.6 sched—Eventscheduler e
177 queue — A synchronized queueclass o
17.8 _thread — Low-level threading API
17.9 _dummy_thread — Drop-in replacement for the _threadmodule
17.10 dummy_threading — Drop-in replacement for the threadingmodule

contextvars — Context Variables

18.1 Context Variables e e e e e e e e e e e e
18.2 Manual Context Managementt v i it e e e e e e e
18.3 asynClo SUPPOIT . . v v v v o et e

Networking and Interprocess Communication

19.1 asyncio—AsynchronousI/O e e
19.2 socket — Low-level networking interface 0.
19.3 ss1 — TLS/SSL wrapper for socketobjects
194 select — Waiting for /O completion e
19.5 selectors — High-level I/O multiplexing
19.6 asyncore — Asynchronous sockethandler
19.7 asynchat — Asynchronous socket command/response handler
19.8 signal — Set handlers for asynchronousevents
19.9 mmap — Memory-mapped filesupport oL Lo

Internet Data Handling
20.1 email — Anemail and MIME handling package
20.2 json—IJSONencoder anddecoder e

505
505
550
561
571
600
603
618
628
640
640
657
658
660
662
665
670

703
703
715
756
756
762
778
780
783
785
785

787
787
788
790

791
791
871
892
926
933
936
940
942
949

953
953
1007

21

22

23

20.3 mailcap—Mailcapfilehandling
20.4 mailbox — Manipulate mailboxes in various formats oL
20.5 mimetypes — Map filenamesto MIME typeso oo
20.6 base64 — Basel6, Base32, Base64, Base85 Data Encodings
20.7 binhex — Encode and decode binhex4 files
20.8 binascii — Convert between binaryand ASCIT,
20.9 quopri — Encode and decode MIME quoted-printabledata
20.10 uu — Encode and decode uuencode files oL oL

Structured Markup Processing Tools

21.1 html — HyperText Markup Language support o v v i v v v i et
21.2 html.parser — Simple HTML and XHTML parser
21.3 html.entities — Definitions of HTML general entities
21.4 XML Processing Modules e
21.5 xml.etree.ElementTree — The ElementTree XML API
21.6 xml.dom— The Document Object Model APT
21.7 xml.dom.minidom— Minimal DOM implementation
21.8 xml.dom.pulldom— Support for building partial DOM trees
21.9 xml.sax — Support for SAX2 parsers i i e e e e e e
21.10 xml.sax.handler — Base classes for SAX handlers
21.11 xml.sax.saxutils —SAXUtilities i i e
21.12 xml .sax.xmlreader — Interface for XML parsers
21.13 xml .parsers.expat — Fast XML parsingusing Expat

Internet Protocols and Support

22.1 webbrowser — Convenient Web-browser controller
22.2 cgi — Common Gateway Interface support oo
22.3 cgitb — Traceback manager for CGIscripts
224 wsgiref — WSGI Utilities and Reference Implementation
225 urllib—URLhandlingmodules
22.6 urllib.request — Extensible library for opening URLs
2277 urllib.response — Responseclassesusedbyurllib
22.8 urllib.parse —Parse URLsintocomponents
229 urllib.error — Exception classes raised by urllib.request
22.10 urllib.robotparser — Parser forrobots.txt
2211 http—HTTP modules e e e e e
22.12 http.client — HTTP protocolclient
2213 ftplib —FTPprotocolclient e
22.14 poplib —POP3 protocol client
22.15 imaplib —IMAP4 protocol client
22.16 nntplib — NNTP protocol client o
22.17 smtplib — SMTP protocol client e
22.18 smtpd — SMTP Server o e e e e e e
22.19 telnetlib—Telnetclient e
22.20 uuid — UUID objects accordingto RFC 4122,
22.21 socketserver — A framework for network serverso oL
2222 http.server — HTTP SErvers v i v et e e e e e e e e e e e e e e
22.23 http.cookies — HTTP state management oot v v v v v ..
22.24 http.cookiejar — Cookie handling for HTTP clients
22.25 xmlrpc — XMLRPC server and client modules
2226 xmlrpc.client — XML-RPCclientaccess,
22.27 xmlrpc.server — Basic XML-RPCservers.
22.28 ipaddress — IPv4/IPv6 manipulation library

Multimedia Services

23.1 audiocop — Manipulaterawaudiodata. L.
23.2 aifc—Read and write AIFFand AIFCfiles
23.3 sunau—Readand write Sun AUfiles
234 wave —Read and write WAV files

24

25

26

27

28

29

30

23.5 chunk —Read IFFchunkeddata
23.6 colorsys — Conversions between color SyStemso i e e e e e
237 imghdr — Determine the type of animage L ..
23.8 sndhdr — Determine type of soundfile o oL
23.9 ossaudiodev — Access to OSS-compatible audio devices

Internationalization
24.1 gettext — Multilingual internationalization services
24.2 locale — Internationalization SEIVICES v v v v v i e e e e e e e

Program Frameworks

25.1 turtle —Turtlegraphics L e
25.2 cmd — Support for line-oriented command interpreters oL
25.3 shlex — Simple lexical analysis L e

Graphical User Interfaces with Tk

26.1 tkinter —Pythoninterfaceto Tcl/Tk o o
26.2 tkinter.ttk —Tkthemedwidgets i
26.3 tkinter.tix —Extensionwidgetsfor Tk
264 tkinter.scrolledtext — Scrolled Text Widget
26.5 IDLE e
26.6 Other Graphical User Interface Packages

Development Tools

27.1 typing—Supportfortypehints L
27.2 pydoc — Documentation generator and online help system
27.3 doctest — Test interactive Pythonexamples
274 unittest — Unittesting framework L
27.5 unittest.mock —mockobjectlibrary oL oo
27.6 unittest.mock —gettingstarted L. oL
27.7 2to3 - Automated Python 2 to 3 code translation
27.8 test — Regression tests package for Python oL o oL
279 test.support — Utilities for the Python testsuite
27.10 test.support.script_helper — Utilities for the Python execution tests

Debugging and Profiling

28.1 bdb — Debugger framework L. e e e e
28.2 faulthandler — Dump the Pythontraceback
28.3 pdb — The Python Debugger
28.4 The Python Profilers
28.5 timeit — Measure execution time of small code snippets
28.6 trace — Trace or track Python statement execution
287 tracemalloc — Trace memory allocations i

Software Packaging and Distribution

29.1 distutils — Building and installing Python modules
29.2 ensurepip — Bootstrapping the pipinstaller L
29.3 venv — Creation of virtual environments oo e
29.4 zipapp — Manage executable Python ziparchives,

Python Runtime Services

30.1 sys — System-specific parameters and functions 0oL
30.2 sysconfig— Provide access to Python’s configuration information
303 builtins—Built-inobjects L e
304 __main__ — Top-level scriptenvironment e
30.5 warnings — Warningcontrol L. e e e
30.6 dataclasses—DataClasses. e
30.7 contextlib — Utilities for with-statement contexts
30.8 abc—Abstract Base Classes L

31

32

33

34

35

36

37

309 atexit —Exithandlers
30.10 traceback — Print or retrieve a stack traceback o oL
30.11 ___future__ — Future statement definitions
30.12 gc — Garbage Collector interface L o
30.13 inspect — Inspectlive objects L. L e
30.14 site — Site-specific configurationhook oL Lo

Custom Python Interpreters
31.1 code —Interpreter base classes
31.2 codeop — Compile Pythoncode

Importing Modules

32.1 zipimport — Import modules from Zip archives oL
32.2 pkgutil — Package extension utilityo
32.3 modulefinder — Find modulesused byascript,
32.4 runpy — Locating and executing Pythonmodules
32.5 importlib — The implementation of import

Python Language Services

33.1 parser — Access Pythonparsetrees L o e
33.2 ast — Abstract Syntax Trees L e
33.3 symtable — Access to the compiler’s symbol tables
33.4 symbol — Constants used with Python parse trees
33.5 token — Constants used with Python parsetrees
33.6 keyword — Testing for Python keywords
337 tokenize — Tokenizer for Pythonsource oL
33.8 tabnanny — Detection of ambiguous indentation
33.9 pyclbr — Python module browser support
33.10 py_compile — Compile Python source files
33.11 compileall — Byte-compile Python libraries
33.12 dis — Disassembler for Python bytecode o L
33.13 pickletools — Tools for pickle developers

Miscellaneous Services
34.1 formatter — Generic output formatting oL L. oL

MS Windows Specific Services

35.1 msilib — Read and write Microsoft Installer files,
35.2 msvcrt — Useful routines from the MS VC++runtime
353 winreg— Windows registry aCCeSS « .t i v i it e e e e e e e e e e e e
35.4 winsound — Sound-playing interface for Windowso oL

Unix Specific Services

36.1 posix — The most common POSIX systemcalls.
36.2 pwd—The password database
36.3 spwd — The shadow password database e
364 grp—Thegroupdatabase e e e e e e
36.5 crypt — Function to check Unix passwords e
36.6 termios —POSIXstylettycontrol
36.7 tty — Terminal control functions e
36.8 pty —Pseudo-terminal utilities e e
369 fcntl—The fentlandioctlsystemcalls.o o o Lo
36.10 pipes — Interface to shell pipelines L oL
36.11 resource — Resource usage information
36.12 nis — Interface to Sun’s NIS (Yellow Pages),
36.13 syslog— Unix syslog library routines oo it

Superseded Modules
37.1 optparse — Parser for command lineoptionso

vi

37.2 imp — Access the importinternals L. e e e e e

38 Undocumented Modules
38.1 Platform specific modules L. e

A Glossary

B About these documents
B.1 Contributors to the Python Documentation

C History and License
C.1 Historyof the software i e e e e e e e e
C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software

D Copyright
Bibliography
Python Module Index

Index

1781
1781

1783

1795
1795

1797
1797
1798
1801

1813

1815

1817

1821

vii

viii

The Python Library Reference, Release 3.7.15

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

https://pypi.org
https://pypi.org

The Python Library Reference, Release 3.7.15

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like
the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless
of the order in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the
remainder of the manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

¢ An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make
any claims about its existence on a specific operating system.

* If not separately noted, all functions that claim “Availability: Unix” are supported on Mac OS X, which builds
on a Unix core.

The Python Library Reference, Release 3.7.15

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here

in alphabetical order.

Built-in Functions
abs () delattr() hash () memoryview () set ()
all() dict () help() min () setattr ()
any () dir () hex () next () slice()
ascii() divmod () id() object () sorted()
bin () enumerate () input () oct () staticmethod ()
bool () eval () int () open () str()
breakpoint () exec () isinstance() ord() sum ()
bytearray () filter() issubclass () pow () super ()
bytes () float () iter() print () tuple ()
callable () format () len() property () type ()
chr () frozenset () 1list () range () vars ()
classmethod() getattr () locals () repr () zip ()
compile () globals () map () reversed() __import__ ()
complex () hasattr () max () round ()

abs (x)
Return the absolute value of a number. The argument may be an integer or a floating point number. If the
argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

The Python Library Reference, Release 3.7.15

bin (x)
Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x is
not a Python int object, it has to define an __index__ () method that returns an integer. Some examples:

>>> bin(3)
'Ob11"

>>> bin (-10)
'-0b1010"

If prefix “Ob” is desired or not, you can use either of the following ways.

>>> format (14, '#b'), format (14, 'b')
('Ob1110', '1110")

>>> f'{14:4b}', £'{14:b}"'

('0Ob1110', '"1110")

See also format () for more information.

class bool ([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard rruth testing procedure.
If x is false or omitted, this returns False; otherwise it returns True. The bool class is a subclass of int
(see Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and
True (see Boolean Values).

Changed in version 3.7: x is now a positional-only parameter.

breakpoint (*args, **kws)
This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.
set_trace () expecting no arguments. In this case, it is purely a convenience function so you don’t have to
explicitly import pdb or type as much code to enter the debugger. However, sys.breakpointhook ()
can be set to some other function and breakpoint () will automatically call that, allowing you to drop into
the debugger of choice.

New in version 3.7.

class bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the byt es type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

« If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

« If it is an integer, the array will have that size and will be initialized with null bytes.

« If itis an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

« If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size O is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256. bytes
is an immutable version of bytearray — it has the same non-mutating methods and the same indexing and
slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().

Bytes objects can also be created with literals, see strings.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.15

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Op-
erations.

callable (object)
Return True if the object argument appears callable, False if not. If this returns True, it is still possible
that a call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a
class returns a new instance); instances are callable if their classhasa___call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a ', while chr (8364) returns the string '€ '. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

@classmethod
Transform a method into a class method.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @Rclassmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. £ ()) or on an instance (suchas C () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object
is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod ().
For more information on class methods, see types.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements affect the compilation of source.
If neither is present (or both are zero) the code is compiled with those future statements that are in effect in
the code that is calling compile (). If the flags argument is given and dont_inherit is not (or is zero) then
the future statements specified by the flags argument are used in addition to those that would be used anyway.
If dont_inherit is a non-zero integer then the flags argument is it — the future statements in effect around the
call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute onthe _Feature
instance inthe future module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the op-
timization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; ___debug___
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source con-
tains null bytes.

The Python Library Reference, Release 3.7.15

If you want to parse Python code into its AST representation, see ast . parse ().

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be termi-
nated by at least one newline character. This is to facilitate detection of incomplete and complete statements
in the code module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string when
compiling to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does not
have to end in a newline anymore. Added the opfimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

class complex ([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion
like int and f1oat. If both arguments are omitted, returns 0 7.

Note: When converting from a string, the string must not contain whitespace around the central + or —
operator. For example, complex ('1+27") isfine, but complex ('l + 23j') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, 'foobar') isequivalenttodel x.foobar.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 1ist, set, and tuple classes, as well as the colIections module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a
list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or __getattribute__ () function to
customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
___dict___ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

« If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.15

» Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recur-
sively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace

['__builtins__ ', '__name__', 'struct']

>>> dir (struct) # show the names in the struct module

['Struct', '__all_ ', '_ builtins__ ', '__cached__ ', '__doc__"', '_ file_ ',
'__initializing__ ', '__loader__', '__name__', '__package__ ',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_from']
>>> class Shape:

def _ dir_ (self):

c return ['area', 'perimeter', 'location']
>>> s = Shape ()
>>> dir (s)
["area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of names,
and its detailed behavior may change across releases. For example, metaclass attributes are not in the result list
when the argument is a class.

divmod (a, b)

Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the result is
(g, a % b),wheregisusuallymath.floor (a / b) butmay be 1 less than that. Inanycase g * b
+ a % bisveryclosetoa,if a % b isnon-zero it has the same sign as b,and 0 <= abs(a % b) <
abs (b).

enumerate (iterable, start=0)

Return an enumerate object. iferable must be a sequence, an iferator, or some other object which supports
iteration. The ___next__ () method of the iterator returned by enumerate () returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression[, globals[, locals]])

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and
does not contain a value for the key __builtins__, a reference to the dictionary of the built-in module
builtinsisinserted under that key before expression is parsed. This means that expression normally has full
access to the standard bui It ins module and restricted environments are propagated. If the locals dictionary

The Python Library Reference, Release 3.7.15

is omitted it defaults to the globals dictionary. If both dictionaries are omitted, the expression is executed in
the environment where eval () is called. The return value is the result of the evaluated expression. Syntax
errors are reported as exceptions. Example:

>>> x =1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with 'exec' as the mode
argument, eval ()’s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and 1o-
cals () functions returns the current global and local dictionary, respectively, which may be useful to pass
around for use by eval () or exec ().

See ast.literal eval () for afunction that can safely evaluate strings with expressions containing only
literals.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object.
If it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax
error occurs).! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to
be valid as file input (see the section “File input” in the Reference Manual). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed to
the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals and
locals are given, they are used for the global and local variables, respectively. If provided, locals can be any
mapping object. Remember that at module level, globals and locals are the same dictionary. If exec gets two
separate objects as globals and locals, the code will be executed as if it were embedded in a class definition.

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins are
available to the executed code by inserting your own ___builtins__ dictionary into globals before passing
itto exec ().

Note: The built-in functions globals () and Iocals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

filter (function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iferable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

I Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.15

clas

s float ([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+' or '—"'; a '+' sign has no effect on the value
produced. The argument may also be a string representing a NaN (not-a-number), or a positive or negative
infinity. More precisely, the input must conform to the following grammar after leading and trailing whitespace
characters are removed:

Slgl’l L "+" | n_mn

infinity = "Infinity" | "inf"

nan = "nan"

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here £ loatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an
OverflowError will be raised.

For a general Python object x, float (x) delegatesto x.___float__ ().
If no argument is given, O . O is returned.

Examples:

>>> float ('+1.23")

1.23

>>> float (' -12345\n")
-12345.0

>>> float ('1e-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—-inf

The float type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.7: x is now a positional-only parameter.

format (value[, format_spec])

clas

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument, however there is a standard formatting syntax that is
used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value).

A call to format (value, format_spec) istranslated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s ___format__ ()
method. A TypeError exception is raised if the method search reaches object and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec
is not an empty string.

s frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

11

The Python Library Reference, Release 3.7.15

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar')
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError israised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current

module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether
it raises an Att ributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

Note: For objects with custom __hash___ () methods, note that hash () truncates the return value based
on the bit width of the host machine. See __hash__ () for details.

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function, when invoking help (), it means that
the parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only
parameters.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.

hex (x)
Convert an integer number to a lowercase hexadecimal string prefixed with “Ox”. If x is not a Python int
object, it has to define an __index__ () method that returns an integer. Some examples:

>>> hex (255)
'Oxff!
>>> hex (-42)
'-0x2a'

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you
can use either of the following ways:

>>> ! ' % 255, ! ''% 255, ! ' % 255

('oxff', 'ff', 'FEF'")

>>> format (255, '#x'), format (255, 'x'), format (255, 'X")
('oxff', '"f£f', 'FEF')

>>> f£'{255:4x}"', £'{255:x}', £'{255:X}"

('oxff', 'ff', 'FEF')

See also format () for more information.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.15

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is
read, EOFError is raised. Example:

>>> s = input('-—> ")
—-—> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

class int ([x])

class int (x, base=10)
Return an integer object constructed from a number or string x, or return 0 if no arguments are given.
If x defines __int__ (), int (x) returns x.__int__ (). If x defines _ trunc__ (), it returns x.
__trunc__ (). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or — (with no space in between)
and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or A to Z) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2—-36. Base-2, -8, and -16 literals can be
optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means to interpret
exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int ('010', 0) is not legal,
while int ('010") is,aswellas int ('010', 8).

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index_
method, that method is called to obtain an integer for the base. Previous versions used base.__int_
instead of base.__index_ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.7.14: int string inputs and string representations can be limited to help avoid denial of
service attacks. A ValueError israised when the limit is exceeded while converting a string x to an int or
when converting an int into a string would exceed the limit. See the infeger string conversion length limitation
documentation.

isinstance (object, classinfo)
Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virfual)
subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo
is a tuple of type objects (or recursively, other such tuples), return True if object is an instance of any of the
types. If classinfo is not a type or tuple of types and such tuples, a TypeError exception is raised.

issubclass (class, classinfo)
Return True if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any
other case, a TypeError exception is raised.

13

The Python Library Reference, Release 3.7.15

iter (object[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the itera-
tion protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError is
raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator created in
this case will call object with no arguments for each call toits ___next___ () method; if the value returned is
equal to sentinel, St opIterat ion will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-
width blocks from a binary database file until the end of file is reached:

from functools import partial
with open ('mydata.db', 'rb') as f:
for block in iter (partial(f.read, 64), b''"):
process_block (block)

len (s)

Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

class list([itemble])

Rather than being a function, 11 st is actually a mutable sequence type, as documented in Lists and Sequence
Types — list, tuple, range.

locals ()

Update and return a dictionary representing the current local symbol table. Free variables are returned by 10—
cals () whenitis called in function blocks, but not in class blocks. Note that at the module level, Iocals ()
and globals () are the same dictionary.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, ...)

Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the
function inputs are already arranged into argument tuples, see itertools.starmap ().

max (iterable, *[, key, default])
max (argl, arg2, *args[, key])

Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist . sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0]
and heapg.nlargest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

class memoryview (obj)

Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *[, key, default])

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.15

min (argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned. If
two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapq.
nsmallest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

next (iterator[, default])
Retrieve the next item from the iferator by calling its ___next__ () method. If default is given, it is returned
if the iterator is exhausted, otherwise StopIteration is raised.

class object
Return a new featureless object. object is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a ___dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python expression. If x
is not a Python int object, it has to define an __index__ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (-56)
'-0070"

If you want to convert an integer number to octal string either with prefix “0o” or not, you can use either of the
following ways.

>>> ! ''% 10, 7 ''% 10

("0012', '12")

>>> format (10, '#0o'), format (10, 'o')
("Ool1l2', "12")

>>> f'{10:40}', £'{10:0}"'

('"Oo12', "12")

See also format () for more information.

open (file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True,
opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file to
be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when
the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ' r' which means
open for reading in text mode. Other common values are 'w ' for writing (truncating the file if it already exists),
'x ' for exclusive creation and 'a ' for appending (which on some Unix systems, means that all writes append
to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the
encoding used is platform dependent: locale.getpreferredencoding (False) is called to get the

15

The Python Library Reference, Release 3.7.15

current locale encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

Character | Meaning

'r' open for reading (default)

"w' open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b! binary mode

Tt text mode (default)

T+t open a disk file for updating (reading and writing)

The default mode is 'r' (open for reading text, synonym of 'rt '). For binary read-write access, the mode
'w+b ' opens and truncates the file to O bytes. 'r+b "' opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b"' in the mode argument) return contents as byt es objects without any decoding. In text mode
(the default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

There is an additional mode character permitted, 'U"', which no longer has any effect, and is considered
deprecated. It previously enabled universal newlines in text mode, which became the default behaviour in
Python 3.0. Refer to the documentation of the newline parameter for further details.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is
done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size in
bytes of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as
follows:

* Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on i 0. DEFAULT_BUFFER_SIZE.On
many systems, the buffer will typically be 4096 or 8192 bytes long.

* “Interactive” text files (files for which i satty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever locale.getpreferredencoding () returns),
but any text encoding supported by Python can be used. See the codecs module for the list of supported
encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though
any error handling name that has been registered with codecs. register_error () is also valid. The
standard names include:

* 'strict' toraisea ValueError exception if there is an encoding error. The default value of None
has the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
e 'replace' causes a replacement marker (such as ' ? ') to be inserted where there is malformed data.

* 'surrogateescape' will represent any incorrect bytes as code points in the Unicode Private Use
Area ranging from U+DC80 to U+DCFF. These private code points will then be turned back into the
same bytes when the surrogateescape error handler is used when writing data. This is useful for
processing files in an unknown encoding.

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.15

e 'xmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference & #nnn; .

* 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

e 'namereplace' (also only supported when writing) replaces unsupported characters with \N{ . . . }
escape sequences.

newline controls how universal newlines mode works (it only applies to text mode). It can be None, ' ', '\n",
"\r',and '\r\n"'. It works as follows:

¢ When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
theinputcanendin '\n"', "\r',or '\r\n"', and these are translated into ' \n ' before being returned
to the caller. If itis ' ', universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string,
and the line ending is returned to the caller untranslated.

* When writing output to the stream, if newline is None, any '\n"' characters written are translated to
the system default line separator, os. I inesep. If newlineis ' ' or '\n', no translation takes place.
If newline is any of the other legal values, any ' \n' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be
kept open when the file is closed. If a filename is given closefd must be True (the default) otherwise an error
will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open
as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os. open () function to open a file relative to a given
directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open(path, flags, dir_fd=dir_f£fd)

>>> with open('spamspam.txt', 'w', opener=opener) as f:
print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io. Text IOBase
(specifically io. Text IOWrapper). When used to open a file in a binary mode with buffering, the returned
class is a subclass of i0.BufferedIOBase. The exact class varies: in read binary mode, it returns an
io.BufferedReaders;in write binary and append binary modes, it returns an io. Bufferediiriter,
and in read/write mode, it returns an io.BufferedRandom. When buffering is disabled, the raw stream,
a subclass of 10.RawIOBase, 10.FileI0,isreturned.

See also the file handling modules, such as, i leinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

Changed in version 3.3:
¢ The opener parameter was added.
e The 'x' mode was added.
e TOError used to be raised, it is now an alias of OSError.
e FileExistsError is now raised if the file opened in exclusive creation mode ('x ") al-

ready exists.

Changed in version 3.4:

17

The Python Library Reference, Release 3.7.15

¢ The file is now non-inheritable.

Deprecated since version 3.4, will be removed in version 3.9: The 'U' mode.
Changed in version 3.5:

« If the system call is interrupted and the signal handler does not raise an exception, the function
now retries the system call instead of raising an TnterruptedError exception (see PEP
475 for the rationale).

e The 'namereplace"' error handler was added.

Changed in version 3.6:
* Support added to accept objects implementing os . PathLike.

* On Windows, opening a console buffer may return a subclass of i0. RawIOBase other than
io.FileIO.

ord (¢)
Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord ('a"') returns the integer 97 and ord ('€ ') (Euro sign) returns 8364.
This is the inverse of chr ().

pow (x. y[.z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than
pow (x, y) % z). The two-argument form pow (x, vy) is equivalent to using the power operator: x* *y.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10**2 returns 100, but 10**—-2 returns 0. 01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print (*objects, sep="", end="\n', file=sys.stdout, flush="False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file and flush, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like st () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None, sys.
stdout will be used. Since printed arguments are converted to text strings, print () cannot be used with
binary mode file objects. For these, use file.write (...) instead.

Whether output is buffered is usually determined by file, but if the flush keyword argument is true, the stream
is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property (fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function
for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self._x = None

def getx(self):
return self._x

(continues on next page)

18 Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.7.15

(continued from previous page)

def setx(self, wvalue):
self._x = value

def delx (self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c. x will invoke the getter, c.x = value will invoke the setter and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fger’s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def init__ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained with
an example:

class C:
def _ init_ (self):
self._x = None

@property

def x(self):
N””IYm the YXY property.”””
return self._x

@x.setter
def x(self, value):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property object also has the attributes fget, fset, and £del corresponding to the constructor
arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

class range (stop)
class range (start, stop[, step])

Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

repr (object)

Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise

19

The Python Library Reference, Release 3.7.15

the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defininga __repr___ () method.

reversed (seq)
Return a reverse iterator. seq must be an object which has a __reversed__ () method or supports the se-
quence protocol (the __len__ () methodandthe___getitem__ () method with integer arguments starting
at 0).

round (number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns
the nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example,
both round (0.5) and round (-0.5) are 0, and round (1.5) is 2). Any integer value is valid for
ndigits (positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise the
return value has the same type as number.

For a general Python object number, round delegates to number.___round__.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2. 67 instead of the expected 2 . 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t
be represented exactly as a float. See tut-fp-issues for more information.

class set ([iterable])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, 1ist, tuple, and dict classes, as well as the col—
lections module.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided
the object allows it. For example, setattr (x, 'foobar', 123) isequivalentto x.foobar = 123.

class slice (stop)

class slice (start, stop[, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: a [start:stop:step] ora[start:stop, 1i]. See
itertools.islice () for an alternate version that returns an iterator.

sorted (iterable, *, key=None, reverse=False)
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable
(for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.15

@staticmethod
Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see function for details.
A static method can be called either on the class (such as C. £ ()) or on an instance (suchas C () . £ ()).

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a variant
that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want
to avoid the automatic transformation to instance method. For these cases, use this idiom:

class C:
builtin_open = staticmethod (open)

For more information on static methods, see types.

class str (object=")
class str (object=b", encoding="utf-8', errors='strict’)
Return a st r version of object. See st r () for details.

str is the built-in string class. For general information about strings, see 7ext Sequence Type

Str.

sum (iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The iterable’s
items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ' ' . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using i tertools.chain ().

super ([type[, object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of #ype. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr ()
except that the rype itself is skipped.

The __mro___ attribute of the type lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This
use case is unique to Python and is not found in statically compiled languages or languages that only support
single inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes im-
plement the same method. Good design dictates that this method have the same calling signature in every case
(because the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy,
and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

21

The Python Library Reference, Release 3.7.15

class C(B):
def method(self, arg):
super () .method (arqg) # This does the same thing as:
super (C, self).method(arg)

In addition to method lookups, super () also works for attribute lookups. One possible use case for this is
calling descriptors in a parent or sibling class.

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

class tuple ([itemble])

Rather than being a function, tupIe is actually an immutable sequence type, as documented in 7uples and
Sequence Types — list, tuple, range.

class type (object)
class type (name, bases, dict)

With one argument, return the type of an object. The return value is a type object and generally the same object
as returned by object.__ _class__.

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement.
The name string is the class name and becomes the ___name___ attribute; the bases tuple itemizes the base
classes and becomes the _bases___ attribute; and the dict dictionary is the namespace containing definitions
for class body and is copied to a standard dictionary to become the ___dict___ attribute. For example, the
following two statements create identical t ype objects:

>>> class X:
a =1

>>> X = type('X', (object,), dict(a=1))

See also Type Objects.

Changed in version 3.6: Subclasses of type which don’t override t ype.__new___ may no longer use the
one-argument form to get the type of an object.

vars ([object])

Returnthe __dict___ attribute for a module, class, instance, or any other object witha___dict__ attribute.

Objects such as modules and instances have an updateable __ dict__ attribute; however, other ob-
jects may have write restrictions on their __ dict__ attributes (for example, classes use a types.
MappingProxyType to prevent direct dictionary updates).

Without an argument, vars () actslike Jocals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

zip (*iterables)

Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument,
it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

22

Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.7.15

def zip(*iterables):
zip('ABCD', 'xy') —--> AxXx By
sentinel = object ()
iterators = [iter(it) for it in iterables]
while iterators:
result = []
for it in iterators:
elem = next (it, sentinel)
if elem is sentinel:
return
result.append (elem)
yield tuple (result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip (* [iter (s)] *n). This repeats the same iterator n times so that
each output tuple has the result of n calls to the iterator. This has the effect of dividing the input into n-length
chunks.

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched values
from the longer iterables. If those values are important, use itertools.zip_longest () instead.

zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>>y = [4, 5, 6]
>>> zipped = zip(x, V)

>>> list (zipped)

(1, 4), (2, 5, (3, 6)]

>>> x2, y2 = zip(*zip(x, Vy))

>>> x == list(x2) and y == list(y2)
True

__import___ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike import1ib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but
doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same
goals and does not cause issues with code which assumes the default import implementation is in use. Direct
use of ___import__ () is also discouraged in favor of importlib. import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at
all, and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the
module calling __import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__ ('spam', globals(), locals(), [], 0)

The statement import spam.ham results in this call:

23

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.7.15

spam = __import__ ('spam.ham', globals(), locals(), [], 0)

Note how ___import___ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage']l, 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam. ham module is returned from ___import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value
to 0).

24

Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eq_ (), __1t_ (),
__add__ (), rsub__ (), etc.) to indicate that the operation is not implemented with respect to the

other type; may be returned by the in-place binary special methods (e.g. __imul__ (),
for the same purpose. Its truth value is true.

iand__ (),etc.)

Note: When a binary (or in-place) method returns Not Implemented the interpreter will try the reflected
operation on the other type (or some other fallback, depending on the operator). If all attempts return Not Im—
plemented, the interpreter will raise an appropriate exception. Incorrectly returning Not Implemented
will result in a misleading error message or the Not Implemented value being returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and Not Implemented are not interchangeable, even though they have
similar names and purposes. See Not ImplementedError for details on when to use it.

Ellipsis
The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax
for user-defined container data types.

__debug__
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

25

The Python Library Reference, Release 3.7.15

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not
be used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemEx1it with the specified exit code.

copyright
credits
Objects that when printed or called, print the text of copyright or credits, respectively.

license
Object that when printed, prints the message “Type license() to see the full license text”, and when called,
displays the full license text in a pager-like fashion (one screen at a time).

26 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested
for truth value, and converted to a string (with the repr () function or the slightly different st r () function). The
latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i £ or while condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a __bool__ () method that returns False
ora___len__ () method that returns zero, when called with the object.' Here are most of the built-in objects
considered false:

¢ constants defined to be false: None and False.
e zero of any numeric type: 0, 0.0, 0J, Decimal (0),Fraction (0, 1)
e empty sequences and collections: ' ', (), [], {}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X Or y if x is false, then y, else x (€))
x and y | if x1is false, then x, else y 2)
not x if x is false, then True, else False | (3)

Notes:

(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.

! Additional information on these special methods may be found in the Python Reference Manual (customization).

27

The Python Library Reference, Release 3.7.15

(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= zisequivalenttox < y
and y <= z,except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for ex-
ample, function objects) support only a degenerate notion of comparison where any two objects of that type are
unequal. The <, <=, > and >= operators will raise a TypeError exception when comparing a complex number
with another built-in numeric type, when the objects are of different types that cannot be compared, or in other cases
where there is no defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (),__le_ (),__gt__ (),and __ge__ () (in general,
__1t__ () and __eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the __contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: infegers, floating point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using
double in C; information about the precision and internal representation of floating point numbers for the machine
on which your program is running is available in sys. f1oat_ info. Complex numbers have a real and imaginary
part, which are each a floating point number. To extract these parts from a complex number z, use z.real and
z . imag. (The standard library includes additional numeric types, fract ions that hold rationals, and decimal
that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ' j ' or ' J' to a numeric literal yields an imaginary number (a complex
number with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary
parts.

28 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. A comparison between numbers of different types behaves as though the exact
values of those numbers were being compared.”

The constructors int (), float (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-

summary):
Operation Result Notes| Full documen-
tation
X +y sum of x and y
X -y difference of x and y
X *y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y @))
X %y remainder of x / vy 2)
-x X negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)®6) | int ()
float (x) x converted to floating point @)(6) | float ()
complex (re, a complex number with real part re, imaginary part im. im | (6) complex ()
im) defaults to zero.
c. conjugate of the complex number ¢
conjugate ()
divmod (x, V) the pair (x // vy, x % V) 2) divmod ()
pow (X, V) X to the power y (@) pow ()
X ** y X to the power y (®)]
Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2is 0, (=1) //21is-1,1// (-2)

is-1,and (-1)

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

// (=2) is 0.

(3) Conversion from floating point to integer may round or truncate as in C; see functions math. f1oor () and
math.ceil () for well-defined conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

(5) Python defines pow (0,

0) and 0 ** 0 tobe 1, as is common for programming languages.

(6) The numeric literals accepted include the digits O to 9 or any Unicode equivalent (code points with the Nd

property).

See http://www.unicode.org/Public/10.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and f1oat) also include the following operations:

Operation

Result

math.trunc (x)

x truncated to Tntegral

round (x/[,

nj)

x rounded to n digits, rounding half to even. If # is omitted, it defaults to O.

math.floor (x)

the greatest Tntegral <=x

math.ceil (x)

the least Tntegral >=x

2 Asa consequence, the list [1,

2] is considered equal to [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex

29

http://www.unicode.org/Public/10.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.7.15

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types
Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out
in two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority:

Operation | Result Notes
X |y bitwise or of x and y “)

x Ny bitwise exclusive or of x and y | (4)

X & Yy bitwise and of x and y 4

x << n x shifted left by n bits (H(©2)
X >> n x shifted right by 7 bits (H(A3)
~X the bits of x inverted

Notes:
(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow (2, n).
(3) A right shift by » bits is equivalent to floor division by pow (2, n).

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representa-
tion (a working bit-width of 1 + max (x.bit_length(), y.bit_length()) or more) is sufficient
to get the same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types
The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin(n)
'-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x .bit_length () is the unique positive integer k such that 2** (k-
1) <= abs(x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly rounded
logarithm, then k = 1 + int (log(abs(x), 2)).If xiszero,then x.bit_length () returns O.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101") > 6

New in version 3.1.

int.to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)
b'\XfA\XEE\XEA\XEA\XEF\XEE\XEE\xEf\xfc\x00"

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

The integer is represented using length bytes. An OverflowError israised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byfeorder is "big", the
most significant byte is at the beginning of the byte array. If byteorderis "1ittle", the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use sys.byteorder as
the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed isFalse
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

New in version 3.2.

classmethod int.from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big'")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little")

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big')

16711680

The argument byfes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byfeorder is "big", the
most significant byte is at the beginning of the byte array. If byteorderis "1itt1le™", the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use sys.byteorder as
the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

New in version 3.2.

4.4.3 Additional Methods on Float

The float type implements the numbers. Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0) .is_integer()
True

(continues on next page)

4.4. Numeric Types — int, float, complex 31

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of f1oat.hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by f1oat . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3 . a7p 10 represents the floating-point number (3
+ 10./16 + 7./16**2) * 2.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== vy (see the _ _hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fractions.Fraction, and all finite instances of fl1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P
is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedisP = 2**31 — 1 on machines with 32-bit C longs
andP = 2**61 — 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n isa nonnegative rational number and n is not divisible by P, define hash (x) asm *
invmod (n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

If x = m / nisa nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value
sys.hash_info.inf.

If x = m / nisanegative rational number define hash (x) as ~hash (—x) . If the resulting hash is -1,
replace it with —2.

The particular values sys.hash_info.inf, —sys.hash_info.inf and sys.hash_info.nan
are used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have
the same hash value.)

For a complex number z, the hash values of the real and imaginary parts are combined by comput-
ing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.
hash_info.width so thatitlies in range (-2** (sys.hash_info.width - 1), 2**(sys.
hash_info.width - 1)). Again, if the result is -1, it’s replaced with -2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):

def

def

"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)

whilem $ P == n % P ==
m, n=m// P, n//P

if n $ P ==
hash_value = sys.hash_info.inf

else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:

hash_value = —-hash_value
if hash_value == -1:

hash_value = -2

return hash_value

hash_float (x) :
"""Compute the hash of a float x."""

if math.isnan (x):

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

hash_complex (z) :
"""Compute the hash of a complex number z."""

hash_value = hash_float (z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2**sys.hash_info.width

M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)

if hash_value == -1:

(continues on next page)

4.4.

Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.7.15

(continued from previous page)

hash_value = -2
return hash_value

4.5 lterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

container.__iter__ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure
which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of
the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APIL.

iterator.__next__ ()
Return the next item from the container. If there are no further items, raise the St opTterat ion exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
APL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s ___next___ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically,
a generator object) supplying the __iter__ () and _ _next__ () methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for processing
of binary data and text strings are described in dedicated sections.

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and
* (repetition) operations have the same priority as the corresponding numeric operations.”

Operation Result Notes
X in s True if an item of s is equal to x, else False @))]

X not in s False if an item of s is equal to x, else True €))]

s + t the concatenation of s and ¢ 6)(7)
s * norn * s equivalent to adding s to itself n times 2)(7)
s[i] ith item of s, origin 0 3)
s[i:7] slice of s from i to j 3)4)
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (x[, i[, | index of the first occurrence of x in s (at or after index i and before index | (8)
J11) 5

s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> llgg" in Heggsll
True

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that
items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python
programmers; consider:

>>> lists = [[]] * 3
>>> lists

(el, 1, f[11

>>> lists[0].append(3)
>>> lists

(e31, 31, [311]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
* 3 are references to this single empty list. Modifying any of the elements of 11 st s modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for 1 in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)

(continues on next page)

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — list, tuple, range 35

The Python Library Reference, Release 3.7.15

3)

“4)

&)

(6)

(7

®)

(continued from previous page)

>>> lists[2].append(7)
>>> lists

(31, 151, [711]

Further explanation is available in the FAQ entry fag-multidimensional-list.

If i or j is negative, the index is relative to the end of sequence s: 1en (s) + iorlen(s) + jissubstituted.
But note that -0 is still 0.

The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j.Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If
i is greater than or equal to j, the slice is empty.

The slice of s from i to j with step k is defined as the sequence of items withindex x = i + n*k suchthat 0
<= n < (j-1)/k. In other words, the indices are i, 1+k, i+2*k, i+3*k and so on, stopping when j is
reached (but never including j). When £ is positive, i and j are reduced to 1en (s) if they are greater. When
k is negative, i and j are reduced to len (s) — 1 if they are greater. If i or j are omitted or None, they
become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated
like 1.

Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

* if concatenating st r objects, you can build a list and use str. join () at the end or else write to an
io.StringIO instance and retrieve its value when complete

« if concatenating byt es objects, you can similarly use bytes. join () or io.BytesIO,or you can
do in-place concatenation with a bytearray object. bytearray objects are mutable and have an
efficient overallocation mechanism

* if concatenating t uple objects, extend a 1 i st instead
« for other types, investigate the relevant class documentation

Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra
arguments is roughly equivalent to using s [1:j] .index (x), only without copying any data and with the
returned index being relative to the start of the sequence rather than the start of the slice.

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

This support allows immutable sequences, such as t up e instances, to be used as dict keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

36

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types.

The collections.abc.

MutableSequence ABCis provided to make it easier to correctly implement these operations on custom sequence

types.

In the table s is an instance of a mutable sequence type, ¢ is any iterable object and x is an arbitrary object that meets
any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value

restriction 0 <= x <= 255).
Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] = t slice of s from i to j is replaced by the contents of the iterable ¢
del s[i:7j] sameas s[i:3] = []
s[i:j:k] =t the elements of s [1:j:k] are replaced by those of ¢ (D
del s[i:j:k] removes the elements of s [1:3j:k] from the list
s.append (x) appends x to the end of the sequence (same as s [len (s) :len(s)] =

[x])

s.clear () removes all items from s (same as del s[:]) 5)
s.copy () creates a shallow copy of s (same as s[:]) (@)
s.extend(t) or extends s with the contents of ¢ (for the most part the same as
+= t s[len(s):len(s)] = t)
s *=n updates s with its contents repeated n times (6)
s.insert (i, x) inserts x into s at the index given by i (same as s [1:1] = [x])
s.pop([i]) retrieves the item at i and also removes it from s 2)
s.remove (x) remove the first item from s where s [1] is equal to x 3)
s.reverse () reverses the items of s in place @)

Notes:

(1) ¢ must have the same length as the slice it is replacing.

(2) The optional argument i defaults to —1, so that by default the last item is removed and returned.

(3) remove raises ValueError when x is not found in s.

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large se-
quence. To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear () and copy () are included for consistency with the interfaces of mutable containers that don’t sup-
port slicing operations (such as dict and set)

New in version 3.3: clear () and copy () methods.

(6) The value n is an integer, or an object implementing __index__ (). Zero and negative values of # clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n
under Common Sequence Operations.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).

class list([itemble])

Lists may be constructed in several ways:

» Using a pair of square brackets to denote the empty list: []

 Using square brackets, separating items with commas: [a], [a, b, c]

» Using a list comprehension: [x for x in iterable]

» Using the type constructor: 1ist () or list (iterable)

4.6. Sequence Types — list, tuple, range

37

The Python Library Reference, Release 3.7.15

The constructor builds a list whose items are the same and in the same order as iferable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iferable is already a list, a copy is
made and returned, similar to iterable[:]. Forexample, 1ist ('abc') returns ['a', 'b', 'c']
and 1ist ((1, 2, 3)) returns [1, 2, 3].If noargument is given, the constructor creates a new
empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (* key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items. Exceptions are not sup-
pressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be
left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once
and then used for the entire sorting process. The default value of None means that list items are sorted
directly without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the
duration, and raises ValueError if it can detect that the list has been mutated during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple ([iterable])

Tuples may be constructed in a number of ways:
» Using a pair of parentheses to denote the empty tuple: ()
» Using a trailing comma for a singleton tuple: a, or (a,)
e Separating items with commas: a, b, cor (a, b, c)
e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iferable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is
returned unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') and tuple([1, 2,
3]) returns (1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, f (a, b,

38

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

c) is a function call with three arguments, while £ ((a, b, c¢)) isa function call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.

class range (siop)

class range (start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that implements
the __index__ special method). If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1] = start + step*i
where i >= Oandr[i] < stop.

For a negative step, the contents of the range are still determined by the formular [i] = start + step*i,
but the constraintsare i >= Oandr[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len ())may raise OverflowError.

Range examples:

>>> list (range (10))

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

(o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will
usually violate that pattern).

start
The value of the start parameter (or 0 if the parameter was not supplied)

stop
The value of the stop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over aregular 1ist or tuple isthata range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and
step values, calculating individual items and subranges as needed).

4.6. Sequence Types — list, tuple, range 39

The Python Library Reference, Release 3.7.15

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal
might have different start, stop and step attributes, for example range (0) == range(2, 1, 3) or
range (0, 3, 2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘!="to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.
See also:

 The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

 Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes".
e Triple quoted: ' ' ' Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
strings, s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct
strings from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted
on string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

40 Chapter 4. Built-in Types

http://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.7.15

class str (object=")

class str (object=b", encoding="utf-8', errors='strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior
of str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns object.__str__ (), which is the “infor-
mal” or nicely printable string representation of object. For string objects, this is the string itself. If object does
not have a __str__ () method, then st () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytesor bytearray).
In this case, if object is a bytes (or bytearray) object, then str (bytes, encoding, errors)
is equivalent to bytes.decode (encoding, errors). Otherwise, the bytes object underlying the
buffer object is obtained before calling bytes. decode (). See Binary Sequence Types — bytes, bytearray,
memoryview and bufferobjects for information on buffer objects.

Passing a bytes object to str () without the encoding or errors arguments falls under the first case of
returning the informal string representation (see also the —b command-line option to Python). For example:

>>> str(b'Zoot!")
"b'ZOOt! ™rn

For more information on the st r class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition,
see the Text Processing Services section.

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see
str.format (), Format String Syntax and Custom String Formatting) and the other based on C printf style
formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the
cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.casefold()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions
in a string. For example, the German lowercase letter ' 3 ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to 'B"'; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

str.center (width[, ﬁllchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to 1en (s).

str.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional argu-
ments start and end are interpreted as in slice notation.

str.encode (encoding="utf-8", errors="strict")
Return an encoded version of the string as a bytes object. Default encoding is 'ut£-8"'. errors may be
given to set a different error handling scheme. The default for errors is ' strict ', meaning that encoding

4.7. Text Sequence Type — str 41

The Python Library Reference, Release 3.7.15

errors raise a UnicodeError. Other possible values are 'ignore', 'replace', 'xmlcharrefre-
place', 'backslashreplace' and any other name registered via codecs. register_error (),
see section Error Handlers. For a list of possible encodings, see section Standard Encodings.

Changed in version 3.1: Support for keyword arguments added.

str.endswith (suﬁix[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs (fabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. Tab positions occur every fabsize characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string
is examined character by character. If the character is a tab (\t), one or more space characters are inserted in
the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the character is a newline (\n) or return (\ r), it is copied and the current column is reset to zero. Any other
character is copied unchanged and the current column is incremented by one regardless of how the character
is represented when printed.

>>> '01\t012\t0123\t01234"' .expandtabs ()

'01 012 0123 01234
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

str.£find (sub[, start[, end]])

Return the lowest index in the string where substring sub is found within the slice s [start : end]. Optional
arguments start and end are interpreted as in slice notation. Return —1 if sub is not found.

Note: The £ind () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is ". format (1+2)
'The sum of 1 + 2 is 3!

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

Note: When formatting a number (int, float, complex, decimal.Decimal and subclasses) with
the n type (ex: '{:n}'.format (1234)), the function temporarily sets the LC_CTYPE locale to the
LC_NUMERIC locale to decode decimal_point and thousands_sep fields of localeconv () if
they are non-ASCII or longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE
locale. This temporary change affects other threads.

Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale in some cases.

str.format_map (mapping)

Similar to str.format (**mapping), except that mapping is used directly and not copied to a dict.

42

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

str.

str.

str.

str.

str.

str.

str

str.

str.

str.

This is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> ! was born in '.format_map (Default (name='Guido"))
'Guido was born in country'

New in version 3.2.

index (sub[, smrt[, end]])
Like find (), butraise ValueError when the substring is not found.

isalnum/()

Return True if all characters in the string are alphanumeric and there is at least one character, False
otherwise. A character c is alphanumeric if one of the following returns True: c.isalpha(), c.
isdecimal (), c.isdigit (),or c.isnumeric().

isalpha ()

Return True if all characters in the string are alphabetic and there is at least one character, False otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different from
the “Alphabetic” property defined in the Unicode Standard.

isascii()

Return True if the string is empty or all characters in the string are ASCII, False otherwise. ASCII char-
acters have code points in the range U+0000-U+007F.

New in version 3.7.

isdecimal ()

Return True if all characters in the string are decimal characters and there is at least one character, False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.
isdigit ()

Return True if all characters in the string are digits and there is at least one character, False otherwise.
Digits include decimal characters and digits that need special handling, such as the compatibility superscript
digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

.isidentifier ()

Return True if the string is a valid identifier according to the language definition, section identifiers.
Use keyword. iskeyword () to test for reserved identifiers such as def and class.

islower ()
Return True if all cased characters® in the string are lowercase and there is at least one cased character,
False otherwise.

isnumeric ()

Return True if all characters in the string are numeric characters, and there is at least one character, False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()

Return True if all characters in the string are printable or the string is empty, False otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repzr () is invoked on a string. It has no bearing on the handling of strings
written to sys. stdout or sys.stderr.)

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter,
titlecase).

4.7. Text Sequence Type — str 43

The Python Library Reference, Release 3.7.15

str.

str.

str.

str.

str.

str.

str.

isspace ()
Return True if there are only whitespace characters in the string and there is at least one character, False
otherwise.

A character is whitespace if in the Unicode character database (see unicodedat a), either its general category
is Zs (“Separator, space”), or its bidirectional class is one of WS, B, or S.

istitle ()

Return True if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return False
otherwise.

isupper ()
Return True if all cased characters® in the string are uppercase and there is at least one cased character,
False otherwise.

join (iterable)

Return a string which is the concatenation of the strings in iferable. A TypeError will be raised if there
are any non-string values in iterable, including byt es objects. The separator between elements is the string
providing this method.

1just (width|, fillchar)
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1len (s) .

lower ()
Return a copy of the string with all the cased characters* converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

1strip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious ".lstrip()
'spacious !
>>> 'www.example.com'.lstrip('cmowz.")

'example.com'

static str.maketrans (x[, y[, z]])

str.

str.

str

str.

This static method returns a translation table usable for st r. translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted
to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

replace (old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

.rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s [start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

rindex (sub[, start[, end]])
Like r£ind () but raises ValueError when the substring sub is not found.

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

str.rjust (width[, ﬁllchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to len (s).

str.rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

str.rsplit (sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below.

str.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.rstrip()

! spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ’

str.split (sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1,
then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, '1,,2"'.split (', ") returns ['1', '', '2']). The sep argument may consist of multiple
characters (for example, '1<>2<>3"'.split ('<>"') returns ['1"', '2', '3']). Splitting an empty
string with a specified separator returns [' '].

For example:

>>> '1,2,3".split (', ")

['1', '2|, '3'1

>>> '1,2,3".split (', "', maxsplit=1)
['1|’ '2,3'}

>>> '1,2,,3,".split (', ")

['1', '2', 'Y’ |3|, IV]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [] .

For example:

>>> '1 2 3'.split ()
['1', '2" V3'j|
>>> '1 2 3'.split (maxsplit=1)

[lll’ 12 3!}
>>> ! 1 2 3 '.split ()
[lll, '2!, '3':|

str.splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal
newlines.

4.7. Text Sequence Type — str 45

The Python Library Reference, Release 3.7.15

Representation | Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\vor \x0b Line Tabulation

\for\x0c Form Feed

\x1lc File Separator

\x1ld Group Separator

\xle Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

Changed in version 3.2: \v and \ £ added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab ¢', "', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '"\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> "" _gplitlines/()

[]

>>> "One line\n".splitlines|()
['One line']

For comparison, split ('\n"') gives:

>>> "' .split('\n")

['']

>>> 'Two lines\n'.split('\n")
["Two lines', '']

str.startswith (preﬁx[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string
at that position.

str.strip([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’

>>> 'www.example.com'.strip('cmowz.")
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

>>> comment_string = "#....... Section 3.2.1 Issue #32 !
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32°'

46

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

str.swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not
necessarily true that s . swapcase () . swapcase () == s.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

For example:

>>> 'Hello world'.title()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r" [A-Za-z]+ (' [A-Za—-z]+
lambda mo: mo.group (0)
mo.group (0)

n

)
[
[

2y
0] .upper () +
1:1.1lower (),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (table)
Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via ___getitem__ (), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode
ordinal or a string, to map the character to one or more other characters; return None, to delete the character
from the return string; or raise a LookupError exception, to map the character to itself.

You can use str.maketrans () to create a translation map from character-to-character mappings in dif-
ferent formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()
Return a copy of the string with all the cased characters* converted to uppercase. Note that s . upper () .
isupper () might be False if s contains uncased characters or if the Unicode category of the resulting
character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.z£ill (width)
Return a copy of the string left filled with ASCII ' 0 ' digits to make a string of length width. A leading sign
prefix (' +'/'—") is handled by inserting the padding after the sign character rather than before. The original
string is returned if width is less than or equal to len (s) .

For example:

>>> "42" zfi1ll(5)
'00042"
>>> "—-42" z£i11(5)
'-0042"

4.7. Text Sequence Type — str 47

The Python Library Reference, Release 3.7.15

4.7.2 printf-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st r.
format () interface, or template strings may help avoid these errors. Each of these alternatives provides their own
trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting

[o)

or interpolation operator. Given format % values (where format is a string), $ conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to using the sprintf () in the C
language.

If format requires a single argument, values may be a single non-tuple object.” Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified asan ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as '*' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the '%' character. The mapping key
selects the value to be formatted from the mapping. For example:

)

>>> print (' has quote types.' %
. {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
'4#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

'+' | Asigncharacter ('+"' or '—-") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python —so e.g. $1d is identical
to 5d.

The conversion types are:

3 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

Con- Meaning Notes

version

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. (€))]

'u! Obsolete type — it is identical to 'd'. (6)

'x! Signed hexadecimal (lowercase). 2)

'X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'c! Single character (accepts integer or single character string).

'r' String (converts any Python object using repr ()). (@)

's! String (converts any Python object using stz ()). 5)

'a' String (converts any Python object using ascii ()). ®)

'y No argument is converted, results ina ' %' character in the result.

Notes:
(1) The alternate form causes a leading octal specifier (' 0o ') to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X"' (depending on whether the 'x ' or 'X"' format was used)

3)

to be inserted before the first digit.
The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as

&)
(6)

Since Python strings have an explicit length, $s conversions do not assume that '\ 0" is the end of the string.

they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

If precision is N, the output is truncated to N characters.

See PEP 237.

Changed in version 3.1: % £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g
conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by mem—
oryview which uses the buffer protocol to access the memory of other binary objects without needing to make a

copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.8. Binary Sequence Types — bytes, bytearray, memoryview

49

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.7.15

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and
are closely related to string objects in a variety of other ways.

class bytes([source[, encoding[, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:

» Single quotes: b'still allows embedded "double" quotes'
* Double quotes: b"still allows embedded 'single' quotes".
e Triple quoted: b' ' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See
strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger ValueError). This is done deliberately to emphasise that while many binary
formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms,
this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary
data formats that are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
* A zero-filled bytes object of a specified length: bytes (10)
* From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (ob7j)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data in
that format:

classmethod fromhex (string)
This byt e s class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1£f2 ")
b' A\xfO\xf1\xf2"

Changed in version 3.7: bytes. fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex ()
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\xf0\xf1\xf2' . .hex ()
'fOf1£2"

New in version 3.5.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b'..."') since it is often more useful than e.g.
bytes ([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

50 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

Note: For Python 2.x users: In the Python 2.x series, a variety of implicit conversions between 8-bit strings (the
closest thing 2.x offers to a built-in binary data type) and Unicode strings were permitted. This was a backwards
compatibility workaround to account for the fact that Python originally only supported 8-bit text, and Unicode text
was a later addition. In Python 3.x, those implicit conversions are gone - conversions between 8-bit binary data and
Unicode text must be explicit, and bytes and string objects will always compare unequal.

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to byt es objects.

class bytearray ([source[, encoding[, errors]]])
There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the con-
structor:

» Creating an empty instance: bytearray ()

 Creating a zero-filled instance with a given length: bytearray (10)

¢ From an iterable of integers: bytearray (range (20))

» Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common
bytes and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytearray type has an additional class method to read data
in that format:

classmethod fromhex (string)
This bytearray class method returns bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex ('2Ef0 F1f2 ")
bytearray (b' . \xf0\xf1\xf2")

Changed in version 3.7: bytearray. fromhex () now skips all ASCII whitespace in the string, not
just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

hex ()
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\x£f1\x£f2') .hex ()
'fOfl1f2"

New in version 3.5.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer,
while b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and
slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (bytearray (b'... ")) since it is often more
useful than e.g. bytearray ([46, 46, 46]). Youcan always convert a bytearray object into a list of integers
using 1ist (b).

4.8. Binary Sequence Types — bytes, bytearray, memoryview 51

The Python Library Reference, Release 3.7.15

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands
of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without
causing errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write:

a = "abc"
b = a.replace("a", "f")

a = b"abc"
b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be
avoided when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format
may lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count (sub[, start[, end]])

bytearray.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.decode (encoding="utf-8", errors="strict")

bytearray.decode (encoding="utf-8", errors="strict")
Return a string decoded from the given bytes. Default encoding is 'ut £-8"'. errors may be given to set a
different error handling scheme. The default for errors is 'strict ', meaning that encoding errors raise a
UnicodeError. Other possible values are ' ignore', 'replace' and any other name registered via
codecs.register_error (), see section Error Handlers. For a list of possible encodings, see section

Standard Encodings.

Note: Passing the encoding argument to st r allows decoding any bytes-like object directly, without needing
to make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

bytes.endswith (suﬁx[, start[, end]])

bytearray.endswith (su]ﬁx[, start[, end]])
Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be
a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The suffix(es) to search for may be any bytes-like object.

bytes.find (sub[, start[, end]])
bytearray.find (sub[, start[, end]])
Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice

52 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is
not found.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:

>>> pb'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.index (sub[, start[, end]])
bytearray.index (sub[, start[, end]])
Like find (), but raise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes. join (iterable)

bytearray.join (iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A
TypeError will be raised if there are any values in iterable that are not bytes-like objects, including st r
objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans (from, to)

static bytearray.maketrans (from, t0)
This static method returns a translation table usable for bytes. translate () that will map each character
in from into the character at the same position in fo; from and to must both be byfes-like objects and have the
same length.

New in version 3.1.

bytes.partition (sep)

bytearray.partition (sep)
Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace (0ld, new[, count])

bytearray.replace (old, new[, count])
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rfind (sub[, start[, end]])

bytearray.rfind (sub[, start[, end]])
Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s [start:end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.rindex (sub[, start[, end]])

4.8. Binary Sequence Types — bytes, bytearray, memoryview 53

The Python Library Reference, Release 3.7.15

bytearray.rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.rpartition (sep)

bytearray.rpartition (sep)
Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence.

The separator to search for may be any bytes-like object.

bytes.startswith (preﬁx[, start[, endE])
bytearray.startswith (preﬁx[, start|, end]])
Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be
a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate (table, delete=b")

bytearray.translate (fable, delete=b")
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the fable argument to None for translations that only delete characters:

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII com-
patible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that
all of the bytearray methods in this section do not operate in place, and instead produce new objects.

bytes.center (width [, fillbyte])

bytearray.center (width[, ﬁllbyte])
Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For byt es objects, the original sequence is returned if width is less than or equal
tolen(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.ljust (width[, ﬁllbyte])

bytearray.ljust (width[, ﬁllbyte])
Return a copy of the object left justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less than
or equal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.lstrip([chars])

54 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

bytearray.lstrip [chars])
Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> b' spacious ".lstrip()
b'spacious !

>>> b'www.example.com'.lstrip(b'cmowz.")
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rjust (width[, ﬁllbyte])

bytearray.rjust (width[, ﬁllbyte])
Return a copy of the object right justified in a sequence of length widrh. Padding is done using the specified
fillbyte (default is an ASCII space). For byt es objects, the original sequence is returned if width is less than
orequal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rsplit (sep=None, maxsplit=-1)

bytearray.rsplit (sep=None, maxsplit=-1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given, at most maxsplit splits are done, the righfinost ones. If sep is not specified or None, any subsequence
consisting solely of ASCII whitespace is a separator. Except for splitting from the right, rsplit () behaves
like split () which is described in detail below.

bytes.rstrip([chars])

bytearray.rstrip([chars])
Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.rstrip()

b' spacious'

>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.split (sep=None, maxsplit=-1)

bytearray.split (sep=None, maxsplit=-1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit
is given and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1
elements). If maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible splits
are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences

4.8. Binary Sequence Types — bytes, bytearray, memoryview 55

The Python Library Reference, Release 3.7.15

(for example,b'1, ,2"' .split (b', ") returns [b'1', b'', b'2"']). The sep argument may consist
of a multibyte sequence (for example, b'1<>2<>3"'.split (b'<>") returns [b'1', b'2', b'3']).
Splitting an empty sequence with a specified separator returns [b' '] or [bytearray (b'"')] depending
on the type of object being split. The sep argument may be any byzes-like object.

For example:

>>> b'1,2,3".split(b', ")

[b'1', b'2', b'3"]

>>> p'1,2,3".split(b', ', maxsplit=1)
[b'1', b'2,3"]

>>> b'1,2,,3,".split(b', ")

[b'1', b'2', b'', b'3"', b'"]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whites-
pace are regarded as a single separator, and the result will contain no empty strings at the start or end if the
sequence has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consist-
ing solely of ASCII whitespace without a specified separator returns [].

For example:

>>> p'l 2 3'.split ()

[b'1', b'2', b'3"]

>>> p'l 2 3'.split (maxsplit=1)
[b'1', b'2 3']

>>> b' 1 2 3 '.split ()
[b'1', b'2', b'3"]

bytes.strip([chars])

bytearray.strip ([chars])
Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually
used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace.
The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.strip()
b'spacious'

>>> b'www.example.com'.strip(b'cmowz.")
b'example'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place,
and instead produce new objects.

bytes.capitalize ()

bytearray.capitalize ()
Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized
and the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.expandtabs (fabsize=8)
bytearray.expandtabs (fabsize=8)
Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces,

56 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

depending on the current column and the given tab size. Tab positions occur every fabsize bytes (default is 8,
giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to zero
and the sequence is examined byte by byte. If the byte is an ASCII tab character (b '\t '), one or more space
characters are inserted in the result until the current column is equal to the next tab position. (The tab character
itself is not copied.) If the current byte is an ASCII newline (b ' \n ") or carriage return (b ' \r '), it is copied
and the current column is reset to zero. Any other byte value is copied unchanged and the current column is
incremented by one regardless of how the byte value is represented when printed:

>>> b'01\t012\t0123\t01234" .expandtabs ()

b'01l 012 0123 01234"
>>> b'01\t012\t0123\t01234"' .expandtabs (4)
b'0l1 012 0123 01234"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.isalnum ()

bytearray.isalnum/()
Return True if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and the
sequence is not empty, False otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal
digits are those byte values in the sequence b' 0123456789".

For example:

>>> b'ABCabcl'.isalnum()
True
>>> Pb'ABC abcl'.isalnum/()
False

bytes.isalpha ()

bytearray.isalpha ()
Return True if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"'.

For example:

>>> b'ABCabc'.isalpha()
True
>>> p'ABCabcl'.isalpha ()
False

bytes.isascii ()

bytearray.isascii ()
Return True if the sequence is empty or all bytes in the sequence are ASCII, False otherwise. ASCII bytes
are in the range 0-0x7F.

New in version 3.7.

bytes.isdigit ()

bytearray.isdigit ()
Return True if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, False
otherwise. ASCII decimal digits are those byte values in the sequence b' 0123456789

For example:

>>> pb'1234"' .isdigit ()
True
>>> p'1.23".isdigit ()
False

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.7.15

bytes.islower ()
bytearray.islower ()

Return True if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII
characters, False otherwise.

For example:

>>> b'hello world'.islower ()

True

>>> b'Hello world'.islower ()

False

Lowercase ASCII characters are those byte values in the sequence

b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

bytes.isspace ()
bytearray.isspace ()

Return True if all bytes in the sequence are ASCII whitespace and the sequence is not empty, False other-
wise. ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f"' (space, tab,
newline, carriage return, vertical tab, form feed).

bytes.istitle()
bytearray.istitle()

Return True if the sequence is ASCII titlecase and the sequence is not empty, False otherwise. See bytes.
title () for more details on the definition of “titlecase”.

For example:

>>> p'Hello World'.istitle()
True

>>> pb'Hello world'.istitle()
False

bytes.isupper ()
bytearray.isupper ()

Return True if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase
ASCII characters, False otherwise.

For example:

>>> b'HELLO WORLD'.isupper ()

True

>>> p'Hello world'.isupper ()

False

Lowercase ASCII characters are those byte values in the sequence

b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

bytes.lower ()
bytearray.lower ()

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding low-
ercase counterpart.

For example:

>>> b'Hello World'.lower ()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

58

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.splitlines (keepends=False)

bytearray.splitlines (keepends=False)
Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the
universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends
is given and true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines()

[b'ab ¢', b''", b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> b"" . split(b'\n'), b"Two lines\n".split(b'\n")
([""], [b'Two lines', b''])

>>> b"" . splitlines(), b"One line\n".splitlines ()
([]1, [b'One line'])

bytes.swapcase ()

bytearray.swapcase ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart and vice-versa.

For example:

>>> b'Hello World'.swapcase ()
b'hELLO wORLD'

Lowercase ASCIL characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

Unlike st r. swapcase (), itis always the case thatbin . swapcase () . swapcase () == bin for the
binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary
Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.title()

bytearray.title()
Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and
the remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. All other byte values are uncased.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

The Python Library Reference, Release 3.7.15

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> p"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(rb" [A-Za-z]+ (' [A-Za-z]+)?2",
lambda mo: mo.group(0) [0:1] .upper () +
mo.group (0) [1:].lower (),
s)

>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.upper ()
bytearray.upper ()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart.

For example:

>>> pb'Hello World'.upper ()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.z£fill (width)
bytearray.z£ill (width)

Return a copy of the sequence left filled with ASCII b ' 0 ' digits to make a sequence of length width. A leading
sign prefix (b'+"'/b'~")is handled by inserting the padding after the sign character rather than before. For
bytes objects, the original sequence is returned if width is less than or equal to len (seq) .

For example:

>>> p"42" . z£f1i11 (5)
b'ooo4z2"
>>> p"-42" . zf111 (5)
b'-0042"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

60

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

4.8.4 printf-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary,
wrap it in a tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also
known as the bytes formatting or interpolation operator. Given format % values (where format is a bytes
object), % conversion specifications in format are replaced with zero or more elements of values. The effect is similar
to using the sprint £ () in the C language.

If format requires a single argument, values may be a single non-tuple object.> Otherwise, values must be a tuple
with exactly the number of items specified by the format bytes object, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified asan ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as '*' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include
a parenthesised mapping key into that dictionary inserted immediately after the ' ' character. The mapping key
selects the value to be formatted from the mapping. For example:

o

>>> print (b’ has quote types.' %
. {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
'4#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

' ' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

'+' | Asigncharacter ('+"' or '—-") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python —so e.g. $1d is identical
to 5d.

The conversion types are:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.7.15

D

Con- Meaning Notes

version

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. (€))]

'u! Obsolete type — it is identical to 'd'. ®)

'x! Signed hexadecimal (lowercase). 2)

'X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'c! Single byte (accepts integer or single byte objects).

'b! Bytes (any object that follows the buffer protocol or has __bytes__ ()). 5)

's! 's' isanalias for 'b' and should only be used for Python2/3 code bases. ©6)

'a' Bytes (converts any Python object using repr (obj).encode('ascii', | (5)
'backslashreplace)).

‘¢! 'r' is an alias for 'a' and should only be used for Python2/3 code bases. @)

'y No argument is converted, results in a ' $ ' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 00 ") to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X' (depending on whether the 'x ' or ' X' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

6) b'%s

' is deprecated, but will not be removed during the 3.x series.

(7) b'%x" is deprecated, but will not be removed during the 3.x series.

(8) See PEP 237.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if no
changes were made.

See also:

PEP 461 - Adding % formatting to bytes and bytearray

New in version 3.5.

62

Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0237
https://www.python.org/dev/peps/pep-0461

The Python Library Reference, Release 3.7.15

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying.

class memoryview (obj)
Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that support
the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as bytes and bytearray, an element is a single byte, but other
types such as array . array may have bigger elements.

len (view) is equal to the length of tolist. If view.ndim = 0, thelengthis 1. If view.ndim =
1, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to
the length of the nested list representation of the view. The itemsi ze attribute will give you the number of
bytes in a single element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a
subview:

>>> v = memoryview (b'abcefg')
>>> v[1]

98

>>> v[-1]

103

>>> v[1:4]

<memory at 0x7£3ddc9f4350>
>>> bytes(v[1:4])

b'bce’

If format is one of the native format specifiers from the st ruct module, indexing with an integer or a tuple
of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews
can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with
tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can
be indexed with the empty tuple.

Here is an example with a non-byte format:

>>> import array

>>> a = array.array('l', [-11111111, 22222222, —-33333333, 444444447)
>>> m = memoryview(a)

>>> m[0]

-11111111

>>> m[—-1]

44444444

>>> m[::2].tolist ()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is
not allowed:

>>> data = bytearray(b'abcefg')
>>> v = memoryview (data)
>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

>>> v[1:4] b'123"

>>> data

bytearray (b'z123fg"')

>>> v[2:3] = b'spamn'

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.7.15

(continued from previous page)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview assignment:

>>> v[2:6] = b'spam'

>>> data

bytearray (b'zlspam')

lvalue and rvalue have different structures

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The

hash is defined as hash (m) == hash (m.tobytes ()):
>>> v = memoryview (b'abcefg')

>>> hash(v) == hash(b'abcefg'")

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews

with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc.

Sequence

Changed in version 3.5: memoryviews can now be indexed with tuple of integers.

memoryview has several methods:

__eq __ (exporter)

A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of st ruct format strings currently supported by tolist (), v and w are equal if v.

tolist () == w.tolist():

>>> import array

>>> a = array.array('1', [1, 2, 3, 4, 5])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> ¢ = array.array('b', [5, 3, 11)

>>> x = memoryview (a)

>>> y = memoryview (b)

>>> x == a == y ==

True

>>> x.tolist () == a.tolist() == y.tolist () == b.tolist ()
True

>>> z = y[::-2]

>>> z ==

True

>>> z.tolist () == c.tolist ()

True

If either format string is not supported by the st ruct module, then the objects will always compare as

unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :

fields = [("x", c_long), ("yv", c_long)]
>>> point = BEPoint (100, 200)
>>> a = memoryview (point)
>>> b = memoryview (point)
>>> a == point

(continues on next page)

64

Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.7.15

(continued from previous page)

False
>>> g ==
False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and
the logical array structure.

tobytes ()
Return the data in the buffer as a bytestring. This is equivalent to calling the byt es constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted
tobytes. tobytes () supports all format strings, including those that are not in st ruct module syntax.

hex ()
Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview (b"abc")
>>> m.hex ()
'616263"'

New in version 3.5.

tolist ()
Return the data in the buffer as a list of elements.

>>> memoryview (b'abc') .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.3])

>>> m = memoryview(a)
>>> m.tolist ()
(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
aview is held on them (for example, a byt earray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview (b'abc')
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.7.15

>>> with memoryview(b'abc') as m:
m[0]

97

>>> m([0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast (format[, shape])

Cast a memoryview to a new format or shape. shape defaultsto [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview, but
the buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in st ruct syntax. One of the
formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the
original length.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array('1l', [1,2,31])
>>> x = memoryview(a)

>>> x.format

BN

>>> x.itemsize

8

>>> len (x)

>>> x.nbytes

24

>>> y = x.cast('B")
>>> y.format

B

>>> y.itemsize

>>> len(y)
24

>>> y.nbytes
24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz")
>>> x = memoryview (b)
>>> x[0] = b'a'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format "B"

>>> y = x.cast('c")
>>> y[0] = b'a'
>>> b

bytearray(b'ayz')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

>>> buf = struct.pack("i"*12, *list (range(12)))
>>> x = memoryview (buf)

>>> y = x.cast('i', shape=[2,2,3])

(continues on next page)

66

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> y.tolist ()

ceeo, 1, 21, (3, 4, 511, [le, 7, 81, [9, 10, 11111
>>> y.format

'il

>>> y.itemsize

>>> len(y)

>>> y.nbytes
48

>>> z = y.cast('b")
>>> z.format
lbl

>>> z.itemsize
1

>>> len(z)

48

>>> z.nbytes
48

N

Cast 1D/unsigned long to 2D/unsigned long:

>>> pbuf = struct.pack("L"*6, *list (range(6)))
>>> x = memoryview (buf)

>>> y = x.cast('L', shape=[2,3])

>>> len(y)

2

>>> y.nbytes

48

>>> y.tolist ()

[ro, 1, 21, I[3, 4, 511

New in version 3.3.
Changed in version 3.5: The source format is no longer restricted when casting to a byte view.
There are also several readonly attributes available:

obj
The underlying object of the memoryview:

>>> b = bytearray(b'xyz")
>>> m = memoryview (b)

>>> m.obj is b

True

New in version 3.3.

nbytes
nbytes == product (shape) * itemsize == len (m.tobytes ()). This isthe amount
of space in bytes that the array would use in a contiguous representation. It is not necessarily equal to
len (m):

>>> import array

>>> a = array.array('i', [1,2,3,4,51)
>>> m = memoryview(a)

>>> len (m)

5

>>> m.nbytes

20

>>> y = m[::2]

>>> len(y)

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 67

The Python Library Reference, Release 3.7.15

(continued from previous page)

3

>>> y.nbytes

12

>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack("d"*12, *[1.5*x for x in range(12)])

>>> x = memoryview (buf)

>>> y = x.cast('d', shape=[3,4])

>>> y.tolist ()

([ro.o0, 1.5, 3.0, 4.5, [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)

3

>>> y.nbytes

96

New in version 3.3.

readonly
A bool indicating whether the memory is read only.

format
A string containing the format (in st ruct module style) for each element in the view. A memoryview
can be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are
restricted to native single element formats.

Changed in version 3.3: format 'B"' is now handled according to the struct module syntax. This means
that memoryview (b'abc') [0] == b'abc'[0] == 97.

itemsize
The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview(array.array('H', [32000, 32001, 320021))
>>> m.itemsize

2

>>> m[0]

32000

>>> struct.calcsize('H') == m.itemsize

True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.

New in version 3.3.

68

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

f_contiguous
A bool indicating whether the memory is Fortran contiguous.

New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.

New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built-in dict, 1ist, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len (set),and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {'jack', 'sjoerd'}, inaddition to the set constructor.

The constructors for both classes work the same:

class set ([iterable])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iferable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the number of elements in set s (cardinality of s).

X in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

4.9. Set Types — set, frozenset 69

The Python Library Reference, Release 3.7.15

set > other
Test whether the set is a proper superset of other, that is, set >= other and set != other.

union (*others)
set | other |
Return a new set with elements from the set and all others.

intersection (*others)
set & other &
Return a new set with elements common to the set and all others.

difference (*others)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set ~ other
Return a new set with elements in either the set or other but not both.

copy ()
Return a shallow copy of the set.

Note, the non-operator versions of union (), intersection (), difference (), and symmet—
ric_difference (), issubset (), and issuperset () methods will accept any iterable as an ar-
gument. In contrast, their operator based counterparts require their arguments to be sets. This precludes
error-prone constructions like set ('abc') & 'cbs' in favor of the more readable set ('abc') .
intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if
the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set
if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For exam-
ple, set ('abc') == frozenset ('abc') returns True and so does set ('abc') in
set ([frozenset ('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two
nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return False:
a<b, a==Db, or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ('ab') | set ('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (*others)
set |= other |
Update the set, adding elements from all others.

intersection_update (*others)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (*others)
set —= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

70

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update (), intersection_update(), differ-—
ence_update (), and symmetric_difference_update () methods will accept any iterable
as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set.
To support searching for an equivalent frozenset, a temporary one is created from elem.

4.10 Mapping Types —dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple classes,
and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictio-
naries or other mutable types (that are compared by value rather than by object identity) may not be used as keys.
Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such
as 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry. (Note however, that since
computers store floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{'jack': 4098, 'sjoerd': 4127}or {4098: 'jack', 4127: 'sjoerd'},orbythe dict
constructor.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise,
the positional argument must be an iferable object. Each item in the iterable must itself be an iterable with
exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object
the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding
value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument. If a key being added is already present, the value from the keyword argument
replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2,
"three": 3}:

>>> a = dict (one=1, two=2, three=3)

>>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 31))

>>> d = dict([('two', 2), ('one', 1), ('three', 3)1])

(continues on next page)

4.10. Mapping Types — dict 71

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> e = dict({'three': 3, 'one': 1, 'two': 2})
>>> g == b == ¢c == d == e
True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers.
Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

list (d)
Return a list of all the keys used in the dictionary d.

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method ___missing__ () and key is not present, the d [key] operation
calls that method with the key key as argument. The d [key] operation then returns or raises what-
ever is returned or raised by the __missing__ (key) call. No other operations or methods invoke
__missing__ (). If _ _missing__ () is not defined, KeyError israised. _ missing__ ()

must be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):
return 0

>>> ¢ = Counter ()
>>> c['red']

0

>>> c['red'] += 1
>>> c['red']

1

The example above shows part of the implementation of collections.Counter. A different
__missing__ methodisused by collections.defaultdict.

d[key] = value
Set d[key] to value.

del d[key]
Remove d [key] from d. Raises a KeyError if key is not in the map.
key in d
Return True if d has a key key, else False.
key not in d
Equivalent to not key in d.
iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (iterable[, value])
Create a new dictionary with keys from iferable and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

72

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

items ()
Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view
objects.

keys ()
Return a new view of the dictionary’s keys. See the documentation of view objects.

pop (key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

popitem ()
Remove and return a (key, wvalue) pair from the dictionary. Pairs are returned in LIFO (last-in,
first-out) order.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

Changed in version 3.7: LIFO order is now guaranteed. In prior versions, popitem () would return an
arbitrary key/value pair.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

An equality comparison between one dict .values () view and another will always return False.
This also applies when comparing dict .values () to itself:

>>> d = {'a': 1}
>>> d.values () == d.values|()
False

Dictionaries compare equal if and only if they have the same (key, value) pairs (regardless of ordering).
Order comparisons (‘<’, ‘<=’, >=’, >") raise TypeError.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after
deletion are inserted at the end.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (d)
['one', '"two', 'three', 'four']
>>> list (d.values())

(1, 2, 3, 41
>>> d["one"] = 42
>>> d

{'one': 42, 'two': 2, 'three': 3, 'four': 4}
>>> del d["two"]

>>> d["two"] = None
>>> d
{'one': 42, 'three': 3, 'four': 4, 'two': None}

Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implemen-
tation detail of CPython from 3.6.

4.10. Mapping Types — dict 73

The Python Library Reference, Release 3.7.15

See also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict . keys (), dict.values () and dict.items () are view objects. They provide
a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictionary.

Keys and values are iterated over in insertion order. This allows the creation of (value, key) pairs using
zip():pairs = zip(d.values (), d.keys()). Another way to create the same listis pairs =
[(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

Changed in version 3.7: Dictionary order is guaranteed to be insertion order.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since
the entries are generally not unique.) For set-like views, all of the operations defined for the abstract base class
collections.abc. Set are available (for example, ==, <, or *).

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys ()
>>> values = dishes.values|()

>>> # iteration

>> n = 0

>>> for val in values:
. n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order (insertion order)
>>> list (keys)

['eggs', 'sausage', 'bacon', 'spam']

>>> list (values)

[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes['eggs']

>>> del dishes|['sausage']

>>> list (keys)

['"bacon', 'spam']

>>> # set operations
>>> keys & {'eggs', 'bacon', 'salad'}
{'"bacon'}

(continues on next page)

74 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> keys ©~ {'sausage', 'Jjuice'}
{'juice', 'sausage', 'bacon', 'spam'}

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is imple-
mented using a pair of methods that allow user-defined classes to define a runtime context that is entered before the
statement body is executed and exited when the statement ends:

contextmanager.__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the
with statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be sup-
pressed. If an exception occurred while executing the body of the with statement, the arguments contain the
exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception. This
allows context management code to easily detect whether ornotan ___exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. See the context 1ibmodule for some examples.

Python’s generators and the context1ib. contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the context1ib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

4.11. Context Manager Types 75

The Python Library Reference, Release 3.7.15

4.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.12.1 Modules

The only special operation on a module is attribute access: m . name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist,
rather it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is ___dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the ___dict_
attribute is not possible (you can writem.__dict___['a'] = 1, which definesm. a to be 1, but you can’t write
m.__dict__ = {}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file,
they are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.12.2 Classes and Class Instances

See objects and class for these.

4.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a
bound method (also called instance method) object. When called, it will add the se 1 f argument to the argument list.
Bound methods have two special read-only attributes: m.__self___ is the object on which the method operates,
and m.__func___ is the function implementing the method. Calling m (arg-1, arg-2, ..., arg-n) is
completely equivalent to callingm.__func__ (m.__self_, arg-1l, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__func__), setting method attributes on bound methods
is disallowed. Attempting to set an attribute on a method results in an At t ributeError being raised. In order to
set a method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self):
pass
>>> c = C()
>>> c.method.whoami = 'my name is method' # can't set on the method

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

(continues on next page)

76 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

AttributeError: 'method' object has no attribute 'whoami'
>>> c.method._ func__ .whoami = 'my name is method'

>>> c.method.whoami

'my name is method'

See types for more information.

4.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compiIe () function and can be extracted from function
objects through their ___code___ attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

4.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There
are no special operations on types. The standard module ¢ ypes defines names for all standard built-in types.

Types are written like this: <class 'int'>.

4.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

4.12.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named £E11ipsis (abuilt-in name). type (E11lipsis) () produces the £111ipsis singleton.

Itis writtenas El1lipsisor....

4.12.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types they
don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

4.12. Other Built-in Types 77

The Python Library Reference, Release 3.7.15

4.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function hool () can be used
to convert any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written as False and True, respectively.

4.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

object.__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class__
The class to which a class instance belongs.

class.__bases___
The tuple of base classes of a class object.

definition.__name___
The name of the class, function, method, descriptor, or generator instance.

definition.__qualname_
The qualified name of the class, function, method, descriptor, or generator instance.

New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in ___mro___

class.__subclasses__ ()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. Example:

>>> int._ subclasses__ ()
[<class 'bool'>]

78 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

4.14 Integer string conversion length limitation

CPython has a global limit for converting between int and st to mitigate denial of service attacks. This limit
only applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are
unlimited. The limit can be configured.

The int type in CPython is an abitrary length number stored in binary form (commonly known as a “bignum”). There
exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless
the base is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a
large value such as int ('1' * 500_000) can take over a second on a fast CPU.

Limiting conversion size offers a practical way to avoid CVE-2020-10735.

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion
algorithm would be involved. Underscores and the sign are not counted towards the limit.

When an operation would exceed the limit, a ValueError is raised:

>>> import sys
>>> sys.set_int_max_str_digits (4300) # Illustrative, this 1is the default.
>>> = int ('2' * 5432)

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 5432.
—digits; use sys.set_int_max_str_digits() to increase the limit.

>>> 1 = int('2' * 4300)

>>> len(str(i))

4300

>>> 1 _squared = 1i*i

>>> len(str (i_squared))

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 8599.
—digits; use sys.set_int_max_str_digits() to increase the limit.

>>> len (hex (i_squared))

7144

>>> assert int (hex (i_squared), base=16) == 1*i1 # Hexadecimal is unlimited.

The default limit is 4300 digits as provided in sys. int_info.default_max_str_digits. The lowestlimit
that can be configured is 640 digits as provided in sys. int_info.str_digits_check_threshold.

Verification:

>>> import sys

>>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info

>>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info

>>> msg = int ('578966293710682886880994035146873798396722250538762761564"
'9252925514383915483333812743580549779436104706260696366600"
'571186405732") .to_bytes (53, 'big'")

New in version 3.7.14.

4.14. Integer string conversion length limitation 79

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735

The Python Library Reference, Release 3.7.15

4141 Affected APIs

The limitation only applies to potentially slow conversions between int and str or bytes:
e int (string) with default base 10.
e int (string, base) for all bases that are not a power of 2.
* str (integer).
* repr (integer)

 any other string conversion to base 10, for example £"{integer}", "{}".format (integer), or
b"$d" % integer.

The limitations do not apply to functions with a linear algorithm:
e int (string, base) with base 2,4, 8, 16, or 32.
e int.from bytes () and int.to_bytes ().
e hex(),oct(),bin().
» Format Specification Mini-Language for hex, octal, and binary numbers.
e strto float.

e strtodecimal.Decimal.

4.14.2 Configuring the limit

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the
limit:

* PYTHONINTMAXSTRDIGITS, e.g. PYTHONINTMAXSTRDIGITS=640 python3toset the limit to 640
or PYTHONINTMAXSTRDIGITS=0 python3 to disable the limitation.

e —X int_max_str_digits,e.g python3 -X int_max_str_digits=640

e sys.flags.int_max_str_digits contains the value of PYTHONINTMAXSTRDIGITS or —-X
int_max_str_digits. If both the env var and the —X option are set, the —X option takes precedence. A
value of -/ indicates that both were unset, thus a value of sys.int_info.default_max_str_digits
was used during initilization.

From code, you can inspect the current limit and set a new one using these sy s APIs:

* sys.get_int_max_str_digits() and sys.set_int_max_str_digits () are a getter and
setter for the interpreter-wide limit. Subinterpreters have their own limit.

Information about the default and minimum can be found in sys. int_info:
* sys.int_info.default_max_str_digits isthe compiled-in default limit.

e sys.int_info.str_digits_check_threshold is the lowest accepted value for the limit (other
than O which disables it).

New in version 3.7.14.

Caution: Setting a low limit can lead to problems. While rare, code exists that contains integer constants in
decimal in their source that exceed the minimum threshold. A consequence of setting the limit is that Python
source code containing decimal integer literals longer than the limit will encounter an error during parsing, usually
at startup time or import time or even at installation time - anytime an up to date . pyc does not already exist for
the code. A workaround for source that contains such large constants is to convert them to 0x hexadecimal form
as it has no limit.

80 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.15

to precompile . py sources to . pyc files.

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the
environment or flag so that it applies during startup and even during any installation step that may invoke Python

4.14.3 Recommended configuration

The default sys.int_info.default_max_str_digits isexpected to be reasonable for most applications.
If your application requires a different limit, set it from your main entry point using Python version agnostic code as

these APIs were added in security patch releases in versions before 3.11.

Example:

>>> import sys

>>> if hasattr(sys, "set_int_max_str_digits"):
upper_bound = 68000
lower_bound = 4004
current_limit = sys.get_int_max_str_digits()

if current_limit == 0 or current_limit > upper_bound:

sys.set_int_max_str_digits (upper_bound)
elif current_limit < lower_bound:
sys.set_int_max_str_digits (lower_bound)

If you need to disable it entirely, set it to O.

4.14. Integer string conversion length limitation

81

The Python Library Reference, Release 3.7.15

82 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. Ina t ry statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which it is derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several
items of information (e.g., an error code and a string explaining the code). The associated value is usually passed as
arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Except ion class or one of its subclasses, and not from BaseExcept i on. More information
on defining exceptions is available in the Python Tutorial under tut-userexceptions.

When raising (or re-raising) an exception in an except or finally clause __context__ is automatically set
to the last exception caught; if the new exception is not handled the traceback that is eventually displayed will include
the originating exception(s) and the final exception.

When raising a new exception (rather than using a bare raise to re-raise the exception currently being handled),
the implicit exception context can be supplemented with an explicit cause by using f rom with raise:

raise new_exc from original_exc

The expression following £ rom must be an exception or None. It willbe setas ___cause___ on the raised exception.
Setting ___cause___ also implicitly sets the __suppress_context__ attribute to True, so that using raise
new_exc from None effectively replaces the old exception with the new one for display purposes (e.g. converting
KeyErrorto AttributeError), while leaving the old exception available in ___context___ for introspection
when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception itself.
An explicitly chained exception in ___cause___is always shown when present. An implicitly chained exception in
__context___isshownonlyif _ _cause__is Noneand __suppress_context__ is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the traceback
always shows the last exception that was raised.

83

The Python Library Reference, Release 3.7.15

5.1 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If str () is called on an instance of this class, the representation of the argument(s)
to the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback (1b)
This method sets b as the new traceback for the exception and returns the exception object. It is usually
used in exception handling code like this:

try:

except SomeException:
tb = sys.exc_info () [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. Iookup ().

5.2 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.:
the io.IOBase.read () and io. IOBase. readline () methods return an empty string when they hit
EOF.)

exception FloatingPointError
Not currently used.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close () and coroutine.close ().
It directly inherits from BaseException instead of Exception since it is technically not an error.

84 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.7.15

exception ImportError
Raised when the import statement has troubles trying to load a module. Also raised when the “from list” in
from ... import hasa name that cannot be found.

The name and path attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the module that was attempted to be imported and the path to any file which triggered
the exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError
A subclass of ImportError which is raised by import when a module could not be located. It is also
raised when None is found in sys.modules.

New in version 3.6.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control—-C or Delete). During execution, a check
for interrupts is made regularly. The exception inherits from BaseExcept ion so as to not be accidentally
caught by code that catches Except ion and thus prevent the interpreter from exiting.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that
because of the underlying memory management architecture (C’'s malloc () function), the interpreter may
not always be able to completely recover from this situation; it nevertheless raises an exception so that a stack
traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method, or while the class is being developed
to indicate that the real implementation still needs to be added.

Note: It should not be used to indicate that an operator or method is not meant to be supported at all — in that
case either leave the operator / method undefined or, if a subclass, set it to None.

Note: NotImplementedError and Not Implemented are not interchangeable, even though they have
similar names and purposes. See Not Implemented for details on when to use it.

exception OSError ([arg])

exception OSError (errno, strerror[, ﬁlename[, winerror[, ﬁlenameZ]]])
This exception is raised when a system function returns a system-related error, including I/O failures such as
“file not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default
to None if not specified. For backwards compatibility, if three arguments are passed, the args attribute
contains only a 2-tuple of the first two constructor arguments.

The constructor often actually returns a subclass of OSError, as described in OS exceptions below. The
particular subclass depends on the final e r rno value. This behaviour only occurs when constructing OSError
directly or via an alias, and is not inherited when subclassing.

5.2. Concrete exceptions 85

The Python Library Reference, Release 3.7.15

errno
A numeric error code from the C variable errno.

winerror
Under Windows, this gives you the native Windows error code. The errno attribute is then an approx-
imate translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the e rrno attribute is determined
from the Windows error code, and the errno argument is ignored. On other platforms, the winerror
argument is ignored, and the winerror attribute does not exist.

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror () under POSIX, and FormatMessage () under Windows.

filename

filename2
For exceptions that involve a file system path (such as open () or os.unlink ()), filename is
the file name passed to the function. For functions that involve two file system paths (such as os.
rename ()), £ilenameZ2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error,
select.error and mmap.error have been merged into OSError, and the constructor may return
a subclass.

Changed in version 3.4: The i 1 ename attribute is now the original file name passed to the function, instead
of the name encoded to or decoded from the filesystem encoding. Also, the filename2 constructor argument
and attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is
sometimes raised for integers that are outside a required range. Because of the lack of standardization of
floating point exception handling in C, most floating point operations are not checked.

exception RecursionError
This exception is derived from Runt imeError. It is raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit ())is exceeded.

New in version 3.5: Previously, a plain Runt imeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref . proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weak ref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StoplIteration
Raised by built-in function next () and an iterator’s __next___ () method to signal that there are no further
items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the
exception, and defaults to None.

When a generator or coroutine function returns, a new StopIteration instance is raised, and the value
returned by the function is used as the value parameter to the constructor of the exception.

If a generator code directly or indirectly raises St opIteration, it is converted into a RuntimeError
(retaining the StopTteration as the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a
value.

86 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.7.15

Changed in version 3.5: Introduced the RuntimeError transformation via from __future__ import
generator_stop, see PEP 479.

Changed in version 3.7: Enable PEP 479 for all code by default: a StopIteration error raised in a
generator is transformed into a Runt imeError.

exception StopAsyncIteration
Must be raised by ___anext___ () method of an asynchronous iterator object to stop the iteration.

New in version 3.5.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions exec () or eval (), or when reading the initial script or standard input (also interactively).

Instances of this class have attributes filename, 1ineno, offset and text for easier access to the
details. st () of the exception instance returns only the message.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of Tndenta-
tionError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version;itis also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

exception SystemExit
This exception is raised by the sys.exit () function. It inherits from BaseExcept ion instead of Ex—
ception so that it is not accidentally caught by code that catches Except ion. This allows the exception
to properly propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits;
no stack traceback is printed. The constructor accepts the same optional argument passed to sys.exit ().
If the value is an integer, it specifies the system exit status (passed to C’'s exit () function); if it is None, the
exit status is zero; if it has another type (such as a string), the object’s value is printed and the exit status is one.

Acallto sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call to os. fork ()).

code
The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

This exception may be raised by user code to indicate that an attempted operation on an object is not sup-
ported, and is not meant to be. If an object is meant to support a given operation but has not yet provided an
implementation, Not ImplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passing a 1ist when an int is expected) should result in a
TypeError, but passing arguments with the wrong value (e.g. a number outside expected boundaries) should
resultina ValueError.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError.

5.2. Concrete exceptions 87

https://www.python.org/dev/peps/pep-0479
https://www.python.org/dev/peps/pep-0479

The Python Library Reference, Release 3.7.15

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError has attributes that describe the encoding or decoding error. For example, err.
object [err.start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in object.

end
The index after the last invalid data in ob ject.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when an operation or function receives an argument that has the right type but an inappropriate value,
and the situation is not described by a more precise exception such as TndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases
of OSError.

exception EnvironmentError
exception IOError

exception WindowsError
Only available on Windows.

5.2.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds
to errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the i o module.

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

88 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.7.15

exception ConnectionError
A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError
and ConnectionResetError

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been
closed, or trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE
and ESHUTDOWN.

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds
to errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds
to errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError
Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal, except if the
signal handler raises an exception (see PEP 475 for the rationale), instead of raising ITnterruptedError.

exception IsADirectoryError
Raised when a file operation (such as os. remove ()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError
Raised when a directory operation (such as os. 1istdir ()) is requested on something which is not a di-
rectory. Corresponds to errno ENOTDIR.

exception PermissionError
Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES and EPERM.

exception ProcessLookupError
Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError
Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

New in version 3.3: All the above OSError subclasses were added.
See also:

PEP 3151 - Reworking the OS and IO exception hierarchy

5.2. Concrete exceptions 89

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.7.15

5.3 Warnings
The following exceptions are used as warning categories; see the Warning Categories documentation for more details.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features when those warnings are intended for other Python devel-
opers.

exception PendingDeprecationWarning
Base class for warnings about features which are obsolete and expected to be deprecated in the future, but are
not deprecated at the moment.

This class is rarely used as emitting a warning about a possible upcoming deprecation is unusual, and Dep—
recationWarning is preferred for already active deprecations.

exception SyntaxWarning
Base class for warnings about dubious syntax.

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about deprecated features when those warnings are intended for end users of applica-
tions that are written in Python.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception BytesWarning
Base class for warnings related to bytes and bytearray.

exception ResourceWarning
Base class for warnings related to resource usage. Ignored by the default warning filters.

New in version 3.2.

5.4 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+—— SystemExit
+—— KeyboardInterrupt
+-— GeneratorExit
+-— Exception
+-— Stoplteration
+-— StopAsyncIteration

+-— ArithmeticError

| +-— FloatingPointError
| +-—— OverflowError

| +—— ZeroDivisionError
+-— AssertionError

+-— AttributeError

(continues on next page)

90 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.7.15

(continued from previous page)

+-— BufferError

+—-— EOFError

+-—— ImportError

| +—-— ModuleNotFoundError
+—— LookupError

| +-— IndexError

| +-—- KeyError

+—— MemoryError

+—— NameError

| +—-— UnboundLocalError
+-—— OSError

| +-— BlockingIOError

—-— RuntimeError
+—— NotImplementedError
+-— RecursionError
—-— SyntaxError
+-— IndentationError
| +-— TabError
+—-— SystemError
+—— TypeError
+-— ValueError
| +—— UnicodeError
| +—— UnicodeDecodeError
\ +-— UnicodeEncodeError
| +—— UnicodeTranslateError
+-— Warning
+-— DeprecationWarning
+-— PendingDeprecationWarning

| +—— ChildProcessError

| +-— ConnectionError

| | +-— BrokenPipeError

| | +—— ConnectionAbortedError
| | +—— ConnectionRefusedError
\ \ +-— ConnectionResetError

| +—— FileExistsError

| +-— FileNotFoundError

| +-—— InterruptedError

| +-— IsADirectoryError

| +-— NotADirectoryError

| +-— PermissionError

| +—— ProcessLookupError

| +-— TimeoutError

+-— ReferenceError

+

\

\

+

\

+-— RuntimeWarning
+-— SyntaxWarning
+-— UserWarning

+-— FutureWarning
+-— ImportWarning

+-— UnicodeWarning
+-— BytesWarning
+-— ResourceWarning

5.4. Exception hierarchy 91

The Python Library Reference, Release 3.7.15

92 Chapter 5. Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text processing
services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition, see
the documentation for Python’s built-in string type in 7ext Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:

Text Sequence Type Str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercaseand ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters ' abcdefghijklmnopgrstuvwxyz'. This value is not locale-dependent and will
not change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. This value is not locale-dependent and will
not change.

string.digits
The string '0123456789".

string.hexdigits
The string '0123456789%abcde fABCDEF'.

string.octdigits
The string '01234567".

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

string.printable
String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation,and whitespace.

93

https://github.com/python/cpython/tree/3.7/Lib/string.py

The Python Library Reference, Release 3.7.15

string.whitespace
A string containing all ASCII characters that are considered whitespace. This includes the characters space,
tab, linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the for—
mat () method described in PEP 3101. The Formatter class in the st ring module allows you to create and
customize your own string formatting behaviors using the same implementation as the built-in format () method.

class string.Formatter
The Formatter class has the following public methods:

format (format_string, *args, **kwargs)
The primary API method. It takes a format string and an arbitrary set of positional and keyword argu-
ments. It is just a wrapper that calls viormat ().

Changed in version 3.7: A format string argument is now positional-only.

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where
you want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dic-
tionary as individual arguments using the *args and * *kwargs syntax. vformat () does the work
of breaking up the format string into character data and replacement fields. It calls the various methods
described below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, con-
version). This is used by viormat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec
and conversion will be None.

get_field (field_name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as
“O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key
has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer,
it represents the index of the positional argument in args; if it is a string, then it represents a named
argument in kwargs.

The args parameter is set to the list of positional arguments to viormat (), and the kwargs parameter
is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value () to be called with a key argu-
ment of 0. The name attribute will be looked up after get__value () returns by calling the built-in
getattr () function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError
should be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and

94 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.7.15

strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The
set of unused args can be calculated from these parameters. check_unused_args () is assumed to
raise an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that sub-
classes can override it.

convert_f£field (value, conversion)
Converts the value (returned by get_ field ()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), ‘r’ (repr) and ‘a’ (ascii) conversion types.

6.1.3 Format String Syntax

The str. format () method and the Format ter class share the same syntax for format strings (although in the
case of Formatter, subclasses can define their own format string syntax). The syntax is related to that of formatted
string literals, but there are differences.

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces
is considered literal text, which is copied unchanged to the output. If you need to include a brace character in the
literal text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

replacement_field = "{" [field name] ["!" conversion] [":" format_spec] "}"
field_name = arg_name ("." attribute_name | "[" element_index "]")*
arg_name = [identifier | digit+]

attribute_name = identifier

element_index = digit+ | index_string

index_string = <any source character except "]"> +

conversion = "r" | "s" | "a"

format_spec = <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ' ! ', and a format_spec, which is preceded by a colon
' : '. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to a
positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names in a
format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ... will be
automatically inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify arbitrary
dictionary keys (e.g., the strings '10"' or ': -] ") within a format string. The arg_name can be followed by any
number of index or attribute expressions. An expression of the form ' .name' selects the named attribute using
getattr (), while an expression of the form ' [index] ' does an index lookup using __getitem__ ().

Changed in version 3.1: The positional argument specifiers can be omitted for st r. format (),so '{} {}"'.
format (a, b) isequivalentto '{0} {1}'.format (a, b).

Changed in version 3.4: The positional argument specifiers can be omitted for Formatter.

Some simple format string examples:

"First, thou shalt count to " # References first positional argument

"Bring me a " # Implicitly references the first positional.
—argument

"From to " # Same as "From {0} to {1}"

"My quest is " # References keyword argument 'name'

(continues on next page)

6.1. string — Common string operations 95

The Python Library Reference, Release 3.7.15

(continued from previous page)

"Weight in tons " # 'weight' attribute of first positional arg

"Units destroyed: # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done
by the _ format__ () method of the value itself. However, in some cases it is desirable to force a type to be
formatted as a string, overriding its own definition of formatting. By converting the value to a string before calling
__format__ (), the normal formatting logic is bypassed.

Three conversion flags are currently supported: ' ! s' which calls st r () on the value, ' ! r' which calls repr ()
and ' !'a' whichcalls ascii ().

Some examples:

"Harold's a clever " # Calls str() on the argument first
"Bring out the holy " # Calls repr() on the argument first
"More " # Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields may contain
a field name, conversion flag and format specification, but deeper nesting is not allowed. The replacement fields within
the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to
be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (see Format String Syntax and f-strings). They can also be passed directly to the built-in
format () function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format specification produces the same result as if you had called st () on
the value. A non-empty format specification typically modifies the result.

The general form of a standard format specifier is:

format_spec

[[filllalign][sign] [#]1[0] [width] [grouping_ option][.precision] [tyf

fill = <any character>

allgl’l = "<" | ">" I nm_mn | nAmn

Slgn = "+" | n_mn I " "

width = digit+

grouping_option = R

precision = digit+

type = "b" | "c" I "d" | "e" ‘ "E" | "f" ‘ "F" | "g" | "G" I "n" | "O" I

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a space
if omitted. It is not possible to use a literal curly brace (”{” or “}”) as the fill character in a formatted string literal or
when using the st r. format () method. However, it is possible to insert a curly brace with a nested replacement
field. This limitation doesn’t affect the format () function.

The meaning of the various alignment options is as follows:

96 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

Op- | Meaning
tion
'<' | Forces the field to be left-aligned within the available space (this is the default for most objects).
'>" | Forces the field to be right-aligned within the available space (this is the default for numbers).
'="| Forces the padding to be placed after the sign (if any) but before the digits. This is used
for printing fields in the form “+000000120’. This alignment option is only valid for numeric
types. It becomes the default when ‘0’ immediately precedes the field width.

'~ | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning
tion
T indicates that a sign should be used for both positive as well as negative numbers.

- indicates that a sign should be used only for negative numbers (this is the default behavior).
space | indicates that a leading space should be used on positive numbers, and a minus sign on
negative numbers.

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float, complex and Decimal types. For integers, when binary,
octal, or hexadecimal output is used, this option adds the prefix respective 'Ob', '0o', or '0x' to the output
value. For floats, complex and Decimal the alternate form causes the result of the conversion to always contain a
decimal-point character, even if no digits follow it. Normally, a decimal-point character appears in the result of these
conversions only if a digit follows it. In addition, for 'g"' and 'G"' conversions, trailing zeros are not removed from
the result.

The ', ' option signals the use of a comma for a thousands separator. For a locale aware separator, use the 'n'
integer presentation type instead.

Changed in version 3.1: Added the ', ' option (see also PEP 378).

The '_' option signals the use of an underscore for a thousands separator for floating point presentation types and
for integer presentation type 'd'. For integer presentation types 'b', 'o', 'x', and 'X"', underscores will be
inserted every 4 digits. For other presentation types, specifying this option is an error.

Changed in version 3.6: Added the ' _' option (see also PEP 515).

width is a decimal integer defining the minimum total field width, including any prefixes, separators, and other for-
matting characters. If not specified, then the field width will be determined by the content.

When no explicit alignment is given, preceding the width field by a zero (' 0 ') character enables sign-aware zero-
padding for numeric types. This is equivalent to a fill character of ' 0' with an alignment type of '=".

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted with ' £' and 'F "', or before and after the decimal point for a floating point value formatted
with "g' or 'G'. For non-number types the field indicates the maximum field size - in other words, how many
characters will be used from the field content. The precision is not allowed for integer values.

Finally, the fype determines how the data should be presented.

The available string presentation types are:

Type | Meaning
's! String format. This is the default type for strings and may be omitted.
None | The sameas 's"'.

The available integer presentation types are:

6.1. string — Common string operations 97

https://www.python.org/dev/peps/pep-0378
https://www.python.org/dev/peps/pep-0515

The Python Library Reference, Release 3.7.15

Type Meaning

'b' | Binary format. Outputs the number in base 2.

'c' | Character. Converts the integer to the corresponding unicode character before printing.

'd"' | Decimal Integer. Outputs the number in base 10.

'o' | Octal format. Outputs the number in base 8.

'x"' | Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.
'X " | Hex format. Outputs the number in base 16, using upper-case letters for the digits above 9.
'n' | Number. This is the same as 'd', except that it uses the current locale setting to insert the
appropriate number separator characters.

None| The same as 'd"'.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed
below (except 'n' and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for floating point and decimal values are:

Type Meaning

'e' | Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the
exponent. The default precision is 6.

'E"' | Exponent notation. Same as 'e' except it uses an upper case ‘E’ as the separator character.

' £' | Fixed-point notation. Displays the number as a fixed-point number. The default precision is
6.

'F' | Fixed-point notation. Same as ' £ ', but converts nan to NAN and inf to INF.

'g"' | General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on
its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type 'e'
and precision p—1 would have exponent exp. Then if -4 <= exp < p, the number is
formatted with presentation type 'f' and precision p—1-exp. Otherwise, the number is
formatted with presentation type 'e' and precision p—1. In both cases insignificant trailing
zeros are removed from the significand, and the decimal point is also removed if there are no
remaining digits following it, unless the ' # ' option is used.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf, —
inf, 0, —0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1. The default precision is 6.

'G' | General format. Same as 'g' except switches to 'E' if the number gets too large. The
representations of infinity and NaN are uppercased, too.

'n' | Number. This is the same as 'g"', except that it uses the current locale setting to insert the
appropriate number separator characters.

%' | Percentage. Multiplies the number by 100 and displays in fixed (' £ ') format, followed by a
percent sign.

None Similar to 'g', except that fixed-point notation, when used, has at least one digit past the
decimal point. The default precision is as high as needed to represent the particular value.
The overall effect is to match the output of st r () as altered by the other format modifiers.

98 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

Format examples

This section contains examples of the st r. format () syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old $-formatting, with the addition of the { } and with : used instead
of %. For example, '$03.2f"' can be translated to ' { : 03.2f}"'.

The new format syntax also supports new and different options, shown in the following examples.

Accessing arguments by position:

>>> ! , , '.format ('a', 'b', 'c')

'a, b, c'

>>> ! , , '.format ('a', 'b', 'c'") # 3.1+ only

'a, b, c'

>>> ! ' ' '.format ('a', 'b', 'c")

'c, b, a'

>>> ! , , '.format (*'abc') # unpacking argument sequence

'c, b, a'

>>> ! '.format ('abra', 'cad') # arguments' indices can be repeated
'abracadabra'

Accessing arguments by name:

>>> 'Coordinates: , '.format (latitude='37.24N", longitude='-
—115.81W")

'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: , '".format (**coord)

'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> ('The complex number is formed from the real part !
'and the imaginary part . ")y .format (c)

'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part.
‘—)_5.0 . !
>>> class Point:
def _ _init__ (self, x, y):
self.x, self.y = x, y
def _ str_ (self):
return 'Point (,) '.format (self=self)

>>> str(Point (4, 2))
'Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: ;oY '.format (coord)
'X: 3; Y: 5!

Replacing $s and $r:

>>> "repr () shows quotes: ; str() doesn't: ".format ('testl', 'test2'")
"repr () shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> ! '.format ("left aligned')
'left aligned !
>>> ! '.format ('right aligned")

(continues on next page)

6.1. string — Common string operations 99

The Python Library Reference, Release 3.7.15

(continued from previous page)

! right aligned'
>>> '/ :730}" . format ('centered")
! centered !

>>> ' /[:4730}" format ('centered') # use '"*' as a fill char
l***********Centered***********l

Replacing $+f, $—f, and $ £ and specifying a sign:

>>> "/:47); {:+f}" . format (3.14, -3.14) # show it always

'+3.140000; -3.140000"

>>> ' {: f}; {: f}'.format(3.14, -3.14) # show a space for positive numbers

' 3.140000; -3.140000"

>>> '"/[:—f); {:-f}" . format (3.14, -3.14) # show only the minus -- same as '{:f};
oo{:f}!

'3.140000; —-3.140000"

Replacing $x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format (42)
'int: 42; hex: 2a; oct: 52; bin: 101010°

>>> # with 0x, 0o, or 0Ob as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0}; bin: {0:#b}".format (42)
'int: 42; hex: 0Ox2a; oct: 0052; bin: 0b101010"

Using the comma as a thousands separator:

>>> '/, ' format (1234567890)
'1,234,567,890'

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> 'Correct answers: {:.2%}'.format (points/total)

'Correct answers: 86.36%"'

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> ' {:%Y-%m-5d SH:%M:%S}'.format (d)

'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<">', ['left', 'center', 'right']):
"{0:{fill}{align}l6}'.format (text, fill=align, align=align)

'left<<<<!

'ANAANcenter N AN

'>>>>>>>>>>>right!

>>>

>>> octets = [192, 168, 0, 1]

>>> "/ 02X) {:02X) 02X} { 02X} . format (*octets)
'COAB0001"

>>> int (_, 16)

3232235521

>>>

>>> width = 5
>>> for num in range(5,12):

(continues on next page)

100 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

(continued from previous page)

for base in 'dXob':

print ('{0: }'.format (num, base=base, width=width), end=' ")
print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

6.1.4 Template strings

Template strings provide simpler string substitutions as described in PEP 292. A primary use case for template
strings is for internationalization (i18n) since in that context, the simpler syntax and functionality makes it easier to
translate than other built-in string formatting facilities in Python. As an example of a library built on template strings
for 118n, see the flufl.i18n package.

Template strings support $-based substitutions, using the following rules:
e $$ is an escape; it is replaced with a single $.

e $identifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" isrestricted to any case-insensitive ASCII alphanumeric string (including underscores) that
starts with an underscore or ASCII letter. The first non-identifier character after the $ character terminates
this placeholder specification.

e ${identifier} isequivalentto $identifier. Itis required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "${noun}ification™".

Any other appearance of $ in the string will result in a Va lueError being raised.
The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (femplate)
The constructor takes a single argument which is the template string.

substitute (mapping, **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the
placeholders from kwds take precedence.

safe_substitute (mapping, **kwds)
Like substitute (), except that if placeholders are missing from mapping and kwds, instead of rais-
ing a KeyError exception, the original placeholder will appear in the resulting string intact. Also,
unlike with substitute (), any other appearances of the $ will simply return $ instead of raising
ValueError.

While other exceptions may still occur, this method is called “safe” because it always tries to return a
usable string instead of raising an exception. In another sense, safe_substitute () may be any-
thing other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s femplate argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

6.1. string — Common string operations 101

https://www.python.org/dev/peps/pep-0292
http://flufli18n.readthedocs.io/en/latest/

The Python Library Reference, Release 3.7.15

>>> from string import Template

>>> s = Template ('Swho likes S$what')

>>> s.substitute (who="'tim', what='kung pao')
'tim likes kung pao'

>>> d = dict (who="tim')

>>> Template ('Give $who $100') .substitute(d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template ('Swho likes Swhat') .substitute (d)
Traceback (most recent call last):

KeyError: 'what'
>>> Template ('Swho likes Swhat') .safe_substitute (d)
'tim likes S$what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed. Note further that you cannot change the delimiter after class creation (i.e. a different delimiter must
be set in the subclass’s class namespace).

idpattern — This is the regular expression describing the pattern for non-braced placeholders. The default value
is the regular expression (?a:[_a-z][_a-z0-9]1*). If this is given and braceidpattern is None this
pattern will also apply to braced placeholders.

Note: Since default flagsis re . IGNORECASE, pattern [a—z] can match with some non-ASCII characters.
That’s why we use the local a flag here.

Changed in version 3.7: braceidpattern can be used to define separate patterns used inside and outside the
braces.

braceidpattern — This is like idpattern but describes the pattern for braced placeholders. Defaults to None
which means to fall back to idpattern (i.e. the same pattern is used both inside and outside braces). If given,
this allows you to define different patterns for braced and unbraced placeholders.

New in version 3.7.

¢ flags — The regular expression flags that will be applied when compiling the regular expression used for recog-

nizing substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added
to the flags, so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last
in the regular expression.

102

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

6.1.5 Helper functions

string.capwords (s, sep=None)
Split the argument into words using str.split (), capitalize each word using str.capitalize (),
and join the capitalized words using str. join (). If the optional second argument sep is absent or None,
runs of whitespace characters are replaced by a single space and leading and trailing whitespace are removed,
otherwise sep is used to split and join the words.

6.2 re — Regular expression operations

Source code: Lib/re.py

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings (st r) as well as 8-bit strings (bytes). However,
Unicode strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string with a byte pattern
or vice-versa; similarly, when asking for a substitution, the replacement string must be of the same type as both the
pattern and the search string.

Regular expressions use the backslash character (' \ ') to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write ' \\\\ ' as the pattern
string, because the regular expression must be \\, and each backslash must be expressed as \\ inside a regular
Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing '\ ' and 'n"', while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this
raw string notation.

It is important to note that most regular expression operations are available as module-level functions and methods
on compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See also:

The third-party regex module, which has an API compatible with the standard library re module, but offers additional
functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pq will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book [Frie09], or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A', 'a', or
'0"', are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last matches the string 'last'. (In the rest of this section, we’ll write RE’s in this special style,
usually without quotes, and strings to be matched 'in single quotes'.)

6.2. re — Regular expression operations 103

https://github.com/python/cpython/tree/3.7/Lib/re.py
https://pypi.org/project/regex/

The Python Library Reference, Release 3.7.15

Some characters, like ' | ' or ' (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

Repetition qualifiers (*, +, ?, {m, n}, etc) cannot be directly nested. This avoids ambiguity with the non-greedy mod-
ifier suffix ?, and with other modifiers in other implementations. To apply a second repetition to an inner repetition,
parentheses may be used. For example, the expression (?:a{6}) * matches any multiple of six 'a' characters.

The special characters are:

. (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

~ (Caret.) Matches the start of the string, and in MUL TILINE mode also matches immediately after each newline.

$ Matches the end of the string or just before the newline at the end of the string, and in MUL TTLTNE mode also
matches before a newline. foo matches both ‘foo” and “foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo.$ in 'fool\nfoo2\n' matches ‘f002’ normally, but
‘fool” in MULTILINE mode; searching for a single $ in ' foo\n"' will find two (empty) matches: one just
before the newline, and one at the end of the string.

* Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match ‘a@’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

? Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. alb? will match either ‘a’ or ‘ab’.

?,4+?,2? The '', '+',and ' ? ' qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. *> is matched against ' <a> b <c>', it will match the entire string, and
not just '<a>"'. Adding ? after the qualifier makes it perform the match in non-greedy or minimal fashion; as
few characters as possible will be matched. Using the RE <. * 2> will match only '<a>"'.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not
to match. For example, a{ 6 } will match exactly six 'a ' characters, but not five.

{m, n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3, 5} will match from 3 to 5 'a' characters. Omitting m specifies
a lower bound of zero, and omitting » specifies an infinite upper bound. As an example, a{4, }b will match
'aaaab' orathousand 'a' characters followedbya 'b', butnot 'aaab'. The comma may not be omitted
or the modifier would be confused with the previously described form.

{m, n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string 'aaaaaa',a{3,5} willmatch 5 'a' characters, while a{3, 5} ? will only match 3 characters.

\ Either escapes special characters (permitting you to match characters like '*', ' 2 ', and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:
¢ Characters can be listed individually, e.g. [amk] will match 'a"', 'm',or 'k'.

» Ranges of characters can be indicated by giving two characters and separating them by a ' - ', for example
[a—z] will match any lowercase ASClII letter, [0—-5] [0—9] will match all the two-digits numbers from
00 to 59, and [0-9A-Fa-£f] will match any hexadecimal digit. If — is escaped (e.g. [a\-z]) or if
it’s placed as the first or last character (e.g. [—a] or [a—]), it will match a literal '—'.

» Special characters lose their special meaning inside sets. For example, [(+*)] will match any of the
literal characters ' (', "+"', '*",or ') '.

104 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

* Character classes such as \w or \ S (defined below) are also accepted inside a set, although the characters
they match depends on whether ASCT T or LOCALE mode is in force.

 Characters that are not within a range can be matched by complementing the set. If the first character of
the setis '~ ', all the characters that are not in the set will be matched. For example, [~5] will match
any character except '5"', and [~"] will match any character except '~ '. ~ has no special meaning if
it’s not the first character in the set.

* To match a literal '] ' inside a set, precede it with a backslash, or place it at the beginning of the set.
For example, both [() [\1{}] and [] () [{}] will both match a parenthesis.

» Support of nested sets and set operations as in Unicode Technical Standard #18 might be added in the
future. This would change the syntax, so to facilitate this change a FutureWarning will be raised in
ambiguous cases for the time being. That includes sets starting with a literal ' [' or containing literal
character sequences '—-", '&&', '~~",and ' | | '. To avoid a warning escape them with a backslash.

Changed in version 3.7: FutureWarning is raised if a character set contains constructs that will change
semantically in the future.

| A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by the ' | ' in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated by ' | ' are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the ' | ' operator is never greedy. To match a literal ' | ', use
\ |, or enclose it inside a character class, asin [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the \number special sequence, described below. To match the literals ' (' or ') ', use \ (or
\) , or enclose them inside a character class: [(1, [)].

(?...) This is an extension notation (a '?"' following a ' (' is not meaningful otherwise). The first character
after the ' 2 ' determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group; (?P<name>. . .) isthe only exception to this rule. Following are the currently supported
extensions.

(?ailmsux) (One or more letters from the set 'a', 'i', 'L', 'm', 's"', 'u', 'x"'.) The group matches
the empty string; the letters set the corresponding flags: re. A (ASCII-only matching), re. I (ignore case),
re. L (locale dependent), re. M (multi-line), re. S (dot matches all), re . U (Unicode matching), and re.
X (verbose), for the entire regular expression. (The flags are described in Module Contents.) This is useful
if you wish to include the flags as part of the regular expression, instead of passing a flag argument to the
re.compile () function. Flags should be used first in the expression string.

(?:...) Anon-capturing version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?ailmsux—imsx:...) (Zero or more letters from theset 'a', 'i', 'L', 'm', 's', 'u', 'x "', optionally
followed by ' —"' followed by one or more letters from the 'i', 'm', 's"', 'x'.) The letters set or remove
the corresponding flags: re.A (ASCII-only matching), re. I (ignore case), re. L (locale dependent), re.
M (multi-line), re. S (dot matches all), re . U (Unicode matching), and re. X (verbose), for the part of the
expression. (The flags are described in Module Contents.)

The letters 'a', 'L' and 'u' are mutually exclusive when used as inline flags, so they can’t be combined
or follow '—'. Instead, when one of them appears in an inline group, it overrides the matching mode in the
enclosing group. In Unicode patterns (?a: .. .) switches to ASCII-only matching, and (?u:...) switches
to Unicode matching (default). In byte pattern (?L:...) switches to locale depending matching, and (?
a:...) switches to ASCII-only matching (default). This override is only in effect for the narrow inline group,
and the original matching mode is restored outside of the group.

New in version 3.6.

Changed in version 3.7: The letters 'a', 'L' and 'u' also can be used in a group.

6.2. re — Regular expression operations 105

https://unicode.org/reports/tr18/

The Python Library Reference, Release 3.7.15

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible via the
symbolic group name name. Group names must be valid Python identifiers, and each group name must be
defined only once within a regular expression. A symbolic group is also a numbered group, just as if the group
were not named.

Named groups can be referenced in three contexts. If the patternis (?P<quote>['"]) .*? (?P=quote)
(i.e. matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it
in the same pattern itself

e (?P=quote) (as shown)
. \j_

when processing match object m
* m.group ('quote"')

e m.end('quote') (etc.)

in a string passed to the repl argument of re.

sub () ¢ \g<quote>

e \g<1>
. \j_

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group named
name.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matchesif ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example, Isaac (?=Asimov) will match 'Isaac ' onlyif it’s followed by 'Asimov'.

(?!...) Matchesif ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!
Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...) Matches if the current position in the string is preceded by a match for . . . that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc) def will find a matchin 'abcdef ', since
the lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern
must only match strings of some fixed length, meaning that abc or a | b are allowed, but a* and a{3, 4}
are not. Note that patterns which start with positive lookbehind assertions will not match at the beginning of
the string being searched; you will most likely want to use the search () function rather than the match ()
function:

>>> import re

>>> m = re.search (' (?<=abc)def', 'abcdef')
>>> m.group (0)
'def'!

This example looks for a word following a hyphen:

>>> m = re.search(r' (?<=-)\wt+', 'spam-egg')
>>> m.group (0)
leggV

Changed in version 3.5: Added support for group references of fixed length.

(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(? (id/name) yes—pattern|no-pattern) Will try to match with yes—-pattern if the group with given
id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted. For
example, (<) ? (\w+@\w+ (?2:\.\w+)+) (2 (1)>]$) isapoor email matching pattern, which will match

106 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

with '<user@host.com>" as well as 'user@host.com', but not with '<user@host.com' nor
'user@host.com>".

The special sequences consist of '\ ' and a character from the list below. If the ordinary character is not an ASCII

digit or an ASCII letter, then the resulting RE will match the second character. For example, \ $ matches the character

Al $ |l .

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1 matches 'the the' or '55 55", but not 'thethe' (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit of number
is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character with octal
value number. Inside the ' [' and '] ' of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
word characters. Note that formally, \b is defined as the boundary between a \w and a \W character (or vice
versa), or between \w and the beginning/end of the string. This means that r ' \bfoo\b"' matches ' foo"',
'foo.', ' (foo) "', 'bar foo baz' butnot 'foobar"' or 'foo3"'.

By default Unicode alphanumerics are the ones used in Unicode patterns, but this can be changed by using
the ASCIT flag. Word boundaries are determined by the current locale if the LOCALE flag is used. Inside a
character range, \b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that r ' py\B"'
matches 'python', 'py3', 'py2', butnot 'py"', 'py."',or 'py!'. \Bis just the opposite of \Db,
so word characters in Unicode patterns are Unicode alphanumerics or the underscore, although this can be
changed by using the ASCT T flag. Word boundaries are determined by the current locale if the LOCALE flag
is used.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode character
category [Nd]). This includes [0-9], and also many other digit characters. If the ASCT T flag is used
only [0-9] is matched.

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a decimal digit. This is the opposite of \d. If the ASCTT flag is used this
becomes the equivalent of [~0-9].

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v],
and also many other characters, for example the non-breaking spaces mandated by typography rules in
many languages). If the ASCIT flagis used, only [\t\n\r\£f\v] is matched.

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is
equivalent to [\t\n\r\f\v].

0

\

Matches any character which is not a whitespace character. This is the opposite of \ s. If the ASCT T flag is used
this becomes the equivalent of [~ \t\n\r\f\v].

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can be part
of a word in any language, as well as numbers and the underscore. If the ASCTIT flag is used, only [a-
zA-70-9_1] is matched.

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is
equivalent to [a—zA-Z0-9_]. If the LOCALE flag is used, matches characters considered alphanu-
meric in the current locale and the underscore.

\W Matches any character which is not a word character. This is the opposite of \w. If the ASCTIT flag is used
this becomes the equivalent of [“a-zA-7z0-9_]. If the LOCALE flag is used, matches characters which are
neither alphanumeric in the current locale nor the underscore.

\Z Matches only at the end of the string.

6.2. re — Regular expression operations 107

The Python Library Reference, Release 3.7.15

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \u \U
\v \x AN\

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u' and '\U"' escape sequences are only recognized in Unicode patterns. In bytes patterns they are errors. Un-
known escapes of ASCII letters are reserved for future use and treated as errors.

Octal escapes are included in a limited form. If the first digit is a 0, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits
in length.

Changed in version 3.3: The '\u' and '\U"' escape sequences have been added.

Changed in version 3.6: Unknown escapes consisting of '\ ' and an ASCII letter now are errors.

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

Changed in version 3.6: Flag constants are now instances of RegexF lag, which is a subclass of enum. IntFlag.

re.compile (pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match (), search () and other methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re. compile () and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re. compile () and the module-level
matching functions are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

re.A

re.ASCII
Make \w, \W, \b, \B, \d, \D, \'s and \ S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns. Corresponds to the inline flag
(?a).

Note that for backward compatibility, the re . U flag still exists (as well as its synonym re . UNICODE and its
embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode by default for
strings (and Unicode matching isn’t allowed for bytes).

108 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

re .DEBUG

re.I

Display debug information about compiled expression. No corresponding inline flag.

re.IGNORECASE

re.L

Perform case-insensitive matching; expressions like [A-Z] will also match lowercase letters. Full Unicode
matching (such as U matching i) also works unless the re. ASCT T flag is used to disable non-ASCII matches.
The current locale does not change the effect of this flag unless the re . LOCALE flag is also used. Corresponds
to the inline flag (21).

Note that when the Unicode patterns [a—z] or [A-Z] are used in combination with the TGNORECASE flag,
they will match the 52 ASCII letters and 4 additional non-ASCII letters: ‘I’ (U+0130, Latin capital letter I with
dot above), 1 (U+0131, Latin small letter dotless i), " (U+017F, Latin small letter long s) and ‘K’ (U+212A,
Kelvin sign). If the ASCIT flag is used, only letters ‘a’ to z’ and ‘A’ to °Z’ are matched.

re.LOCALE

re
re

re.
.DOTALL

re

re.
.VERBOSE

re

Make \w, \W, \b, \B and case-insensitive matching dependent on the current locale. This flag can be used
only with bytes patterns. The use of this flag is discouraged as the locale mechanism is very unreliable, it only
handles one “culture” at a time, and it only works with 8-bit locales. Unicode matching is already enabled by
default in Python 3 for Unicode (str) patterns, and it is able to handle different locales/languages. Corresponds
to the inline flag (?L) .

Changed in version 3.6: re.LOCALE can be used only with bytes patterns and is not compatible with re.
ASCII.

Changed in version 3.7: Compiled regular expression objects with the re. LOCALE flag no longer depend on
the locale at compile time. Only the locale at matching time affects the result of matching.

.M
.MULTILINE

When specified, the pattern character ' ~ ' matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ' $ ' matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ' ~ ' matches only at the beginning
of the string, and '$"' only at the end of the string and immediately before the newline (if any) at the end of
the string. Corresponds to the inline flag (?m) .

Make the ' . ' special character match any character at all, including a newline; without this flag, ' . ' will
match anything except a newline. Corresponds to the inline flag (?s).

This flag allows you to write regular expressions that look nicer and are more readable by allowing you to
visually separate logical sections of the pattern and add comments. Whitespace within the pattern is ignored,
except when in a character class, or when preceded by an unescaped backslash, or within tokens like *?, (?:
or (?P<...>. When a line contains a # that is not in a character class and is not preceded by an unescaped
backslash, all characters from the leftmost such # through the end of the line are ignored.

This means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(r"""\d + # the integral part

\. # the decimal point

\d * # some fractional digits""", re.X)
b = re.compile (r"\d+\.\d*")

Corresponds to the inline flag (?x) .

re.search (pattern, string, flags=0)

Scan through string looking for the first location where the regular expression pattern produces a match, and
return a corresponding match object. Return None if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

6.2. re — Regular expression operations 109

The Python Library Reference, Release 3.7.15

re .match (pattern, string, flags=0)

If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not
at the beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re . fullmatch (pattern, string, flags=0)

If the whole string matches the regular expression pattern, return a corresponding match object. Return None
if the string does not match the pattern; note that this is different from a zero-length match.

New in version 3.4.

re.split (pattern, string, maxsplit=0, flags=0)

Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits
occur, and the remainder of the string is returned as the final element of the list.

>>> re.split(r'\W+', 'Words, words, words.')
['"Words', 'words', 'words', '']

>>> re.split(r' (\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']

>>> re.split (r'\W+', 'Words, words, words.', 1)
["Words', 'words, words.']

>>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE)
[ro', 'z', '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split(r' (\W+)', '...words, words...')
[r? L. 'words' ' ! 'words' o) ']

That way, separator components are always found at the same relative indices within the result list.

Empty matches for the pattern split the string only when not adjacent to a previous empty match.

>>> re.split(r'\b', 'Words, words, words.')

(', 'words', ', ', 'words', ', ', 'words', '.']

>>> re.split(r'\w*', '...words...")

[", l', Vw', VOV, YrV, YdV, ISY, l', VIJ

>>> re.split(r' (\W*)', '...words...")

[ll’ l-..’, ll, 'l, 'W', ll, lol’ ll, lr', ll, ldl, 'l, ISI, '---'[IV, ll, IIJ

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.7: Added support of splitting on a pattern that could match an empty string.

re.findall (pattern, string, flags=0)

Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-right,
and matches are returned in the order found. If one or more groups are present in the pattern, return a list of
groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the
result.

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.finditer (pattern, string, flags=0)

Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the
result.

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

110

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

re. sub (pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\ r is converted to a carriage return, and so forth. Unknown escapes of ASCII letters are reserved for future
use and treated as errors. Other unknown escapes such as \ & are left alone. Backreferences, such as \ 6, are
replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+ ([a-zA-Z_][a-zA-Z_0-9]*)\s*\ (\s*\):',
r'static PyObject*\npy_\1 (void)\n{"',

ce 'def myfunc():")

'static PyObject*\npy_myfunc (void) \n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == '-': return ' '
else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro————-gram-files')

'pro-—gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or a pattern object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be
a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern
are replaced only when not adjacent to a previous empty match, so sub ('x*', '-', 'abxd') returns
'—a-b--d-".

In string-type repl arguments, in addition to the character escapes and backreferences described above, \
g<name> will use the substring matched by the group named name, as defined by the (?P<name>...)
syntax. \g<number> uses the corresponding group number; \g<2> is therefore equivalent to \ 2, but isn’t
ambiguous in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not a
reference to group 2 followed by the literal character ' 0 '. The backreference \ g<0> substitutes in the entire
substring matched by the RE.

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Changed in version 3.6: Unknown escapes in pattern consisting of '\ ' and an ASCII letter now are errors.
Changed in version 3.7: Unknown escapes in repl consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.7: Empty matches for the pattern are replaced when adjacent to a previous non-empty
match.

re . subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

re.escape (pattern)
Escape special characters in pattern. This is useful if you want to match an arbitrary literal string that may have
regular expression metacharacters in it. For example:

>>> print (re.escape('http://www.python.org'))
http://www\.python\.org

>>> legal_chars = string.ascii_lowercase + string.digits + "!#S%&"*+—."_"|~:"
>>> print ('[]+" % re.escape(legal_chars))

(continues on next page)

6.2. re — Regular expression operations 111

The Python Library Reference, Release 3.7.15

(continued from previous page)

[abcdefghijklmnopgrstuvwxyz0123456789 I \#\SS\& "\ *\+\=\ . \"_"\[\~:]+

>>> operators = ['+', '=', "'"x', /v, rxsn]
>>> print ('|'.join(map (re.escape, sorted(operators, reverse=True))))

FIN=INHNENF A

This function must not be used for the replacement string in sub () and subn (), only backslashes should be
escaped. For example:

>>> digits_re = r'\d+'

>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'

>>> print (re.sub(digits_re, digits_re.replace('\\', r'\\'), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings

Changed in version 3.3: The '_"' character is no longer escaped.

Changed in version 3.7: Only characters that can have special meaning in a regular expression are escaped. As
aresult’ |l ! 17 ™ l’ l%l’ mwr ", l, l’ |/l’ |l . l, l; l’ l<l’ l:l’ '>'7 l@l’and nwmsn arenolongerescaped.

re.purge ()

Clear the regular expression cache.

exception re.error (msg, pattern=None, pos=None)

Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It
is never an error if a string contains no match for a pattern. The error instance has the following additional
attributes:

msg
The unformatted error message.

pattern
The regular expression pattern.

pos
The index in pattern where compilation failed (may be None).

lineno
The line corresponding to pos (may be None).

colno
The column corresponding to pos (may be None).

Changed in version 3.5: Added additional attributes.

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

Pattern.search (sn’ing[,pos[, endpos]])

Scan through string looking for the first location where this regular expression produces a match, and return
a corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0.
This is not completely equivalent to slicing the string; the ' ~ ' pattern character matches at the real beginning
of the string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos char-
acters long, so only the characters from pos to endpos — 1 will be searched for a match. If endpos is less than
pos, no match will be found; otherwise, if x is a compiled regular expression object, rx . search (string,

0, 50) isequivalentto rx.search (string[:50], 0).

112

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

>>> pattern = re.compile ("d")

>>> pattern.search ("dog") # Match at index 0

<re.Match object; span=(0, 1), match='d'>

>>> pattern.search("dog", 1) # No match; search doesn't include the "d"

Pattern.match (string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding match
object. Return None if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".

<re.Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

Pattern.fullmatch (string[, pos[, endpos]])
If the whole string matches this regular expression, return a corresponding match object. Return None if the
string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch ("dog") # No match as "o" is not at the start of "dog
>>> pattern.fullmatch("ogre") # No match as not the full string matches.
>>> pattern.fullmatch ("doggie", 1, 3) # Matches within given limits.
<re.Match object; span=(1, 3), match='og'>

New in version 3.4.

Pattern.split (string, maxsplit=0)
Identical to the spl1it () function, using the compiled pattern.

Pattern.findall (string[, pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search ().

Pattern.finditer (string[, pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search ().

Pattern.sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

Pattern.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

Pattern.flags
The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline flags
in the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

Pattern.groups
The number of capturing groups in the pattern.

Pattern.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

Pattern.pattern
The pattern string from which the pattern object was compiled.

Changed in version 3.7: Added supportof copy . copy () and copy. deepcopy (). Compiled regular expression
objects are considered atomic.

6.2. re — Regular expression operations 113

The Python Library Reference, Release 3.7.15

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match () and search () return None when there is
no match, you can test whether there was a match with a simple i f statement:

match = re.search(pattern, string)
if match:
process (match)

Match objects support the following methods and attributes:

Match.expand (template)
Return the string obtained by doing backslash substitution on the template string template, as done by the
sub () method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences
(\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding
group.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

Match.group ([groupl,])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

>>> m = re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

'Isaac Newton'

>>> m.group (1) # The first parenthesized subgroup.
'Isaac’

>>> m.group (2) # The second parenthesized subgroup.
'Newton'

>>> m.group (1, 2) # Multiple arguments give us a tuple.

("Isaac', 'Newton')

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings iden-
tifying groups by their group name. If a string argument is not used as a group name in the pattern, an Tn—
dexError exception is raised.

A moderately complicated example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group ('first_name')

'Malcolm’

>>> m.group ('last_name")

'Reynolds’

Named groups can also be referred to by their index:

>>> m.group (1)
'Malcolm'
>>> m.group (2)
'Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
IC3|

114 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

Match.__getitem__ (g)
This is identical to m. group (g) . This allows easier access to an individual group from a match:

>>> m re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0] # The entire match

'Isaac Newton'

>>> m[1] # The first parenthesized subgroup.

'Isaac’

>>> m[2] # The second parenthesized subgroup.
'Newton'

New in version 3.6.

Match.groups (default=None)

Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m

re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()
('24', '1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.? (\d+)?2", "24™)

>>> m.groups () # Second group defaults to None.

('24', None)

>>> m.groups ('0") # Now, the second group defaults to '0'.
('24V, YOV)

Match.groupdict (default=None)

Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

Match.start ([group])
Match.end ([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return -1 if group exists but did not contribute to the match. For a match object m,

and a group g that did contribute to the match, the substring matched by group g (equivalent tom. group (g))
is

m.string[m.start (g) :m.end(g)]

Note that m.start (group) will equal m.end (group) if group matched a null string. For example,
afterm = re.search('b(c?)', 'cba'),m.start(0)isl, m.end(0) is2,m.start (1) and
m.end (1) are both 2, and m. start (2) raises an TndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m re.search ("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]
'tony@tiger.net'

Match.span ([group])

For a match m, return the 2-tuple (m.start (group), m.end(group)). Note thatif group did not
contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

6.2. re — Regular expression operations 115

The Python Library Reference, Release 3.7.15

Match.pos
The value of pos which was passed to the search () or match () method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

Match.endpos
The value of endpos which was passed to the search () or match () method of a regex object. This is the
index into the string beyond which the RE engine will not go.

Match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a) (b)),and ((ab)) willhave lastindex == 1 if applied to the string 'ab"',
while the expression (a) (b) will have lastindex == 2, if applied to the same string.

Match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

Match.re
The regular expression object whose match () or search () method produced this match instance.

Match.string
The string passed to match () or search ().

Changed in version 3.7: Added support of copy . copy () and copy.deepcopy (). Match objects are consid-
ered atomic.

6.2.5 Regular Expression Examples
Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return '<Match: , groups=¢r>" % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each

character representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r""[a2-9tjgk] s

>>> displaymatch (valid.match ("aktbg")) # Valid.
"<Match: 'aktb5qg', groups=()>"

>>> displaymatch(valid.match ("aktbe")) # Invalid.
>>> displaymatch (valid.match("akt")) # Invalid.
>>> displaymatch (valid.match ("727ak")) # Valid.
"<Match: '727ak', groups=()>"

That last hand, " 727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> pair = re.compile(r".*(.).*\1")

>>> displaymatch (pair.match ("717ak")) # Pair of 7s.
"<Match: '717', groups=('T7',)>"

>>> displaymatch (pair.match ("718ak")) # No pairs.

>>> displaymatch (pair.match("354aa")) # Pair of aces.

"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the group () method of the match object in the following
manner:

116 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

>>> pair.match("717ak") .group (1)
|7|

Error because re.match() returns None, which doesn't have a group() method:
>>> pair.match("718ak") .group (1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".*(.).*\1", "718ak") .group (1)
AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa") .group (1)
lal

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful, though
also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings
between scanf () format tokens and regular expressions.

scanf () Token | Regular Expression

%cC .

%$5¢c .{5}

sd [-+]12\d+

Se, %E, 3£, %9 [—+12 (\d+ (\.\d*) 2 |\.\d+) ([eE] [-+]2\d+) ?
51 [-+]?(0[xX] [\dA-Fa— f]+|0[71*|\d+)

50 [-+]?[0-7]+

%s \S+

%u \d+

%%, X [-+1?2(0[xX])?[\dA-Fa-f]+

To extract the filename and numbers from a string like

’/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

%$s — %d errors, %d warnings

The equivalent regular expression would be

’(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers two different primitive operations based on regular expressions: re.match () checks for a match
only at the beginning of the string, while re. search () checks for a match anywhere in the string (this is what

Perl does by default).

For example:

>>> re.match("c", "abcdef™) # No match
>>> re.search("c", "abcdef") # Match
<re.Match object; span=(2, 3), match='c'>

Regular expressions beginning with ' ~ ' can be used with search () to restrict the match at the beginning of the

string:

6.2. re — Regular expression operations 117

The Python Library Reference, Release 3.7.15

>>> re.match("c", "abcdef™) # No match
>>> re.search(""c", "abcdef™) # No match
>>> re.search(""a", "abcdef") # Match

<re.Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with '~ ' will match at the beginning of each line.

>>> re.match('X', 'A\nB\nX', re.MULTILINE) # No match
>>> re.search('”X', 'A\nB\nX', re.MULTILINE) # Match
<re.Match object; span=(4, 5), match='X'>

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584"', '919 Park Place']]

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. With amaxsplit
of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['"Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

118 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl (m):

inner_word = list (m.group(2))
random.shuffle (inner_word)
.. return m.group (1) + "".join (inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."

>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if a writer
wanted to find all of the adverbs in some text, they might use findall () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly", text)
['carefully', 'quickly']

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it
provides match objects instead of strings. Continuing with the previous example, if a writer wanted to find all of the
adverbs and their positions in some text, they would use finditer () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\wt+ly", text):
print (' - : ' % (m.start (), m.end(), m.group(0)))

07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash ('\ ') in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re.match (r"\wW(.)\1\w", "™ £f£f ™)

<re.Match object; span=(0, 4), match=' ff '>
>>> re.match ("\\W (.)\\Z\\w", " ££ ™)
<re.Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string nota-
tion, this means r" \\". Without raw string notation, one must use "\\\\ ", making the following lines of code
functionally identical:

>>> re.match (r"\\", r"\\")
<re.Match object; span=(0, 1), match="\\"'>
>>> re.match ("\\\\", r"\\")
<re.Match object; span=(0, 1), match="\\'>

6.2. re — Regular expression operations 119

The Python Library Reference, Release 3.7.15

Writing a Tokenizer
A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a
compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master
regular expression and to loop over successive matches:

import collections
import re

Token = collections.namedtuple('Token', ['type', 'value', 'line', 'column'])
def tokenize (code) :

keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [

('"NUMBER', r'\d+(\.\d*)?"), # Integer or decimal number
('"ASSIGN', r':="), # Assignment operator
("END', r'; "), # Statement terminator
('"ID"', r'[A-Za-z]+"), # Identifiers
('op', r'[+\-*/1"), # Arithmetic operators
("NEWLINE', r'\n"), # Line endings
('SKIP', r'[\t]+"), # Skip over spaces and tabs
('MISMATCH', r'."), # Any other character

]

tok_regex = '|'.join (' (?P<%s5>%s)' % pair for pair in token_specification)

line_num = 1

line_start = 0

for mo in re.finditer (tok_regex, code):
kind = mo.lastgroup
value = mo.group ()

column = mo.start () - line_start
if kind == 'NUMBER':
value = float (value) if '.' in value else int (value)
elif kind == '"ID' and value in keywords:
kind = value
elif kind == 'NEWLINE':

line_start = mo.end()
line_num += 1

continue
elif kind == 'SKIP':
continue
elif kind == 'MISMATCH':
raise RuntimeError (f'{value!/r} unexpected on line {line_num/"')

yield Token (kind, value, line_num, column)

statements = '"'
IF quantity THEN
total := total + price * quantity;
tax := price * 0.05;
ENDIF;

for token in tokenize (statements):
print (token)

The tokenizer produces the following output:

Token (type="IF', value='IF', line=2, column=4)

Token (type="'ID', value='quantity', line=2, column=7)
Token (type="'THEN', value='THEN', line=2, column=16)
Token (type="'ID', value='total', line=3, column=38)

(continues on next page)

120 Chapter 6. Text Processing Services

https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.7.15

(continued from previous page)

Token (type="ASSIGN', value=':=', line=3, column=14)
Token (type="'ID', value='total', line=3, column=17)
Token (type='0OP', value='+', line=3, column=23)

Token (type="'ID', value='price', line=3, column=25)
Token (type='0OP', value='*', line=3, column=31)

Token (type="'ID', value='quantity', line=3, column=33)
Token (type="END', value=';', line=3, column=41)
Token (type="'ID', value='tax', line=4, column=38)
Token (type="ASSIGN', wvalue=':=', line=4, column=12)
Token (type="'ID', value='price', line=4, column=15)
Token (type='0OP', value='*', line=4, column=21)

Token (type="'NUMBER', wvalue=0.05, line=4, column=23)
Token (type="'END', value=';', line=4, column=27)
Token (type="ENDIF', wvalue='ENDIF', line=5, column=4%4)
Token (type="END', value=';', line=5, column=9)

6.3 difflib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for comparing
files, and can produce difference information in various formats, including HTML and context and unified diffs. For

comparing directories and files, see also, the 71 1ecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest
contiguous matching subsequence that contains no “junk” elements; these “junk” elements are ones that are
uninteresting in some sense, such as blank lines or whitespace. (Handling junk is an extension to the Ratcliff
and Obershelp algorithm.) The same idea is then applied recursively to the pieces of the sequences to the left
and to the right of the matching subsequence. This does not yield minimal edit sequences, but does tend to
yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain se-
quence items as junk. The heuristic counts how many times each individual item appears in the sequence.
If an item’s duplicates (after the first one) account for more than 1% of the sequence and the sequence is
at least 200 items long, this item is marked as “popular” and is treated as junk for the purpose of sequence
matching. This heuristic can be turned off by setting the aut o junk argument to False when creating the
SequenceMatcher.

New in version 3.2: The autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ uses SequenceMat cher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a D1 £ fer delta begins with a two-letter code:

6.3. difflib — Helpers for computing deltas 121

https://github.com/python/cpython/tree/3.7/Lib/difflib.py

The Python Library Reference, Release 3.7.15

Code | Meaning
'— ' | line unique to sequence 1

'+ ' | line unique to sequence 2
v line common to both sequences
'? ' | line not present in either input sequence

Lines beginning with ‘?” attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff

This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init__ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)

Initializes instance of Htm1Diff.
tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndi £ () (used by Html1Diff to
generate the side by side HTML differences). See ndi £ () documentation for argument default values
and descriptions.

The following methods are public:

make_file (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=>5, *, charset="utf-8')

Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set confext to True when contextual dif-
ferences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is False numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML doc-
ument changed from 'IS0-8859-1"to 'utf-8"'.

make_table (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5)

Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its

difflib.context_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n'")

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with * ** or ———) are created with a trailing newline. This is helpful
so that inputs created from io. IOBase.readlines () result in diffs that are suitable for use with io.
IOBase.writelines () since both the inputs and outputs have trailing newlines.

122

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

For inputs that do not have trailing newlines, set the /ineferm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> 52 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines (context_diff(sl, s2, fromfile='before.py', tofile=
—'after.py'))

*** before.py

-—— after.py

khkkhkkhkhkhkkhkkhkhkhkkkkkxk
* %k 1,4 * Kk kK
! bacon
! eggs
! ham
guido
-— 1,4 ———
! python
! eggy
! hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument # (default 3) is the maximum number of close matches to return; » must be greater than 0.

Optional argument cutoff (default 0 . 6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'l])
['apple', 'ape'l

>>> import keyword

>>> get_close_matches ('wheel', keyword.kwlist)

['while']

>>> get_close_matches ('pineapple', keyword.kwlist)

[]

>>> get_close_matches ('accept', keyword.kwlist)

["except']

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Compare a and b (lists of strings); return a D1 £ fer-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if not.
The default is None. There is also a module-level function 7S LTNE JUNK (), which filters out lines with-
out visible characters, except for at most one pound character (' # ') — however the underlying Sequence-
Matcher class does a dynamic analysis of which lines are so frequent as to constitute noise, and this usually
works better than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level function 7.S_CHARACTER_JUNK (), which filters out whitespace
characters (a blank or tab; it’s a bad idea to include newline in this!).

6.3. difflib — Helpers for computing deltas 123

The Python Library Reference, Release 3.7.15

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
C. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> print (''.join(diff), end="")

- one

A

ore

[V Y]

two
- three

+ tree
+ emu

difflib.restore (sequence, which)

Return one of the two sequences that generated a delta.

Given a sequence produced by Di ffer.compare () or ndiff (), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print (''.join (restore(diff, 1)), end="")

one

two

three

>>> print (''.join(restore(diff, 2)), end="")

ore

tree

emu

difflib.unified_diff (a, b, fromfile=", tofile=", fromfiledate="", tofiledate=", n=3, lineterm="\n'")

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in an inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @Q) are created with a trailing newline. This is
helpful so that inputs created from io. IOBase. readlines () result in diffs that are suitable for use with
io.I0OBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineferm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> 52 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> sys.stdout.writelines (unified_diff(sl, s2, fromfile='before.py', tofile=
—'after.py"'))

—-—— before.py

+++ after.py

@@ -1,4 +1,4 @@

—-bacon

-eggs

—ham

+python

(continues on next page)

124

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

(continued from previous page)

teggy
+hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.diff_bytes (dfunc, a, b, fromfile=b", tofile=b", fromfiledate=b", tofiledate=b", n=3,

lineterm=b"\n")
Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the format

returned by dfunc. dfunc must be a callable, typically either unified diff () or context_diff ().

Allows you to compare data with unknown or inconsistent encoding. All inputs except n must be bytes objects,
not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc (a, b, fromfile,
tofile, fromfiledate, tofiledate, n, lineterm). The outputof dfunc is then converted
back to bytes, so the delta lines that you receive have the same unknown/inconsistent encodings as a and b.

New in version 3.5.

difflib.IS_LINE_JUNK (l/ine)
Return True for ignorable lines. The line line is ignorable if line is blank or contains a single ' # ', otherwise
it is not ignorable. Used as a default for parameter linejunk in ndi £ () in older versions.

difflib.IS_CHARACTER_JUNK (ch)
Return True for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMat cher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a=", b=", autojunk="True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: False;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

The optional argument aufojunk can be used to disable the automatic junk heuristic.
New in version 3.2: The autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is True;
bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled); b2 is a dict
mapping the remaining elements of b to a list of positions where they occur. All three are reset whenever b is
reset with set_seqgs () or set_seqg2 ().

New in version 3.2: The bjunk and bpopular attributes.
SequenceMatcher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

6.3. difflib — Helpers for computing deltas 125

http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
http://www.drdobbs.com/

The Python Library Reference, Release 3.7.15

SequenceMat cher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_segZ () to set the commonly used sequence once
and call set_seqgl () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhi)
Find longest matching block in a [alo:ahi] and b [blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, j, k) suchthata[i:i+k]
isequaltob[j:j+k],wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= Dbhi.
Forall (i', 3j', k') meeting those conditions, the additional conditions k >= k', i <= i',6and
ifi == 1i',3 <= 7j' are also met. In other words, of all maximal matching blocks, return one that
starts earliest in a, and of all those maximal matching blocks that start earliest in a, return the one that
starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd' from
matching the ' abcd' at the tail end of the second sequence directly. Instead only the 'abcd' can
match, and matches the leftmost ' abcd' in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match (a, b, size).

get_matching_blocks ()
Return list of triples describing non-overlapping matching subsequences. Each triple is of the form (i,
j, n),andmeansthata[i:1i+n] == b[J:j+n]. The triples are monotonically increasing in i and
J.

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with n
== 0.If (i, J, n)and (i', 3J', n') are adjacent triples in the list, and the second is not the
last triple in the list, then i+n < 1i' or j+n < J';in other words, adjacent triples always describe
non-adjacent equal blocks.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, 1i2,
j1, j2). Thefirsttuplehas i1 == j1 == 0, and remaining tuples have i/ equal to the i2 from the
preceding tuple, and, likewise, j/ equal to the previous j2.

The fag values are strings, with these meanings:

126

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

Value Meaning

'replace' | a[il1:12] should be replacedbyb[j1:32].

'delete' a[i1:12] should be deleted. Note that 1 == 72 in this case.

'insert' b[j1:732] should be insertedat a[11:11]. Note that i1 == 1i2 in this case.
'equal' alil:12] == b[jl:3j2] (the sub-sequences are equal).

For example:

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)
>>> for tag, i1, i2, j1, Jj2 in s.get_opcodes():
print (' al : 1 ——> Db :] -——> '.format (
. tag, 11, i2, 31, j2, alil:i2], b[jl:321))
delete af[0:1] ——> b[0:0] 'q' > !
equal al[l:3] ——> b[0:2] 'ab' ——> 'ab'
replace af3:4] -——> b[2:3] x> Ty
equal afd4:6] ——> b[3:5] 'ed' ——> 'cd!
insert a[6:6] ——> b[5:6] B

get_grouped_opcodes (n=3)
Return a generator of groups with up to z lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is
2.0*M/T. Note that this is 1 . 0 if the sequences are identical, and 0 . 0 if they have nothing in common.

This is expensive to compute if get_matching blocks () or get_opcodes () hasn’t already
been called, in which case you may want to try quick_ratio () or real_quick_ratio () first
to get an upper bound.

Note: Caution: The result of a ratio () call may depend on the order of the arguments. For instance:

>>> SequenceMatcher (None, 'tide', 'diet').ratio()
0.25

>>> SequenceMatcher (None, 'diet', 'tide').ratio()
0.5

quick_ratio ()
Return an upper bound on ratio () relatively quickly.

real_quick_ratio ()
Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, although quick_ratio () and real_qguick_ratio () are always at least as large as
ratio():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

(continues on next page)

6.3. difflib — Helpers for computing deltas 127

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> s.real_qguick_ratio()
1.0

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value
over 0.6 means the sequences are close matches:

>>> print (round(s.ratio(), 3))
0.866

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching_blocks():
.. print ("al] and bl] match for elements" % block)
al0] and b[0] match for 8 elements
al[8] and b[17] match for 21 elements
[29] and b[38] match for 0 elements

o))

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes():

C. print (" al : 1 bl : 1" % opcode)
equal al[0:8] b[0:8]

insert a[8:8] b[8:17]

equal al[8:29] b[17:38]

See also:

e The get_close_matches () function in this module which shows how simple code building on Se—
quenceMat cher can be used to do useful work.

 Simple version control recipe for a small application built with SequenceMatcher.

6.3.3 Differ Objects

Note that Di f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

The Di ffer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

128 Chapter 6. Text Processing Services

https://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.7.15

These junk-filtering functions speed up matching to find differences and do not cause any differing lines or
characters to be ignored. Read the description of the find longest_match () method’s isjunk parameter
for an explanation.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists
of newline-terminated strings, ready to be printed as-is via the writelines () method of a file-like
object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = "'' 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

. '"".splitlines (keepends=True)

>>> len (textl)

4

>>> textl1l[0][-1]

'\n'

>>> text2 = ''' 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

''"'".splitlines (keepends=True)

Next we instantiate a Differ object:

>>> d = Differ ()

Note that when instantiating a Di fer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:

>>> result = list (d.compare (textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint

>>> pprint (result)

[’ 1. Beautiful is better than ugly.\n',

! 2. Explicit is better than implicit.\n',

'— 3. Simple is better than complex.\n',
3

'+ Simple is better than complex.\n',

' ++\n',

' - 4. Complex is better than complicated.\n',
V? Iy P /\\nY’

'+ 4. Complicated is better than complex.\n',
e e+ N “\n',

'+ 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

6.3. difflib — Helpers for computing deltas 129

The Python Library Reference, Release 3.7.15

>>> import sys

>>> gys.stdout.writelines (result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.
3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
2 el A
+ 4. Complicated is better than complex.
? ++++ ~
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a di f £-like utility. It is also contained in the Python source distri-

bution, as Tools/scripts/diff.py.

#!/usr/bin/env python3

""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mn

import sys, os, difflib, argparse
from datetime import datetime, timezone

def file_mtime (path):
t = datetime.fromtimestamp (os.stat (path) .st_mtime,
timezone.utc)
return t.astimezone () .isoformat ()

def main () :

parser = argparse.ArgumentParser ()
parser.add_argument ('-c', action='store_ true', default=False,
help='Produce a context format diff (default)
parser.add_argument ('-u', action='store_true', default=False,
help='Produce a unified format diff')
parser.add_argument ('-m', action='store_true', default=False,
help='Produce HTML side by side diff '
'(can use -c and -1 in conjunction)')
parser.add_argument ('-n', action='store_true', default=False,
help='Produce a ndiff format diff')
parser.add_argument ('-1', '—--lines', type=int, default=3,
help='Set number of context lines (default 3)
parser.add_argument ('fromfile')
parser.add_argument ('tofile')
options = parser.parse_args|()

n = options.lines
fromfile = options.fromfile
tofile = options.tofile

fromdate = file_mtime (fromfile)
todate = file_mtime (tofile)

")

")

(continues on next page)

130 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

(continued from previous page)

with open(fromfile) as ff:
fromlines ff.readlines()

with open(tofile) as tf:
tolines = tf.readlines|()

if options.u:
diff = difflib.unified_diff (fromlines, tolines, fromfile, tofile, fromdate,
— todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file (fromlines,tolines, fromfile,tofile,
—context=options.c,numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile, fromdate,
— todate, n=n)

sys.stdout.writelines (diff)

if name_ == '__main_ ':
main ()

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides some convenience functions, as well as TextWrapper, the class that does all
the work. If you’re just wrapping or filling one or two text strings, the convenience functions should be good enough;
otherwise, you should use an instance of TextWrapper for efficiency.

textwrap.wrap (fext, width=70, **kwargs)

Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
width defaults to 70.

See the TextWrapper.wrap () method for additional details on how wrap () behaves.

textwrap.£ill (fext, width=70, **kwargs)

Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. 111 () is
shorthand for

"\n".Jjoin (wrap (text, ...))

In particular, £111 () accepts exactly the same keyword arguments as wrap ().

textwrap.shorten (text, width, **kwargs)
Collapse and truncate the given fext to fit in the given width.

First the whitespace in text is collapsed (all whitespace is replaced by single spaces). If the result fits in the
width, it is returned. Otherwise, enough words are dropped from the end so that the remaining words plus the
placeholder fit within width:

>>> textwrap.shorten("Hello world!", width=12)
'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)
'Hello [...]"

(continues on next page)

6.4. textwrap — Text wrapping and filling 131

https://github.com/python/cpython/tree/3.7/Lib/textwrap.py

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
Note that the whitespace is collapsed before the text is passed to the TextWrapper £il1 () function, so
changing the value of tabsize, expand tabs, drop_whitespace, and replace_whitespace
will have no effect.

New in version 3.4.

textwrap.dedent (fext)

Remove any common leading whitespace from every line in zext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello™" are considered to have no common leading whitespace.

Lines containing only whitespace are ignored in the input and normalized to a single newline character in the
output.

For example:

def test():
end first line with \ to avoid the empty line!
s = lvv\
hello
world
L B |
print (repr(s)) # prints ' hello\n world\n !
print (repr (dedent (s))) # prints 'hello\n world\n'

textwrap.indent (fext, prefix, predicate=None)

Add prefix to the beginning of selected lines in zext.
Lines are separated by calling text .splitlines (True).
By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).

For example:

>>> s = 'hello\n\n \nworld'
>>> indent (s, ' ")
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to add
prefix to even empty and whitespace-only lines:

>>> print (indent (s, '+ ', lambda line: True))
+ hello

+
+
+ world

New in version 3.3.

wrap (), £i111 () and shorten () work by creating a TextWrapper instance and calling a single method on
it. That instance is not reused, so for applications that process many text strings using wrap () and/or £i11 (), it
may be more efficient to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unless TextWrapper.break_long_words is set to false.

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

class textwrap.TextWrapper (**kwargs)

The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example

wrapper = TextWrapper (initial_indent="* ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "* "

You can re-use the same TextWWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs
(default: True) If true, then all tab characters in fext will be expanded to spaces using the ex—
pandtabs () method of fext.

tabsize
(default: 8) If expand_tabs is true, then all tab characters in fext will be expanded to zero or more
spaces, depending on the current column and the given tab size.

New in version 3.3.

replace_whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return (' \t\n\v\£f\r").

Note: If expand tabs is false and replace_whitespace is true, each tab character will be
replaced by a single space, which is not the same as tab expansion.

Note: If replace whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines () or
similar) which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before
indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-
whitespace follows it. If whitespace being dropped takes up an entire line, the whole line is dropped.

initial_indent
(default: ' ') String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line. The empty string is not indented.

subsequent_indent
(default: ' ") String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix_ sentence_endings
(default: False)If true, TextWrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by oneof ' . ', ' ! ', or ' 2 ', possibly followed by oneof '" ' or " ' ", followed

6.4. textwrap — Text wrapping and filling 133

The Python Library Reference, Release 3.7.15

by a space. One problem with this is algorithm is that it is unable to detect the difference between “Dr.”
in

’[...] Dr. Frankenstein's monster [...]

and “Spot.” in

’[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on st ring. lowercase for the definition of “lowercase
letter”, and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long_words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer than
width. (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially
good places for line breaks, but you need to set break_long_words to false if you want truly inse-
cable words. Default behaviour in previous versions was to always allow breaking hyphenated words.

max_lines
(default: None) If not None, then the output will contain at most max_lines lines, with placeholder
appearing at the end of the output.

New in version 3.4.

placeholder
(default: * [...]") String that will appear at the end of the output text if it has been truncated.

New in version 3.4.
TextWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most wi dt h characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 11.0.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:

unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding character.
If not found, KeyError is raised.

134 Chapter 6. Text Processing Services

http://www.unicode.org/Public/11.0.0/ucd
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/

The Python Library Reference, Release 3.7.15

Changed in version 3.3: Support for name aliases' and named sequences” has been added.

unicodedata.name (chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.numeric (chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty
string is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining class
is defined.

unicodedata.east_asian_width (chr)
Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition (chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is
returned in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of
canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various
way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be
expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility char-
acters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition,
followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining char-
acters and the other doesn’t, they may not compare equal.

1 http://www.unicode.org/Public/11.0.0/ucd/NameAliases. txt
2 http://www.unicode.org/Public/11.0.0/ucd/NamedSequences. txt

6.5. unicodedata — Unicode Database 135

http://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt
http://www.unicode.org/Public/11.0.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.7.15

In addition, the module exposes the following constant:

unicodedata.unidata_version
The version of the Unicode database used in this module.

unicodedata.ued_3_2_0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata

>>> unicodedata.lookup ('LEFT CURLY BRACKET')

l{l

>>> unicodedata.name('/")

'SOLIDUS'

>>> unicodedata.decimal ('9")

9

>>> unicodedata.decimal ('a')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: not a decimal

>>> unicodedata.category ('A") # 'L'etter, 'u'ppercase

lLu'

>>> unicodedata.bidirectional ('\u0660'") # 'A'rabic, 'N'umber
IAN'

6.6 stringprep — Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RF'C 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the st ringprep procedure are part of the profile. One example of a st ringprep profile
is nameprep, which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns True
if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

136 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.7/Lib/stringprep.py
https://tools.ietf.org/html/rfc3454.html
https://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 3.7.15

stringprep.map_table_b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

stringprep.in_table_cl1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_c12 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cll_cl12 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1 (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readline module defines a number of functions to facilitate completion and reading/writing of history files
from the Python interpreter. This module can be used directly, or via the r1completer module, which supports
completion of Python identifiers at the interactive prompt. Settings made using this module affect the behaviour of
both the interpreter’s interactive prompt and the prompts offered by the built-in i nput () function.

Readline keybindings may be configured via an initialization file, typically . inputrc in your home directory. See
Readline Init File in the GNU Readline manual for information about the format and allowable constructs of that file,
and the capabilities of the Readline library in general.

Note: The underlying Readline library API may be implemented by the 1ibedit library instead of GNU readline.
On macOS the readline module detects which library is being used at run time.

6.7. readline — GNU readline interface 137

https://tiswww.cwru.edu/php/chet/readline/rluserman.html#SEC9

The Python Library Reference, Release 3.7.15

The configuration file for 1ibedit is different from that of GNU readline. If you programmatically load configu-
ration strings you can check for the text “libedit” in readline.__doc___ to differentiate between GNU readline
and libedit.

If you use editline/1ibedit readline emulation on macOS, the initialization file located in your home directory
is named .editrc. For example, the following content in ~/ .editrc will turn ON vi keybindings and TAB
completion:

python:bind -v
python:bind "I rl_complete

6.7.1 Init file

The following functions relate to the init file and user configuration:

readline.parse_and_bind (string)
Execute the init line provided in the string argument. This calls r1_parse_and_bind () in the underlying
library.

readline.read_init_file ([ﬁlename])
Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file () in the underlying library.

6.7.2 Line buffer

The following functions operate on the line buffer:

readline.get_line_buffer ()
Return the current contents of the line buffer (r1_1line_buf fer in the underlying library).

readline.insert_text (string)
Insert text into the line buffer at the cursor position. This calls r1_insert_text () in the underlying
library, but ignores the return value.

readline.redisplay ()
Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay () in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history_file ([ﬁlename])
Load a readline history file, and append it to the history list. The default filename is ~/ . history. This calls
read_history () in the underlying library.

readline.write_history file ([ﬁlename])
Save the history list to a readline history file, overwriting any existing file. The default filename is ~/ .
history. Thiscallswrite_history () in the underlying library.

readline.append_history_ file (nelements[, ﬁlename])
Append the last nelements items of history to a file. The default filename is ~/ .history. The file must
already exist. This calls append_history () in the underlying library. This function only exists if Python
was compiled for a version of the library that supports it.

New in version 3.5.

readline.get_history_length(()

138 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

readline.set_history_length (length)
Set or return the desired number of lines to save in the history file. The write history file () function
uses this value to truncate the history file, by calling history_truncate_file () in the underlying
library. Negative values imply unlimited history file size.

6.7.4 History list

The following functions operate on a global history list:

readline.clear_history ()
Clear the current history. This calls clear_history () in the underlying library. The Python function
only exists if Python was compiled for a version of the library that supports it.

readline.get_current_history_length ()
Return the number of items currently in the history. (This is different from get_history_length (),
which returns the maximum number of lines that will be written to a history file.)

readline.get_history_item (index)
Return the current contents of history item at index. The item index is one-based. This calls his-
tory_get () in the underlying library.

readline.remove_history_item (pos)
Remove history item specified by its position from the history. The position is zero-based. This calls re-
move_history () in the underlying library.

readline.replace_history_item (pos, line)
Replace history item specified by its position with line. The position is zero-based. This calls re-
place_history_entry () in the underlying library.

readline.add_history (line)
Append line to the history buffer, as if it was the last line typed. This calls add_history () inthe underlying
library.

readline.set_auto_history (enabled)
Enable or disable automatic calls to add_history () whenreading input viareadline. The enabled argument
should be a Boolean value that when true, enables auto history, and that when false, disables auto history.

New in version 3.6.

CPython implementation detail: Auto history is enabled by default, and changes to this do not persist across
multiple sessions.

6.7.5 Startup hooks

readline.set_startup_hook ([function])
Set or remove the function invoked by the r1_ st artup_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is
removed. The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook ([functian])
Set or remove the function invoked by the r1_pre_input_hook callback of the underlying library. If
function is specified, it will be used as the new hook function; if omitted or None, any function already installed
is removed. The hook is called with no arguments after the first prompt has been printed and just before readline
starts reading input characters. This function only exists if Python was compiled for a version of the library
that supports it.

6.7. readline — GNU readline interface 139

The Python Library Reference, Release 3.7.15

6.7.6 Completion

The following functions relate to implementing a custom word completion function. This is typically operated by the
Tab key, and can suggest and automatically complete a word being typed. By default, Readline is set up to be used
by r1completer to complete Python identifiers for the interactive interpreter. If the readline module is to be
used with a custom completer, a different set of word delimiters should be set.

readline.set_completer ([function])
Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called as
function (text, state),forstatein 0, 1, 2, ..., until it returns a non-string value. It should return the
next possible completion starting with fext.

The installed completer function 1is invoked by the entry_func callback passed to
rl_completion_matches () in the underlying library. The fext string comes from the first pa-
rameter to the r1_attempted_completion_function callback of the underlying library.

readline.get_completer ()
Get the completer function, or None if no completer function has been set.

readline.get_completion_type ()
Get the type of completion being attempted. This returns the r1_completion_type variable in the un-
derlying library as an integer.

readline.get_begidx ()

readline.get_endidx ()
Get the beginning or ending index of the completion scope. These indexes are the start and end arguments
passed to the r1_attempted_completion_function callback of the underlying library.

readline.set_completer_delims (string)

readline.get_completer_delims ()
Set or get the word delimiters for completion. These determine the start of the word
to be considered for completion (the completion scope). These functions access the
rl_completer_word_break_characters variable in the underlying library.

readline.set_completion_display matches_hook ([function])
Set or remove the completion display function. If function is specified, it will be used as the new com-
pletion display function; if omitted or None, any completion display function already installed is re-
moved. This sets or clears the r1_completion_display_matches_hook callback in the underly-
ing library. The completion display function is called as function (substitution, [matches],
longest_match_length) once each time matches need to be displayed.

6.7.7 Example

The following example demonstrates how to use the readline module’s history reading and writing functions to
automatically load and save a history file named .python_history from the user’s home directory. The code
below would normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser("~"), ".python_history")
try:
readline.read_history_file(histfile)
default history len is -1 (infinite), which may grow unruly
readline.set_history_length(1000)
except FileNotFoundError:
pass

atexit.register (readline.write_history_file, histfile)

140 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.15

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending the
new history.

import atexit

import os

import readline

histfile = os.path.join(os.path.expanduser ("~"), ".python_history")

try:

readline.read_history_file(histfile)

h_len = readline.get_current_history_length()
except FileNotFoundError:

open (histfile, 'wb').close()

h_len = 0

def save (prev_h_len, histfile):
new_h_len = readline.get_current_history_length()
readline.set_history_length(1000)
readline.append_history_file(new_h_len - prev_h_len, histfile)
atexit.register(save, h_len, histfile)

The following example extends the code. InteractiveConsole class to support history save/restore.

import atexit
import code
import os
import readline

class HistoryConsole (code.InteractiveConsole):

def _ init_ (self, locals=None, filename="<console>",
histfile=os.path.expanduser ("~/.console-history")):
code.InteractiveConsole._ _init_ (self, locals, filename)

self.init_history(histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete™)
if hasattr(readline, "read_ history_file"):
try:
readline.read_history_file(histfile)
except FileNotFoundError:
pass
atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.set_history_length (1000)
readline.write_history_file(histfile)

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The r1completer module defines a completion function suitable for the readl i ne module by completing valid
Python identifiers and keywords.

When this module is imported on a Unix platform with the readl i ne module available, an instance of the Com-
pleter class is automatically created and its complete () method is set as the readl ine completer.

Example:

6.8. rlcompleter — Completion function for GNU readline 141

https://github.com/python/cpython/tree/3.7/Lib/rlcompleter.py

The Python Library Reference, Release 3.7.15

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete™)
>>> readline. <TAB PRESSED>

readline._ _doc_ readline.get_line_buffer(readline.read_init_file(
readline._ file_ readline.insert_text (readline.set_completer (
readline.__ _name___ readline.parse_and_bind(

>>> readline.

The r1completer module is designed for use with Python’s interactive mode. Unless Python is run with the —S
option, the module is automatically imported and configured (see Readline configuration).

On platforms without readline, the Completer class defined by this module can still be used for custom pur-
poses.

6.8.1 Completer Objects

Completer objects have the following method:

Completer.complete (fext, state)
Return the stateth completion for fext.

If called for fext that doesn’t include a period character (' . '), it will complete from names currently defined
in__main__, builtins and keywords (as defined by the ke yword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not be
evaluated, but it can generate calls to __getattr__ ()) up to the last part, and find matches for the rest
via the dir () function. Any exception raised during the evaluation of the expression is caught, silenced and
None is returned.

142 Chapter 6. Text Processing Services

CHAPTER
SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary data. Other
operations on binary data, specifically in relation to file formats and network protocols, are described in the relevant
sections.

Some libraries described under Text Processing Services also work with either ASCII-compatible binary formats (for
example, re) or all binary data (for example, di f£11ib).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types
memoryview.

bytes, bytearray,

7.1 struct — Interpret bytes as packed binary data

Source code: Lib/struct.py

This module performs conversions between Python values and C structs represented as Python bytes objects. This
can be used in handling binary data stored in files or from network connections, among other sources. It uses Format
Strings as compact descriptions of the layout of the C structs and the intended conversion to/from Python values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment
for the C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so that
the bytes of a packed struct correspond exactly to the layout in memory of the corresponding C struct. To handle
platform-independent data formats or omit implicit pad bytes, use st andard size and alignment instead of native
size and alignment: see Byfe Order, Size, and Alignment for details.

Several st ruct functions (and methods of St ruct) take a buffer argument. This refers to objects that implement
the bufferobjects and provide either a readable or read-writable buffer. The most common types used for that purpose
are bytes and bytearray, but many other types that can be viewed as an array of bytes implement the buffer
protocol, so that they can be read/filled without additional copying from a byt es object.

7.1.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error
Exception raised on various occasions; argument is a string describing what is wrong.

struct.pack (format, vi, v2, ...)
Return a bytes object containing the values v/, v2, ... packed according to the format string format. The
arguments must match the values required by the format exactly.

struct .pack_into (format, buffer, offset, vi, v2,...)
Pack the values vI, v2, ... according to the format string format and write the packed bytes into the writable
buffer buffer starting at position offset. Note that offset is a required argument.

143

https://github.com/python/cpython/tree/3.7/Lib/struct.py

The Python Library Reference, Release 3.7.15

struct .unpack (format, buffer)
Unpack from the buffer buffer (presumably packed by pack (format, .. .))according tothe format string
format. The result is a tuple even if it contains exactly one item. The buffer’s size in bytes must match the size
required by the format, as reflected by calcsize ().

struct .unpack_£from (format, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string format. The result is a tuple even
if it contains exactly one item. The buffer’s size in bytes, minus offset, must be at least the size required by the
format, as reflected by calcsize ().

struct.iter_unpack (format, buffer)
Iteratively unpack from the buffer buffer according to the format string format. This function returns an iterator
which will read equally-sized chunks from the buffer until all its contents have been consumed. The buffer’s
size in bytes must be a multiple of the size required by the format, as reflected by calcsize ().

Each iteration yields a tuple as specified by the format string.
New in version 3.4.

struct.calecsize (format)
Return the size of the struct (and hence of the bytes object produced by pack (format, ...)) corre-
sponding to the format string format.

7.1.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They are
built up from Format Characters, which specify the type of data being packed/unpacked. In addition, there are special
characters for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, '@ "' is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMD64
(x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature switch-
able endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between '@' and '=": both use native byte order, but the size and alignment of the latter is
standardized.
The form ' ! ' is available for those poor souls who claim they can’t remember whether network byte order is big-

endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<' or '>"'.

144 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.15

Notes:

(1) Padding is only automatically added between successive structure members. No padding is added at the be-
ginning or the end of the encoded struct.

5 3

(2) No padding is added when using non-native size and alignment, e.g. with ‘<’, *>’, ‘=, and ‘!.

(3) To align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard size; that
is, when the format string starts withone of '<', '>", ' ! ' or '=". When using native size, the size of the packed
value is platform-dependent.

Format | C Type Python type Standard size | Notes
X pad byte no value

c char bytes of length 1 | 1

b signed char integer 1 (D), (2)
B unsigned char integer 1 2)
? _Bool bool 1 (1)
h short integer 2 2)
H unsigned short integer 2 2)
i int integer 4 2)
I unsigned int integer 4 2)
1 long integer 4 2)
L unsigned long integer 4 2)
q long long integer 8 2
0 unsigned long long | integer 8 2)
n ssize_t integer 3)
N size_t integer 3)
e (6) float 2 @)
f float float 4 (@]
d double float 8 “4)
S char[] bytes

P char([] bytes

P void * integer 5)

Changed in version 3.3: Added support for the 'n"' and 'N' formats.
Changed in version 3.6: Added support for the 'e ' format.
Notes:

(1) The '? ' conversion code corresponds to the _Bool type defined by C99. If this type is not available, it is
simulated using a char. In standard mode, it is always represented by one byte.

(2) When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__ () method then that method is called to convert the argument to an integer before packing.

Changed in version 3.2: Use of the __index__ () method for non-integers is new in 3.2.

(3) The 'n' and 'N' conversion codes are only available for the native size (selected as the default or with the
'@ ' byte order character). For the standard size, you can use whichever of the other integer formats fits your
application.

(4) Forthe 'f£', 'd' and 'e' conversion codes, the packed representation uses the IEEE 754 binary32, binary64
or binary16 format (for '£', 'd' or 'e' respectively), regardless of the floating-point format used by the
platform.

7.1. struct — Interpret bytes as packed binary data 145

The Python Library Reference, Release 3.7.15

(5) The 'P' format character is only available for the native byte ordering (selected as the default or with the '@’
byte order character). The byte order character '=" chooses to use little- or big-endian ordering based on the
host system. The struct module does not interpret this as native ordering, so the 'P ' format is not available.

(6) The IEEE 754 binary16 “half precision” type was introduced in the 2008 revision of the IEEE 754 standard. It
has a sign bit, a 5-bit exponent and 11-bit precision (with 10 bits explicitly stored), and can represent numbers
between approximately 6.1e-05 and 6.5e+04 at full precision. This type is not widely supported by C
compilers: on a typical machine, an unsigned short can be used for storage, but not for math operations. See
the Wikipedia page on the half-precision floating-point format for more information.

A format character may be preceded by an integral repeat count. For example, the format string ' 4h ' means exactly
the same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ' s ' format character, the count is interpreted as the length of the bytes, not a repeat count like for the other
format characters; for example, ' 10s ' means a single 10-byte string, while ' 10c ' means 10 characters. If a count
is not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as appropriate to make
it fit. For unpacking, the resulting bytes object always has exactly the specified number of bytes. As a special case,
'0s ' means a single, empty string (while ' Oc' means O characters).

When packing a value x using one of the integer formats ('b', 'B', 'h', 'H', "i"','I',"1','L', 'q", 'Q"),
if x is outside the valid range for that format then st ruct . error is raised.

Changed in version 3.1: In 3.0, some of the integer formats wrapped out-of-range values and raised Depreca—
tionWarning instead of struct.error.

The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is smaller. The bytes
of the string follow. If the string passed in to pack () is too long (longer than the count minus 1), only the leading
count—1 bytes of the string are stored. If the string is shorter than count -1, it is padded with null bytes so that
exactly count bytes in all are used. Note that for unpack (), the 'p' format character consumes count bytes, but
that the string returned can never contain more than 255 bytes.

For the ' ?' format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either O or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import *

>>> pack('hhl', 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize('hhl")

8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = b'raymond \x32\x12\x08\x01\x08"
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple

>>> Student = namedtuple('Student', 'name serialnum school gradelevel')
>>> Student._make (unpack ('<10sHHb', record))
Student (name=b'raymond ', serialnum=4658, school=264, gradelevel=8)

146 Chapter 7. Binary Data Services

https://en.wikipedia.org/wiki/IEEE_floating_point#IEEE_754-2008
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

The Python Library Reference, Release 3.7.15

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment require-

ments is different:

>>> pack('ci', b'*', 0x12131415)
b'*\x00\x00\x00\x12\x13\x14\x15"
>>> pack('ic', 0x12131415, b'*")
b'\x12\x13\x14\x15*"'

>>> calcsize('ci'")

8

>>> calcsize('ic')

5

The following format ' 11h01 "' specifies two pad bytes at the end, assuming longs are aligned on 4-byte boundaries:

>>> pack('11h01', 1, 2, 3)

b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

This only works when native size and alignment are in effect; standard size and alignment does not enforce any

alignment.

See also:

Module array Packed binary storage of homogeneous data.

Module xdrl1ib Packing and unpacking of XDR data.

7.1.3 Classes

The st ruct module also defines the following type:

class struct.Struct (format)

Return a new Struct object which writes and reads binary data according to the format string format. Creating
a Struct object once and calling its methods is more efficient than calling the st ruct functions with the same
format since the format string only needs to be compiled once.

Note: The compiled versions of the most recent format strings passed to St ruct and the module-level
functions are cached, so programs that use only a few format strings needn’t worry about reusing a single

Struct instance.

Compiled Struct objects support the following methods and attributes:

pack (vi,v2,...)

Identical to the pack () function, using the compiled format. (1len (result) will equal size.)

pack_into (buffer, offset, vi, v2, ...)

Identical to the pack_into () function, using the compiled format.

unpack (buffer)

Identical to the unpack () function, using the compiled format. The buffer’s size in bytes must equal

size.

unpack_£from (buffer, offset=0)

Identical to the unpack_ from () function, using the compiled format. The buffer’s size in bytes, minus

offset, must be at least size.

iter_unpack (buffer)

Identical to the i ter_unpack () function, using the compiled format. The buffer’s size in bytes must

be a multiple of size.
New in version 3.4.

format

The format string used to construct this Struct object.

7.1. struct — Interpret bytes as packed binary data 147

The Python Library Reference, Release 3.7.15

Changed in version 3.7: The format string type is now st r instead of bytes.

size
The calculated size of the struct (and hence of the bytes object produced by the pack () method) cor-
responding to format.

7.2 codecs — Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry, which manages the codec and error handling lookup process. Most standard codecs
are text encodings, which encode text to bytes, but there are also codecs provided that encode text to text, and bytes
to bytes. Custom codecs may encode and decode between arbitrary types, but some module features are restricted to
use specifically with fext encodings, or with codecs that encode to bytes.

The module defines the following functions for encoding and decoding with any codec:

codecs . encode (0bj, encoding="utf-8', errors='strict')
Encodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handleris ' st rict ' meaning
that encoding errors raise ValueError (or a more codec specific subclass, such as UnicodeEncodeEr—
ror). Refer to Codec Base Classes for more information on codec error handling.

codecs .decode (0bj, encoding="utf-8', errors='strict')
Decodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is ' st rict ' meaning
that decoding errors raise ValueError (or a more codec specific subclass, such as UnicodeDecodeEr—
ror). Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

codecs . lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no CodecInfo objectisfound, a LookupError israised. Otherwise, the CodecInfo object
is stored in the cache and returned to the caller.

class codecs.CodecInfo (encode, decode, streamreader=None, streamwriter=None, incrementalen-

coder=None, incrementaldecoder=None, name=None)
Codec details when looking up the codec registry. The constructor arguments are stored in attributes of the

same name:

name
The name of the encoding.

encode

decode
The stateless encoding and decoding functions. These must be functions or methods which have the
same interface as the encode () and decode () methods of Codec instances (see Codec Interface).
The functions or methods are expected to work in a stateless mode.

incrementalencoder

incrementaldecoder
Incremental encoder and decoder classes or factory functions. These have to provide the interface defined
by the base classes TncrementalEncoder and IncrementalDecoder, respectively. Incremen-
tal codecs can maintain state.

streamwriter

148 Chapter 7. Binary Data Services

https://github.com/python/cpython/tree/3.7/Lib/codecs.py

The Python Library Reference, Release 3.7.15

streamreader
Stream writer and reader classes or factory functions. These have to provide the interface defined by the
base classes St reamiriter and St reamReader, respectively. Stream codecs can maintain state.

To simplify access to the various codec components, the module provides these additional functions which use
lookup () for the codec lookup:

codecs .getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs .getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

codecs.getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs .getreader (encoding)
Look up the codec for the given encoding and return its St reamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)
Look up the codec for the given encoding and return its St reamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.
Custom codecs are made available by registering a suitable codec search function:

codecs.register (search_function)
Register a codec search function. Search functions are expected to take one argument, being the encoding
name in all lower case letters, and return a Codec Info object. In case a search function cannot find a given
encoding, it should return None.

Note: Search function registration is not currently reversible, which may cause problems in some cases, such
as unit testing or module reloading.

While the builtin open () and the associated i o module are the recommended approach for working with encoded
text files, this module provides additional utility functions and classes that allow the use of a wider range of codecs
when working with binary files:

codecs . open (filename, mode='r', encoding=None, errors='strict’, buffering=1)
Open an encoded file using the given mode and return an instance of St reamReadeririter, providing
transparent encoding/decoding. The default file mode is ' r ', meaning to open the file in read mode.

Note: Underlying encoded files are always opened in binary mode. No automatic conversion of '\n' is
done on reading and writing. The mode argument may be any binary mode acceptable to the built-in open ()
function; the 'b' is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and decodes
from bytes is allowed, and the data types supported by the file methods depend on the codec used.

7.2. codecs — Codec registry and base classes 149

The Python Library Reference, Release 3.7.15

errors may be given to define the error handling. It defaults to 'strict ' which causes a ValueError to
be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to line buffered.

codecs .EncodedFile (file, data_encoding, file_encoding=None, errors='strict’)
Return a St reamRecoder instance, a wrapped version of file which provides transparent transcoding. The
original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data_encoding and then written to the original
file as bytes using file_encoding. Bytes read from the original file are decoded according to file_encoding, and
the result is encoded using data_encoding.

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to 'strict', which causes ValueError to
be raised in case an encoding error occurs.

codecs.iterencode (iterator, encoding, errors='strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental encoder.

This function requires that the codec accept text st r objects to encode. Therefore it does not support bytes-
to-bytes encoders such as base64_codec.

codecs.iterdecode (iterator, encoding, errors='strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental decoder.

This function requires that the codec accept by tes objects to decode. Therefore it does not support text-to-
text encoders such as rot_13, although rot_ 13 may be used equivalently with i terencode ().

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

codecs .BOM

codecs .BOM_BE

codecs .BOM_LE

codecs .BOM_UTF8

codecs.BOM_UTF16

codecs.BOM_UTF16_BE

codecs.BOM_UTF16_LE

codecs.BOM_UTF32

codecs.BOM_UTF32_BE

codecs.BOM_UTF32_LE
These constants define various byte sequences, being Unicode byte order marks (BOMs) for several encod-
ings. They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and in UTF-8 as
a Unicode signature. BOM_UTF 16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the plat-
form’s native byte order, BOM is an alias for BOM_UTF'1 6, BOM_LE for BOM_UTF16_LE and BOM_BE for
BOM_UTF16_BE. The others represent the BOM in UTF-8 and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecs module defines a set of base classes which define the interfaces for working with codec objects, and
can also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols. Codec authors also need to define how the codec will handle encoding and decoding
errors.

150 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.15

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by accepting the
errors string argument. The following string values are defined and implemented by all standard Python codecs:

Value Meaning

'strict' | Raise UnicodeError (or a subclass); this is the default. Implemented in
strict_errors ().

'ignore' | Ignore the malformed data and continue without further notice. Implemented in
ignore_errors ().

The following error handlers are only applicable to text encodings:

Value Meaning

're- Replace with a suitable replacement marker; Python will use the official U+FFFD REPLACE-

place' MENT CHARACTER for the built-in codecs on decoding, and ‘?” on encoding. Implemented in
replace_errors().

'xmlchart Replace with the appropriate XML character reference (only for encoding). Implemented in

refre- xmlcharrefreplace_errors().

place’

'back- Replace with backslashed escape sequences. Implemented in backslashre-

slashre-| place_errors().

place’

'namere-| Replace with \N{ ...} escape sequences (only for encoding). Implemented in namere-

place' place_errors ().

'sur— On decoding, replace byte with individual surrogate code ranging from U+DC80 to U+DCFF. This

roga- code will then be turned back into the same byte when the ' surrogateescape' error handler

teescape| is used when encoding the data. (See PEP 383 for more.)

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning
'surro- utf-8, utf-16, utf-32, utf-16-be, | Allow encoding and decoding of surrogate codes. These
gatepass'| utf-16-le, utf-32-be, utf-32-le codecs normally treat the presence of surrogates as an error.

New in version 3.1: The 'surrogateescape' and 'surrogatepass' error handlers.

Changed in version 3.4: The ' surrogatepass' error handlers now works with utf-16* and utf-32* codecs.

New in version 3.5: The 'namereplace' error handler.

Changed in version 3.5: The 'backslashreplace' error handlers now works with decoding and translating.

The set of allowed values can be extended by registering a new named error handler:

codecs.register_error (name, error_handler)
Register the error handling function error_handler under the name name. The error_handler argument will be
called during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding, error_handler will be called with a UnicodeEncodeError instance, which contains infor-

mation

about the location of the error. The error handler must either raise this or a different exception, or

return a tuple with a replacement for the unencodable part of the input and a position where encoding should
continue. The replacement may be either st or bytes. If the replacement is bytes, the encoder will simply
copy them into the output buffer. If the replacement is a string, the encoder will encode the replacement.
Encoding continues on original input at the specified position. Negative position values will be treated as being

relative

to the end of the input string. If the resulting position is out of bound an TndexError will be raised.

Decoding and translating works similarly, except UnicodeDecodeError or UnicodeTranslateEr—
ror will be passed to the handler and that the replacement from the error handler will be put into the output

directly

7.2. codecs — Codec registry and base classes

151

https://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.7.15

Previously registered error handlers (including the standard error handlers) can be looked up by name:

codecs.lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.
The following standard error handlers are also made available as module level functions:

codecs.strict_errors (exception)
Implements the 'strict ' error handling: each encoding or decoding error raises a UnicodeError.

codecs.replace_errors (exception)
Implements the ' replace' error handling (for fext encodings only): substitutes ' 2 ' for encoding errors (to
be encoded by the codec), and ' \ufffd' (the Unicode replacement character) for decoding errors.

codecs.ignore_errors (exception)
Implements the ' ignore' error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

codecs.xmlcharrefreplace_errors (exception)
Implements the 'xmlcharrefreplace"' error handling (for encoding with text encodings only): the un-
encodable character is replaced by an appropriate XML character reference.

codecs .backslashreplace_errors (exception)
Implements the 'backslashreplace' error handling (for zext encodings only): malformed data is re-
placed by a backslashed escape sequence.

codecs.namereplace_errors (exception)
Implements the 'namereplace’ error handling (for encoding with fext encodings only): the unencodable
character is replaced by a \N{ . . . } escape sequence.

New in version 3.5.

Stateless Encoding and Decoding

The base Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

Codec.encode (input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). For instance, text encoding
converts a string object to a bytes object using a particular character set encoding (e.g., cp1252 or iso-—
8859-1).

The errors argument defines the error handling to apply. It defaults to 'strict ' handling.

The method may not store state in the Codec instance. Use St reamiriter for codecs which have to keep
state in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in
this situation.

Codec.decode (input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). For instance, for a rext encoding,
decoding converts a bytes object encoded using a particular character set encoding to a string object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the read-only
buffer interface — for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to 'strict ' handling.

The method may not store state in the Codec instance. Use St reamReader for codecs which have to keep
state in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in
this situation.

152 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.15

Incremental Encoding and Decoding

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremen-
tal encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode ()/decode () method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode ()/decode () method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following methods
which every incremental encoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalEncoder (errors='strict')
Constructor for an ITncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The TncrementalEncoder may implement different error handling schemes by providing the errors key-
word argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the TncrementalEn—
coder object.

encode (Object[, final])
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode () final must be true (the default is false).

reset ()
Reset the encoder to the initial state. The output is discarded: call .encode (object, fi-
nal=True), passing an empty byte or text string if necessary, to reset the encoder and to get the
output.

getstate ()
Return the current state of the encoder which must be an integer. The implementation should make sure
that 0 is the most common state. (States that are more complicated than integers can be converted into
an integer by marshaling/pickling the state and encoding the bytes of the resulting string into an integer.)

setstate (state)
Set the state of the encoder to state. state must be an encoder state returned by getstate ().

IncrementalDecoder Objects

The TncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder (errors='strict')
Constructor for an TncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors key-
word argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the TncrementalDe—
coder object.

7.2. codecs — Codec registry and base classes 153

The Python Library Reference, Release 3.7.15

decode (object[, final])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode () final must be true (the default is false). If final is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

getstate ()

Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional state
info. (The implementation should make sure that O is the most common additional state info.) If this
additional state info is O it must be possible to set the decoder to the state which has no input buffered
and 0 as the additional state info, so that feeding the previously buffered input to the decoder returns it
to the previous state without producing any output. (Additional state info that is more complicated than
integers can be converted into an integer by marshaling/pickling the info and encoding the bytes of the
resulting string into an integer.)

setstate (state)
Set the state of the decoder to state. state must be a decoder state returned by getstate ().

Stream Encoding and Decoding

The Streamiriter and St reamReader classes provide generic working interfaces which can be used to im-
plement new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The StreamiWriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream, errors='strict’)

Constructor for a St reamiri t er instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate for the
specific codec.

The St reamiriter may implement different error handling schemes by providing the errors keyword ar-
gument. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes
it possible to switch between different error handling strategies during the lifetime of the St reamiriter
object.

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method). The
standard bytes-to-bytes codecs do not support this method.

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

154

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.15

In addition to the above methods, the St reamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The St reamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream, errors='strict')
Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate for the
specific codec.

The St reamReader may implement different error handling schemes by providing the errors keyword ar-
gument. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes
it possible to switch between diftferent error handling strategies during the lifetime of the St reamReader
object.

The set of allowed values for the errors argument can be extended with register error ().

read ([size[, chars[, ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read () method
will never return more data than requested, but it might return less, if there is not enough available.

The size argument indicates the approximate maximum number of encoded bytes or code points to read
for decoding. The decoder can modify this setting as appropriate. The default value -1 indicates to read
and decode as much as possible. This parameter is intended to prevent having to decode huge files in one
step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are decoding
errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are
available on the stream, these should be read too.

readline ([size[, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s read () method.
If keepends is false line-endings will be stripped from the lines returned.

readlines ([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decode () method and are included in the list entries
if keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

7.2. codecs — Codec registry and base classes 155

The Python Library Reference, Release 3.7.15

StreamReaderWriter Objects

The St reamReaderWriter is a convenience class that allows wrapping streams which work in both read and
write modes.

The design is such that one can use the factory functions returned by the 7 ook up () function to construct the instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors='strict')
Creates a St reamReaderWriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the St reamReader and St reamiriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of St reamReader and StreamiWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The St reamRecoder translates data from one encoding to another, which is sometimes useful when dealing with
different encoding environments.

The design is such that one can use the factory functions returned by the Zookup () function to construct the instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors='strict’)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work on
the frontend — the data visible to code calling read () and write (), while Reader and Writer work on the
backend — the data in stream.

You can use these objects to do transparent transcodings, e.g., from Latin-1 to UTF-8 and back.
The stream argument must be a file-like object.

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must be factory
functions or classes providing objects of the St reamReader and St reamiriter interface respectively.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of St reamReader and St reamWriter classes.
They inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range 0x0-0x10FFFF. (See PEP 393 for more details
about the implementation.) Once a string object is used outside of CPU and memory, endianness and how these
arrays are stored as bytes become an issue. As with other codecs, serialising a string into a sequence of bytes is
known as encoding, and recreating the string from the sequence of bytes is known as decoding. There are a variety
of different text serialisation codecs, which are collectivity referred to as fext encodings.

The simplest text encoding (called 'latin-1"' or 'iso-8859-1") maps the code points 0-255 to the bytes
0x0-0xff, which means that a string object that contains code points above U+00FF can’t be encoded with this
codec. Doing so will raise a UnicodeEncodeError that looks like the following (although the details of the
error message may differ): UnicodeEncodeError: 'latin-1' codec can't encode character
'\ul234' in position 3: ordinal not in range (256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these code points are mapped to the bytes 0x0—0x £ £. To see how this is done simply open e.g.
encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string constant
with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and straight-
forward way that can store each Unicode code point, is to store each code point as four consecutive bytes. There are

156 Chapter 7. Binary Data Services

https://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.7.15

two possibilities: store the bytes in big endian or in little endian order. These two encodings are called UTF-32-BE
and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE on a little endian machine
you will always have to swap bytes on encoding and decoding. UTF-32 avoids this problem: bytes will always be in
natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have to be swapped
though. To be able to detect the endianness of a UTF-16 or UTF-32 byte sequence, there’s the so called BOM
(“Byte Order Mark™). This is the Unicode character U+FEFF. This character can be prepended to every UTF—-16
or UTF-32 byte sequence. The byte swapped version of this character (OxFFFE) is an illegal character that may
not appear in a Unicode text. So when the first character in an UTF—16 or UTF—-32 byte sequence appears to be a
U+FFFE the bytes have to be swapped on decoding. Unfortunately the character U+FEFF had a second purpose as
a ZERO WIDTH NO-BREAK SPACE: a character that has no width and doesn’t allow a word to be split. It can
e.g. be used to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF asa ZERO WIDTH NO-BREAK
SPACE has been deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode software
still must be able to handle U+FEFF in both roles: as a BOM it’s a device to determine the storage layout of the
encoded bytes, and vanishes once the byte sequence has been decoded into a string; as a ZERO WIDTH NO-BREAK
SPACE it’s a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to
four 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

Range Encoding

U-00000000 ... U-0000007F | OXXXXXXX

U-00000080 ... U-000007FF | 110xxxxx 10XXxXXXxX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10XXXXXX
U-00010000 ... U-0010FFFF | 11110xxx 10xxxxxx 10xxxxxXx 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s the
first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string.
Each charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-8
byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which a
UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls "ut f-8-sig") for
its Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM (which looks
like this as a byte sequence: Oxef, Oxbb, Oxbf) is written. As it’s rather improbable that any charmap encoded
file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in is0-8859-1), this increases the probability that a ut £-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte sequence,
but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write Oxef, Oxbb,
Oxbf as the first three bytes to the file. On decoding ut £-8-s1ig will skip those three bytes if they appear as the
first three bytes in the file. In UTF-8, the use of the BOM is discouraged and should generally be avoided.

7.2. codecs — Codec registry and base classes 157

The Python Library Reference, Release 3.7.15

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore,
e.g. 'utf£-8"' isavalid alias for the 'ut£_8"' codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to improve
performance. These optimization opportunities are only recognized by CPython for a limited set of (case insensitive)
aliases: utf-8, utf8, latin-1, latin1, is0-8859-1, is08859-1, mbcs (Windows only), ascii, us-ascii, utf-16, utf16, utf-32,
utf32, and the same using underscores instead of dashes. Using alternative aliases for these encodings may result in
slower execution.

Changed in version 3.6: Optimization opportunity recognized for us-ascii.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

* a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control char-
acters with additional graphic characters

¢ an IBM EBCDIC code page
 an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
big5Shkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp273 273, 1BM273, csIBM273 German
New in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP- | Western Europe
CH, IBM500
cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM&65 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai

Continued on next page

158

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.15

Table 1 - continued from previous page

Codec Aliases Languages
cp875 Greek

cp932 932, ms932, mskanji, ms-kanji Japanese

cp949 949, ms949, uhc Korean

cp950 950, ms950 Traditional Chinese
cpl1006 Urdu

cpl026 ibm1026 Turkish

cpll25 1125, ibm1125, cp866u, ruscii Ukrainian

New in version 3.4.
cpl140 ibm1140 Western Europe
cpl250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Macedo-

nian, Russian, Serbian
cpl252 windows-1252 Western Europe
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic languages
cpl258 windows-1258 Vietnamese
cp65001 Windows only: Windows UTF-8

(CP_UTF38)

New in version 3.3.
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c- | Korean

5601, ks_c-5601-1987, ksx1001,
ks_x-1001
gb2312 chinese, csis058gb231280, euc- | Simplified Chinese
cn, euccn, eucgb2312-cn, gb2312-
1980, gb2312-80, iso-ir-58
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
i502022_jp ¢sis02022]jp, 1502022 jp, is0-2022- | Japanese
Jp
1502022 _jp_1 1502022jp-1, is0-2022-jp-1 Japanese

i502022_jp_2

i502022jp-2, i50-2022-ip-2

Japanese, Korean, Simplified Chi-
nese, Western Europe, Greek

1502022_jp_2004

1502022jp-2004,
2004

is0-2022-jp-

Japanese

1502022_jp_3 1502022jp-3, is0-2022-jp-3 Japanese
1502022_jp_ext 1502022 jp-ext, is0-2022-jp-ext Japanese
1502022_Kkr csis02022kr, is02022Kr, is0-2022- | Korean
kr
latin_1 is0-8859-1, 1s08859-1, 8859, | Western Europe
cp819, latin, latinl, L1
1508859_2 150-8859-2, latin2, L2 Central and Eastern Europe
1508859_3 1s0-8859-3, latin3, L3 Esperanto, Maltese
1508859_4 150-8859-4, latind, L4 Baltic languages
1508859_5 150-8859-5, cyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
1508859_6 150-8859-6, arabic Arabic
1508859_7 150-8859-7, greek, greek8 Greek

Continued on next page

7.2. codecs — Codec registry and base classes

159

The Python Library Reference, Release 3.7.15

Table 1 - continued from previous page

Codec Aliases Languages
1508859_8 150-8859-8, hebrew Hebrew
is08859_9 is0-8859-9, latin5, L5 Turkish
1508859_10 1s0-8859-10, latin6, L6 Nordic languages
1508859_11 is0-8859-11, thai Thai languages
1508859_13 1s0-8859-13, latin7, L7 Baltic languages
1508859_14 150-8859-14, latin8, L8 Celtic languages
1508859_15 1s0-8859-15, latin9, L9 Western Europe
1508859_16 150-8859-16, latin10, L10 South-Eastern Europe
johab cpl361, ms1361 Korean
koi8_r Russian
koi8_t Tajik

New in version 3.5.
koi8 u Ukrainian
kz1048 kz_1048, strk1048_2002, rk1048 | Kazakh

New in version 3.5.

mac_cyrillic maccyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian

mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and Eastern Europe
mac_roman macroman, macintosh Western Europe
mac_turkish macturkish Turkish
ptcpl54 csptepl54, pt154, cpl54, cyrillic- | Kazakh

asian
shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, | Japanese

s_jisx0213
utf 32 U32, utf32 all languages
utf_32_be UTF-32BE all languages
utf_32 le UTF-32LE all languages
utf_16 Ul16, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8 all languages
utf_8_sig all languages

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points (U+D800-U+DFFF)
to be encoded. The utf-32* decoders no longer decode byte sequences that correspond to surrogate code points.

160 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.15

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python. These
are listed in the tables below based on the expected input and output types (note that while text encodings are the
most common use case for codecs, the underlying codec infrastructure supports arbitrary data transforms rather than
just text encodings). For asymmetric codecs, the stated meaning describes the encoding direction.

Text Encodings

The following codecs provide st r to bytes encoding and bytes-like object to st r decoding, similar to the Unicode
text encodings.

Codec Aliases Meaning

idna Implement RFC 3490, see also
encodings.idna. Only er—
rors="strict"' is supported.
mbcs ansi, dbcs Windows only: Encode the
operand according to the ANSI
codepage (CP_ACP).

oem Windows only: Encode the
operand according to the OEM
codepage (CP_OEMCP).

New in version 3.6.

palmos Encoding of PalmOS 3.5.

punycode Implement RFC 3492. Stateful
codecs are not supported.

raw_unicode_escape Latin-1 encoding with \uXXXX

and \UXXXXXXXX for other code
points. Existing backslashes are
not escaped in any way. It is used
in the Python pickle protocol.
undefined Raise an exception for all conver-
sions, even empty strings. The er-
ror handler is ignored.
unicode_escape Encoding suitable as the contents
of a Unicode literal in ASCII-
encoded Python source code, ex-
cept that quotes are not escaped.
Decode from Latin-1 source code.
Beware that Python source code
actually uses UTF-8 by default.
unicode_internal Return the internal representation
of the operand. Stateful codecs are
not supported.

Deprecated since version 3.3: This
representation is obsoleted by PEP
393.

7.2. codecs — Codec registry and base classes 161

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html
https://www.python.org/dev/peps/pep-0393
https://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.7.15

Binary Transforms

The following codecs provide binary transforms: bytes-like object to byt es mappings. They are not supported by
bytes.decode () (which only produces st r output).

Codec Aliases Meaning Encoder / decoder
base64_codec! | basebd, Convert the operand to multiline MIME base64 (the | base64.
base_64 result always includes a trailing '\n"). encodebytes () /
Changed in version 3.4: accepts any byfes-like object | base64.
as input for encoding and decoding decodebytes ()
bz2_codec bz2 Compress the operand using bz2. bz2.compress ()
/ bz2.
decompress ()
hex_codec hex Convert the operand to hexadecimal representation, binascii.
with two digits per byte. b2a_hex () /
binascii.
a’b_hex ()
quopri_codec quopri, Convert the operand to MIME quoted printable. quopri.
quoted- encode () with
printable, quotetabs=True
quoted_printable / quopri.
decode ()
uu_codec uu Convert the operand using uuencode. uu.encode () /
uu.decode ()
zlib_codec zip, zlib Compress the operand using gzip. z1ib.
compress () /
z1ib.
decompress ()

New in version 3.2: Restoration of the binary transforms.
Changed in version 3.4: Restoration of the aliases for the binary transforms.
Text Transforms

The following codec provides a text transform: a st r to str mapping. It is not supported by st r.encode ()
(which only produces bytes output).

Codec
rot_13

Aliases
rotl3

Meaning
Return the Caesar-cypher encryption of the operand.

New in version 3.2: Restoration of the rot_ 13 text transform.

Changed in version 3.4: Restoration of the rot 13 alias.

! In addition to bytes-like objects, "base64_codec" also accepts ASCII-only instances of st r for decoding

162 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.15

7.2.5 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and
stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name con-
taining non-ASCII characters (such as www.Alliancefrang¢aise.nu) is converted into an ASCII-compatible
encoding (ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain name is
then used in all places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host
fields, and so on. This conversion is carried out in the application; if possible invisible to the user: The application
should transparently convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode
before presenting them to the user.

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and ACE,
separating an input string into labels based on the separator characters defined in section 3.1 of RFC 3490 and
converting each label to ACE as required, and conversely separating an input byte string into labels based on the .
separator and converting any ACE labels found into unicode. Furthermore, the socket module transparently con-
verts Unicode host names to ACE, so that applications need not be concerned about converting host names themselves
when they pass them to the socket module. On top of that, modules that have host names as function parameters,
such as http.client and ftplib, accept Unicode host names (http.client then also transparently sends
an IDNA hostname in the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normalizations
on host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The
nameprep functions can be used directly if desired.

encodings.idna.nameprep (label)
Return the nameprepped version of /label. The implementation currently assumes query strings, so A1lowU—
nassignedis true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs — Windows ANSI codepage

This module implements the ANSI codepage (CP_ACP).
Availability: Windows only.
Changed in version 3.3: Support any error handler.

Changed in version 3.2: Before 3.2, the errors argument was ignored; ' replace' was always used to encode, and
"ignore' to decode.

7.2. codecs — Codec registry and base classes 163

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html
https://tools.ietf.org/html/rfc3490.html#section-3.1
https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3490.html

The Python Library Reference, Release 3.7.15

7.2.7 encodings.utf_8_sig— UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec. On encoding, a UTF-8 encoded BOM will be prepended to
the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream). On
decoding, an optional UTF-8 encoded BOM at the start of the data will be skipped.

164 Chapter 7. Binary Data Services

CHAPTER
EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, double-ended queues, and enumerations.

Python also provides some built-in data types, in particular, dict, 1ist, set and frozenset,and tuple. The
str class is used to hold Unicode strings, and the bytes and bytearray classes are used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

Source code: Lib/datetime.py

The datet ime module supplies classes for manipulating dates and times in both simple and complex ways. While
date and time arithmetic is supported, the focus of the implementation is on efficient attribute extraction for output
formatting and manipulation. For related functionality, see also the ¢ ime and calendar modules.

There are two kinds of date and time objects: “naive” and “aware”.

An aware object has sufficient knowledge of applicable algorithmic and political time adjustments, such as time zone
and daylight saving time information, to locate itself relative to other aware objects. An aware object is used to
represent a specific moment in time that is not open to interpretation’.

A naive object does not contain enough information to unambiguously locate itself relative to other date/time objects.
Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some other timezone is
purely up to the program, just like it is up to the program whether a particular number represents metres, miles, or
mass. Naive objects are easy to understand and to work with, at the cost of ignoring some aspects of reality.

For applications requiring aware objects, datet ime and time objects have an optional time zone information
attribute, t zinfo, that can be set to an instance of a subclass of the abstract ¢ zinfo class. These t zinfo objects
capture information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in
effect. Note that only one concrete ¢ zinfo class, the t imezone class, is supplied by the dat et ime module. The
t imezone class can represent simple timezones with fixed offset from UTC, such as UTC itself or North American
EST and EDT timezones. Supporting timezones at deeper levels of detail is up to the application. The rules for time
adjustment across the world are more political than rational, change frequently, and there is no standard suitable for
every application aside from UTC.

The datet ime module exports the following constants:

datetime.MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEARIS 1.

datetime .MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEARis 9999.

See also:

LIf, that is, we ignore the effects of Relativity

165

https://github.com/python/cpython/tree/3.7/Lib/datetime.py

The Python Library Reference, Release 3.7.15

Module calendar General calendar related functions.

Module time Time access and conversions.

8.1.1 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds
(there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond, and
tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second, mi—
crosecond,and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datet ime instances to microsecond
resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datet ime and t ime classes
to provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight
saving time).

class datetime.timezone
A class that implements the t zinfo abstract base class as a fixed offset from the UTC.

New in version 3.2.
Objects of these types are immutable.
Objects of the date type are always naive.

An object of type t ime or datet ime may be naive or aware. A datet ime object d is aware if d.tzinfo is
not None and d.tzinfo.utcoffset (d) does not return None. If d.tzinfois None,orif d.tzinfo is
notNone butd.tzinfo.utcoffset (d) returns None, d is naive. A t ime objecttis awareif t .tzinfo is
not Noneand t .tzinfo.utcoffset (None) does not return None. Otherwise, t is naive.

The distinction between naive and aware doesn’t apply to t imede1ta objects.

Subclass relationships:

object
timedelta
tzinfo
timezone
time
date
datetime

166 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

8.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0,

hours=0, weeks=0)
All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or

negative.
Only days, seconds and microseconds are stored internally. Arguments are converted to those units:
* A millisecond is converted to 1000 microseconds.
* A minute is converted to 60 seconds.
¢ An hour is converted to 3600 seconds.
* A week is converted to 7 days.
and days, seconds and microseconds are then normalized so that the representation is unique, with
* 0 <= microseconds < 1000000
e 0 <= seconds < 3600%*24 (the number of seconds in one day)
* —999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond using round-half-to-even
tiebreaker. If no argument is a float, the conversion and normalization processes are exact (no information is
lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example,

>>> from datetime import timedelta

>>> d = timedelta (microseconds=-1)

>>> (d.days, d.seconds, d.microseconds)
(=1, 86399, 999999)

Class attributes are:

timedelta.min
The most negative t imedelta object, timedelta (-999999999).

timedelta.max
The most positive timedelta object, timedelta (days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects,
timedelta (microseconds=1).

Note that, because of normalization, t imedelta.max > -timedelta.min. ~timedelta.max is not rep-
resentable as a t imede1ta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between 0 and 999999 inclusive

Supported operations:

8.1. datetime — Basic date and time types 167

The Python Library Reference, Release 3.7.15

Operation Result

tl = t2 + t3 Sum of 12 and £3. Afterwards /-2 == t3 and t/-13 == 12 are true. (1)

tl = t2 - t3 Difference of 12 and 3. Afterwards ¢t/ == 2 - t3 and 12 == tI + ¢3 are true. (1)(6)

tl = t2 * i or tl | Delta multiplied by an integer. Afterwards ¢/ // i ==12 is true, provided 1 != 0.

=1 * t2
In general, ¢t/ *i==1tl * (i-1) + ¢1 is true. (1)

tl = t2 * £ or tl | Delta multiplied by a float. The result is rounded to the nearest multiple of

= f * t2 timedelta.resolution using round-half-to-even.

f=1t2 / t3 Division (3) of overall duration #2 by interval unit 3. Returns a £1oat object.

tl = t2 / £ or tl | Delta divided by a float or an int. The result is rounded to the nearest multiple of

=t2 /1 timedelta.resolution using round-half-to-even.

tl = t2 // 1iortl | Theflooriscomputed and the remainder (if any) is thrown away. In the second case,

=t2 // t3 an integer is returned. (3)

tl = t2 % t3 The remainder is computed as a t imedelta object. (3)

q, r = divmod(tl, | Computes the quotient and the remainder: g = t1 // t2@3)andr = tl %

t2) t2. qisaninteger and ris a t imedelta object.

+t1 Returns a t imedelta object with the same value. (2)

-t1 equivalent to timedelta(-tl.days, -tl.seconds, -tl.microseconds), and to t1* -1.
(O[]

abs (t) equivalent to +7 when t .days >= 0,andto-fwhent.days < 0. (2)

str(t) Returns a string in the form [D day([s],][H]H:MM:SS[.UUUUUU], where
D is negative for negative t. (5)

repr (t) Returns a string representation of the t imede 1t a object as a constructor call with
canonical attribute values.

Notes:

(1) This is exact, but may overflow.

(2) This is exact, and cannot overflow.

(3) Division by O raises ZeroDivisionError

(4) -timedelta.max is not representable as a t imede 1 ta object.

(5) String representations of timedelta objects are normalized similarly to their internal representation. This
leads to somewhat unusual results for negative timedeltas. For example:

>>> print (_)
-1 day,

19:00:00

>>> timedelta (hours=-5)
datetime.timedelta (days=-1,

seconds=68400)

(6) The expression t2 - t3 will always be equal to the expression t2 +

(-t 3) except when t3 is equal to

timedelta.max;in that case the former will produce a result while the latter will overflow.

In addition to the operations listed above t imede 1t a objects support certain additions and subtractions with date
and datet ime objects (see below).

Changed in version 3.2: Floor division and true division of a t imedelta object by another t imedelta object
are now supported, as are remainder operations and the divmod () function. True division and multiplication of a
timedelta object by a f1loat object are now supported.

Comparisons of t imedelta objects are supported with the t imedelta object representing the smaller duration
considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the default
comparison by object address, when a t imede 1 t a object is compared to an object of a different type, TypeError
is raised unless the comparison is == or ! =. The latter cases return F'alse or True, respectively.

t imedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts, a
t imedelta object is considered to be true if and only if it isn’t equal to t imedelta (0).

Instance methods:

168

Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

timedelta.total_seconds ()
Return the total number of seconds contained in the duration. Equivalent to td /
timedelta (seconds=1). For interval units other than seconds, use the division form directly
(e.g. td / timedelta (microseconds=1)).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose mi-
crosecond accuracy.

New in version 3.2.

Example usage:

>>> from datetime import timedelta

>>> year = timedelta (days=365)

>>> another_year = timedelta (weeks=40, days=84, hours=23,

c minutes=50, seconds=600) # adds up to 365 days
>>> year.total_seconds ()

31536000.0

>>> year == another_year
True

>>> ten_years = 10 * year

>>> ten_years, ten_years.days // 365

(datetime.timedelta (days=3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, nine_years.days // 365

(datetime.timedelta (days=3285), 9)

>>> three_years = nine_years // 3

>>> three_years, three_years.days // 365
(datetime.timedelta (days=1095), 3)

>>> abs (three_years - ten_years) == 2 * three_years + year
True

8.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called day
number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s
book Calendrical Calculations, where it’s the base calendar for all computations. See the book for algorithms for
converting between proleptic Gregorian ordinals and many other calendar systems.

class datetime.date (year, month, day)
All arguments are required. Arguments must be integers in the following ranges:

e MINYEAR <= year <= MAXYEAR
e 1 <= month <= 12
e 1 <= day <= number of days in the given month and year
If an argument outside those ranges is given, Va lueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date. This is equivalent to date . fromtimestamp (time.time ()).

classmethod date.fromtimestamp (fimestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by t ime. t ime (). This
may raise OverflowError, if the timestamp is out of the range of values supported by the platform C
localtime () function, and OSError on localtime () failure. It's common for this to be restricted to
years from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of
a timestamp, leap seconds are ignored by fromt imestamp ().

8.1. datetime — Basic date and time types 169

The Python Library Reference, Release 3.7.15

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C localtime () function. Raise OSError instead of Val-
ueError on localtime () failure.

classmethod date.fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.
ValueError is raised unless 1 <= ordinal <= date.max.toordinal (). For any date d,
date.fromordinal (d.toordinal()) ==

classmethod date.fromisoformat (date_string)
Return a date corresponding to a date_string in the format emitted by date. isoformat (). Specifically,
this function supports strings in the format(s) YYYY-MM-DD.

Caution: This does not support parsing arbitrary ISO 8601 strings - it is only intended as the inverse
operation of date.isoformat ().

New in version 3.7.
Class attributes:

date.min
The earliest representable date, date (MINYEAR, 1, 1).

date.max
The latest representable date, date (MAXYEAR, 12, 31).

date.resolution
The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year
Between MINYEAR and MAXYEAR inclusive.

date.month
Between 1 and 12 inclusive.

date.day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result
date2 = datel + timedelta | date?is timedelta.days days removed from datel. (1)
date2 = datel - timedelta | Computes date? such that date2 + timedelta == datel. (2)
timedelta = datel - date2 | (3)
datel < date?2 datel is considered less than date2 when datel precedes date2 in time.
“)
Notes:

(1) date2? is moved forward in time if timedelta.days > 0, or backward if timedelta.days < O.
Afterward date2 - datel == timedelta.days. timedelta.seconds and timedelta.
microseconds are ignored. OverflowError is raised if date2.year would be smaller than
MINYEAR or larger than MAXYEAR.

(2) timedelta.seconds and timedelta.microseconds are ignored.

(3) This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== datel after.

(4) In other words, datel < date?2 if and only if datel.toordinal () < date2.toordinal ().
Date comparison raises TypeError if the other comparand isn’t also a date object. However, Not Im—
plemented is returned instead if the other comparand has a timetuple () attribute. This hook gives

170 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

other kinds of date objects a chance at implementing mixed-type comparison. If not, when a date object
is compared to an object of a different type, TypeError is raised unless the comparison is == or !=. The
latter cases return False or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all dat e objects are considered to be true.
Instance methods:

date.replace (year=self.year, month=self.month, day=self.day)
Return a date with the same value, except for those parameters given new values by whichever keyword argu-
ments are specified. For example, if d == date (2002, 12, 31),thend.replace(day=26) ==
date (2002, 12, 26).

date.timetuple ()
Return a t ime. st ruct_t ime such as returned by t ime. localtime (). The hours, minutes and sec-
onds are 0, and the DST flagis -1. d.timetuple () isequivalentto time.struct_time ((d.year,
d.month, d.day, 0, 0, 0, d.weekday (), yday, -1)),whereyday = d.toordinal ()
- date(d.year, 1, 1).toordinal () + 1 isthe day number within the current year starting with
1 for January Ist.

date.toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
objectd, date.fromordinal (d.toordinal ()) ==

date.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4) .weekday () == 2,a Wednesday. See also i soweekday ().

date.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4) .isoweekday () == 3, a Wednesday. See also weekday (), isocalendar ().

date.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See https://www.staff.science.uu.nl/
~gent0113/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so that date (2003, 12, 29).isocalendar() == (2004, 1,
1) and date (2004, 1, 4).isocalendar() == (2004, 1, 7).

date.isoformat ()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD'. For example, date (2002,
12, 4) .isoformat () == '2002-12-04".

date.__str__ ()
For a date d, str (d) is equivalent to d.isoformat ().

date.ctime ()
Return a string representing the date, for example date (2002, 12, 4).ctime() == 'Wed
Dec 4 00:00:00 2002'. d.ctime () is equivalent to time.ctime (time.mktime (d.
timetuple ())) on platforms where the native C ctime () function (which time.ctime () invokes,
but which date. ctime () does not invoke) conforms to the C standard.

date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. For a complete list of formatting directives, see strftime() and strptime()
Behavior.

date.__format__ (format)
Same as date. strftime (). This makes it possible to specify a format string for a dat e object in format-

8.1. datetime — Basic date and time types 171

https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm
https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.7.15

ted string literals and when using st r. format (). For a complete list of formatting directives, see strftime()
and strptime() Behavior.

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today ()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp (time.time ())
True

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

.. my_birthday = my_birthday.replace (year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)
>>> time_to_birthday.days

202

Example of working with date:

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> t = d.timetuple ()

>>> for i in t:

.. print (1)

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> ic = d.isocalendar ()

>>> for i in ic:

.. print (1)

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)
>>> d.isoformat ()

'2002-03-11"

>>> d.strftime ("%d/sm/%y")

'11/03/02"

>>> d.strftime ("$SA 2d. %B SY'")

'Monday 11. March 2002'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}.'.format (d, "day", "month")

'The day is 11, the month is March.'

172 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

8.1.4 datetime Objects

A datet ime object is a single object containing all the information from a date object and a t ime object. Like
a date object, datet ime assumes the current Gregorian calendar extended in both directions; like a time object,
datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

class datetime.datetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tz-
info=None, *, fold=0)
The year, month and day arguments are required. #zinfo may be None, or an instance of a t zinfo subclass.
The remaining arguments must be integers in the following ranges:

e MINYEAR <= year <= MAXYEAR,

e 1 <= month <= 12,

¢ 1 <= day <= number of days in the given month and year,
<= hour < 24,

<= minute < 60,

<= second < 60,

o o o O

<= microsecond < 1000000,
e fold in [0, 1].
If an argument outside those ranges is given, ValueError is raised.
New in version 3.6: Added the fold argument.
Other constructors, all class methods:

classmethod datetime.today ()
Return the current local datetime, with tzinfo None. This is equivalent to datetime.
fromtimestamp (time.time ()). See also now (), fromt imestamp ().

classmethod datetime.now (1z=None)
Return the current local date and time. If optional argument #z is None or not specified, this is like today (),
but, if possible, supplies more precision than can be gotten from going through a t ime. t ime () timestamp
(for example, this may be possible on platforms supplying the C gettimeofday () function).

If #z is not None, it must be an instance of a £ zinfo subclass, and the current date and time are con-
verted to #z’s time zone. In this case the result is equivalent to tz . fromutc (datetime.utcnow () .
replace (tzinfo=tz)). Seealso today (), utcnow /().

classmethod datetime.utcnow ()
Return the current UTC date and time, with t zinfo None. This is like now (), but returns the current
UTC date and time, as a naive datet ime object. An aware current UTC datetime can be obtained by calling
datetime.now (timezone.utc). See also now ().

classmethod datetime.fromtimestamp (timestamp, tz=None)
Return the local date and time corresponding to the POSIX timestamp, such as is returned by t ime . t ime ().
If optional argument #z is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returned dat et ime object is naive.

If 1z is not None, it must be an instance of a t z i n fo subclass, and the timestamp is converted to #z’s time zone.
In this case the resultis equivalenttot z . fromutc (datetime.utcfromtimestamp (timestamp) .
replace(tzinfo=tz)).

fromtimestamp () may raise OverflowError, if the timestamp is out of the range of values supported
by the platform C localtime () or gmtime () functions, and OSError on localtime () or gm—
time () failure. It’s common for this to be restricted to years in 1970 through 2038. Note that on non-POSIX
systems that include leap seconds in their notion of a timestamp, leap seconds are ignored by fromt imes—
tamp (), and then it’s possible to have two timestamps differing by a second that yield identical datet ime
objects. See also utcfromtimestamp ().

8.1. datetime — Basic date and time types 173

The Python Library Reference, Release 3.7.15

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C localtime () or gmtime () functions. Raise OSError
instead of ValueErroron localtime () or gmtime () failure.

Changed in version 3.6: fromtimestamp () may return instances with fold setto 1.

classmethod datetime.utcfromtimestamp (timestamp)
Return the UTC datet ime corresponding to the POSIX timestamp, with t zinfo None. This may raise
OverflowError, if the timestamp is out of the range of values supported by the platform C gmtime ()
function, and OSError on gmtime () failure. It’'s common for this to be restricted to years in 1970 through
2038.

To get an aware datet ime object, call fromtimestamp ():

’datetime.fromtimestamp(timestamp, timezone.utc)

On the POSIX compliant platforms, it is equivalent to the following expression:

’datetime(l970, 1, 1, tzinfo=timezone.utc) + timedelta (seconds=timestamp)

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR inclusive.

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C gmt ime () function. Raise OSErrorinstead of ValueError
on gmt ime () failure.

classmethod datetime.fromordinal (ordinal)
Return the dat et i me corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueErrorisraised unless 1 <= ordinal <= datetime.max.toordinal (). The hour,
minute, second and microsecond of the result are all 0, and t zinfois None.

classmethod datetime.combine (date, time, tzinfo=self.tzinfo)
Return a new datet ime object whose date components are equal to the given date object’s, and whose
time components are equal to the given t ime object’s. If the tzinfo argument is provided, its value is used to
set the t zinfo attribute of the result, otherwise the ¢ zin fo attribute of the time argument is used.

For any datetime objectd, d == datetime.combine(d.date(), d.time(), d.tzinfo).
If date is a datet ime object, its time components and t z1info attributes are ignored.

Changed in version 3.6: Added the #zinfo argument.

classmethod datetime.fromisoformat (date_string)
Return a dat et ime corresponding to a date_string in one of the formats emitted by date. isoformat ()
and datetime.isoformat (). Specifically, this function supports strings in the format(s) YYYY-MM—
DD[*HH[:MM[:SS[.£ff£[£££]]]] [+HH:MM[:SS[.££££f££f]]1]1], where * can match any single
character.

Caution: This does not support parsing arbitrary ISO 8601 strings - it is only intended as the inverse op-
erationof datetime.isoformat (). A more full-featured ISO 8601 parser, dateutil.parser.
isoparse is available in the third-party package dateutil.

New in version 3.7.

classmethod datetime.strptime (date_string, format)
Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime (* (time.strptime (date_string, format) [0:6])). ValueError is raised if
the date_string and format can’t be parsed by t ime. st rpt ime () or if it returns a value which isn’t a time
tuple. For a complete list of formatting directives, see strftime() and strptime() Behavior.

Class attributes:

datetime.min
The earliest representable datet ime, datetime (MINYEAR, 1, 1, tzinfo=None).

174 Chapter 8. Data Types

https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.isoparse

The Python Library Reference, Release 3.7.15

datetime.max
The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datetime objects,
timedelta (microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month
Between 1 and 12 inclusive.

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour
In range (24).

datetime.minute
In range (60).

datetime.second
In range (60).

datetime.microsecond
In range (1000000).

datetime.tzinfo
The object passed as the tzinfo argument to the datet ime constructor, or None if none was passed.

datetime.fold
In [0, 17]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The value O (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.

Supported operations:

Operation Result

datetime2 = datetimel + timedelta | (1)

datetime2 = datetimel - timedelta | (2)

timedelta = datetimel - datetime2 | (3)

datetimel < datetime?2 Compares datet ime to datetime. (4)

(1) datetime? is a duration of timedelta removed from datetime 1, moving forward in time if t imedelta.days
>0, or backward if t imedelta.days <0. The result has the same ¢ zinfo attribute as the input datetime,
and datetime?2 - datetimel == timedelta after. OverflowError israised if datetime2.year would be smaller
than MINYEAR or larger than MAXYEAR. Note that no time zone adjustments are done even if the input is an
aware object.

(2) Computes the datetime?2 such that datetime?2 + timedelta == datetimel. As for addition, the result has the same
tzinfo attribute as the input datetime, and no time zone adjustments are done even if the input is aware.

(3) Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same t zinfo attribute, the ¢ z1info attributes are ignored,
and the result is a t imedelta object # such that datetime2 + t == datetimel. No time zone
adjustments are done in this case.

8.1. datetime — Basic date and time types 175

The Python Library Reference, Release 3.7.15

If both are aware and have different t zinfo attributes, a—b acts as if a and b were first converted to naive
UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset()) - (b.
replace (tzinfo=None) - b.utcoffset ()) except that the implementation never overflows.

(4) datetimel is considered less than datetime2 when datetimel precedes datetime? in time.

If one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted.
For equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same ¢ z i n o attribute, the common t z i nfo attribute is ignored
and the base datetimes are compared. If both comparands are aware and have different t z1info attributes,
the comparands are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()).

Changed in version 3.3: Equality comparisons between naive and aware datet ime instances don't raise
TypeError.

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses,
datetime comparison normally raises TypeError if the other comparand isn’t also a datet ime object.
However, Not Implemented is returned instead if the other comparand has a timetuple () attribute.
This hook gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a
datet ime object is compared to an object of a different type, TypeError is raised unless the comparison
is == or !=. The latter cases return False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all datet ime objects are considered to
be true.

Instance methods:

datetime.date ()
Return date object with same year, month and day.

datetime.time ()
Return time object with same hour, minute, second, microsecond and fold. tzinfo is None. See also
method timetz ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.timetz ()
Return t i me object with same hour, minute, second, microsecond, fold, and tzinfo attributes. See also method
time ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.replace (year=self.year, month=self.month, day=self.day, hour=self.hour,
minute=self.minute, second=self.second, microsecond=self.microsecond, tz-
info=self.tzinfo, * fold=0)
Return a datetime with the same attributes, except for those attributes given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time data.

New in version 3.6: Added the fold argument.

datetime.astimezone (z=None)
Return a datetime object with new t zinfo attribute #z, adjusting the date and time data so the result is
the same UTC time as self, but in #Z’s local time.

If provided, 7z must be an instance of a t zinfo subclass, and its ut cof fset () and dst () methods must
not return None. If self is naive, it is presumed to represent time in the system timezone.

If called without arguments (or with t z=None) the system local timezone is assumed for the target timezone.
The . tzinfo attribute of the converted datetime instance will be set to an instance of timezone with the
zone name and offset obtained from the OS.

If self.tzinfois#z, self.astimezone (tz) is equal to self: no adjustment of date or time data is
performed. Else the result is local time in the timezone #z, representing the same UTC time as self: after astz

176 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

= dt.astimezone (tz),astz - astz.utcoffset () will have the same date and time data as dt
- dt.utcoffset ().

If you merely want to attach a time zone object #z to a datetime dt without adjustment of date and time data, use
dt.replace (tzinfo=tz). If you merely want to remove the time zone object from an aware datetime
dt without conversion of date and time data, use dt . replace (tzinfo=None).

Note that the default t zinfo. fromutc () method can be overridden in a t zinfo subclass to affect the
result returned by ast imezone (). Ignoring error cases, astimezone () acts like:

def astimezone (self, tz):
if self.tzinfo is tz:
return self
Convert self to UTIC, and attach the new time zone object.
utc = (self - self.utcoffset()) .replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc (utc)

Changed in version 3.3: #z now can be omitted.

Changed in version 3.6: The ast imezone () method can now be called on naive instances that are presumed
to represent system local time.

datetime.utcoffset ()
If tzinfois None, returns None, else returns self.tzinfo.utcoffset (self), and raises an ex-
ception if the latter doesn’t return None or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

datetime.dst ()
If tzinfois None, returns None, else returns self.tzinfo.dst (self), and raises an exception if
the latter doesn’t return None or a t imede1ta object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

datetime.tzname ()
If tzinfois None, returns None, else returns self.tzinfo.tzname (self), raises an exception if
the latter doesn’t return None or a string object,

datetime.timetuple ()
Return a t ime. st ruct_t ime such as returned by t ime. localtime (). d.timetuple () is equiv-
alent to time.struct_time ((d.year, d.month, d.day, d.hour, d.minute, d.
second, d.weekday (), yday, dst)),where yday = d.toordinal () - date (d.year,
1, 1).toordinal() + 1 isthe day number within the current year starting with 1 for January 1st.
The tm_1isdst flag of the result is set according to the dst () method: tzinfo is None or dst () re-
turns None, tm_isdst is set to —1; else if dst () returns a non-zero value, tm_isdst is set to 1; else
tm_isdst issetto 0.

datetime.utctimetuple ()
If datetime instance d is naive, this is the same as d. timetuple () except that tm_1isdst is forced to
0 regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (),anda t ime. st ruct_time
for the normalized time is returned. tm_1isdst is forced to 0. Note that an OverflowError may be
raised if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

datetime.toordinal ()
Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.timestamp ()
Return POSIX timestamp corresponding to the datet ime instance. The return value is a £1oat similar to
that returned by t ime. time ().

Naive datet ime instances are assumed to represent local time and this method relies on the platform C
mktime () function to perform the conversion. Since datet ime supports wider range of values than mk -

8.1. datetime — Basic date and time types 177

The Python Library Reference, Release 3.7.15

time () on many platforms, this method may raise OverflowError for times far in the past or far in the
future.

For aware datet ime instances, the return value is computed as:

(dt - datetime (1970, 1, 1, tzinfo=timezone.utc)).total_seconds ()

New in version 3.3.

Changed in version 3.6: The timestamp () method uses the fold attribute to disambiguate the times
during a repeated interval.

Note: There is no method to obtain the POSIX timestamp directly from a naive datet ime instance repre-
senting UTC time. If your application uses this convention and your system timezone is not set to UTC, you
can obtain the POSIX timestamp by supplying t zinfo=timezone.utc:

’timestamp = dt.replace(tzinfo=timezone.utc) .timestamp ()

or by calculating the timestamp directly:

’timestamp = (dt - datetime (1970, 1, 1)) / timedelta (seconds=1)

datetime.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as self.date () .
weekday (). See also i soweekday ().

datetime.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date () .
isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as self.date().
isocalendar ().

datetime.isoformat (sep='T', timespec='auto")
Return a string representing the date and time in ISO 8601 format, YYYY-MM-DDTHH:MM:SS ittt or, if
microsecondis 0, YYYY-MM-DDTHH:MM:SS

If utcoffset () does not return None, a string is appended, giving the UTC offset: YYYY-
MM-DDTHH:MM:SS fiftff+HH:MM[:SS[fiffff]] or, if microsecond is 0 YYYY-MM-
DDTHH:MM:SS+HH:MM[:SS[.ftf]].

The optional argument sep (default ' T ') is a one-character separator, placed between the date and time portions
of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ (tzinfo) :
def utcoffset (self, dt): return timedelta (minutes=-399)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (' ')
'2002-12-25 00:00:00-06:39"

The optional argument fimespec specifies the number of additional components of the time to include (the
defaultis 'auto"). It can be one of the following:

e 'auto': Same as 'seconds' if microsecondis(, same as 'microseconds' otherwise.
* 'hours': Include the hour in the two-digit HH format.
e 'minutes': Include hour and minute in HH:MM format.

e 'seconds': Include hour, minute, and second in HH:MM:SS format.

178 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds.
HH:MM:SS.sss format.

e 'microseconds': Include full time in HH:MM:SS ffffff format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid fimespec argument.

>>> from datetime import datetime

>>> datetime.now () .isoformat (timespec="minutes"')
'2002-12-25T00:00"

>>> dt = datetime (2015, 1, 1, 12, 30, 59, 0)

>>> dt.isoformat (timespec="microseconds")
'2015-01-01T12:30:59.000000"

New in version 3.6: Added the fimespec argument.

datetime.__str__ ()
For a datetimeinstance d, str (d) is equivalentto d.isoformat (' ').

datetime.ctime ()
Return a string representing the date and time, for example datetime (2002, 12, 4, 20, 30,
40) .ctime () == 'Wed Dec 4 20:30:40 2002'. d.ctime () is equivalent to time.
ctime (time.mktime (d.timetuple ())) onplatforms where the native C ct ime () function (which
time.ctime () invokes, but which datetime.ctime () does not invoke) conforms to the C standard.

datetime.strftime (formar)
Return a string representing the date and time, controlled by an explicit format string. For a complete list of
formatting directives, see strftime() and strptime() Behavior.

datetime._ format__ (format)
Sameas datetime. stritime (). This makes it possible to specify a format string for a dat et ime object
in formatted string literals and when using st r. format (). For a complete list of formatting directives, see
strftime() and strptime() Behavior.

Examples of working with datetime objects:

>>> from datetime import datetime, date, time

>>> # Using datetime.combine ()

>>> d = date (2005, 7, 14)

>>> t = time (12, 30)

>>> datetime.combine (d, t)

datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now() or datetime.utcnow ()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow ()

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060)

>>> # Using datetime.strptime()

>>> dt = datetime.strptime("21/11/06 16:30", "2d/%m/%y SH:%M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple () to get tuple of all attributes
>>> tt = dt.timetuple()

>>> for it in tt:

print (it)
2006 # year
11 # month
21 # day
16 # hour

(continues on next page)

8.1. datetime — Basic date and time types 179

The Python Library Reference, Release 3.7.15

(continued from previous page)

30 # minute

0 # second

1 # weekday (0 = Monday)

325 # number of days since 1lst January

-1 # dst - method tzinfo.dst () returned None

>>> # Date in ISO format
>>> jc = dt.isocalendar ()
>>> for it in ic:

print (it)
2006 # ISO year
47 # ISO week
2 # ISO weekday

>>> # Formatting datetime

>>> dt.strftime ("$A, $d. %B $Y $I:3%MS%p")

'Tuesday, 21. November 2006 04:30PM'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:
", "month", "time")

'The day is 21, the month is November, the time is 04:30PM.'

o°
—
oo

MSp}.'.format (dt,

"day

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo, timezone
>>> class KabulTz (tzinfo):
Kabul used +4 until 1945, when they moved to +4:30
UTC_MOVE_DATE = datetime (1944, 12, 31, 20, tzinfo=timezone.utc)
def utcoffset(self, dt):
if dt.year < 1945:
return timedelta (hours=4)

elif (1945, 1, 1, 0, 0) <= dt.timetuple()[:5] < (1945, 1, 1, 0, 30):

If dt falls in the imaginary range, use fold to decide how

to resolve. See PEP495

return timedelta (hours=4, minutes=(30 if dt.fold else 0))
else:

return timedelta (hours=4, minutes=30)

def fromutc(self, dt):
A custom implementation is required for fromutc as
the input to this function is a datetime with utc values
but with a tzinfo set to self
See datetime.astimezone or fromtimestamp

Follow same validations as 1in datetime.tzinfo
if not isinstance(dt, datetime):

raise TypeError ("fromutc() requires a datetime argument")
if dt.tzinfo is not self:

raise ValueError ("dt.tzinfo is not self")

if dt.replace(tzinfo=timezone.utc) >= self.UTC_MOVE_DATE:
return dt + timedelta (hours=4, minutes=30)

else:
return dt + timedelta (hours=4)

def dst (self, dt):
return timedelta (0)

def tzname (self, dt):
if dt >= self.UTC_MOVE_DATE:
return "+04:30"
else:
return "+04"

(continues on next page)

180 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

def _ repr__ (self):

return f"{self._ class_ . _name__ } ()"
>>> tzl = KabulTz ()
>>> # Datetime before the change
>>> dtl = datetime (1900, 11, 21, 16, 30, tzinfo=tzl)
>>> print (dtl.utcoffset())
4:00:00
>>> # Datetime after the change
>>> dt2 = datetime (2006, 6, 14, 13, 0, tzinfo=tzl)
>>> print (dt2.utcoffset ())

4:30:00

>>> # Convert datetime to another time zone
>>> dt3 = dt2.astimezone (timezone.utc)

>>> dt3

datetime.datetime (2006, 6, 14, 8, 30, tzinfo=datetime.timezone.utc)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=KabulTz())

>>> dt2.utctimetuple () == dt3.utctimetuple ()

True

8.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
t zinfo object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0)
All arguments are optional. #zinfo may be None, or an instance of a t zinfo subclass. The remaining argu-
ments must be integers in the following ranges:
. <= hour < 24,
minute < 60,

<= second < 60,

L]

o o o o
A
Il

<= microsecond < 1000000,
e fold in [0, 1].

If an argument outside those ranges is given, ValueError is raised. All default to O except tzinfo, which
defaults to None.

Class attributes:

time.min
The earliest representable t ime, time (0, 0, 0, 0).

time.max
The latest representable t ime, time (23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal ¢ ime objects, t imedelta (microseconds=1),al-
though note that arithmetic on ¢ i me objects is not supported.

Instance attributes (read-only):

time.hour
In range (24).

time.minute
In range (60).

8.1. datetime — Basic date and time types 181

The Python Library Reference, Release 3.7.15

time.second

In range (60).

time.microsecond

In range (1000000).

time.tzinfo

The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

time. fold

In [0, 17]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The value O (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.

Supported operations:

e comparison of time to t ime, where a is considered less than b when a precedes b in time. If one comparand

is naive and the other is aware, TypeError is raised if an order comparison is attempted. For equality
comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same ¢ z i n fo attribute, the common ¢ z i nf o attribute is ignored
and the base times are compared. If both comparands are aware and have different ¢ zin fo attributes, the
comparands are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()). In
order to stop mixed-type comparisons from falling back to the default comparison by object address, when a
t ime object is compared to an object of a different type, TypeError is raised unless the comparison is ==
or !=. The latter cases return F'alse or True, respectively.

Changed in version 3.3: Equality comparisons between naive and aware ¢ ime instances don’t raise Type—
Error.

* hash, use as dict key

« efficient pickling

In boolean contexts, a t ime object is always considered to be true.

Changed in version 3.5: Before Python 3.5, a t i me object was considered to be false if it represented midnight in
UTC. This behavior was considered obscure and error-prone and has been removed in Python 3.5. See bpo-13936
for full details.

Other constructor:

classmethod time.fromisoformat (time_string)

Return a time corresponding to a fime_string in one of the formats emitted by time.
isoformat (). Specifically, this function supports strings in the format(s) HH[:MM[:SS[.
fEE[E£E£E])]] [+HEH:MM[:SS[.££££££]117.

Caution: This does not support parsing arbitrary ISO 8601 strings - it is only intended as the inverse
operation of time.isoformat ().

New in version 3.7.

Instance methods:

time.replace (hour=self.hour, minute=self.minute, second=self.second, microsecond=self.microsecond,

tzinfo=self.tzinfo, * fold=0)
Return a ¢ i me with the same value, except for those attributes given new values by whichever keyword argu-
ments are specified. Note that t zinfo=None can be specified to create a naive t ime from an aware t ime,
without conversion of the time data.

New in version 3.6: Added the fold argument.

182

Chapter 8. Data Types

https://bugs.python.org/issue?@action=redirect&bpo=13936

The Python Library Reference, Release 3.7.15

time.isoformat (fimespec='auto")
Return a string representing the time in ISO 8601 format, HH:MM:SSfIffff or, if microsecond is
0, HH:MM:SS If utcoffset () does not return None, a string is appended, giving the UTC offset:
HH:MM.:SS.fifftf +HH:MM| :SS| .fHfff]] or, if self.microsecond is 0, HH:MM:SS+HH:MM[:SS[fftttt]].

The optional argument timespec specifies the number of additional components of the time to include (the
default is 'auto'). It can be one of the following:

e 'auto': Same as 'seconds' if microsecondis(, same as 'microseconds' otherwise.
* 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH:MM format.

e '"seconds': Include hour, minute, and second in HH:MM:SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds.
HH:MM:SS.sss format.

¢ 'microseconds': Include full time in HH:MM:SS ffffff format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid fimespec argument.

>>> from datetime import time

>>> time (hour=12, minute=34, second=56, microsecond=123456) .isoformat (timespec=
—'minutes')

'12:34"

>>> dt = time (hour=12, minute=34, second=56, microsecond=0)

>>> dt.isoformat (timespec="microseconds")

'12:34:56.000000"

>>> dt.isoformat (timespec="'auto')

'12:34:56"

New in version 3.6: Added the timespec argument.
time.__str

()
Foratimet str (t) isequivalentto t .isoformat ().

time.strftime (format)
Return a string representing the time, controlled by an explicit format string. For a complete list of formatting
directives, see strftime() and strptime() Behavior.

time.__format__ (format)
Same as t ime. st rftime (). This makes it possible to specify a format string for a ¢ i me object in format-
ted string literals and when using st . format (). For a complete list of formatting directives, see strftime()
and strptime() Behavior.

time.utcoffset ()
If tzinfois None, returns None, else returns self.tzinfo.utcoffset (None), and raises an ex-
ception if the latter doesn’t return None or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

time.dst ()
If tzinfois None, returns None, else returns self.tzinfo.dst (None), and raises an exception if
the latter doesn’t return None, or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

time.tzname ()
If tzinfois None, returns None, else returns self.tzinfo.tzname (None), or raises an exception
if the latter doesn’t return None or a string object.

Example:

8.1. datetime — Basic date and time types 183

The Python Library Reference, Release 3.7.15

>>> from datetime import time, tzinfo, timedelta
>>> class TZ1l(tzinfo):
def utcoffset (self, dt):
return timedelta (hours=1)
def dst(self, dt):
return timedelta (0)
def tzname (self,dt):
return "+01:00"
def _ repr__ (self):
return f"{self. class . name__ } ()"

>>> t = time (12, 10, 30, tzinfo=TZ1())
>>> t

datetime.time (12, 10, 30, tzinfo=TZ1())
>>> t.isoformat ()

'12:10:30+01:00"

>>> t.dst ()

datetime.timedelta (0)

>>> t.tzname ()

'+01:00'"

>>> t.strftime ("$SH:SM:%S %72")

'12:10:30 +01:00"

>>> 'The is {:%H:%M}."'.format ("time", t)
'The time is 12:10."

8.1.6 tzinfo Objects

class datetime.tzinfo
This is an abstract base class, meaning that this class should not be instantiated directly. You need to derive
a concrete subclass, and (at least) supply implementations of the standard t zinfo methods needed by the
datetime methods you use. The datetime module supplies a simple concrete subclass of tzinfo,
t imezone, which can represent timezones with fixed offset from UTC such as UTC itself or North American
EST and EDT.

An instance of (a concrete subclass of) ¢ z1info can be passed to the constructors for datet ime and t ime
objects. The latter objects view their attributes as being in local time, and the t z 1 n £ o object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or
time object passed to them.

Special requirement for pickling: A t zinfo subclass musthavean __init__ () method that can be called
with no arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that
may be relaxed in the future.

A concrete subclass of ¢ zinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

tzinfo.utcoffset (df)
Return offset of local time from UTC, as a t imedelta object that is positive east of UTC. If local time is
west of UTC, this should be negative. Note that this is intended to be the total offset from UTC; for example, if
a t zinfo object represents both time zone and DST adjustments, ut coffset () should return their sum.
If the UTC offset isn’t known, return None. Else the value returned must be a t imedeta object strictly
between —t imedelta (hours=24) and timedelta (hours=24) (the magnitude of the offset must be
less than one day). Most implementations of utcoffset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst (dt) # daylight-aware class

If utcoffset () does not return None, dst () should not return None either.
The default implementation of utcoffset () raises Not ImplementedError.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

184 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

tzinfo.dst (dt)

Return the daylight saving time (DST) adjustment, as a t imede 1 t a object or None if DST information isn’t
known. Return t imedelta (0) if DSTis notin effect. If DST is in effect, return the offsetasa t imedelta
object (see ut cof fset () for details). Note that DST offset, if applicable, has already been added to the UTC
offset returned by ut coffset (), so there’s no need to consult dst () unless you're interested in obtaining
DST info separately. For example, datetime.timetuple () callsits t zinfo attribute’s dst () method
to determine how the tm_isdst flag should be set, and t zinfo. fromutc () calls dst () to account for
DST changes when crossing time zones.

An instance 7z of a t zinfo subclass that models both standard and daylight times must be consistent in this

sense:
tz.utcoffset (dt) - tz.dst (dt)
must return the same result for every datetimedtwithdt .tzinfo == tz Forsane t z1info subclasses,

this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementation of datet ime.astimezone () relies on this, but cannot
detect violations; it’s the programmer’s responsibility to ensure it. If a £ zinfo subclass cannot guarantee
this, it may be able to override the default implementation of tzinfo. fromutc () to work correctly with
astimezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst(self, dt):
a fixed-offset class: doesn't account for DST
return timedelta (0)

or

def dst(self, dt):
Code to set dston and dstoff to the time zone's DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.
Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

tzinfo.tzname (dt)
Return the time zone name corresponding to the datet ime object dt, as a string. Nothing about string names
is defined by the datetime module, and there’s no requirement that it mean anything in particular. For
example, “GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York” are all valid replies.
Return None if a string name isn’t known. Note that this is a method rather than a fixed string primarily
because some tzinfo subclasses will wish to return different names depending on the specific value of dt
passed, especially if the t zinfo class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

These methods are called by a datetime or t ime object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a t ime object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a df argument of None, or of class datet ime.

When None is passed, it’'s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the ¢ zinfo protocols. It may be more
useful for ut cof fset (None) to return the standard UTC offset, as there is no other convention for discovering
the standard offset.

When a datet ime object is passed in response to a datet ime method, dt .t zinfo is the same object as self.
t zinfo methods can rely on this, unless user code calls t z i nfo methods directly. The intent is that the t zinfo
methods interpret df as being in local time, and not need worry about objects in other timezones.

8.1. datetime — Basic date and time types 185

The Python Library Reference, Release 3.7.15

There is one more t zinfo method that a subclass may wish to override:

tzinfo.fromutc (dr)
This is called from the default datetime.astimezone () implementation. When called from that, dt .
tzinfo is self, and dr’s date and time data are to be viewed as expressing a UTC time. The purpose of
fromutc () is to adjust the date and time data, returning an equivalent datetime in self’s local time.

Most t z info subclasses should be able to inherit the default f romutc () implementation without problems.
It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight
time, and the latter even if the DST transition times differ in different years. An example of a time zone the
default fromutc () implementation may not handle correctly in all cases is one where the standard offset
(from UTC) depends on the specific date and time passed, which can happen for political reasons. The default
implementations of astimezone () and fromutc () may not produce the result you want if the result is
one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError 1if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst ()
raise ValueError 1if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

In the following t zinfo_examples . py file there are some examples of ¢t zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO timedelta (0)
HOUR = timedelta (hours=1)
SECOND = timedelta (seconds=1)

A class capturing the platform's idea of local time.
(May result in wrong values on historical times in
timezones where UTC offset and/or the DST rules had

HH W H K

changed in the past.)
import time as _time

STDOFFSET = timedelta(seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta (seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET
DSTDIFF = DSTOFFSET - STDOFFSET
class LocalTimezone (tzinfo) :

def fromutc(self, dt):
assert dt.tzinfo is self
stamp = (dt - datetime (1970, 1, 1, tzinfo=self)) // SECOND
args = _time.localtime (stamp) [:6]
dst_diff = DSTDIFF // SECOND
Detect fold
fold = (args == _time.localtime(stamp - dst_diff))

(continues on next page)

186 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

return datetime (*args, microsecond=dt.microsecond,
tzinfo=self, fold=fold)

def utcoffset (self, dt):
if self._isdst(dt):
return DSTOFFSET
else:
return STDOFFSET

def dst (self, dt):
if self._isdst(dt):
return DSTDIFF
else:
return ZERO

def tzname (self, dt):
return _time.tzname[self._ isdst (dt)]

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second,
dt .weekday (), 0, 0)
stamp = _time.mktime (tt)
tt = _time.localtime (stamp)
return tt.tm_isdst > 0

Local = LocalTimezone ()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after (dt):
days_to_go = 6 — dt.weekday ()
if days_to_go:
dt += timedelta(days_to_go)
return dt

US DST Rules

This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz—-1ink.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)

In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.
DSTSTART_2007 = datetime (1, 3, 8, 2)

and ends at 2am (DST time) on the first Sunday of Nov.

DSTEND_2007 = datetime (1, 11, 1, 2)

From 1987 to 2006, DST used to start at Z2am (standard time) on the first
Sunday in April and to end at 2am (DST time) on the last

Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(1, 4, 1, 2)

DSTEND_1987_2006 = datetime (1, 10, 25, 2)

From 1967 to 1986, DST used to start at 2am (standard time) on the last
Sunday in April (the one on or after April 24) and to end at 2am (DST time)
on the last Sunday of October, which is the first Sunday

on or after Oct 25.

DSTSTART_1967_1986 = datetime (1, 4, 24, 2)

S oH O R W H R R R R

(continues on next page)

8.1. datetime — Basic date and time types 187

The Python Library Reference, Release 3.7.15

(continued from previous page)

DSTEND_1967_1986 = DSTEND_1987_2006

def us_dst_range (year) :

Find start and end times for US DST. For years before 1967, return
start = end for no DST.
if 2006 < year:

dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < year < 2007:

dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < year < 1987:

dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:

return (datetime (year, 1, 1),) * 2

start = first_sunday_on_or_after (dststart.replace (year=year))

end = first_sunday_on_or_after (dstend.replace (year=year))
return start, end

class USTimeZone (tzinfo) :

def _ init_ (self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta (hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def _ repr_ (self):
return self.reprname

def tzname (self, dt):
if self.dst(dt):
return self.dstname
else:
return self.stdname

def utcoffset (self, dt):
return self.stdoffset + self.dst (dt)

def dst (self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc () implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

start, end = us_dst_range (dt.year)

Can't compare naive to aware objects, so strip the timezone from

dt first.

dt = dt.replace (tzinfo=None)

if start + HOUR <= dt < end - HOUR:
DST is in effect.
return HOUR

if end - HOUR <= dt < end:
Fold (an ambiguous hour): use dt.fold to disambiguate.
return ZERO if dt.fold else HOUR

if start <= dt < start + HOUR:
Gap (a non-existent hour): reverse the fold rule.
return HOUR if dt.fold else ZERO

DST is off.

(continues on next page)

188 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

return ZERO

def fromutc(self, dt):
assert dt.tzinfo is self
start, end = us_dst_range (dt.year)
start = start.replace(tzinfo=self)
end = end.replace(tzinfo=self)
std_time = dt + self.stdoffset
dst_time = std_time + HOUR
if end <= dst_time < end + HOUR:
Repeated hour
return std_time.replace(fold=1)
if std_time < start or dst_time >= end:
Standard time
return std_time
if start <= std_time < end - HOUR:
Daylight saving time
return dst_time

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
Central = USTimeZone (-6, "Central", "CcsT", "CDT")
Mountain = USTimeZone (-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone (-8, "Pacific", "pST", "PDT")

Note that there are unavoidable subtleties twice per year in a ¢t zinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins
the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the first Sunday
in November:

UuTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM O:MM 1:MM 2:MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM
start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, so astimezone (Eastern) won't deliver a result with hour == 2 on
the day DST begins. For example, at the Spring forward transition of 2016, we get

>>> from datetime import datetime, timezone
>>> from tzinfo_examples import HOUR, Eastern
>>> u0 = datetime (2016, 3, 13, 5, tzinfo=timezone.utc)
>>> for i in range(4):
u = u0 + i1*HOUR
t = u.astimezone (Eastern)
print (u.time (), 'UTC ="', t.time(), t.tzname())

05:00:00 UTC = 00:00:00 EST
06:00:00 UTC = 01:00:00 EST
07:00:00 UTIC = 03:00:00 EDT
08:00:00 UTC = 04:00:00 EDT

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the
day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguous. astimezone () mimics the local clock’s behavior by mapping two
adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM
both map to 1:MM when converted to Eastern, but earlier times have the fo1d attribute set to O and the later times

8.1. datetime — Basic date and time types 189

The Python Library Reference, Release 3.7.15

have it set to 1. For example, at the Fall back transition of 2016, we get

>>> u0 = datetime (2016, 11, 6, 4, tzinfo=timezone.utc)
>>> for i1 in range(4):
u = ul0 + i1i*HOUR
t = u.astimezone (Eastern)
print (u.time (), 'UTC =', t.time(), t.tzname(), t.fold)

04:00:00 UTIC = 00:00:00 EDT
05:00:00 UTIC = 01:00:00 EDT
06:00:00 UTC = 01:00:00 EST
07:00:00 UTIC = 02:00:00 EST

o = O O

Note that the datet ime instances that differ only by the value of the fold attribute are considered equal in
comparisons.

Applications that can’t bear wall-time ambiguities should explicitly check the value of the fold attribute or avoid
using hybrid ¢ z i n fo subclasses; there are no ambiguities when using t i me zone, or any other fixed-offset t zinfo
subclass (such as a class representing only EST (fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

See also:

dateutil.tz The standard library has timezone class for handling arbitrary fixed offsets from UTC and
timezone. utc as UTC timezone instance.

dateutil.tz library brings the JANA timezone database (also known as the Olson database) to Python and its
usage is recommended.

TANA timezone database The Time Zone Database (often called tz, tzdata or zoneinfo) contains code and data that
represent the history of local time for many representative locations around the globe. It is updated periodically
to reflect changes made by political bodies to time zone boundaries, UTC offsets, and daylight-saving rules.

8.1.7 timezone Objects

The t imezone class is a subclass of t z1nfo, each instance of which represents a timezone defined by a fixed offset
from UTC. Note that objects of this class cannot be used to represent timezone information in the locations where
different offsets are used in different days of the year or where historical changes have been made to civil time.

class datetime.timezone (offset, name=None)
The offset argument must be specified as a t imede 1t a object representing the difference between the local
time and UTC. It must be strictly between —t imedelta (hours=24) and timedelta (hours=24),
otherwise ValueError is raised.

The name argument is optional. If specified it must be a string that will be used as the value returned by the
datetime.tzname () method.

New in version 3.2.
Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

timezone.utcoffset (dr)
Return the fixed value specified when the t imezone instance is constructed. The dr argument is ignored.
The return value is a t imede 1t a instance equal to the difference between the local time and UTC.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

timezone.tzname (dt)
Return the fixed value specified when the ¢ imezone instance is constructed. If name is not provided in the
constructor, the name returned by t zname (dt) is generated from the value of the of fset as follows. If
offsetis timedelta (0), the name is “UTC”, otherwise it is a string ‘'UTCtHH:MM’, where = is the sign of
offset, HH and MM are two digits of offset .hours and of fset .minutes respectively.

Changed in version 3.6: Name generated from offset=timedelta (0) is now plain ‘UTC’, not
UTC+00:00’.

190 Chapter 8. Data Types

https://dateutil.readthedocs.io/en/stable/tz.html
https://www.iana.org/time-zones

The Python Library Reference, Release 3.7.15

timezone.dst (dt)
Always returns None.

timezone.fromutc (dt)
Return dt + offset. The df argument must be an aware dat et ime instance, with tzinfo setto self.

Class attributes:

timezone.utec
The UTC timezone, t imezone (timedelta (0)).

8.1.8 strftime () and strptime () Behavior

date, datetime, and t ime objects all support a strftime (format) method, to create a string represent-
ing the time under the control of an explicit format string. Broadly speaking, d.strftime (fmt) acts like the
time module’s time.strftime (fmt, d.timetuple ()) although not all objects support a t imetu—
ple () method.

Conversely, the datetime. strptime () class method creates a datet ime object from a string representing a
date and time and a corresponding format string. datetime.strptime (date_string, format) isequiv-
alentto datetime (* (time.strptime (date_string, format) [0:6])), except when the format in-
cludes sub-second components or timezone offset information, which are supported in datetime.strptime but
are discarded by time . strptime.

For t ime objects, the format codes for year, month, and day should not be used, as time objects have no such values.
If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date
objects have no such values. If they’re used anyway, O is substituted for them.

Forthe datetime. strptime () class method, the default valueis 1900-01-01T00:00:00.000: any com-
ponents not specified in the format string will be pulled from the default value.’

The full set of format codes supported varies across platforms, because Python calls the platform C library’s st rf—
time () function, and platform variations are common. To see the full set of format codes supported on your
platform, consult the st rft ime (3) documentation.

For the same reason, handling of format strings containing Unicode code points that can’t be represented in the
charset of the current locale is also platform-dependent. On some platforms such code points are preserved intact in
the output, while on others st r £t ime may raise UnicodeError or return an empty string instead.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work on all
platforms with a standard C implementation. Note that the 1999 version of the C standard added additional format
codes.

2 Passing datetime.strptime ('Feb 29', '%b %d') will fail since 1900 is not a leap year.

8.1. datetime — Basic date and time types 191

The Python Library Reference, Release 3.7.15

Directive Meaning Example Notes
%a Weekday as locale’s ab- (1)
breviated name. Sun, Mon, ... Sat
(en_US);
So, Mo, ..., Sa (de_DE)
SA Weekday as locale’s full @))
fame. Sunday, Monday, ...,
Saturday (en_US);
Sonntag, Montag, ...,
Samstag (de_DE)
SwW Weekday as a decimal | 0,1, ...,6
number, where 0 is Sun-
day and 6 is Saturday.
$d Day of the month as a | 01,02, ..., 31 9
zero-padded decimal
number.
%b Month as locale’s abbrevi- (D)
ated name. Jan, Feb, ..., Dec
(en_US);
Jan, Feb, ..., Dez
(de_DE)
%B Month as locale’s full (1)
name.
January, February, ...,
December (en_US);
Januar, Februar, ...,
Dezember (de_DE)
$m Month as a zero-padded | 01,02, ..., 12 ©)]
decimal number.
Sy Year without century as | 00,01, ..., 99 9)
a zero-padded decimal
number.
%Y Year with century as a | 0001, 0002, ..., 2013, | (2)
decimal number. 2014, ..., 9998, 9999
%H Hour (24-hour clock) as | 00,01, ..., 23 9)
a zero-padded decimal
number.
%1 Hour (12-hour clock) as | 01,02, ..., 12 ©)]
a zero-padded decimal
number.
$p Locale’s equivalent of ei- (D), (3)
ther AM or PM. AM. PM (en_US):
am, pm (de_DE)
M Minute as a zero-padded | 00, 01, ..., 59 9)
decimal number.
%3 Second as a zero-padded | 00, 01, ..., 59 @), (9)
decimal number.
$f Microsecond as a decimal | 000000, 000001, ..., | (5)
number, zero-padded on | 999999
the left.
%z UTC offset in the form | (empty), +0000, -0400, | (6)
192 THHMM[SS[.fTiT]] +1030, +063415, - | Chapter 8. Data Types|
(empty string if the | 030712.345216
object is naive).
%7 Time zone name (empty | (empty), UTC, EST, CST

s ' AL . PR Y

The Python Library Reference, Release 3.7.15

Several additional directives not required by the C89 standard are included for convenience. These parameters all
correspond to ISO 8601 date values. These may not be available on all platforms when used with the st rft ime ()
method. The ISO 8601 year and ISO 8601 week directives are not interchangeable with the year and week number
directives above. Calling st rpt ime () with incomplete or ambiguous ISO 8601 directives will raise a ValueEr—

ror.

Di- Meaning Example Notes

rec-

tive

%G ISO 8601 year with century representing the year that contains the | 0001, 0002, ..., 2013, | (8)
greater part of the ISO week ($V). 2014, ..., 9998, 9999

su ISO 8601 weekday as a decimal number where 1 is Monday. 1,2,...,7

sV ISO 8601 week as a decimal number with Monday as the first day of | 01, 02, ..., 53 (8),
the week. Week 01 is the week containing Jan 4. ©))

New in version 3.6: 3G, $u and %V were added.

Notes
(D

2)

3)

“4)
(&)

(6)

Because the format depends on the current locale, care should be taken when making assumptions about the out-
put value. Field orderings will vary (for example, “month/day/year” versus “day/month/year”), and the output
may contain Unicode characters encoded using the locale’s default encoding (for example, if the current locale
is ja_JP, the default encoding could be any one of eucJP, SJIS,orut£-8;use locale.getlocale ()
to determine the current locale’s encoding).

The strptime () method can parse years in the full [1, 9999] range, but years < 1000 must be zero-filled
to 4-digit width.
Changed in version 3.2: In previous versions, st rft ime () method was restricted to years >= 1900.

Changed in version 3.3: In version 3.2, strftime () method was restricted to years >= 1000.

When used with the strptime () method, the $p directive only affects the output hour field if the $T
directive is used to parse the hour.

Unlike the t ime module, the datet ime module does not support leap seconds.

When used with the st rptime () method, the % £ directive accepts from one to six digits and zero pads on
the right. % £ is an extension to the set of format characters in the C standard (but implemented separately in
datetime objects, and therefore always available).

For a naive object, the $z and %Z format codes are replaced by empty strings.
For an aware object:

%z utcoffset () istransformed into a string of the form tHHMM][SSI.fffttt]], where HH is a 2-digit string
giving the number of UTC offset hours, MM is a 2-digit string giving the number of UTC offset minutes,
SS is a 2-digit string giving the number of UTC offset seconds and fHfff is a 6-digit string giving the
number of UTC offset microseconds. The fIffff part is omitted when the offset is a whole number of
seconds and both the ffffff and the SS part is omitted when the offset is a whole number of minutes. For
example, if utcoffset () returns timedelta (hours=-3, minutes=-30), %z is replaced
with the string '-0330"'.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

Changed in version 3.7: When the %z directive is provided to the strptime () method, the UTC offsets
can have a colon as a separator between hours, minutes and seconds. For example, '+01:00:00" will be
parsed as an offset of one hour. In addition, providing 'Z "' is identical to '+00:00".

%Z If tzname () returns None, $7 is replaced by an empty string. Otherwise %7 is replaced by the returned
value, which must be a string.

Changed in version 3.2: When the %z directive is provided to the st rptime () method, an aware date—
t ime object will be produced. The tzinfo of the result will be set to a ¢ imezone instance.

8.1. datetime — Basic date and time types 193

The Python Library Reference, Release 3.7.15

(7) When used with the st rptime () method, $U and $W are only used in calculations when the day of the week

and the calendar year (%Y) are specified.

(8) Similar to $U and %W, $V is only used in calculations when the day of the week and the ISO year ($G) are

specified ina st rptime () format string. Also note that $G and %Y are not interchangeable.

(9) When used with the st rpt ime () method, the leading zero is optional for formats $d, $m, $H, $I, $M, %S,

%J, $U, $W, and $V. Format %y does require a leading zero.

8.2 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Use setfirstweekday () to set the first day of the week to Sunday (6) or to any
other weekday. Parameters that specify dates are given as integers. For related functionality, see also the datet ime
and t ime modules.

The functions and classes defined in this module use an idealized calendar, the current Gregorian calendar extended
indefinitely in both directions. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computations. Zero and negative years
are interpreted as prescribed by the ISO 8601 standard. Year O is 1 BC, year -1 is 2 BC, and so on.

class calendar.Calendar (firstweekday=0)

Creates a Calendar object. firstweekday is an integer specifying the first day of the week. O is Monday (the
default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for formatting.
This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the
iterator will be the same as the value of the fi rstweekday property.

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime. date objects) for the month and all days before the start of the month or after the end of
the month that are required to get a complete week.

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datetime. date range. Days returned will simply be day of the month numbers.
For the days outside of the specified month, the day number is O.

itermonthdays2 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datet ime. date range. Days returned will be tuples consisting of a day of the month
number and a week day number.

itermonthdays3 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datetime. date range. Days returned will be tuples consisting of a year, a month
and a day of the month numbers.

New in version 3.7.

itermonthdays4 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (), but not

194

Chapter 8. Data Types

https://github.com/python/cpython/tree/3.7/Lib/calendar.py

The Python Library Reference, Release 3.7.15

restricted by the datet ime. date range. Days returned will be tuples consisting of a year, a month, a
day of the month, and a day of the week numbers.

New in version 3.7.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples
of day numbers and weekday numbers.

monthdayscalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year, width=3)
Return the data for the specified year ready for formatting. The return value is a list of month rows. Each
month row contains up to width months (defaulting to 3). Each month contains between 4 and 6 weeks
and each week contains 1-7 days. Days are datet ime. date objects.

yeardays2calendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this
month are zero.

yeardayscalendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar (firstweekday=0)
This class can be used to generate plain text calendars.

TextCalendar instances have the following methods:

formatmonth (theyear, themonth, w=0, [=0)
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date columns,
which are centered. If [is given, it specifies the number of lines that each week will use. Depends on the
first weekday as specified in the constructor or set by the set firstweekday () method.

prmonth (theyear, themonth, w=0, [=0)
Print a month’s calendar as returned by formatmonth ().

formatyear (theyear, w=2, I=1, c=6, m=3)
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, [, and ¢
are for date column width, lines per week, and number of spaces between month columns, respectively.
Depends on the first weekday as specified in the constructor or set by the setfirstweekday ()
method. The earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear, w=2,1=1, c=6, m=3)
Print the calendar for an entire year as returned by formatyear ().

class calendar.HTMLCalendar (firstweekday=0)
This class can be used to generate HTML calendars.

HTMLCalendar instances have the following methods:

formatmonth (theyear, themonth, withyear="True)
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the header,
otherwise just the month name will be used.

formatyear (theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months per
row.

8.2. calendar — General calendar-related functions 195

The Python Library Reference, Release 3.7.15

formatyearpage (theyear, width=3, css='calendar.css', encoding=None)
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of
months per row. css is the name for the cascading style sheet to be used. None can be passed if no style
sheet should be used. encoding specifies the encoding to be used for the output (defaulting to the system
default encoding).

HTMLCalendar has the following attributes you can override to customize the CSS classes used by the
calendar:

cssclasses
A list of CSS classes used for each weekday. The default class list is:

cssclasses = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"]

more styles can be added for each day:

cssclasses = ["mon text-bold", "tue", "wed", "thu", "fri", "sat", "sun red

(‘)YIJ

Note that the length of this list must be seven items.

cssclass_noday
The CSS class for a weekday occurring in the previous or coming month.

New in version 3.7.

cssclasses_weekday_ head
A list of CSS classes used for weekday names in the header row. The default is the same as css—
classes.

New in version 3.7.

cssclass_month_head
The month’s head CSS class (used by formatmonthname ()). The default value is "month".

New in version 3.7.

cssclass_month
The CSS class for the whole month’s table (used by formatmonth ()). The default value is "month™".

New in version 3.7.

cssclass_year
The CSS class for the whole year’s table of tables (used by formatyear ()). The default value is
"vear".

New in version 3.7.

cssclass_year_head
The CSS class for the table head for the whole year (used by formatyear ()). The default value is
" year "

New in version 3.7.

Note that although the naming for the above described class attributes is singular (e.g. cssclass_month
cssclass_noday), one can replace the single CSS class with a space separated list of CSS classes, for
example:

"text-bold text-red"

Here is an example how HTMLCalendar can be customized:

class CustomHTMLCal (calendar.HTMLCalendar) :

cssclasses = [style + " text-nowrap" for style in
calendar.HTMLCalendar.cssclasses]
cssclass_month_head = "text-center month-head"

(continues on next page)

196

Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

cssclass_month = "text-center month"
cssclass_year = "text-italic lead"

class calendar.LocaleTextCalendar (firstweekday=0, locale=None)
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

class calendar.LocaleHTMLCalendar (firstweekday=0, locale=None)
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

Note: The formatweekday () and formatmonthname () methods of these two classes temporarily change
the current locale to the given locale. Because the current locale is a process-wide setting, they are not thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY, WEDNES—
DAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example, to set
the first weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

calendar.firstweekday ()
Returns the current setting for the weekday to start each week.

calendar.isleap (year)
Returns True if year is a leap year, otherwise F'alse.

calendar.leapdays (y/, y2)
Returns the number of leap years in the range from y/ to y2 (exclusive), where y/ and y2 are years.

This function works for ranges spanning a century change.

calendar .weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

calendar.weekheader (n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

calendar .monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar .monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set by set firstweekday ().

calendar .prmonth (theyear, themonth, w=0, [=0)
Prints a month’s calendar as returned by month ().

calendar .month (theyear, themonth, w=0, [=0)
Returns a month’s calendar in a multi-line string using the formatmonth () of the TextCalendar class.

calendar.precal (year, w=0, [=0, c=6, m=3)
Prints the calendar for an entire year as returned by calendar ().

calendar.calendar (year, w=2, =1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear () of the
TextCalendar class.

8.2. calendar — General calendar-related functions 197

The Python Library Reference, Release 3.7.15

calendar.timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned by the gmt ime () function in the
t ime module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact, t ime.gmt ime () and t imegm () are each others’ inverse.

The calendar module exports the following data attributes:

calendar.day_name
An array that represents the days of the week in the current locale.

calendar.day_abbr
An array that represents the abbreviated days of the week in the current locale.

calendar .month_name
An array that represents the months of the year in the current locale. This follows normal convention of January
being month number 1, so it has a length of 13 and month_name [0] is the empty string.

calendar.month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal conven-
tion of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty string.

See also:
Module datetime Object-oriented interface to dates and times with similar functionality to the t ime module.

Module time Low-level time related functions.

8.3 collections — Container datatypes

Source code: Lib/collections/__init__.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-in
containers, dict, 1ist, set,and tuple.

namedtuple () | factory function for creating tuple subclasses with named fields
deque list-like container with fast appends and pops on either end
ChainMap dict-like class for creating a single view of multiple mappings
Counter dict subclass for counting hashable objects

OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values
UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

Deprecated since version 3.3, will be removed in version 3.9: Moved Collections Abstract Base Classes to the
collections.abc module. For backwards compatibility, they continue to be visible in this module through
Python 3.8.

198 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.7/Lib/collections/__init__.py

The Python Library Reference, Release 3.7.15

8.3.1 ChainMap objects

New in version 3.3.

A ChainMap class is provided for quickly linking a number of mappings so they can be treated as a single unit. It
is often much faster than creating a new dictionary and running multiple update () calls.

The class can be used to simulate nested scopes and is useful in templating.

class collections.ChainMap (*maps)
A ChainMap groups multiple dicts or other mappings together to create a single, updateable view. If no maps
are specified, a single empty dictionary is provided so that a new chain always has at least one mapping.

The underlying mappings are stored in a list. That list is public and can be accessed or updated using the maps
attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates, and
deletions only operate on the first mapping.

A ChainMap incorporates the underlying mappings by reference. So, if one of the underlying mappings gets
updated, those changes will be reflected in ChainMap.

All of the usual dictionary methods are supported. In addition, there is a maps attribute, a method for creating
new subcontexts, and a property for accessing all but the first mapping:

maps
A user updateable list of mappings. The list is ordered from first-searched to last-searched. It is the only
stored state and can be modified to change which mappings are searched. The list should always contain
at least one mapping.

new_child (m=None)
Returns a new ChainMap containing a new map followed by all of the maps in the current instance. If
m is specified, it becomes the new map at the front of the list of mappings; if not specified, an empty
dict is used, so that a call to d.new_child () is equivalent to: ChainMap ({}, *d.maps). This
method is used for creating subcontexts that can be updated without altering values in any of the parent
mappings.
Changed in version 3.4: The optional m parameter was added.

parents
Property returning a new ChainMap containing all of the maps in the current instance except the first
one. This is useful for skipping the first map in the search. Use cases are similar to those for the nonlo-

cal keyword used in nested scopes. The use cases also parallel those for the built-in super () function.
A reference to d . parents is equivalent to: ChainMap (*d.maps[1:]).

Note, the iteration order of a ChainMap () is determined by scanning the mappings last to first:

>>> baseline = {'music': 'bach', 'art': 'rembrandt'}

>>> adjustments = {'art': 'van gogh', 'opera': 'carmen'}
>>> list (ChainMap (adjustments, baseline))

['music', 'art', 'opera']

This gives the same ordering as a series of dict.update () calls starting with the last mapping:

>>> combined = baseline.copy ()
>>> combined.update (adjustments)
>>> list (combined)

['music', 'art', 'opera']

See also:

e The MultiContext class in the Enthought CodeTools package has options to support writing to any mapping in
the chain.

* Django’s Context class for templating is a read-only chain of mappings. It also features pushing and popping
of contexts similar to the new_child () method and the parent s property.

8.3. collections — Container datatypes 199

https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py
https://github.com/enthought/codetools
https://github.com/django/django/blob/master/django/template/context.py

The Python Library Reference, Release 3.7.15

» The Nested Contexts recipe has options to control whether writes and other mutations apply only to the first
mapping or to any mapping in the chain.

* A greatly simplified read-only version of Chainmap.
ChainMap Examples and Recipes

This section shows various approaches to working with chained maps.

Example of simulating Python’s internal lookup chain:

import builtins
pylookup = ChainMap (locals(), globals(), vars(builtins))

Example of letting user specified command-line arguments take precedence over environment variables which in turn
take precedence over default values:

import os, argparse

defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser ()

parser.add_argument ('-u', '—-user')

parser.add_argument ('-c¢', '—-—color')

namespace = parser.parse_args ()

command_line_args = {k: v for k, v in vars (namespace).items () if v is not None}

combined = ChainMap (command_line_args, os.environ, defaults)
print (combined['color'])
print (combined['user'])

Example patterns for using the Cha i nMap class to simulate nested contexts:

c = ChainMap () # Create root context

d = c.new_child() # Create nested child context

e = c.new_child() # Child of ¢, independent from d

e.maps[0] # Current context dictionary -- like Python's locals()
e.maps[—1] # Root context —-- like Python's globals/()

e.parents # Enclosing context chain —-- like Python's nonlocals
dl'x"] =1 # Set value 1in current context

dl'x"] # Get first key in the chain of contexts

del d['x"] # Delete from current context

list (d) # All nested values

k in d # Check all nested values

len (d) # Number of nested values

d.items () # All nested items

dict (d) # Flatten into a regular dictionary

The ChainMap class only makes updates (writes and deletions) to the first mapping in the chain while lookups will
search the full chain. However, if deep writes and deletions are desired, it is easy to make a subclass that updates
keys found deeper in the chain:

class DeepChainMap (ChainMap) :
'Variant of ChainMap that allows direct updates to inner scopes'

def __setitem__ (self, key, value):
for mapping in self.maps:
if key in mapping:

mappingl[key] = value
return
self.maps[0] [key] = value

(continues on next page)

200 Chapter 8. Data Types

https://code.activestate.com/recipes/577434/
https://code.activestate.com/recipes/305268/

The Python Library Reference, Release 3.7.15

(continued from previous page)

def _ delitem__ (self, key):
for mapping in self.maps:
if key in mapping:
del mappinglkey]
return
raise KeyError (key)

>>> d = DeepChainMap ({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange' # update an existing key two levels down

>>> d['snake'] = 'red' # new keys get added to the topmost dict

>>> del d['elephant'] # remove an existing key one level down

>>> d # display result

DeepChainMap ({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

8.3.2 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>>
>>>
>>>

>>>

Tally occurrences of words in a 1list

cnt = Counter ()

for word in ['red', 'blue', 'red', 'green', 'blue', 'blue'l]:
cnt [word] += 1

cnt

Counter ({'blue': 3, 'red': 2, 'green': 1})

>>>
>>>
>>>
>>>

Find the ten most common words in Hamlet

import re

words = re.findall (r'\w+', open('hamlet.txt').read().lower())
Counter (words) .most_common (10)

[("the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

class collections.Counter ([iterable-or-mapping])

A Counter is a dict subclass for counting hashable objects. It is a collection where elements are stored
as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value
including zero or negative counts. The Counter class is similar to bags or multisets in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> ¢ = Counter () # a new, empty counter

>>> ¢ = Counter('gallahad") # a new counter from an iterable
>>> ¢ = Counter ({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> ¢ = Counter (cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items instead of
raising a KeyError:

>>> ¢ = Counter(['eggs', 'ham'])

>>> c['bacon'] # count of a missing element 1is.
—Zero

0

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

>>> c['sausage'] = 0 # counter entry with a zero count
>>> del c|['sausage'] # del actually removes the entry

New in version 3.1.

Counter objects support three methods beyond those available for all dictionaries:

8.3.

collections — Container datatypes 201

The Python Library Reference, Release 3.7.15

elements ()

Return an iterator over elements repeating each as many times as its count. Elements are returned in
arbitrary order. If an element’s count is less than one, e lements () will ignore it.

>>> ¢ = Counter (a=4, b=2, c=0, d=-2)
>>> sorted(c.elements())
[la', laV, lal, lal, lbl, lbl]

most_common ([n])

Return a list of the » most common elements and their counts from the most common to the least. If n
is omitted or None, most_common () returns all elements in the counter. Elements with equal counts
are ordered arbitrarily:

>>> Counter ('abracadabra') .most_common (3)
[(ta'y, 5), ("', 2), ('b', 2)]

subtract ([iterable-or-mapping])

Elements are subtracted from an iterable or from another mapping (or counter). Like dict . update ()
but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

>>> ¢ = Counter (a=4, b=2, c=0, d=-2)

>>> d = Counter(a=1, b=2, c=3, d=4)

>>> c.subtract (d)

>>> ¢

Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

New in version 3.2.

The usual dictionary methods are available for Counter objects except for two which work differently for
counters.

fromkeys (iterable)

This class method is not implemented for Counter objects.

update ([iterable-or-mapping])

Elements are counted from an iferable or added-in from another mapping (or counter). Like dict.
update () butadds counts instead of replacing them. Also, the iterable is expected to be a sequence of
elements, not a sequence of (key, wvalue) pairs.

Common patterns for working with Counter objects:

sum (c.values()) # total of all counts

c.clear () # reset all counts

list (c) # 1list unique elements

set (c) # convert to a set

dict (c) # convert to a regular dictionary

c.items () # convert to a list of (elem, cnt) pairs
Counter (dict (list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common () [:—n—-1:-1] # n least common elements

+c # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that
have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts of
corresponding elements. Intersection and union return the minimum and maximum of corresponding counts. Each
operation can accept inputs with signed counts, but the output will exclude results with counts of zero or less.

>>> ¢ = Counter (a=3, b=1)

>>> d = Counter (a=1, b=2)

>>> ¢ + d # add two counters together: cl[x] + d[x]
Counter({'a': 4, 'b': 3})

>>> ¢ - d # subtract (keeping only positive counts)
Counter({'a': 2})

(continues on next page)

202

Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> ¢ & d # intersection: min(c[x], d[x])
Counter ({'a': 1, 'b': 1})
>>> ¢ | d # union: max(c[x], d[x])

Counter({'a': 3, 'b': 2})

Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty counter.

>>> ¢ = Counter (a=2, b=-4)
>>> +C

Counter({'a': 2})

>>> —C

Counter ({'b': 4})

New in version 3.3: Added support for unary plus, unary minus, and in-place multiset operations.

Note: Counters were primarily designed to work with positive integers to represent running counts; however, care
was taken to not unnecessarily preclude use cases needing other types or negative values. To help with those use
cases, this section documents the minimum range and type restrictions.

e The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values are
intended to be numbers representing counts, but you could store anything in the value field.

e The most_common () method requires only that the values be orderable.

* For in-place operations such as c [key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true for
update () and subtract () which allow negative and zero values for both inputs and outputs.

¢ The multiset methods are designed only for use cases with positive values. The inputs may be negative or zero,
but only outputs with positive values are created. There are no type restrictions, but the value type needs to
support addition, subtraction, and comparison.

e The elements () method requires integer counts. It ignores zero and negative counts.

See also:
» Bag class in Smalltalk.
* Wikipedia entry for Multisets.
e C++ multisets tutorial with examples.

» For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer Pro-
gramming Volume II, Section 4.6.3, Exercise 19.

e To enumerate all distinct multisets of a given size over a given set of elements, see itertools.
combinations_with_replacement ():

map (Counter, combinations_with_replacement ('ABC', 2)) # —-—-> AA AB AC BB BC CC

8.3.3 deque objects

class collections.deque ([iterable[, maxlen]])
Returns a new deque object initialized left-to-right (using append ()) with data from iterable. If iterable is
not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque
with approximately the same O(1) performance in either direction.

8.3. collections — Container datatypes 203

https://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
https://en.wikipedia.org/wiki/Multiset
http://www.java2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.7.15

Though 11 st objects support similar operations, they are optimized for fast fixed-length operations and incur
O(n) memory movement costs for pop (0) and insert (0, v) operations which change both the size and
position of the underlying data representation.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is bounded
to the specified maximum length. Once a bounded length deque is full, when new items are added, a corre-
sponding number of items are discarded from the opposite end. Bounded length deques provide functionality
similar to the tail filter in Unix. They are also useful for tracking transactions and other pools of data where
only the most recent activity is of interest.

Deque objects support the following methods:

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length 0.

copy ()
Create a shallow copy of the deque.

New in version 3.5.

count (x)
Count the number of deque elements equal to x.

New in version 3.2.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

index (x[, start[, stop]])
Return the position of x in the deque (at or after index start and before index stop). Returns the first
match or raises ValueError if not found.

New in version 3.5.

insert (i, x)
Insert x into the deque at position i.

If the insertion would cause a bounded deque to grow beyond maxlen, an ITndexError is raised.

New in version 3.5.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove (value)
Remove the first occurrence of value. If not found, raises a ValueError.

reverse ()
Reverse the elements of the deque in-place and then return None.

New in version 3.2.

rotate (n=1)
Rotate the deque n steps to the right. If n is negative, rotate to the left.

204

Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

When the deque is not empty, rotating one step to the right is equivalent to d.appendleft (d.
pop ()), and rotating one step to the left is equivalent to d . append (d.popleft ()).

Deque objects also provide one read-only attribute:

maxlen
Maximum size of a deque or None if unbounded.

New in version 3.1.

In addition to the above, deques support iteration, pickling, 1en (d), reversed (d), copy.copy (d), copy .
deepcopy (d), membership testing with the in operator, and subscript references such as d [-1]. Indexed access
is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Starting in version 3.5, deques support __add__ (), __mul__ (),and __imul__ ().

Example:

>>> from collections import deque

>>> d = deque('ghi'") # make a new deque with three items
>>> for elem in d: # iterate over the deque's elements

.. print (elem.upper())

G

H

I

>>> d.append('j") # add a new entry to the right side
>>> d.appendleft ('f'") # add a new entry to the left side

>>> d # show the representation of the deque

deque(['f', 'g', 'h', 'i', '"3'])

>>> d.pop () # return and remove the rightmost item
ljl

>>> d.popleft () # return and remove the leftmost item
lfl

>>> list (d) # list the contents of the deque
[Vg" Vh', ViV]

>>> d[0] # peek at leftmost item

lgl

>>> d[-1] # peek at rightmost item

lil

>>> list (reversed(d)) # 1list the contents of a deque in reverse
[li', lhl, lgl]

>>> 'h' in d # search the deque

True

>>> d.extend('Jk1l") # add multiple elements at once

>>> d

deque([lgl, lhl, lil, 'j', 'k" 'l'])

>>> d.rotate (1) # right rotation

>>> d

deque([lll, lgl, lhl, 'i', 'j" 'k'])

>>> d.rotate (-1) # left rotation

>>> d

deque(['g', th, 'i'I 'j'l 'k', 'l'])

>>> deque (reversed(d)) # make a new deque 1in reverse order
deque(['l'l 'k'I 'j'l 'i|l 'h'V 'g'])

>>> d.clear () # empty the deque

>>> d.pop () # cannot pop from an empty deque

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop ()
IndexError: pop from an empty deque

(continues on next page)

8.3. collections — Container datatypes 205

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> d.extendleft ('abc') # extendleft () reverses the input order
>>> d
deque(['c', 'b', 'a'l)

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

def tail (filename, n=10):
'Return the last n lines of a file'
with open(filename) as f:
return deque(f, n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right and
popping to the left:

def moving_average (iterable, n=3):
moving_average ([40, 30, 50, 46, 39, 44]) ——> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving_average
it = iter (iterable)
d = deque(itertools.islice(it, n-1))
d.appendleft (0)
s = sum(d)
for elem in it:
s += elem - d.popleft ()
d.append (elem)
yield s / n

A round-robin scheduler can be implemented with input iterators stored in a deque. Values are yielded from the
active iterator in position zero. If that iterator is exhausted, it can be removed with popleft (); otherwise, it can
be cycled back to the end with the rotate () method:

def roundrobin (*iterables) :

"roundrobin ('ABC', 'D', 'EF') -——> A DE B F C"
iterators = deque(map(iter, iterables))
while iterators:

try:

while True:
yield next (iterators([0])
iterators.rotate (-1)
except Stoplteration:
Remove an exhausted iterator.
iterators.popleft ()

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement degue slicing, use a similar approach applying rotate () to bring a target element to the left side of
the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the rotation.
‘With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup, drop,
swap, over, pick, rot,and roll.

206 Chapter 8. Data Types

https://en.wikipedia.org/wiki/Round-robin_scheduling

The Python Library Reference, Release 3.7.15

8.3.4 defaultdict objects

class collections.defaultdict ([defaultjactory[,]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides
one method and adds one writable instance variable. The remaining functionality is the same as for the dict
class and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including keyword
arguments.

defaultdict objects support the following method in addition to the standard dict operations:

__missing__ (key)
If the default_rfactory attribute is None, this raises a KeyError exception with the key as ar-
gument.

If default_factory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_ factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__ () method of the dict class when the requested key is
not found; whatever it returns or raises is then returned or raised by __getitem__ ().

Note that _ _missing () is not called for any operations besides __ getitem__ (). This
means that get () will, like normal dictionaries, return None as a default rather than using de—
fault_factory.

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the __missing__ () method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

defaultdict Examples

Using 1istasthe default_factory,itis easy to group a sequence of key-value pairs into a dictionary of lists:

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict (list)
>>> for k, v in s:

d[k] .append(v)

>>> sorted(d.items ())
[('blue', [2, 41), ('red', [1]), ('yellow', [1, 31)]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_ factory function which returns an empty 1ist. The 1ist.append () operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the
list for that key) and the 1ist .append () operation adds another value to the list. This technique is simpler and
faster than an equivalent technique using dict.setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []).append(v)

>>> sorted(d.items())
[("blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the default_factoryto int makes the defaultdict useful for counting (like a bag or multiset in
other languages):

8.3. collections — Container datatypes 207

The Python Library Reference, Release 3.7.15

>>> s = 'mississippi'’
>>> defaultdict (int)
>>> for k in s:

d[k] += 1

Q.
Il

>>> sorted(d.items ())
(¢'i', 4), ('m', 1), ('p', 2), ('s', 4)]

When a letter is first encountered, it is missing from the mapping, so the de fault_factory function calls int ()
to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int () which always returns zero is just a special case of constant functions. A faster and more flexible
way to create constant functions is to use a lambda function which can supply any constant value (not just zero):

>>> def constant_factory(value) :

.. return lambda: value

>>> d = defaultdict (constant_factory('<missing>"))
>>> d.update (name='John', action='ran')

>>> ! to "% d

'John ran to <missing>'

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict (set)
>>> for k, v in s:

d[k].add (v)

>>> sorted(d.items ())
[('blue', {2, 4}), ('red', {1, 311

8.3.5 namedtuple () Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They
can be used wherever regular tuples are used, and they add the ability to access fields by name instead of position
index.

collections.namedtuple (typename, field_names, *, rename=False, defaults=None, module=None)
Returns a new tuple subclass named fypename. The new subclass is used to create tuple-like objects that have
fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have
a helpful docstring (with typename and field_names) and a helpful __repr__ () method which lists the tuple
contents in a name=value format.

The field_names are a sequence of strings such as ['x', 'y']. Alternatively, field_names can be a single
string with each fieldname separated by whitespace and/or commas, for example 'x y'or 'x, y'.

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a
keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example, ['abc',
'def', 'ghi', 'abc']isconvertedto ['abc', '_1', 'ghi', '_3'], eliminating the keyword
def and the duplicate fieldname abc.

defaults can be None or an iterable of default values. Since fields with a default value must come after any
fields without a default, the defaults are applied to the rightmost parameters. For example, if the fieldnames
are ['x', 'y', 'z'] and the defaults are (1, 2),then x will be a required argument, y will default to
1, and z will default to 2.

If module is defined, the __module___ attribute of the named tuple is set to that value.

208 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more
memory than regular tuples.

Changed in version 3.1: Added support for rename.

Changed in version 3.6: The verbose and rename parameters became keyword-only arguments.
Changed in version 3.6: Added the module parameter.

Changed in version 3.7: Remove the verbose parameter and the _source attribute.

Changed in version 3.7: Added the defaults parameter and the _field defaults attribute.

>>> # Basic example

>>> Point = namedtuple('Point', ['x', 'y'])

>>> p = Point (11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + pl[l] # indexable like the plain tuple (11, 22)

33

>>> x, y =p # unpack like a regular tuple

>>> x, y

(11, 22)

>>> p.x + p.y # fields also accessible by name

33

>>> p # readable __repr. _ with a name=value style

Point (x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sglite3
modules:

EmployeeRecord = namedtuple ('EmployeeRecord', 'name, age, title, department,.
—paygrade')

import csv
for emp in map (EmployeeRecord._make, csv.reader (open("employees.csv", "rb"))):
print (emp.name, emp.title)

import sqlite3
conn = sglite3.connect ('/companydata')
cursor = conn.cursor ()
cursor.execute ('SELECT name, age, title, department, paygrade FROM employees')
for emp in map (EmployeeRecord._make, cursor.fetchall()):
print (emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support three additional methods and two attributes.
To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make (iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make (t)
Point (x=11, y=22)

somenamedtuple._asdict ()
Return a new dict which maps field names to their corresponding values:

>>> p._asdict (

>>> p = Point (x=11, y=22)
)
OrderedDict ([('x', 11), ('y', 22)1)

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

somenamedtuple._replace (**kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

8.3. collections — Container datatypes 209

The Python Library Reference, Release 3.7.15

>>> p = Point (x=11, y=22)
>>> p._replace (x=33)
Point (x=33, y=22)

>>> for partnum, record in inventory.items():
inventory|[partnum] = record._replace (price=newprices[partnum], .
—timestamp=time.now())

somenamedtuple._£fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from
existing named tuples.

>>> p._fields # view the field names
(lxl, lyl)

>>> Color = namedtuple('Color', 'red green blue')

>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel (11, 22, 128, 255, 0)

Pixel (x=11, y=22, red=128, green=255, blue=0)

somenamedtuple._field_defaults
Dictionary mapping field names to default values.

>>> Account = namedtuple('Account', ['type', 'balance'], defaults=[0])
>>> Account._field_defaults

{'balance': 0}

>>> Account ('premium')

Account (type='premium', balance=0)

To retrieve a field whose name is stored in a string, use the getattr () function:

>>> getattr(p, 'x'")
11

To convert a dictionary to a named tuple, use the * * operator (as described in tut-unpacking-arguments):

>>> d = {'x': 11, 'y': 22}
>>> Point (**d)
Point (x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how
to add a calculated field and a fixed-width print format:

>>> class Point (namedtuple ('Point', ['x', 'y'])):
__slots_ = ()
@property
def hypot (self):
return (self.x ** 2 + self.y ** 2) ** 0.5
def @ str__ (self):
C return 'Point: x= y= hypot= ' % (self.x, self.y, self.
—hypot)

>>> for p in Point (3, 4), Point (14, 5/7):
ce print (p)

Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 vy= 0.714 hypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This helps keep memory requirements low by
preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_ fields attribute:

210 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

>>>

Point3D = namedtuple('Point3D', Point._fields + ('z',))

Docstrings can be customized by making direct assignments to the ___doc___fields:

>>>
>>>
>>>
>>>
>>>

Book = namedtuple('Book', ['id', 'title', 'authors'])
Book._ doc += ': Hardcover book in active collection'
Book.id. doc = '13-digit ISBN'

Book.title. = 'Title of first printing’

Book.authors. d = 'List of authors sorted by last name'

Changed in version 3.5: Property docstrings became writeable.

Default values can be implemented by using _replace () to customize a prototype instance:

>>> Account = namedtuple('Account', 'owner balance transaction_count')
>>> default_account = Account ('<owner name>', 0.0, 0)

>>> johns_account = default_account._replace (owner="John'")

>>> janes_account = default_account._replace (owner="Jane')

See also:

See typing. NamedTuple for a way to add type hints for named tuples. It also provides an elegant notation
using the class keyword:

class Component (NamedTuple) :
part_number: int
weight: float
description: Optional[str] = None

See t ypes. SimpleNamespace () for a mutable namespace based on an underlying dictionary instead of
a tuple.

The dataclasses module provides a decorator and functions for automatically adding generated special
methods to user-defined classes.

8.3.6 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but have some extra capabilities relating to ordering operations.

They

have become less important now that the built-in dict class gained the ability to remember insertion order

(this new behavior became guaranteed in Python 3.7).

Some differences from di ct still remain:

The regular dict was designed to be very good at mapping operations. Tracking insertion order was sec-
ondary.

The OrderedDict was designed to be good at reordering operations. Space efficiency, iteration speed, and
the performance of update operations were secondary.

Algorithmically, OrderedDict can handle frequent reordering operations better than dict. This makes it
suitable for tracking recent accesses (for example in an LRU cache).

The equality operation for OrderedDi ct checks for matching order.

The popitem () method of OrderedDict has a different signature. It accepts an optional argument to
specify which item is popped.

OrderedDict has amove_to_end () method to efficiently reposition an element to an endpoint.

Until Python 3.8, dict lackeda ___reversed__ () method.

class collections.OrderedDict ([items])

Return an instance of a dict subclass that has methods specialized for rearranging dictionary order.

New in version 3.1.

8.3.

collections — Container datatypes 211

https://medium.com/@krishankantsinghal/my-first-blog-on-medium-583159139237

The Python Library Reference, Release 3.7.15

popitem (last=True)
The popitem () method for ordered dictionaries returns and removes a (key, value) pair. The pairs are
returned in LIFO order if last is true or FIFO (first-in, first-out) order if false.

move_to_end (key, last=True)
Move an existing key to either end of an ordered dictionary. The item is moved to the right end if last is
true (the default) or to the beginning if /ast is false. Raises KeyError if the key does not exist:

>>> d = OrderedDict.fromkeys ('abcde')
>>> d.move_to_end('b")

>>> ''" Join(d.keys())

'acdeb'

>>> d.move_to_end('b', last=False)
>>> ''" Join(d.keys())

'bacde’

New in version 3.2.
In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed ().

Equality tests between OrderedDict objects are order-sensitive and are implemented as list (odl.
items ())==list (od2.items ()). Equality tests between OrderedDict objects and other Mapping ob-
jects are order-insensitive like regular dictionaries. This allows OrderedDict objects to be substituted anywhere
a regular dictionary is used.

Changed in version 3.5: The items, keys, and values views of OrderedDict now support reverse iteration using
reversed().

Changed in version 3.6: With the acceptance of PEP 468, order is retained for keyword arguments passed to the
OrderedDict constructor and its update () method.

orderedDict Examples and Recipes

It is straightforward to create an ordered dictionary variant that remembers the order the keys were last inserted. If
a new entry overwrites an existing entry, the original insertion position is changed and moved to the end:

class LastUpdatedOrderedDict (OrderedDict) :
'Store items in the order the keys were last added’

def _ setitem__ (self, key, value):
super () .__setitem__ (key, value)
super () .move_to_end (key)

An OrderedDict would also be useful for implementing variants of functools.lru_cache():

class LRU (OrderedDict) :
'Limit size, evicting the least recently looked-up key when full'

def _ _init__ (self, maxsize=128, *args, **kwds):
self.maxsize maxsize
super () .__init__ (*args, **kwds)

def _ getitem__ (self, key):
value = super () .__getitem__ (key)
self.move_to_end(key)
return value

def _ _setitem__ (self, key, value):
super () .__setitem__ (key, value)
if len(self) > self.maxsize:
oldest = next (iter(self))
del selfloldest]

212 Chapter 8. Data Types

https://www.python.org/dev/peps/pep-0468

The Python Library Reference, Release 3.7.15

8.3.7 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially sup-
planted by the ability to subclass directly from dict; however, this class can be easier to work with because the
underlying dictionary is accessible as an attribute.

class collections.UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDi ct instances. If initialdata is provided, dat a is initialized with its contents;
note that a reference to initialdata will not be kept, allowing it be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDi ct instances provide the following
attribute:

data
A real dictionary used to store the contents of the UserDict class.

8.3.8 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can inherit
from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from 11 st; however, this class
can be easier to work with because the underlying list is accessible as an attribute.

class collections.UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. /ist can be any iterable, for example a real Python list or a UserLi st object.

In addition to supporting the methods and operations of mutable sequences, UserLi st instances provide the
following attribute:

data
A real 11st object used to store the contents of the UserLi st class.

Subclassing requirements: Subclasses of UserList are expected to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance of
the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which
is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class
will need to be overridden; please consult the sources for information about the methods which need to be provided
in that case.

8.3.9 Userstring objects

The class, UserSt ring acts as a wrapper around string objects. The need for this class has been partially supplanted
by the ability to subclass directly from st r; however, this class can be easier to work with because the underlying
string is accessible as an attribute.

class collections.UserString (seq)
Class that simulates a string object. The instance’s content is kept in a regular string object, which is accessible
via the data attribute of UserString instances. The instance’s contents are initially set to a copy of seq.
The seq argument can be any object which can be converted into a string using the built-in st r () function.

In addition to supporting the methods and operations of strings, UserSt ring instances provide the following
attribute:

data
A real st r object used to store the contents of the UserSt ring class.

8.3. collections — Container datatypes 213

The Python Library Reference, Release 3.7.15

Changed in version 3.5: New methods __getnewargs
printable, and maketrans.

,__rmod__,casefold, format_map, is—

8.4 collections.abc — Abstract Base Classes for Containers

New in version 3.3: Formerly, this module was part of the collections module.

Source code: Lib/_collections_abc.py

This module provides abstract base classes that can be used to test whether a class provides a particular interface; for
example, whether it is hashable or whether it is a mapping.

8.4.1 Collections Abstract Base Classes

The collections module offers the following ABCs:

214 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.7/Lib/_collections_abc.py

The Python Library Reference, Release 3.7.15

ABC Inherits Abstract Methods Mixin Methods
from
Container __contains___
Hashable __hash___
Iterable __iter_
Iterator Iter- __next_ __iter_
able
Reversible Iter- __reversed_
able
Generator Itera-— send, throw close,__iter_ ,_ next_
tor
Sized __len_
Callable __call__
Collection Sized, _ _contains___
Iter- __iditer_, len
able,
Con-—
tainer
Sequence Re—- __getitem_ , __contains_ ,_ _iter_
versible,| __len_ __reversed__, index, and count
Collec-
tion
MutableSequence | Se— _ _getitem__, Inherited Sequence methods and
quence __setitem_ , append, reverse, extend, pop,
__delitem__ , remove,and ___iadd___
__len_ ,insert
ByteString Se—- _ _getitem__, Inherited Sequence methods
quence __len_
Set Collec— __contains__, _le_ , 1t ., eq__,__ne__,
tion __diter_,__len_ _gt__, ge_ ,__and__,
__or__,_sub__, xor__,and
isdisjoint
MutableSet Set __contains__, Inherited Set methods and clear,
__diter_, len_ , pop, remove, _ _ior_ ,_ iand__,
add, discard __dixor_ _,and __isub___
Mapping Collec— __getitem_ , __contains__, keys,items,
tion __iditer_,__len_ values,get,__eq ,and_ _ne_
MutableMapping Mapping | __getitem__, Inherited Mapping methods and pop,
__setitem_ , popitem, clear, update, and
__delitem__, setdefault
__diter_,__len_
MappingView Sized __len_
ItemsView Map- __contains_ ,__iter_
pingView,
Set
KeysView Map— __contains_ ,__iter_
pingView,
Set
ValuesView Map— __contains_ ,_ _iter
pingView,
Collec-
tion
Awaitable __await_
Coroutine Await-— send, throw close
able
AsyncIterable __aiter__
AsyncIlterator Asynclt— | __anext__ aiter
erable
B.47/¢sTTect fons. abcﬁ% tﬁ?ﬁs?r’actﬁi&s“&ﬁ%%@sw for Conraaiﬁé?sse’ atter — _anext _oqg

The Python Library Reference, Release 3.7.15

class collections.abc.Container

class collections.abc.Hashable

class collections.abc.Sized

class collections.abc.Callable
ABC: for classes that provide respectively the methods __contains__ (),__hash__ (),__len__ (),
and __call_ ().

class collections.abc.Iterable
ABC for classes that provide the __iter__ () method.

Checking isinstance (obj, Iterable) detects classes that are registered as Iterable or that have
an__iter__ () method, but it does not detect classes that iterate with the _ _getitem__ () method. The
only reliable way to determine whether an object is iferable is to call iter (obj).

class collections.abc.Collection
ABC for sized iterable container classes.

New in version 3.6.

class collections.abc.Iterator
ABC for classes that provide the __iter () and __next__ () methods. See also the definition of iter-
ator.

class collections.abc.Reversible
ABC for iterable classes that also provide the ___reversed__ () method.

New in version 3.6.

class collections.abc.Generator
ABC for generator classes that implement the protocol defined in PEP 342 that extends iterators with the
send (), throw () and close () methods. See also the definition of generator.

New in version 3.5.

class collections.abc.Sequence

class collections.abc.MutableSequence

class collections.abc.ByteString
ABC:s for read-only and mutable sequences.

Implementation note: Some of the mixin methods, such as __iter_ (), __reversed__ ()
and index (), make repeated calls to the underlying _ getitem__ () method. Consequently, if
__getitem__ () is implemented with constant access speed, the mixin methods will have linear perfor-

mance; however, if the underlying method is linear (as it would be with a linked list), the mixins will have
quadratic performance and will likely need to be overridden.

Changed in version 3.5: The index() method added support for stop and start arguments.

class collections.abc.Set
class collections.abc.MutableSet
ABC:s for read-only and mutable sets.

class collections.abc.Mapping
class collections.abc.MutableMapping
ABC:s for read-only and mutable mappings.

class collections.abc.MappingView

class collections.abc.ItemsView

class collections.abc.KeysView

class collections.abc.ValuesView
ABC:s for mapping, items, keys, and values views.

class collections.abc.Awaitable
ABC for awaitable objects, which can be used in awa it expressions. Custom implementations must provide
the __await__ () method.

Coroutine objects and instances of the Corout ine ABC are all instances of this ABC.

216 Chapter 8. Data Types

https://www.python.org/dev/peps/pep-0342

The Python Library Reference, Release 3.7.15

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine () or
asyncio.coroutine ()) are awaitables, even though they do not have an __await__ () method.
Using isinstance (gencoro, Awaitable) for them will return False. Use inspect.
isawaitable () to detect them.

New in version 3.5.

class collections.abc.Coroutine
ABC for coroutine compatible classes. These implement the following methods, defined in coroutine-objects:
send (), throw (), and close (). Custom implementations must also implement __await__ (). All
Coroutine instances are also instances of Awaitable. See also the definition of coroutine.

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine () or
asyncio.coroutine ()) are awaitables, even though they do not have an __await__ () method.
Using isinstance (gencoro, Coroutine) for them will return False. Use inspect.
isawaitable () to detect them.

New in version 3.5.

class collections.abc.AsyncIterable
ABC for classes that provide __aiter__ method. See also the definition of asynchronous iterable.

New in version 3.5.

class collections.abc.AsyncIterator
ABC for classes that provide __aiter___and __anext__ methods. See also the definition of asynchronous
iterator.

New in version 3.5.

class collections.abc.AsyncGenerator
ABC for asynchronous generator classes that implement the protocol defined in PEP 525 and PEP 492.

New in version 3.6.

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance (myvar, collections.abc.Sized):
size = len (myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For
example, to write a class supporting the full Set API, it is only necessary to supply the three underlying abstract
methods: __contains__(),__iter_ (),and __len__ (). The ABC supplies the remaining methods such
as__and__ () and isdisjoint ():

class ListBasedSet (collections.abc.Set):

""" Alternate set implementation favoring space over speed

and not requiring the set elements to be hashable. '''
def _ init_ (self, iterable):

self.elements = 1lst = []

for value in iterable:

if value not in 1lst:
lst.append(value)

def _ iter_ (self):
return iter (self.elements)

def _ contains__ (self, value):
return value in self.elements

(continues on next page)

8.4. collections.abc — Abstract Base Classes for Containers 217

https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492

The Python Library Reference, Release 3.7.15

(continued from previous page)

def @ len_ (self):
return len(self.elements)

sl = ListBasedSet ('abcdef'")
s2 = ListBasedSet ('defghi'")
overlap = sl & s2 # The ___and () method is supported automatically

Notes on using Set and MutableSet as a mixin:

(1) Since some set operations create new sets, the default mixin methods need a way to create new instances from
an iterable. The class constructor is assumed to have a signature in the form ClassName (iterable).
That assumption is factored-out to an internal classmethod called _from_iterable () which calls
cls(iterable) to produce a new set. If the Set mixin is being used in a class with a different con-
structor signature, you will need to override _from_iterable () with a classmethod that can construct
new instances from an iterable argument.

(2) To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__ () and
__ge__ (), then the other operations will automatically follow suit.

(3) The Set mixin provides a _hash () method to compute a hash value for the set; however, __hash__ () is
not defined because not all sets are hashable or immutable. To add set hashability using mixins, inherit from
both Set () and Hashable (),thendefine _ _hash__ = Set._hash.

See also:
¢ OrderedSet recipe for an example built on MutableSet.

¢ For more about ABCs, see the abc module and PEP 3119.

8.5 heapqg — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. This imple-
mentation uses arrays for which heap [k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all k,
counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The
interesting property of a heap is that its smallest element is always the root, heap [0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a “min
heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest item,
and heap.sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify ().

The following functions are provided:

heapqg.heappush (heap, item)
Push the value item onto the heap, maintaining the heap invariant.

heapqg.heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty, Tndex—
Error israised. To access the smallest item without popping it, use heap [0].

218 Chapter 8. Data Types

https://code.activestate.com/recipes/576694/
https://www.python.org/dev/peps/pep-3119
https://github.com/python/cpython/tree/3.7/Lib/heapq.py

The Python Library Reference, Release 3.7.15

heapqg.heappushpop (heap, item)
Push ifem on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush () followed by a separate call to heappop ().

heapg.heapify (x)
Transform list x into a heap, in-place, in linear time.

heapqg.heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change. If
the heap is empty, TndexError is raised.

This one step operation is more efficient than a heappop () followed by heappush () and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from the heap
and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using heappushpop ()
instead. Its push/pop combination returns the smaller of the two values, leaving the larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapqg.merge (*iterables, key=None, reverse=False)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple
log files). Returns an iterator over the sorted values.

Similar to sorted (itertools.chain (*iterables)) but returns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).

Has two optional arguments which must be specified as keyword arguments.

key specifies a key function of one argument that is used to extract a comparison key from each input element.
The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the input elements are merged as if each comparison
were reversed. To achieve behavior similar to sorted (itertools.chain (*iterables), re-
verse=True), all iterables must be sorted from largest to smallest.

Changed in version 3.5: Added the optional key and reverse parameters.

heapg.nlargest (n, iterable, key=None)
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies a
function of one argument that is used to extract a comparison key from each element in iterable (for example,
key=str.lower). Equivalent to: sorted (iterable, key=key, reverse=True) [:n].

heapg.nsmallest (n, iterable, key=None)
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, specifies a
function of one argument that is used to extract a comparison key from each element in iterable (for example,
key=str.lower). Equivalent to: sorted (iterable, key=key) [:n].

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the
sorted () function. Also, when n==1, it is more efficient to use the built-in min () and max () functions. If
repeated usage of these functions is required, consider turning the iterable into an actual heap.

8.5.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at a
time:

>>> def heapsort (iterable) :
h = []
for value in iterable:
heappush (h, wvalue)
return [heappop (h) for i in range(len(h))]

>>> heapsort ([1, 3, 5, 7, 9, 2, 4, 6, 8, 01])
[Ol 1[2’ 3! 4’ 5[6[7! 8’ 9:|

8.5. heapg — Heap queue algorithm 219

https://en.wikipedia.org/wiki/Heapsort

The Python Library Reference, Release 3.7.15

This is similar to sorted (iterable), but unlike sorted (), this implementation is not stable.

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the
main record being tracked:

>>> h = []

>>> heappush (h,
>>> heappush (h,
>>> heappush (h,
>>> heappush (h,
>>> heappop (h)

(1, 'write spec')

'write code'))
'release product'))
'write spec'))
'create tests'))

~

w = 3 !
~ 0~

~

8.5.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

* Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally
added?

* Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have a default
comparison order.

* If the priority of a task changes, how do you move it to a new position in the heap?
* Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and
the task. The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order
they were added. And since no two entry counts are the same, the tuple comparison will never attempt to directly
compare two tasks.

Another solution to the problem of non-comparable tasks is to create a wrapper class that ignores the task item and
only compares the priority field:

from dataclasses import dataclass, field
from typing import Any

@dataclass (order=True)
class PrioritizedItem:
priority: int
item: Any=field (compare=False)

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it
entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants. So,
a possible solution is to mark the entry as removed and add a new entry with the revised priority:

pa = [] # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = '<removed-task>" # placeholder for a removed task
counter itertools.count () # unique sequence count

def add_task(task, priority=0):
'Add a new task or update the priority of an existing task'
if task in entry_finder:
remove_task (task)

count = next (counter)
entry = [priority, count, task]
entry_finder[task] = entry

heappush (pg, entry)

(continues on next page)

220 Chapter 8. Data Types

https://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.7.15

(continued from previous page)

def remove_task (task) :
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry = entry_finder.pop (task)
entry[-1] = REMOVED

def pop_task():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pqg:
priority, count, task = heappop (pqg)
if task is not REMOVED:
del entry_finder[task]
return task
raise KeyError ('pop from an empty priority queue')

8.5.3 Theory

Heaps are arrays for whicha [k] <= a[2*k+1] andal[k] <= a[2*k+2] for all k, counting elements from O.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap
is that a [0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
are k,notal[k]:

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2*k+1 and 2*k+2. In a usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the
rule becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the two
topped cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way to
remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the O position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not “better” than the last 0’th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event
schedules other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a
heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs” (which
are pre-sorted sequences, whose size is usually related to the amount of CPU memory), followed by a merging passes
for these runs, which merging is often very cleverly organised'. It is very important that the initial sort produces

! The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabil-
ities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in

8.5. heapg — Heap queue algorithm 221

The Python Library Reference, Release 3.7.15

the longest runs possible. Tournaments are a good way to achieve that. If, using all the memory available to hold a
tournament, you replace and percolate items that happen to fit the current run, you’ll produce runs which are twice
the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because
the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly the
same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run.
Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

8.6 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is called bi sect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

bisect .bisect_left (aq, x, lo=0, hi=len(a))
Locate the insertion point for x in a to maintain sorted order. The parameters /o and ki may be used to specify
a subset of the list which should be considered; by default the entire list is used. If x is already present in a,
the insertion point will be before (to the left of) any existing entries. The return value is suitable for use as the
first parameter to 1ist .insert () assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so that all (val < x for val in
al[lo:1i]) fortheleftsideand all (val >= x for val in a[i:hi]) for the right side.

bisect.bisect_right (a, x, lo=0, hi=len(a))

bisect.bisect (a, x, lo=0, hi=len(a))
Similar to bisect_left (), but returns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point i partitions the array a into two halves so that all (val <= x for val in
al[lo:1i]) fortheleftside and a1l (val > x for val in a[i:hi]) for the right side.

bisect.insort_left (q, x, lo=0, hi=len(a))
Insert x in a in sorted order. This is equivalent to a.insert (bisect.bisect_left (a, x, lo,
hi), =x) assuming that a is already sorted. Keep in mind that the O(log n) search is dominated by the slow
O(n) insertion step.

bisect.insort_right (a, x, lo=0, hi=len(a))
bisect.insort (a, x, lo=0, hi=len(a))
Similar to insort_left (), butinserting x in a after any existing entries of x.

See also:

SortedCollection recipe that uses bisect to build a full-featured collection class with straight-forward search methods
and support for a key-function. The keys are precomputed to save unnecessary calls to the key function during
searches.

advance) that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes were
even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch!
From all times, sorting has always been a Great Art! :-)

222 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.7/Lib/bisect.py
https://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.7.15

8.6.1 Searching Sorted Lists

The above bisect () functions are useful for finding insertion points but can be tricky or awkward to use for
common searching tasks. The following five functions show how to transform them into the standard lookups for
sorted lists:

def index(a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left (a, x)
if i != len(a) and al[i] == x:
return i
raise ValueError

def find_1lt (a, x):
'Find rightmost value less than x'
i = bisect_left (a, x)
if i:
return al[i-1]
raise ValueError

def find_le(a, x):
'Find rightmost value less than or equal to x'
i = bisect_right(a, x)
if i:
return a[i-1]
raise ValueError

def find_gt(a, x):
'Find leftmost value greater than x'
i = bisect_right(a, x)
if i != len(a):
return ali]
raise ValueError

def find_ge(a, x):
'Find leftmost item greater than or equal to x'
i = bisect_left (a, x)
if 1 != len(a):
return ali]
raise ValueError

8.6.2 Other Examples

The bisect () function can be useful for numeric table lookups. This example uses bisect () to look up a letter
grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is a ‘B’,
and so on:

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect (breakpoints, score)
return grades([i]

>>> [grade (score) for score in [33, 99, 77, 70, 89, 90, 100]]
['E", VA', IC', ICV, IBII IAII lAl]

Unlike the sorted () function, it does not make sense for the bisect () functions to have key or reversed argu-
ments because that would lead to an inefficient design (successive calls to bisect functions would not “remember” all
of the previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

8.6. bisect — Array bisection algorithm 223

The Python Library Reference, Release 3.7.15

>>> data = [('red', 5), ('blue', 1), ('yellow', 8), ('black', 0)]
>>> data.sort (key=lambda r: r[1])

>>> keys = [r[l] for r in data] # precomputed 1list of keys
>>> data([bisect_left (keys, 0)]

('"black', 0)

>>> datal[bisect_left (keys, 1)]

("blue', 1)

>>> datal[bisect_left (keys, 5)]

('red', 5)

>>> data([bisect_left (keys, 8)]

('yellow', 8)

8.7 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

Type code | C Type Python Type Minimum size in bytes | Notes
'b! signed char int 1

'B' unsigned char int 1

u' Py_UNICODE Unicode character | 2 @))]
'h' signed short int 2

'H' unsigned short int 2

i signed int int 2

"I unsigned int int 2

' signed long int 4

'L unsigned long int 4

'q' signed long long int 8

Q! unsigned long long | int 8

"£! float float 4

'd’ double float 8

Notes:

(1) The 'u" type code corresponds to Python’s obsolete unicode character (Py_UNICODE which is wchar_t).
Depending on the platform, it can be 16 bits or 32 bits.

"u' will be removed together with the rest of the Py_UNICODE APL
Deprecated since version 3.3, will be removed in version 4.0.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through the itemsize attribute.

The module defines the following type:

class array.array (typecode[, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a list, a bytes-like object, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist (), frombytes (),or fro-
municode () method (see below) to add initial items to the array. Otherwise, the iterable initializer is passed
to the extend () method.

array.typecodes
A string with all available type codes.

224 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication. When
using slice assignment, the assigned value must be an array object with the same type code; in all other cases, Type—
Errorisraised. Array objects also implement the buffer interface, and may be used wherever byfes-like objects are
supported.

The following data items and methods are also supported:

array.typecode
The typecode character used to create the array.

array.itemsize
The length in bytes of one array item in the internal representation.

array.append (x)
Append a new item with value x to the end of the array.

array.buffer_info()
Return a tuple (address, length) giving the current memory address and the length in elements of the
buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as array.
buffer_info () [1] * array.itemsize. This is occasionally useful when working with low-level
(and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl () operations.
The returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method is
maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in bufferobjects.

array.byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of values, Runt imeError is raised. It is useful when reading data from a file written on a machine
with a different byte order.

array.count (x)
Return the number of occurrences of x in the array.

array .extend (iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array.

array.frombytes (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read
from a file using the fromfile () method).

New in version 3.2: fromstring () isrenamedto frombytes () for clarity.

array.fromfile (f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array. f
must be a real built-in file object; something else with a read () method won’t do.

array.fromlist (list)
Append items from the list. This is equivalent to for x in list: a.append (x) except thatif there
is a type error, the array is unchanged.

array.fromstring()
Deprecated alias for frombytes ().

Deprecated since version 3.2, will be removed in version 3.9.

array.fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type 'u' array; otherwise

8.7. array — Efficient arrays of numeric values 225

The Python Library Reference, Release 3.7.15

a ValueError is raised. Use array.frombytes (unicodestring.encode (enc)) to append
Unicode data to an array of some other type.

array.index (x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

array.insert (i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to the
end of the array.

array.pop ([z])
Removes the item with the index i from the array and returns it. The optional argument defaults to -1, so that
by default the last item is removed and returned.

array.remove (x)
Remove the first occurrence of x from the array.

array.reverse ()
Reverse the order of the items in the array.

array.tobytes ()
Convert the array to an array of machine values and return the bytes representation (the same sequence of bytes
that would be written to a file by the tofile () method.)

New in version 3.2: tostring () isrenamed to tobytes () for clarity.

array.tofile (f)
Write all items (as machine values) to the file object f.

array.tolist ()
Convert the array to an ordinary list with the same items.

array.tostring()
Deprecated alias for tobytes ().

Deprecated since version 3.2, will be removed in version 3.9.

array.tounicode ()
Convert the array to a unicode string. The array must be a type 'u' array; otherwise a ValueError is
raised. Use array.tobytes () .decode (enc) to obtain a unicode string from an array of some other

type.

When an array object is printed or converted to a string, it is represented as array (typecode, initial-
izer) . The initializer is omitted if the array is empty, otherwise it is a string if the typecode is 'u', otherwise it is
a list of numbers. The string is guaranteed to be able to be converted back to an array with the same type and value
using eval (), solong as the array class has been imported using from array import array. Examples:

("1")

array('u', 'hello \u2641"')

array ('1', [1, 2, 3, 4, 51)
('d

array('d', [1.0, 2.0, 3.141])

array

See also:
Module struct Packing and unpacking of heterogeneous binary data.

Module xdrl1ib Packing and unpacking of External Data Representation (XDR) data as used in some remote
procedure call systems.

The Numerical Python Documentation The Numeric Python extension (NumPy) defines another array type; see
http://www.numpy.org/ for further information about Numerical Python.

226 Chapter 8. Data Types

https://docs.scipy.org/doc/
http://www.numpy.org/

The Python Library Reference, Release 3.7.15

8.8 weakref — Weak references

Source code: Lib/weakref.py

The weak ref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. However, until the object is actually destroyed the weak reference may return the object even if there are no
strong references to it.

A primary use for weak references is to implement caches or mappings holding large objects, where it’s desired that
a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each. If
you used a Python dictionary to map names to images, or images to names, the image objects would remain alive just
because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and WeakValueDic—
t ionary classes supplied by the weak re £ module are an alternative, using weak references to construct mappings
that don’t keep objects alive solely because they appear in the mapping objects. If, for example, an image object is
avalue in a WeakValueDictionary, then when the last remaining references to that image object are the weak
references held by weak mappings, garbage collection can reclaim the object, and its corresponding entries in weak
mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed
by garbage collection. WeakSet implements the set interface, but keeps weak references to its elements, just like
a WeakKeyDictionary does.

finalize provides a straight forward way to register a cleanup function to be called when an object is garbage
collected. This is simpler to use than setting up a callback function on a raw weak reference, since the module
automatically ensures that the finalizer remains alive until the object is collected.

Most programs should find that using one of these weak container types or finalize is all they need — it’s not
usually necessary to create your own weak references directly. The low-level machinery is exposed by the weakre £
module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in Python
(but not in C), instance methods, sets, frozensets, some file objects, generators, type objects, sockets, arrays, deques,
regular expression pattern objects, and code objects.

Changed in version 3.2: Added support for thread.lock, threading.Lock, and code objects.

Several built-in types such as 1ist and dict do not directly support weak references but can add support through
subclassing:

class Dict (dict) :
pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referenceable

CPython implementation detail: Other built-in types such as tuple and int do not support weak references
even when subclassed.

Extension types can easily be made to support weak references; see weakref-support.

class weakref.ref (object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be returned.
If callback is provided and not None, and the returned weakref object is still alive, the callback will be called
when the object is about to be finalized; the weak reference object will be passed as the only parameter to the
callback; the referent will no longer be available.

8.8. weakref — Weak references 227

https://github.com/python/cpython/tree/3.7/Lib/weakref.py

The Python Library Reference, Release 3.7.15

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an object’s __del__ () method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the
object was deleted. If hash () is called the first time only after the object was deleted, the call will raise
TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless of the callback). If either referent has been deleted,
the references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

__callback__
This read-only attribute returns the callback currently associated to the weakref. If there is no callback
or if the referent of the weakref is no longer alive then this attribute will have value None.

Changed in version 3.4: Added the __callback__ attribute.

weakref .proxy (object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of either ProxyType or CallableProxyType, depending on whether object is callable. Proxy objects
are not hashable regardless of the referent; this avoids a number of problems related to their fundamentally
mutable nature, and prevent their use as dictionary keys. callback is the same as the parameter of the same
name to the rer () function.

weakref .getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

weakref.getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class weakref.WeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer
a strong reference to the key. This can be used to associate additional data with an object owned by other parts
of an application without adding attributes to those objects. This can be especially useful with objects that
override attribute accesses.

WeakKeyDictionary objects have an additional method that exposes the internal references directly. The ref-
erences are not guaranteed to be “live” at the time they are used, so the result of calling the references needs to be
checked before being used. This can be used to avoid creating references that will cause the garbage collector to keep
the keys around longer than needed.

WeakKeyDictionary.keyrefs ()
Return an iterable of the weak references to the keys.

class weakref.WeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

WeakValueDictionary objects have an additional method that has the same issues as the keyrefs () method
of WeakKeyDictionary objects.

WeakValueDictionary.valuerefs ()
Return an iterable of the weak references to the values.

class weakref.WeakSet ([elements])
Set class that keeps weak references to its elements. An element will be discarded when no strong reference to
it exists any more.

class weakref.WeakMethod (method)
A custom re £ subclass which simulates a weak reference to a bound method (i.e., a method defined on a class
and looked up on an instance). Since a bound method is ephemeral, a standard weak reference cannot keep

228 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

hold of it. WeakMethod has special code to recreate the bound method until either the object or the original
function dies:

>>> class C:
def method(self):
print ("method called!")

>>> ¢ = C()

>>> r = weakref.ref (c.method)

>>> 1 ()

>>> r = weakref.WeakMethod (c.method)

>>> r ()

<bound method C.method of <__main__.C object at 0x7£c859830220>>
>>> r() ()

method called!
>>> del c

>>> gc.collect ()
0

>>> 1 ()

>>>

New in version 3.4.

class weakref.finalize (obj, func, *args, **kwargs)
Return a callable finalizer object which will be called when obj is garbage collected. Unlike an ordinary weak
reference, a finalizer will always survive until the reference object is collected, greatly simplifying lifecycle
management.

A finalizer is considered alive until it is called (either explicitly or at garbage collection), and after that it is
dead. Calling a live finalizer returns the result of evaluating func (*arg, **kwargs), whereas calling a
dead finalizer returns None.

Exceptions raised by finalizer callbacks during garbage collection will be shown on the standard error output,
but cannot be propagated. They are handled in the same way as exceptions raised from an object’s __del_ ()
method or a weak reference’s callback.

When the program exits, each remaining live finalizer is called unless its atexit attribute has been set to
false. They are called in reverse order of creation.

A finalizer will never invoke its callback during the later part of the interpreter shutdown when module globals
are liable to have been replaced by None.

__call_ ()
If self is alive then mark it as dead and return the result of calling func (*args, **kwargs). If
self is dead then return None.

detach ()
If self is alive then mark it as dead and return the tuple (obj, func, args, kwargs). If self is
dead then return None.

peek ()
If self is alive then return the tuple (obj, func, args, kwargs). If self is dead then return
None.

alive
Property which is true if the finalizer is alive, false otherwise.

atexit
A writable boolean property which by default is true. When the program exits, it calls all remaining live
finalizers for which atexit is true. They are called in reverse order of creation.

Note: It is important to ensure that func, args and kwargs do not own any references to obj, either directly
or indirectly, since otherwise obj will never be garbage collected. In particular, func should not be a bound

8.8. weakref — Weak references 229

The Python Library Reference, Release 3.7.15

method of obj.

New in version 3.4.

weakref .ReferenceType
The type object for weak references objects.

weakref .ProxyType
The type object for proxies of objects which are not callable.

weakref.CallableProxyType
The type object for proxies of callable objects.

weakref .ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

See also:

PEP 205 - Weak References The proposal and rationale for this feature, including links to earlier implementations
and information about similar features in other languages.

8.8.1 Weak Reference Objects

Weak reference objects have no methods and no attributes besides ref.___callback__. A weak reference object
allows the referent to be obtained, if it still exists, by calling it:

>>> import weakref
>>> class Object:
pass

>>> o = Object ()
r

>>> = weakref.ref (0)
>>> 02 = r()

>>> o is 02

True

If the referent no longer exists, calling the reference object returns None:

>>> del o, o2
>>> print (r())
None

Testing that a weak reference object is still live should be done using the expression ref () 1is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:
referent has been garbage collected
print ("Object has been deallocated; can't frobnicate.")
else:
print ("Object is still live!™")
o.do_something_useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded
applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary toreduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

230 Chapter 8. Data Types

https://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 3.7.15

This example shows how a subclass of re £ can be used to store additional information about an object and affect the
value that’s returned when the referent is accessed:

import weakref

class ExtendedRef (weakref.ref):

def _ init_ (self, ob, callback=None, **annotations):
super (ExtendedRef, self).__init__ (ob, callback)
self._counter = 0

for k, v in annotations.items{() :
setattr(self, k, v)

def _ call_ (self):
"""Return a palr containing the referent and the number of
times the reference has been called.
ob = super (ExtendedRef, self).__call__ ()
if ob is not None:
self.__ _counter += 1
ob = (ob, self.__ _counter)
return ob

8.8.2 Example

This simple example shows how an application can use object IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects
can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary ()

def remember (obj) :
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj (oid):
return _id2obj_dict[oid]

8.8.3 Finalizer Objects

The main benefit of using £inalize is that it makes it simple to register a callback without needing to preserve the
returned finalizer object. For instance

>>> import weakref
>>> class Object:
pass

>>> kenny = Object ()

>>> weakref.finalize (kenny, print, "You killed Kenny!")
<finalize object at ...; for 'Object' at ...>

>>> del kenny

You killed Kenny!

The finalizer can be called directly as well. However the finalizer will invoke the callback at most once.

>>> def callback(x, vy, z):
print ("CALLBACK")

(continues on next page)

8.8. weakref — Weak references 231

The Python Library Reference, Release 3.7.15

(continued from previous page)

return x + y + z

>>> obj = Object ()

>>> f = weakref.finalize(obj, callback, 1, 2, z=3)

>>> assert f.alive

>>> assert f() == 6

CALLBACK

>>> assert not f.alive

>>> f() # callback not called because finalizer dead
>>> del obj # callback not called because finalizer dead

You can unregister a finalizer using its detach () method. This kills the finalizer and returns the arguments passed
to the constructor when it was created.

>>> obj = Object ()

>>> f = weakref.finalize(obj, callback, 1, 2, z=3)

>>> f.detach()

(<...0Object object ...>, <function callback ...>, (1, 2), {'z': 3})
>>> newobj, func, args, kwargs = _

>>> assert not f.alive

>>> assert newob]j is obj

>>> assert func(*args, **kwargs) == 6

CALLBACK

Unless you set the atexit attribute to False, a finalizer will be called when the program exits if it is still alive.
For instance

>>> obj = Object ()

>>> weakref.finalize (obj, print, "ob]j dead or exiting")
<finalize object at ...; for 'Object' at ...>

>>> exit ()

obj dead or exiting

8.8.4 Comparing finalizers with __del__ () methods
Suppose we want to create a class whose instances represent temporary directories. The directories should be deleted
with their contents when the first of the following events occurs:

* the object is garbage collected,

* the object’s remove () method is called, or

e the program exits.

We might try to implement the class usinga ___del__ () method as follows:

class TempDir:
def _ _init__ (self):
self.name = tempfile.mkdtemp ()

def remove (self):
if self.name is not None:
shutil.rmtree (self.name)
self.name = None

@property
def removed(self):
return self.name is None

def _ del_ (self):
self.remove ()

232 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

Starting with Python 3.4, __del__ () methods no longer prevent reference cycles from being garbage collected,
and module globals are no longer forced to None during interpreter shutdown. So this code should work without any
issues on CPython.

However, handling of __del__ () methods is notoriously implementation specific, since it depends on internal
details of the interpreter’s garbage collector implementation.

A more robust alternative can be to define a finalizer which only references the specific functions and objects that it
needs, rather than having access to the full state of the object:

class TempDir:
def _ init_ (self):
self.name = tempfile.mkdtemp ()
self._finalizer = weakref.finalize(self, shutil.rmtree, self.name)

def remove (self):
self. finalizer ()

@property
def removed(self):
return not self._finalizer.alive

Defined like this, our finalizer only receives a reference to the details it needs to clean up the directory appropriately.
If the object never gets garbage collected the finalizer will still be called at exit.

The other advantage of weakref based finalizers is that they can be used to register finalizers for classes where the
definition is controlled by a third party, such as running code when a module is unloaded:

import weakref, sys
def unloading_module () :

implicit reference to the module globals from the function body
weakref.finalize (sys.modules[_ name], unloading_module)

Note: If you create a finalizer object in a daemonic thread just as the program exits then there is the possibility
that the finalizer does not get called at exit. However, in a daemonic thread atexit.register (), try:
finally: ... andwith: ... donotguarantee thatcleanup occurs either.

8.9 types — Dynamic type creation and names for built-in types

Source code: Lib/types.py

This module defines utility functions to assist in dynamic creation of new types.

It also defines names for some object types that are used by the standard Python interpreter, but not exposed as builtins
like int or str are.

Finally, it provides some additional type-related utility classes and functions that are not fundamental enough to be
builtins.

8.9. types — Dynamic type creation and names for built-in types 233

https://github.com/python/cpython/tree/3.7/Lib/types.py

The Python Library Reference, Release 3.7.15

8.9.1 Dynamic Type Creation
types.new_class (name, bases=(), kwds=None, exec_body=None)
Creates a class object dynamically using the appropriate metaclass.

The first three arguments are the components that make up a class definition header: the class name, the base
classes (in order), the keyword arguments (such as metaclass).

The exec_body argument is a callback that is used to populate the freshly created class namespace. It should
accept the class namespace as its sole argument and update the namespace directly with the class contents. If
no callback is provided, it has the same effect as passing in 1lambda ns: ns.

New in version 3.3.

types.prepare_class (name, bases=(), kwds=None)
Calculates the appropriate metaclass and creates the class namespace.

The arguments are the components that make up a class definition header: the class name, the base classes (in
order) and the keyword arguments (such as metaclass).

The return value is a 3-tuple: metaclass, namespace, kwds

metaclass is the appropriate metaclass, namespace is the prepared class namespace and kwds is an updated copy
of the passed in kwds argument with any 'metaclass"' entry removed. If no kwds argument is passed in,
this will be an empty dict.

New in version 3.3.

Changed in version 3.6: The default value for the name space element of the returned tuple has changed. Now
an insertion-order-preserving mapping is used when the metaclass does not have a __prepare__ method.

See also:
metaclasses Full details of the class creation process supported by these functions
PEP 3115 - Metaclasses in Python 3000 Introduced the __prepare__ namespace hook

types.resolve_bases (bases)
Resolve MRO entries dynamically as specified by PEP 560.

This function looks for items in bases that are not instances of type, and returns a tuple where each such
object that has an __mro_entries__ method is replaced with an unpacked result of calling this method.
If a bases item is an instance of ¢ ype, or it doesn’t have an __mro_entries__ method, then it is included
in the return tuple unchanged.

New in version 3.7.
See also:

PEP 560 - Core support for typing module and generic types

8.9.2 Standard Interpreter Types

This module provides names for many of the types that are required to implement a Python interpreter. It deliberately
avoids including some of the types that arise only incidentally during processing such as the 1istiterator type.
Typical use of these names is for isinstance () or issubclass () checks.

Standard names are defined for the following types:

types.FunctionType
types.LambdaType
The type of user-defined functions and functions created by 1ambda expressions.

types.GeneratorType
The type of generator-iterator objects, created by generator functions.

234 Chapter 8. Data Types

https://www.python.org/dev/peps/pep-3115
https://www.python.org/dev/peps/pep-0560
https://www.python.org/dev/peps/pep-0560

The Python Library Reference, Release 3.7.15

types.CoroutineType
The type of coroutine objects, created by async def functions.

New in version 3.5.

types.AsyncGeneratorType
The type of asynchronous generator-iterator objects, created by asynchronous generator functions.

New in version 3.6.

types.CodeType
The type for code objects such as returned by compile ().

types.MethodType
The type of methods of user-defined class instances.

types.BuiltinFunctionType

types.BuiltinMethodType
The type of built-in functions like 1en () or sys.exit (), and methods of built-in classes. (Here, the term
“built-in” means “written in C”.)

types.WrapperDescriptorType
The type of methods of some built-in data types and base classes such as object.__init__ () or
object.__1t_ ().

New in version 3.7.

types.MethodWrapperType
The type of bound methods of some built-in data types and base classes. For example it is the type of
object () .__str__ .

New in version 3.7.

types.MethodDescriptorType
The type of methods of some built-in data types such as str. join ().

New in version 3.7.

types.ClassMethodDescriptorType
The type of unbound class methods of some built-in data types suchas dict.__dict__ ['fromkeys'].

New in version 3.7.

class types.ModuleType (name, doc=None)
The type of modules. Constructor takes the name of the module to be created and optionally its docstring.

Note: Use importlib.util.module_ from_spec () to create a new module if you wish to set the
various import-controlled attributes.

doc___
The docstring of the module. Defaults to None.

__loader__
The loader which loaded the module. Defaults to None.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

__name__
The name of the module.

package___
Which package a module belongs to. If the module is top-level (i.e. not a part of any specific package)
then the attribute should be set to ' ', else it should be set to the name of the package (which can be

__name___if the module is a package itself). Defaults to None.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

8.9. types — Dynamic type creation and names for built-in types 235

The Python Library Reference, Release 3.7.15

class types.TracebackType (tb_next, th_frame, th_lasti, tb_lineno)
The type of traceback objects such as found in sys.exc_info () [2].

See the language reference for details of the available attributes and operations, and guidance on creating
tracebacks dynamically.

types.FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

See the language reference for details of the available attributes and operations.

types.GetSetDescriptorType
The type of objects defined in extension modules with PyGet SetDef, such as FrameType.f_locals
orarray.array.typecode. This type is used as descriptor for object attributes; it has the same purpose
as the property type, but for classes defined in extension modules.

types.MemberDescriptorType
The type of objects defined in extension modules with PyMemberDef, such as datetime.timedelta.
days. This type is used as descriptor for simple C data members which use standard conversion functions; it
has the same purpose as the property type, but for classes defined in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to Get -
SetDescriptorType.

class types.MappingProxyType (mapping)
Read-only proxy of a mapping. It provides a dynamic view on the mapping’s entries, which means that when
the mapping changes, the view reflects these changes.

New in version 3.3.

key in proxy
Return True if the underlying mapping has a key key, else False.

proxy [key]
Return the item of the underlying mapping with key key. Raises a KeyError if key is not in the
underlying mapping.

iter (proxy)
Return an iterator over the keys of the underlying mapping. This is a shortcut for iter (proxy.
keys()).

len (proxy)
Return the number of items in the underlying mapping.

copy ()
Return a shallow copy of the underlying mapping.

get (key[, default])
Return the value for key if key is in the underlying mapping, else default. If default is not given, it defaults
to None, so that this method never raises a KeyError.

items ()
Return a new view of the underlying mapping’s items ((key, value) pairs).

keys ()
Return a new view of the underlying mapping’s keys.

values ()
Return a new view of the underlying mapping’s values.

236 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

8.9.3 Additional Utility Classes and Functions
class types.SimpleNamespace
A simple ob ject subclass that provides attribute access to its namespace, as well as a meaningful repr.

Unlike ob ject, with SimpleNamespace you can add and remove attributes. If a SimpleNamespace
object is initialized with keyword arguments, those are directly added to the underlying namespace.

The type is roughly equivalent to the following code:

class SimpleNamespace:
def _ _init__ (self, **kwargs):
self. dict__ .update (kwargs)

def _ _repr__ (self):
keys = sorted(self._ dict_)
items = ("{)= ".format (k, self. dict_ [k]) for k in keys)
return " ({})".format (type(self). name__, ", ".join(items))

def _ _eqg_ (self, other):
return self. dict == other._ dict

SimpleNamespace may be useful as a replacement for class NS: pass. However, for a structured
record type use namedtuple () instead.

New in version 3.3.

types.DynamicClassAttribute (fger=None, fset=None, fdel=None, doc=None)
Route attribute access on a class to __getattr__.

This is a descriptor, used to define attributes that act differently when accessed through an instance and through
a class. Instance access remains normal, but access to an attribute through a class will be routed to the class’s
__getattr__ method; this is done by raising AttributeError.

This allows one to have properties active on an instance, and have virtual attributes on the class with the same
name (see Enum for an example).

New in version 3.4.

8.9.4 Coroutine Utility Functions

types.coroutine (gen_func)
This function transforms a generator function into a coroutine function which returns a generator-based corou-
tine. The generator-based coroutine is still a generator iterator, but is also considered to be a coroutine object
and is awaitable. However, it may not necessarily implement the __await__ () method.

If gen_func is a generator function, it will be modified in-place.

If gen_func is not a generator function, it will be wrapped. If it returns an instance of collections.abc.
Generator, the instance will be wrapped in an awaitable proxy object. All other types of objects will be
returned as is.

New in version 3.5.

8.9. types — Dynamic type creation and names for built-in types 237

The Python Library Reference, Release 3.7.15

8.10 copy — Shallow and deep copy operations

Source code: Lib/copy.py

Assignment statements in Python do not copy objects, they create bindings between a target and an object. For
collections that are mutable or contain mutable items, a copy is sometimes needed so one can change one copy
without changing the other. This module provides generic shallow and deep copy operations (explained below).

Interface summary:

copy . Ccopy (x)
Return a shallow copy of x.

copy . deepcopy (x[, memo])
Return a deep copy of x.

exception copy.error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

* A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to
the objects found in the original.

* A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found
in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

* Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause
a recursive loop.

» Because deep copy copies everything it may copy too much, such as data which is intended to be shared between
copies.
The deepcopy () function avoids these problems by:
* keeping a memo dictionary of objects already copied during the current copying pass; and
* letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or any
similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object unchanged;
this is compatible with the way these are treated by the pick Ie module.

Shallow copies of dictionaries can be made using dict . copy (), and of lists by assigning a slice of the entire list,
for example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description of module
pickle for information on these methods. In fact, the copy module uses the registered pickle functions from the
copyreg module.

In order for a class to define its own copy implementation, it can define special methods ___copy__ () and__deep-
copy___ (). The former is called to implement the shallow copy operation; no additional arguments are passed.
The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If the
__deepcopy__ () implementation needs to make a deep copy of a component, it should call the deepcopy ()
function with the component as first argument and the memo dictionary as second argument.

See also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

238 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.7/Lib/copy.py

The Python Library Reference, Release 3.7.15

8.11 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets or classes are included,

as well as many other objects which are not representable as Python literals.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width

constraint.
Dictionaries are sorted by key before the display is computed.
The pprint module defines one class:

class pprint.PrettyPrinter (indent=1, width=80, depth=None, stream=None, *, compact=False)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An out-
put stream may be set using the stream keyword; the only method used on the stream object is the file protocol’s
write () method. If not specified, the PrettyPrinter adopts sys.stdout. The amount of inden-
tation added for each recursive level is specified by indent; the default is one. Other values can cause output
to look a little odd, but can make nesting easier to spot. The number of levels which may be printed is con-
trolled by depth; if the data structure being printed is too deep, the next contained level is replaced by
By default, there is no constraint on the depth of the objects being formatted. The desired output width is
constrained using the width parameter; the default is 80 characters. If a structure cannot be formatted within
the constrained width, a best effort will be made. If compact is false (the default) each item of a long sequence
will be formatted on a separate line. If compact is true, as many items as will fit within the width will be

formatted on each output line.

Changed in version 3.4: Added the compact parameter.

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert (0, stuff[:])
>>> pp = pprint.PrettyPrinter (indent=4)
>>> pp.pprint (stuff)
[['spam', 'eggs', 'lumberjack', 'knights', 'ni'],
'spam',
'eggs',
'lumberjack’',
'knights',
'ni']
>>> pp = pprint.PrettyPrinter (width=41, compact=True)
>>> pp.pprint (stuff)
[["spam', 'eggs', 'lumberjack',
'knights', 'ni'],
'spam', 'eggs', 'lumberjack', 'knights',
'ni']
>>> tup = ('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead',
('"parrot', ('fresh fruit',))))))))
>>> pp = pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
("spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead', (...)))))))

The pprint module also provides several shortcut functions:

pprint .pformat (object, indent=1, width=80, depth=None, *, compact=False)

Return the formatted representation of object as a string. indent, width, depth and compact will be passed to

the PrettyPrinter constructor as formatting parameters.

Changed in version 3.4: Added the compact parameter.

8.11. pprint — Data pretty printer

239

https://github.com/python/cpython/tree/3.7/Lib/pprint.py

The Python Library Reference, Release 3.7.15

pprint .pprint (object, stream=None, indent=1, width=80, depth=None, *, compact=False)
Prints the formatted representation of object on stream, followed by a newline. If stream is None, sys.
stdout is used. This may be used in the interactive interpreter instead of the print () function for in-
specting values (you can even reassigh print = pprint.pprint for use within a scope). indent, width,
depth and compact will be passed to the Prett yPrinter constructor as formatting parameters.

Changed in version 3.4: Added the compact parameter.

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert (0, stuff)
>>> pprint.pprint (stuff)
[<Recursion on list with id=...>,
'spam',
'eggs’,
'"lumberjack’',
'knights',
'ni']

pprint.isreadable (object)
Determine if the formatted representation of object is “readable”, or can be used to reconstruct the value using
eval (). This always returns False for recursive objects.

>>> pprint.isreadable (stuff)
False

pprint.isrecursive (object)
Determine if object requires a recursive representation.

One more support function is also defined:

pprint .saferepr (object)
Return a string representation of object, protected against recursive data structures. If the representation of
object exposes a recursive entry, the recursive reference will be represented as <Recursion on typename
with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)
"[<Recursion on list with id=...>, 'spam', 'eggs', 'lumberjack', 'knights', 'ni

()l]"

8.11.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

PrettyPrinter.pformat (object)
Return the formatted representation of object. This takes into account the options passed to the Pret—
tyPrinter constructor.

PrettyPrinter.pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since new Prett yPrinter objects don’t need to be created.

PrettyPrinter.isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value
using eval (). Note that this returns False for recursive objects. If the depth parameter of the Pret —
tyPrinter is set and the object is deeper than allowed, this returns False.

PrettyPrinter.isrecursive (object)
Determine if the object requires a recursive representation.

240 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default

implementation uses the internals of the saferepr () implementation.

PrettyPrinter.format (object, context, maxlevels, level)

Returns three values: the formatted version of object as a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains the id () of objects that are part of the current presentation context
(direct and indirect containers for object that are affecting the presentation) as the keys; if an object needs to
be presented which is already represented in confext, the third return value should be True. Recursive calls
to the format () method should add additional entries for containers to this dictionary. The third argument,
maxlevels, gives the requested limit to recursion; this will be 0 if there is no requested limit. This argument
should be passed unmodified to recursive calls. The fourth argument, level, gives the current level; recursive

calls should be passed a value less than that of the current call.

8.11.2 Example

To demonstrate several uses of the pprint () function and its parameters, let’s fetch information about a project

from PyPI:

>>> import Jjson

>>> import pprint

>>> from urllib.request import urlopen

>>> with urlopen('https://pypi.org/pypi/sampleproject/json') as resp:
project_info = json.load(resp)['info']

In its basic form, pprint () shows the whole object:

>>> pprint.pprint (project_info)

{'author': 'The Python Packaging Authority',

'author_email': 'pypa-dev@googlegroups.com',

'bugtrack_url': None,

'classifiers': ['Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2°',
'Programming Language :: Python :: 2.6"',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.2"',
'Programming Language :: Python :: 3.3',
'Programming Language :: Python :: 3.4"',
'Topic :: Software Development :: Build Tools'],

'description': 'A sample Python project\n'
L \nV
n\nv
'This is the description file for the project.\n'
’\nl

'The file should use UTF-8 encoding and be written using

'ReStructured Text. It\n'

'will be used to generate the project webpage on PyPI,

'should be written for\n'
'that purpose.\n'
’\nl

'Typical contents for this file would include an overview of

'the project, basic\n'

'usage examples, etc. Generally, including the project

'changelog in here is not\n'

'a good idea, although a simple "What\'s New" section for the

'most recent version\n'
'may be appropriate.’,
'description_content_type': None,

v

and

v

v

]

v

(continues on next page)

8.11. pprint — Data pretty printer

241

https://pypi.org

The Python Library Reference, Release 3.7.15

(continued from previous page)

'docs_url': None,
'download_url': 'UNKNOWN',
'downloads': {'last_day': -1, 'last_month': -1, 'last_week': -1},
'home_page': 'https://github.com/pypa/sampleproject’',
'keywords': 'sample setuptools development',
'license': 'MIT',
'maintainer': None,
'maintainer_email': None,
'name': 'sampleproject',
'package_url': 'https://pypi.org/project/sampleproject/"',
'platform': 'UNKNOWN',
'project_url': 'https://pypi.org/project/sampleproject/"',
'project_urls': {'Download': 'UNKNOWN',
'Homepage': 'https://github.com/pypa/sampleproject'},
'release_url': 'https://pypi.org/project/sampleproject/1.2.0/',
'requires_dist': None,
'requires_python': None,
'summary': 'A sample Python project',
'version': '1.2.0'}

The result can be limited to a certain depth (ellipsis is used for deeper contents):

>>> pprint.pprint (project_info, depth=1)

{'author': 'The Python Packaging Authority',

'author_email': 'pypa-dev@googlegroups.com',

'bugtrack_url': None,

'classifiers': [...],

'description': 'A sample Python project\n'
Al \nV
l\nl
'This is the description file for the project.\n'
l\nl

'The file should use UTF-8 encoding and be written using '
'ReStructured Text. It\n'
'will be used to generate the project webpage on PyPI, and '
'should be written for\n'
'that purpose.\n'
V\n'
'Typical contents for this file would include an overview of '
'the project, basic\n'
'usage examples, etc. Generally, including the project '
'changelog in here is not\n'
'a good idea, although a simple "What\'s New" section for the '
'most recent version\n'
'may be appropriate.’',

'description_content_type': None,

'docs_url': None,

'download_url': 'UNKNOWN',

'downloads': {...},

'home_page': 'https://github.com/pypa/sampleproject’,

'keywords': 'sample setuptools development',

'"license': 'MIT',

'maintainer': None,

'maintainer_email': None,

'name': 'sampleproject',

'package_url': 'https://pypi.org/project/sampleproject/’,

'platform': 'UNKNOWN',

'project_url': 'https://pypi.org/project/sampleproject/"',

'project_urls': {...},

'release_url': 'https://pypi.org/project/sampleproject/1.2.0/",

'requires_dist': None,

(continues on next page)

242 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

'requires_python': None,
'summary': 'A sample Python project',
'version': '1.2.0"}

Additionally, maximum character width can be suggested. If a long object cannot be split, the specified width will be
exceeded:

>>> pprint.pprint (project_info, depth=1, width=60)

{'author': 'The Python Packaging Authority',
'author_email': 'pypa-dev@googlegroups.com',
'bugtrack_url': None,

'classifiers': [...],

'description': 'A sample Python project\n'
L —_—————e e \nl
V\nl

'This is the description file for the '
'project.\n'
V\nl
'The file should use UTF-8 encoding and be '
'written using ReStructured Text. It\n'
'will be used to generate the project '
'webpage on PyPI, and should be written '
'for\n'
'that purpose.\n'
l\nl
'Typical contents for this file would '
'include an overview of the project, '
'basic\n'
'usage examples, etc. Generally, including '
'the project changelog in here is not\n'
'a good idea, although a simple "What\'s '
'New" section for the most recent version\n'
'may be appropriate.’',
'description_content_type': None,
'docs_url': None,
'download_url': 'UNKNOWN',
'downloads': {...},
'home_page': 'https://github.com/pypa/sampleproject’',
'keywords': 'sample setuptools development',
'license': 'MIT',
'maintainer': None,
'maintainer_email': None,
'name': 'sampleproject',
'package_url': 'https://pypil.org/project/sampleproject/"',
'platform': 'UNKNOWN',
'project_url': 'https://pypi.org/project/sampleproject/"',
'project_urls': {...},
'release_url': 'https://pypi.org/project/sampleproject/1.2.0/',
'requires_dist': None,
'requires_python': None,
'summary': 'A sample Python project',
'version': '1.2.0'"}

8.11. pprint — Data pretty printer 243

The Python Library Reference, Release 3.7.15

8.12 reprlib — Alternate repr () implementation

Source code: Lib/reprlib.py

The repr1ib module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr
Class which provides formatting services useful in implementing functions similar to the built-in repr () ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

reprlib.aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing the
attributes of this object will affect the size limits used by repr () and the Python debugger.

reprlib. repr (obj)
This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive callsto __repr___ ()
and substituting a placeholder string instead.

@reprlib.recursive_repr (fillvalue="..")
Decorator for __repr__ () methods to detect recursive calls within the same thread. If a recursive call is
made, the fillvalue is returned, otherwise, the usual __repr__ () call is made. For example:

>>> from reprlib import recursive_repr
>>> class MyList (list):
@recursive_repr ()
def _ _repr__ (self):
return '<' + '|'.join (map (repr, self)) + '>'

>>> m = MyList ('abc'")
>>> m.append (m)

>>> m.append('x")

>>> print (m)
<'a'|l'b'|'c'|...|"x">

New in version 3.2.

8.12.1 Repr Objects

Repr instances provide several attributes which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

Repr.maxlevel
Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict

Repr.maxlist

Repr.maxtuple

Repr.maxset

Repr.maxfrozenset

Repr.maxdeque

Repr.maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5 for
maxarray, and 6 for the others.

244 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.7/Lib/reprlib.py

The Python Library Reference, Release 3.7.15

Repr.maxlong
Maximum number of characters in the representation for an integer. Digits are dropped from the middle. The
default is 40.

Repr.maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The default is 30.

Repr.maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner as maxst ring. The default is 20.

Repr . repr (obj)
The equivalent to the built-in repr () that uses the formatting imposed by the instance.

Repr.reprl (obj, level)
Recursive implementation used by repr (). This uses the type of obj to determine which formatting method to
call, passing it obj and level. The type-specific methods should call repr1 () to perform recursive formatting,
with level - 1 for the value of level in the recursive call.

Repr.repr_TYPE (obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method name, TYPE is replaced by ' _'.join (type (obj) .__name__.split ()). Dispatch to
these methods is handled by repr1 (). Type-specific methods which need to recursively format a value should
call self.reprl (subobj, level - 1).

8.12.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr. repr1 () allows subclasses of Repr to add support for additional built-
in object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import reprlib
import sys

class MyRepr (reprlib.Repr) :

def repr_TextIOWrapper (self, obj, level):
if obj.name in {'<stdin>', '<stdout>', '<stderr>'}:
return obj.name
return repr (obj)

aRepr = MyRepr ()
print (aRepr.repr(sys.stdin)) # prints '<stdin>'

8.13 enum — Support for enumerations

New in version 3.4.

Source code: Lib/enum.py

An enumeration is a set of symbolic names (members) bound to unique, constant values. Within an enumeration, the
members can be compared by identity, and the enumeration itself can be iterated over.

8.13. enum — Support for enumerations 245

https://github.com/python/cpython/tree/3.7/Lib/enum.py

The Python Library Reference, Release 3.7.15

8.13.1 Module Contents

This module defines four enumeration classes that can be used to define unique sets of names and values: Enum,
IntEnum, Flag,and IntFlag. It also defines one decorator, unique (), and one helper, auto.

class enum.Enum
Base class for creating enumerated constants. See section Functional API for an alternate construction syntax.

class enum.IntEnum
Base class for creating enumerated constants that are also subclasses of int.

class enum.IntFlag
Base class for creating enumerated constants that can be combined using the bitwise operators without losing
their TntF1ag membership. TntF1lag members are also subclasses of int.

class enum.Flag
Base class for creating enumerated constants that can be combined using the bitwise operations without losing
their F1 ag membership.

enum.unique ()
Enum class decorator that ensures only one name is bound to any one value.

class enum.auto
Instances are replaced with an appropriate value for Enum members. Initial value starts at 1.

New in version 3.6: Flag, IntFlag, auto

8.13.2 Creating an Enum

Enumerations are created using the c1ass syntax, which makes them easy to read and write. An alternative creation
method is described in Functional API. To define an enumeration, subclass Enum as follows:

>>> from enum import Enum
>>> class Color (Enum) :
RED = 1
GREEN = 2
BLUE = 3

Note: Enum member values

Member values can be anything: int, st r, etc.. If the exact value is unimportant you may use aut o instances and
an appropriate value will be chosen for you. Care must be taken if you mix aut o with other values.

Note: Nomenclature
¢ The class Color is an enumeration (or enum)

¢ The attributes Color .RED, Color.GREEN, etc., are enumeration members (or enum members) and are
functionally constants.

¢ The enum members have names and values (the name of Color .RED is RED, the value of Color .BLUE is
3, etc.)

Note: Even though we use the class syntax to create Enums, Enums are not normal Python classes. See How are
Enums different? for more details.

Enumeration members have human readable string representations:

246 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

>>> print (Color.RED)
Color.RED

...while their repr has more information:

>>> print (repr (Color.RED))
<Color.RED: 1>

The type of an enumeration member is the enumeration it belongs to:

>>> type (Color.RED)

<enum 'Color'>

>>> isinstance (Color.GREEN, Color)
True

>>>

Enum members also have a property that contains just their item name:

>>> print (Color.RED.name)
RED

Enumerations support iteration, in definition order:

>>> class Shake (Enum) :
VANILLA = 7
CHOCOLATE = 4
COOKIES = 9
MINT = 3

>>> for shake in Shake:
print (shake)

Shake.VANILLA
Shake.CHOCOLATE
Shake.COOKIES
Shake .MINT

Enumeration members are hashable, so they can be used in dictionaries and sets:

>>> apples = {}

>>> apples[Color.RED] = 'red delicious'

>>> apples[Color.GREEN] = 'granny smith'

>>> apples == {Color.RED: 'red delicious', Color.GREEN: 'granny smith'}
True

8.13.3 Programmatic access to enumeration members and their attributes

Sometimes it’s useful to access members in enumerations programmatically (i.e. situations where Color . RED won’t
do because the exact color is not known at program-writing time). Enum allows such access:

>>> Color (1)
<Color.RED: 1>
>>> Color (3)
<Color.BLUE: 3>

If you want to access enum members by name, use item access:

>>> Color['RED']
<Color.RED: 1>

(continues on next page)

8.13. enum — Support for enumerations 247

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> Color['GREEN']
<Color.GREEN: 2>

If you have an enum member and need its name or value:

>>> member = Color.RED
>>> member.name

'RED"'

>>> member.value

1

8.13.4 Duplicating enum members and values

Having two enum members with the same name is invalid:

>>> class Shape (Enum) :
SQUARE 2
SQUARE = 3

Traceback (most recent call last):

TypeError: Attempted to reuse key: 'SQUARE'

However, two enum members are allowed to have the same value. Given two members A and B with the same value
(and A defined first), B is an alias to A. By-value lookup of the value of A and B will return A. By-name lookup of
B will also return A:

>>> class Shape (Enum) :

SQUARE = 2
DIAMOND = 1
CIRCLE = 3

ALIAS_FOR_SQUARE = 2

>>> Shape.SQUARE
<Shape.SQUARE: 2>

>>> Shape.ALIAS_FOR_SQUARE
<Shape.SQUARE: 2>

>>> Shape (2)
<Shape.SQUARE: 2>

Note: Attempting to create a member with the same name as an already defined attribute (another member, a
method, etc.) or attempting to create an attribute with the same name as a member is not allowed.

8.13.5 Ensuring unique enumeration values

By default, enumerations allow multiple names as aliases for the same value. When this behavior isn’t desired, the
following decorator can be used to ensure each value is used only once in the enumeration:

@enum.unique

A class decorator specifically for enumerations. It searches an enumeration’s __members___ gathering any aliases
it finds; if any are found ValueError is raised with the details:

>>> from enum import Enum, unique
>>> (@unique
class Mistake (Enum) :

(continues on next page)

248 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

ONE = 1
TWO = 2
THREE = 3
FOUR = 3

Traceback (most recent call last):

ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE

8.13.6 Using automatic values

If the exact value is unimportant you can use aut o:

>>> from enum import Enum, auto
>>> class Color (Enum) :

RED = auto ()

BLUE = auto()

GREEN = auto ()

>>> list (Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

The values are chosen by _generate_next_value_ (), which can be overridden:

>>> class AutoName (Enum) :
def _generate_next_value_ (name, start, count, last_values):
return name

>>> class Ordinal (AutoName) :
NORTH = auto ()
SOUTH = auto ()
EAST = auto ()
WEST = auto()

>>> 1list (Ordinal)
[<Ordinal .NORTH: 'NORTH'>, <Ordinal.SOUTH: 'SOUTH'>, <Ordinal.EAST: 'EAST'>,
—<0rdinal .WEST: 'WEST'>]

Note: The goal of the default _generate_next_value_ () methods is to provide the next int in sequence
with the last i nt provided, but the way it does this is an implementation detail and may change.

Note: The _generate_next_value_ () method must be defined before any members.

8.13.7 lteration

Iterating over the members of an enum does not provide the aliases:

>>> 1list (Shape)
[<Shape.SQUARE: 2>, <Shape.DIAMOND: 1>, <Shape.CIRCLE: 3>]

The special attribute __members___is an ordered dictionary mapping names to members. It includes all names
defined in the enumeration, including the aliases:

8.13. enum — Support for enumerations 249

The Python Library Reference, Release 3.7.15

>>> for name, member in Shape.__ _members .items () :
name, member

'SQUARE', <Shape.SQUARE: 2>)
'DIAMOND', <Shape.DIAMOND: 1>)
'CIRCLE', <Shape.CIRCLE: 3>)

(
(
(
('ALIAS_FOR_SQUARE', <Shape.SQUARE: 2>)

The __members___ attribute can be used for detailed programmatic access to the enumeration members. For
example, finding all the aliases:

>>> [name for name, member in Shape.__members__ .items () if member.name != name]
['"ALIAS_FOR_SQUARE']

8.13.8 Comparisons

Enumeration members are compared by identity:

>>> Color.RED is Color.RED

True

>>> Color.RED is Color.BLUE
False

>>> Color.RED is not Color.BLUE
True

Ordered comparisons between enumeration values are not supported. Enum members are not integers (but see /n-
tEnum below):

>>> Color.RED < Color.BLUE
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'Color' and 'Color'

Equality comparisons are defined though:

>>> Color.BLUE == Color.RED
False

>>> Color.BLUE != Color.RED
True

>>> Color.BLUE == Color.BLUE
True

Comparisons against non-enumeration values will always compare not equal (again, Int Enumwas explicitly designed
to behave differently, see below):

>>> Color.BLUE == 2
False

250 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

8.13.9 Allowed members and attributes of enumerations

The examples above use integers for enumeration values. Using integers is short and handy (and provided by default
by the Functional API), but not strictly enforced. In the vast majority of use-cases, one doesn’t care what the actual
value of an enumeration is. But if the value is important, enumerations can have arbitrary values.

Enumerations are Python classes, and can have methods and special methods as usual. If we have this enumeration:

>>> class Mood (Enum) :
FUNKY = 1
HAPPY = 3

def describe (self):
self is the member here
return self.name, self.value

def _ str_ (self):
return 'my custom str! '.format (self.value)

@classmethod

def favorite_mood(cls):
cls here is the enumeration
return cls.HAPPY

Then:

>>> Mood.favorite_mood()
<Mood.HAPPY: 3>

>>> Mood.HAPPY.describe ()
('"HAPPY', 3)

>>> str (Mood.FUNKY)

'my custom str! 1°'

The rules for what is allowed are as follows: names that start and end with a single underscore are reserved by enum
and cannot be used; all other attributes defined within an enumeration will become members of this enumeration,
with the exception of special methods (__str__ (),__add__ (), etc.), descriptors (methods are also descriptors),
and variable names listed in _ignore_.

Note: if your enumeration defines __new__ () and/or __init__ () then whatever value(s) were given to the
enum member will be passed into those methods. See Planet for an example.

8.13.10 Restricted Enum subclassing

A new Enum class must have one base Enum class, up to one concrete data type, and as many ob ject-based mixin
classes as needed. The order of these base classes is:

class EnumName ([mix-in, ...,] [data-type,] base-enum) :
pass

Also, subclassing an enumeration is allowed only if the enumeration does not define any members. So this is forbidden:

>>> class MoreColor (Color) :
PINK = 17

Traceback (most recent call last):

TypeError: Cannot extend enumerations

But this is allowed:

8.13. enum — Support for enumerations 251

The Python Library Reference, Release 3.7.15

>>> class Foo (Enum) :
def some_behavior (self) :
pass

>>> class Bar (Foo) :
HAPPY = 1
SAD = 2

Allowing subclassing of enums that define members would lead to a violation of some important invariants of types
and instances. On the other hand, it makes sense to allow sharing some common behavior between a group of
enumerations. (See OrderedEnum for an example.)

8.13.11 Pickling

Enumerations can be pickled and unpickled:

>>> from test.test_enum import Fruit

>>> from pickle import dumps, loads

>>> Fruit.TOMATO is loads (dumps (Fruit.TOMATO))
True

The usual restrictions for pickling apply: picklable enums must be defined in the top level of a module, since unpickling
requires them to be importable from that module.

Note: With pickle protocol version 4 it is possible to easily pickle enums nested in other classes.

It is possible to modify how Enum members are pickled/unpickled by defining __reduce_ex__ () in the enu-
meration class.

8.13.12 Functional API

The Enum class is callable, providing the following functional API:

>>> Animal = Enum('Animal', 'ANT BEE CAT DOG')

>>> Animal

<enum 'Animal'>

>>> Animal.ANT

<Animal.ANT: 1>

>>> Animal.ANT.value

1

>>> list (Animal)

[<Animal .ANT: 1>, <Animal.BEE: 2>, <Animal.CAT: 3>, <Animal.DOG: 4>]

The semantics of this API resemble namedtuple. The first argument of the call to Enum is the name of the
enumeration.

The second argument is the source of enumeration member names. It can be a whitespace-separated string of names,
a sequence of names, a sequence of 2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to values.
The last two options enable assigning arbitrary values to enumerations; the others auto-assign increasing integers
starting with 1 (use the start parameter to specify a different starting value). A new class derived from Enum is
returned. In other words, the above assignment to Animal is equivalent to:

>>> class Animal (Enum) :

ANT = 1
BEE = 2
CAT = 3

(continues on next page)

252 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

DOG = 4

The reason for defaulting to 1 as the starting number and not 0 is that 0 is False in a boolean sense, but enum
members all evaluate to True.

Pickling enums created with the functional API can be tricky as frame stack implementation details are used to try
and figure out which module the enumeration is being created in (e.g. it will fail if you use a utility function in separate
module, and also may not work on IronPython or Jython). The solution is to specify the module name explicitly as
follows:

>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', module=__ name_)

Warning: If module is not supplied, and Enum cannot determine what it is, the new Enum members will not
be unpicklable; to keep errors closer to the source, pickling will be disabled.

The new pickle protocol 4 also, in some circumstances, relies on ___qualname___ being set to the location where
pickle will be able to find the class. For example, if the class was made available in class SomeData in the global
scope:

>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', gqualname='SomeData.Animal')

The complete signature is:

Enum (value="'NewEnumName', names=<...>, *, module='...', qualname='...', type=
—~<mixed-in class>, start=1)

value What the new Enum class will record as its name.

names The Enum members. This can be a whitespace or comma separated string (values will start at
1 unless otherwise specified):

"RED GREEN BLUE' | 'RED,GREEN,BLUE' | 'RED, GREEN, BLUE' ‘

or an iterator of names:

’['RED', '"GREEN', 'BLUE'] ‘

or an iterator of (name, value) pairs:

’[('CYAN', 4y, ('MAGENTA', 5), ('YELLOW', 6)] ‘

or a mapping:

’{'CHARTREUSE': 7, 'SEA_GREEN': 11, 'ROSEMARY': 42} ‘

module name of module where new Enum class can be found.
qualname where in module new Enum class can be found.
type type to mix in to new Enum class.

start number to start counting at if only names are passed in.

Changed in version 3.5: The start parameter was added.

8.13. enum — Support for enumerations 253

The Python Library Reference, Release 3.7.15

8.13.13 Derived Enumerations
IntEnum

The first variation of Enum that is provided is also a subclass of int. Members of an TntEnum can be compared
to integers; by extension, integer enumerations of different types can also be compared to each other:

>>> from enum import IntEnum
>>> class Shape (IntEnum) :
CIRCLE = 1
SQUARE = 2

>>> class Request (IntEnum) :
POST = 1
GET = 2

Il
Il
=

>>> Shape

False

>>> Shape.CIRCLE == 1

True

>>> Shape.CIRCLE == Request.POST
True

However, they still can’t be compared to standard Enum enumerations:

>>> class Shape (IntEnum) :
CIRCLE = 1
SQUARE 2

>>> class Color (Enum) :
RED = 1
GREEN = 2

>>> Shape.CIRCLE == Color.RED
False

IntEnum values behave like integers in other ways you'd expect:

>>> int (Shape.CIRCLE)

1

>>> ['a', 'b', 'c'][Shape.CIRCLE]
lbl

>>> [1i for i in range (Shape.SQUARE)]
[0, 1]

IntFlag

The next variation of Enum provided, TntF1lag, is also based on int. The difference being TntF1ag members
can be combined using the bitwise operators (&, |, A, ~) and the result is still an TntF1ag member. However, as the
name implies, IntF1ag members also subclass int and can be used wherever an int is used. Any operation on
an IntFlag member besides the bit-wise operations will lose the TntF1ag membership.

New in version 3.6.

Sample TntFlag class:

>>> from enum import IntFlag
>>> class Perm(IntFlag):

R =14
W =2
X =1

(continues on next page)

254 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> Perm.R | Perm.W
<Perm.R|W: 6>

>>> Perm.R + Perm.W

6

>>> RW = Perm.R | Perm.W
>>> Perm.R in RW

True

It is also possible to name the combinations:

>>> class Perm(IntFlag):

R =4
W = 2
X =1
RWX = 7

>>> Perm.RWX

<Perm.RWX: 7>
>>> ~Perm.RWX
<Perm.-8: —-8>

Another important difference between IntFlag and Enum is that if no flags are set (the value is 0), its boolean
evaluation is F'alse:

>>> Perm.R & Perm.X
<Perm.0: 0>

>>> bool (Perm.R & Perm.X)
False

Because TntF1ag members are also subclasses of int they can be combined with them:

>>> Perm.X | 8
<Perm.8|X: 9>

Flag

The last variation is F'1ag. Like TntFlag, F1ag members can be combined using the bitwise operators (&, |, *,
~). Unlike TntF1ag, they cannot be combined with, nor compared against, any other ' ag enumeration, nor int.
While it is possible to specify the values directly it is recommended to use aut o as the value and let 71 ag select an
appropriate value.

New in version 3.6.

Like TntFlag, if a combination of F'1ag members results in no flags being set, the boolean evaluation is False:

>>> from enum import Flag, auto
>>> class Color (Flag):

RED = auto()

BLUE = auto()

GREEN = auto ()

>>> Color.RED & Color.GREEN
<Color.0: 0>

>>> pbool (Color.RED & Color.GREEN)
False

Individual flags should have values that are powers of two (1, 2, 4, 8, ...), while combinations of flags won’t:

>>> class Color (Flag):
RED = auto()

(continues on next page)

8.13. enum — Support for enumerations 255

The Python Library Reference, Release 3.7.15

(continued from previous page)

BLUE = auto()
GREEN = auto /()
WHITE = RED | BLUE | GREEN

>>> Color.WHITE
<Color.WHITE: 7>

Giving a name to the “no flags set” condition does not change its boolean value:

>>> class Color (Flag):
BLACK = 0
RED = auto ()
BLUE = auto ()
GREEN = auto ()

>>> Color.BLACK
<Color.BLACK: 0>

>>> bool (Color.BLACK)
False

Note: For the majority of new code, Enum and F 1ag are strongly recommended, since TntEnumand IntFlag
break some semantic promises of an enumeration (by being comparable to integers, and thus by transitivity to other
unrelated enumerations). IntEnum and IntFlag should be used only in cases where Enum and F'1ag will not
do; for example, when integer constants are replaced with enumerations, or for interoperability with other systems.

Others

While TntEnumis part of the enum module, it would be very simple to implement independently:

class IntEnum(int, Enum):
pass

This demonstrates how similar derived enumerations can be defined; for example a St rEnum that mixes in str
instead of int.

Some rules:

1. When subclassing Enum, mix-in types must appear before Enum itself in the sequence of bases, as in the
IntEnum example above.

2. While Enum can have members of any type, once you mix in an additional type, all the members must have
values of that type, e.g. int above. This restriction does not apply to mix-ins which only add methods and
don’t specify another data type such as int or str.

3. When another data type is mixed in, the value attribute is not the same as the enum member itself, although
it is equivalent and will compare equal.

4. %-style formatting: %s and %r call the Enum class’s __str__ () and __repr__ () respectively; other
codes (such as %i or %h for IntEnum) treat the enum member as its mixed-in type.

5. Formatted string literals, st r. format (), and format () will use the mixed-in type’s __format__ ().
If the Enumclass’s str () or repr () is desired, use the /s or /r format codes.

256 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

8.13.14 Interesting examples

While Enum, IntEnum, IntFlag, and F1ag are expected to cover the majority of use-cases, they cannot cover
them all. Here are recipes for some different types of enumerations that can be used directly, or as examples for
creating one’s own.

Omitting values
In many use-cases one doesn’t care what the actual value of an enumeration is. There are several ways to define this
type of simple enumeration:

* use instances of auto for the value

¢ use instances of object as the value

* use a descriptive string as the value

* use a tuple as the value and a custom __new___ () to replace the tuple with an int value

Using any of these methods signifies to the user that these values are not important, and also enables one to add,
remove, or reorder members without having to renumber the remaining members.

Whichever method you choose, you should provide a repz () that also hides the (unimportant) value:

>>> class NoValue (Enum) :
def _ _repr__ (self):
return '< . >'" % (self._ class . name_ , self.name)

Using auto

Using aut o would look like:

>>> class Color (NoValue) :
RED = auto ()
BLUE = auto ()
GREEN = auto ()

>>> Color.GREEN
<Color.GREEN>

Using object

Using object would look like:

>>> class Color (NoValue) :
RED = object ()
GREEN = object ()
BLUE = object ()

>>> Color.GREEN
<Color.GREEN>

8.13. enum — Support for enumerations 257

The Python Library Reference, Release 3.7.15

Using a descriptive string

Using a string as the value would look like:

>>> class Color (NoValue) :

RED = 'stop'
GREEN = 'go'
BLUE = 'too fast!'

>>> Color.GREEN
<Color.GREEN>
>>> Color.GREEN.value

'gO'

Using a custom __new__ ()

Using an auto-numbering ___new___ () would look like:

>>> class AutoNumber (NoValue) :
def _ new__ (cls):

value = len(cls._ _members__) + 1
obj = object.__new__ (cls)
obj._value_ = value

return obj

>>> class Color (AutoNumber) :
RED = ()
GREEN = ()
BLUE = ()

>>> Color.GREEN
<Color.GREEN>
>>> Color.GREEN.value

2

Note: The _ _new__ () method, if defined, is used during creation of the Enum members; it is then replaced by
Enum’s __new__ () which is used after class creation for lookup of existing members.

OrderedEnum

An ordered enumeration that is not based on IntEnum and so maintains the normal Enum invariants (such as not
being comparable to other enumerations):

>>> class OrderedEnum (Enum) :
def _ _ge_ (self, other):
if self. class__ is other._ class
return self.value >= other.value
return NotImplemented
def _ _gt__ (self, other):
if self. class_ is other. class
return self.value > other.value
return NotImplemented
def _ le_ (self, other):
if self. class__ is other._ class_
return self.value <= other.value
return NotImplemented

(continues on next page)

258 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

(continued from previous page)

def _ 1t (self, other):
if self. class__ is other._ class_
return self.value < other.value
return NotImplemented

>>> class Grade (OrderedEnum) :

A =5
B =

c =3
D =2
F =1

>>> Grade.C < Grade.A
True

DuplicateFreeEnum

Raises an error if a duplicate member name is found instead of creating an alias:

>>> class DuplicateFreeEnum (Enum) :

def __init__ (self, *args):
cls = self._ class_
if any(self.value == e.value for e in cls):
a = self.name
e = cls(self.value) .name
raise ValueError (
"aliases not allowed in DuplicateFreeEnum: Sr ——> &r"
% (a, e))

>>> class Color (DuplicateFreeEnum) :

RED = 1

GREEN = 2
BLUE = 3
GRENE = 2

Traceback (most recent call last):

ValueError: aliases not allowed in DuplicateFreeEnum: 'GRENE' --> 'GREEN'

Note: This is a useful example for subclassing Enum to add or change other behaviors as well as disallowing aliases.
If the only desired change is disallowing aliases, the uniqgue () decorator can be used instead.

Planet

If __new_ () or__init__ () is defined the value of the enum member will be passed to those methods:

>>> class Planet (Enum) :

MERCURY = (3.303e+23, .4397e6)

VENUS = (4.869e+24, .0518e6)
EARTH = (5.976e+24, .37814e6)
MARS = (6.421e+23, .3972e6)

)
SATURN (5.688e+26, 6.0268e7)
URANUS (8.686e+25, 2.5559e7)
)
S

NEPTUNE (1.024e+26, .4746e7

2
6
6
3
JUPITER = (1.9e+27, 7.1492e7
6
2
2
def _ init_ (self, mass,

radiu

)t

(continues on next page)

8.13. enum — Support for enumerations 259

The Python Library Reference, Release 3.7.15

(continued from previous page)

self.mass = mass # in kilograms
self.radius = radius # in meters
@property

def surface_gravity(self):
universal gravitational constant (m3 kg-1 s-2)
G = 6.67300E-11
return G * self.mass / (self.radius * self.radius)

>>> Planet.EARTH.value
(5.976e+24, 6378140.0)

>>> Planet.EARTH.surface_gravity
9.802652743337129

TimePeriod

An example to show the _ignore_ attribute in use:

>>> from datetime import timedelta

>>> class Period(timedelta, Enum) :
"different lengths of time"
ignore = 'Period i'
Period = vars()
for i in range(367):

Period['day_2d"' % i] = i

>>> list (Period) [:2]

[<Period.day_0: datetime.timedelta (0)>, <Period.day_1: datetime.timedelta (days=1)>]

>>> list (Period) [-2:]

[<Period.day_365: datetime.timedelta (days=365)>, <Period.day_366: datetime.

—timedelta (days=366)>]

8.13.15 How are Enums different?

Enums have a custom metaclass that affects many aspects of both derived Enum classes and their instances (members).

Enum Classes

The EnumMet a metaclass is responsible for providing the __contains__ (),__dir__ (),__iter_ () and
other methods that allow one to do things with an Enum class that fail on a typical class, such as list{(Color) or
some_enum_var in Color. EnumMet a is responsible for ensuring that various other methods on the final Enum class
are correct (suchas __new__ (), _ getnewargs__ (),__str__ () and__repr__ ()).

Enum Members (aka instances)

The most interesting thing about Enum members is that they are singletons. EnumMeta creates them all while it
is creating the Enum class itself, and then puts a custom __new___ () in place to ensure that no new ones are ever
instantiated by returning only the existing member instances.

260 Chapter 8. Data Types

The Python Library Reference, Release 3.7.15

Finer Points

Supported __dunder__ names

__members__isan OrderedDict of member_name:member items. It is only available on the class.

new___ (), if specified, must create and return the enum members; it is also a very good idea to set the member’s

value appropriately. Once all the members are created it is no longer used.

Supported _sunder_ hames

¢ name_ —name of the member
e _value_ — value of the member; can be set / modified in __new___
* _missing_ —alookup function used when a value is not found; may be overridden

e _ignore_ —a list of names, eitherasa 1ist () ora str (), that will not be transformed into members,
and will be removed from the final class

e _order_ —used in Python 2/3 code to ensure member order is consistent (class attribute, removed during
class creation)

* _generate_next_value_ —used by the Functional APl and by aut o to get an appropriate value for an
enum member; may be overridden

New in version 3.6: _missing_, _order_, _generate_next_value_

—_

New in version 3.7: _ignore_

To help keep Python 2 / Python 3 code in sync an _order_ attribute can be provided. It will be checked against
the actual order of the enumeration and raise an error if the two do not match:

>>> class Color (Enum) :
order = 'RED GREEN BLUE'
RED = 1
BLUE = 3
GREEN = 2

Traceback (most recent call last):

TypeError: member order does not match _order_

Note: In Python 2 code the _order__ attribute is necessary as definition order is lost before it can be recorded.

Enum member type

Enum members are instances of their Enum class, and are normally accessed as EnumClass.member. Under
certain circumstances they can also be accessed as EnumClass .member .member, but you should never do this
as that lookup may fail or, worse, return something besides the Znum member you are looking for (this is another
good reason to use all-uppercase names for members):

>>> class FieldTypes (Enum) :

name = 0
value = 1
size = 2

>>> FieldTypes.value.size
<FieldTypes.size: 2>

(continues on next page)

8.13. enum — Support for enumerations 261

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> FieldTypes.size.value
2

Changed in version 3.5.

Boolean value of Enum classes and members

Enum members that are mixed with non-Enum types (such as int, st r, etc.) are evaluated according to the mixed-
in type’s rules; otherwise, all members evaluate as True. To make your own Enum’s boolean evaluation depend on
the member’s value add the following to your class:

def _ bool_ (self):
return bool (self.value)

Enum classes always evaluate as True.

Enum classes with methods

If you give your Enum subclass extra methods, like the Planet class above, those methods will show up ina dir ()
of the member, but not of the class:

>>> dir (Planet)

['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS', '_
—~class ', '__doc ', '__members__ ', '_ _module_ ']

>>> dir (Planet.EARTH)

['"__class__ ', '__doc__', '__module__', 'name', 'surface_gravity', 'value']

Combining members of Flag

If a combination of Flag members is not named, the repr () will include all named flags and all named combinations
of flags that are in the value:

>>> class Color (Flag):
RED = auto ()
GREEN = auto ()
BLUE = auto ()
MAGENTA = RED | BLUE
YELLOW = RED | GREEN
CYAN = GREEN | BLUE

>>> Color (3) # named combination

<Color.YELLOW: 3>
>>> Color (7) # not named combination

<Color.CYAN|MAGENTA |BLUE | YELLOW | GREEN |RED: 7>

262 Chapter 8. Data Types

CHAPTER
NINE

NUMERIC AND MATHEMATICAL MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmat h modules contain various mathematical
functions for floating-point and complex numbers. The decima 1 module supports exact representations of decimal
numbers, using arbitrary precision arithmetic.

The following modules are documented in this chapter:

9.1 numbers — Numeric abstract base classes

Source code: Lib/numbers.py

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively define
more operations. None of the types defined in this module can be instantiated.

class numbers.Number
The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring what
kind, use isinstance (x, Number).

9.1.1 The numeric tower

class numbers.Complex
Subclasses of this type describe complex numbers and include the operations that work on the built-in com—
plex type. These are: conversions to complex and bool, real, imag, +, —, *, /, abs (), conju—
gate (),==,and !=. All except — and ! = are abstract.

real

Abstract. Retrieves the real component of this number.
imag

Abstract. Retrieves the imaginary component of this number.

abstractmethod conjugate ()
Abstract. Returns the complex conjugate. For example, (1+37) .conjugate () == (1-37).

class numbers.Real
To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc (), round(), math.floor (), math.
ceil(),divmod(),//,%,<,<=,>,and >=.

Real also provides defaults for complex (), real, imag,and conjugate ().

class numbers.Rational
Subtypes Real and adds numerator and denominator properties, which should be in lowest terms.
With these, it provides a default for f1oat ().

263

https://github.com/python/cpython/tree/3.7/Lib/numbers.py
https://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 3.7.15

numerator
Abstract.

denominator
Abstract.

class numbers.Integral
Subtypes Rat ional and adds a conversion to int. Provides defaults for float (), numerator, and
denominator. Adds abstract methods for * * and bit-string operations: <<, >>, &, ", |, ~.

9.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may be
subtle if there are two different extensions of the real numbers. For example, fractions.Fractionimplements
hash () as follows:

def _ hash__ (self):

if self.denominator == 1:
Get integers right.
return hash (self.numerator)

Expensive check, but definitely correct.

if self == float (self):
return hash (float (self))

else:
Use tuple's hash to avoid a high collision rate on
simple fractions.
return hash ((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the
possibility of adding those. You can add MyFoo between Complex and Real with:

class MyFoo (Complex) :
MyFoo.register (Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there.
For subtypes of Tntegral, this means that __add__ () and __radd__ () should be defined as:

class MyIntegral (Integral) :

def _ add__ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff (self, other)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff (self, other)
else:
return NotImplemented

def _ radd__ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff (other, self)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff (other, self)
elif isinstance (other, Integral):

(continues on next page)

264 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

(continued from previous page)

return int (other) + int (self)
elif isinstance (other, Real):

return float (other) + float (self)
elif isinstance (other, Complex):

return complex (other) + complex(self)
else:

return NotImplemented

There are S different cases for a mixed-type operation on subclasses of Complex. I'll refer to all of the above code
that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance of A,
which is a subtype of Complex(a : A <: Complex),andb : B <: Complex. I'll considera + b:

1. If A defines an __add__ () which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add___ (), we’d miss the possibility
that B defines a more intelligent __radd___ (), so the boilerplate should return Not Implemented from
__add__ (). (Or A may not implement __add__ () atall.)

3. Then B’s __radd__ () gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default imple-
mentation should live.

5. If B <: A, Pythontries B.__radd__ before A.__add__. This is ok, because it was implemented with
knowledge of A, so it can handle those instances before delegating to Complex.

IfA <: ComplexandB <: Real without sharing any other knowledge, then the appropriate shared operation
is the one involving the built in complex, and both __radd__ () sland there, so a+tb == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function
which generates the forward and reverse instances of any given operator. For example, fractions.Fraction
uses:

def _operator_fallbacks (monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance (b, (int, Fraction)):
return monomorphic_operator (a, b)

elif isinstance (b, float):
return fallback_operator (float (a), b)

elif isinstance (b, complex):
return fallback_operator (complex(a), b)

else:
return NotImplemented
forward. name = '__ ' + fallback_operator. name + ' '
forward. doc_ = monomorphic_operator._ doc_

def reverse (b, a):
if isinstance(a, Rational):
Includes ints.
return monomorphic_operator (a, b)
elif isinstance (a, numbers.Real):
return fallback_operator (float (a), float (b))
elif isinstance(a, numbers.Complex) :
return fallback_operator (complex(a), complex (b))
else:
return NotImplemented

reverse. name__ = '__r' 4+ fallback_operator. name__ + ' !

reverse._ doc_ = monomorphic_operator. doc
return forward, reverse

def _add(a, b):
”"”a + b"””

(continues on next page)

9.1. numbers — Numeric abstract base classes 265

The Python Library Reference, Release 3.7.15

(continued from previous page)

return Fraction (a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

9.2 math — Mathematical functions

This module provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath module
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the
first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

9.2.1 Number-theoretic and representation functions

math.ceil (x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x.
__ceil__ (), which should return an Tntegral value.

math.copysign (x, y)
Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed
zeros, copysign (1.0, -0.0) returns -1.0.

math. fabs (x)
Return the absolute value of x.

math.factorial (x)
Return x factorial as an integer. Raises ValueError if x is not integral or is negative.

math.floor (x)
Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to x.
_ floor__ (), which should return an Tntegral value.

math. fmod (x, y)

Return fmod (x, v), as defined by the platform C library. Note that the Python expression x % y may
not return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically;
to infinite precision) equal to x — n*y for some integer n such that the result has the same sign as x and
magnitude less than abs (y). Python’s x % vy returns a result with the sign of y instead, and may not be
exactly computable for float arguments. For example, fmod (-1e-100, 1e100) is -1e-100, but the
result of Python’s -1e-100 % 1e100is 1e100-1e-100, which cannot be represented exactly as a float,
and rounds to the surprising 1e100. For this reason, function fmod () is generally preferred when working
with floats, while Python’s x % v is preferred when working with integers.

math. frexp (x)
Return the mantissa and exponent of x as the pair (m, e). misafloat and e is an integer such that x ==
* 2**e exactly. If x is zero, returns (0.0, 0),otherwise 0.5 <= abs (m) < 1. Thisis used to “pick
apart” the internal representation of a float in a portable way.

266 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

math. £sum (iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
0.9999999999999999

>>> fsum¢((.1, .21, .1, .1, .1, .1, .1, .1, .1, .11)
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition
and may occasionally double-round an intermediate sum causing it to be off in its least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation.

math.ged (a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the value of
gcd (a, b) is the largest positive integer that divides both a and b. gcd (0, 0) returns 0.

New in version 3.5.

math.isclose (a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative toler-
ances.

rel_tol is the relative tolerance — it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e—09, which assures that the two values are the same within about 9 decimal digits. rel_tol must be greater
than zero.

abs_tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must be at least zero.

If no errors occur, the result will be: abs (a-b) <= max(rel_tol * max(abs(a), abs(b)),
abs_tol).

The IEEE 754 special values of NaN, inf, and —inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and —inf are only considered close to
themselves.

New in version 3.5.
See also:
PEP 485 — A function for testing approximate equality

math.isfinite (x)
Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0 . 0 is considered finite.)

New in version 3.2.

math.isinf (x)
Return True if x is a positive or negative infinity, and False otherwise.

math.isnan (x)
Return True if x is a NaN (not a number), and False otherwise.

math.ldexp (x, i)
Return x * (2**1i). This is essentially the inverse of function frexp ().

math .modf (x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.remainder (x, y)
Return the IEEE 754-style remainder of x with respect to y. For finite x and finite nonzero y, this is the
difference x - n*y, where n is the closest integer to the exact value of the quotient x / y. If x / yis

9.2. math — Mathematical functions 267

https://code.activestate.com/recipes/393090/
https://code.activestate.com/recipes/393090/
https://www.python.org/dev/peps/pep-0485

The Python Library Reference, Release 3.7.15

exactly halfway between two consecutive integers, the nearest even integer is used for n. The remainder r =
remainder (x, vy) thus always satisfies abs (r) <= 0.5 * abs(y).

Special cases follow IEEE 754: in particular, remainder (x, math.inf) is x for any finite x, and
remainder (x, 0) and remainder (math.inf, x) raise ValueError for any non-NaN x. If
the result of the remainder operation is zero, that zero will have the same sign as x.

On platforms using IEEE 754 binary floating-point, the result of this operation is always exactly representable:
no rounding error is introduced.

New in version 3.7.

math.trunc (x)
Return the Real value x truncated to an Tntegral (usually an integer). Delegates to x.___trunc__ ().

Note that frexp () and modf () have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For the ceil (), f1oor (),and modf () functions, note that all floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C
double type), in which case any float x with abs (x) >= 2**52 necessarily has no fractional bits.

9.2.2 Power and logarithmic functions

math.exp (x)

Return e raised to the power x, where e = 2.718281... is the base of natural logarithms. This is usually more
accurate thanmath.e ** xor pow (math.e, x).

math.expml (x)
Return e raised to the power x, minus 1. Here e is the base of natural logarithms. For small floats x, the
subtraction in exp (x) — 1 can result in a significant loss of precision; the expm1 () function provides a
way to compute this quantity to full precision:

>>> from math import exp, expml

>>> exp(le-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expml (1le—5) # result accurate to full precision

1.0000050000166668e—-05

New in version 3.2.

math.log (x[, base])
With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as 1og (x) /1log (base).

math.loglp (x)

Return the natural logarithm of /+x (base ¢). The result is calculated in a way which is accurate for x near
Zero.

math.log2 (x)
Return the base-2 logarithm of x. This is usually more accurate than 1og (x, 2).

New in version 3.3.

See also:

int.bit_Jlength () returns the number of bits necessary to represent an integer in binary, excluding the
sign and leading zeros.

math.loglO (x)
Return the base-10 logarithm of x. This is usually more accurate than 1og (x, 10).

268 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Loss_of_significance

The Python Library Reference, Release 3.7.15

math.pow (x, y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible.
In particular, pow (1.0, x) and pow (x, 0.0) always return 1.0, even when x is a zero or a NaN.
If both x and y are finite, x is negative, and y is not an integer then pow (x, v) is undefined, and raises
ValueError.

Unlike the built-in ** operator, math.pow () converts both its arguments to type f1oat. Use ** or the
built-in pow () function for computing exact integer powers.

math.sqrt (x)
Return the square root of x.

9.2.3 Trigonometric functions

math.acos (x)
Return the arc cosine of x, in radians.

math.asin (x)
Return the arc sine of x, in radians.

math.atan (x)
Return the arc tangent of x, in radians.

math.atan2 (y, x)
Return atan (y / x), inradians. The result is between —pi and pi. The vector in the plane from the
origin to point (x, y) makes this angle with the positive X axis. The point of atan2 () is that the signs of
both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan (1) and
atan2 (1, 1) arebothpi/4,butatan2 (-1, -1)is-3*pi/4.

math.cos (x)
Return the cosine of x radians.

math.hypot (x, y)
Return the Euclidean norm, sqrt (x*x + y*y). This is the length of the vector from the origin to point
(%, y).

math.sin (x)
Return the sine of x radians.

math.tan (x)
Return the tangent of x radians.

9.2.4 Angular conversion
math.degrees (x)
Convert angle x from radians to degrees.

math.radians (x)
Convert angle x from degrees to radians.

9.2. math — Mathematical functions 269

The Python Library Reference, Release 3.7.15

9.2.5 Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.

math.acosh (x)
Return the inverse hyperbolic cosine of x.

math.asinh (x)
Return the inverse hyperbolic sine of x.

math.atanh (x)
Return the inverse hyperbolic tangent of x.

math.cosh (x)
Return the hyperbolic cosine of x.

math.sinh (x)
Return the hyperbolic sine of x.

math.tanh (x)
Return the hyperbolic tangent of x.

9.2.6 Special functions
math.erf (x)
Return the error function at x.

The erf () function can be used to compute traditional statistical functions such as the cumulative standard
normal distribution:

def phi (x):
'"Cumulative distribution function for the standard normal distribution'’
return (1.0 + erf(x / sqrt(2.0))) / 2.0

New in version 3.2.

math.erfec (x)
Return the complementary error function at x. The complementary error function is defined as 1.0 -
erf (x). Itis used for large values of x where a subtraction from one would cause a loss of significance.

New in version 3.2.

math.gamma (x)
Return the Gamma function at x.

New in version 3.2.

math.lgamma (x)
Return the natural logarithm of the absolute value of the Gamma function at x.

New in version 3.2.

9.2.7 Constants

math.pi
The mathematical constant 7 = 3.141592..., to available precision.

math.e
The mathematical constant e = 2.718281..., to available precision.

math.tau
The mathematical constant 7 = 6.283185..., to available precision. Tau is a circle constant equal to 27, the
ratio of a circle’s circumference to its radius. To learn more about Tau, check out Vi Hart’s video Pi is (still)
Wrong, and start celebrating Tau day by eating twice as much pie!

270 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Hyperbolic_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Gamma_function
https://www.youtube.com/watch?v=jG7vhMMXagQ
https://www.youtube.com/watch?v=jG7vhMMXagQ
https://tauday.com/

The Python Library Reference, Release 3.7.15

New in version 3.6.

math.inf
A floating-point positive infinity. (For negative infinity, use -math.inf.) Equivalent to the output of
float ('"inf').

New in version 3.5.

math.nan
A floating-point “not a number” (NaN) value. Equivalent to the output of float ('nan').

New in version 3.5.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C math
library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate. The current
implementation will raise ValueError for invalid operations like sqrt (-1.0) or 1og (0.0) (where C99 An-
nex F recommends signaling invalid operation or divide-by-zero), and OverflowError for results that overflow
(for example, exp (1000.0)). A NaN will not be returned from any of the functions above unless one or more of
the input arguments was a NaN; in that case, most functions will return a NaN, but (again following C99 Annex F)
there are some exceptions to this rule, for example pow (float ('nan'), 0.0) orhypot (float ('nan'),
float ('inf')).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.

See also:

Module cmath Complex number versions of many of these functions.

9.3 cmath — Mathematical functions for complex numbers

This module provides access to mathematical functions for complex numbers. The functions in this module accept
integers, floating-point numbers or complex numbers as arguments. They will also accept any Python object that has
eithera___complex__ () ora__float__ () method: these methods are used to convert the object to a complex
or floating-point number, respectively, and the function is then applied to the result of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the
other. On platforms that do not support signed zeros the continuity is as specified below.

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely deter-
mined by its real part z . real and its imaginary part z . imag. In other words:

z == z.real + z.imag*1j

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number
z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while the
phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that joins
the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

9.3. cmath — Mathematical functions for complex nhumbers 271

The Python Library Reference, Release 3.7.15

cmath.phase (x)
Return the phase of x (also known as the argument of x), as a float. phase (x) is equivalent to math.
atan2 (x.imag, x.real). The result lies in the range [-7, 7], and the branch cut for this operation lies
along the negative real axis, continuous from above. On systems with support for signed zeros (which includes
most systems in current use), this means that the sign of the result is the same as the sign of x.imag, even
when x . imag is zero:

>>> phase (complex (1.0, 0.0))
3.141592653589793
>>> phase (complex (-1.0, -0.0))
-3.141592653589793

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs () function.
There is no separate cmath module function for this operation.

cmath.polar (x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x
and phi is the phase of x. polar (x) isequivalent to (abs (x), phase(x)).

cmath.rect (r, phi)
Return the complex number x with polar coordinates r and phi. Equivalentto r * (math.cos(phi) +
math.sin (phi) *173).

9.3.2 Power and logarithmic functions

cmath.exp (x)
Return e raised to the power x, where e is the base of natural logarithms.

cmath.log (x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x.
There is one branch cut, from 0 along the negative real axis to -co, continuous from above.

cmath.loglO (x)
Return the base-10 logarithm of x. This has the same branch cutas 1og ().

cmath.sqgrt (x)
Return the square root of x. This has the same branch cutas 1og ().

9.3.3 Trigonometric functions

cmath.acos (x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to oo,
continuous from below. The other extends left from -1 along the real axis to -co, continuous from above.

cmath.asin (x)
Return the arc sine of x. This has the same branch cuts as acos ().

cmath.atan (x)
Return the arc tangent of x. There are two branch cuts: One extends from 1 j along the imaginary axis to ©j,
continuous from the right. The other extends from —1 j along the imaginary axis to —o3j, continuous from the
left.

cmath.cos (x)
Return the cosine of x.

cmath.sin (x)
Return the sine of x.

cmath.tan (x)
Return the tangent of x.

272 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

9.3.4 Hyperbolic functions

cmath.acosh (x)
Return the inverse hyperbolic cosine of x. There is one branch cut, extending left from 1 along the real axis to
-00, continuous from above.

cmath.asinh (x)
Return the inverse hyperbolic sine of x. There are two branch cuts: One extends from 1 j along the imaginary
axis to «j, continuous from the right. The other extends from —1 j along the imaginary axis to —co 7, continuous
from the left.

cmath.atanh (x)
Return the inverse hyperbolic tangent of x. There are two branch cuts: One extends from 1 along the real axis
to o, continuous from below. The other extends from —1 along the real axis to —o, continuous from above.

cmath.cosh (x)
Return the hyperbolic cosine of x.

cmath.sinh (x)
Return the hyperbolic sine of x.

cmath.tanh (x)
Return the hyperbolic tangent of x.

9.3.5 Classification functions

cmath.isfinite (x)
Return True if both the real and imaginary parts of x are finite, and False otherwise.
New in version 3.2.

cmath.isinf (x)
Return True if either the real or the imaginary part of x is an infinity, and False otherwise.

cmath.isnan (x)
Return True if either the real or the imaginary part of x is a NaN, and False otherwise.

cmath.isclose (a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative toler-
ances.

rel_tol is the relative tolerance — it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e—09, which assures that the two values are the same within about 9 decimal digits. rel_tol must be greater
than zero.

abs_tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must be at least zero.

If no errors occur, the result will be: abs (a-b) <= max(rel_tol * max(abs(a), abs (b)),
abs_tol).

The IEEE 754 special values of NaN, inf, and —inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and —inf are only considered close to
themselves.

New in version 3.5.
See also:

PEP 485 — A function for testing approximate equality

9.3. cmath — Mathematical functions for complex nhumbers 273

https://www.python.org/dev/peps/pep-0485

The Python Library Reference, Release 3.7.15

9.3.6 Constants

cmath.pi
The mathematical constant 5, as a float.

cmath.e
The mathematical constant e, as a float.

cmath.tau
The mathematical constant 7, as a float.

New in version 3.6.

cmath.inf
Floating-point positive infinity. Equivalent to float ('inf").

New in version 3.6.

cmath.infj
Complex number with zero real part and positive infinity imaginary part. Equivalent to complex (0.0,
float ('inf')).

New in version 3.6.

cmath.nan
A floating-point “not a number” (NaN) value. Equivalent to f1oat ('nan').

New in version 3.6.

cmath.nanj
Complex number with zero real part and NaN imaginary part. Equivalent to complex (0.0,
float('nan')).

New in version 3.6.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather have math . sgrt (-1) raise an exception than return a complex number. Also note that the functions
defined in cmat h always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A., and
Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

9.4 decimal — Decimal fixed point and floating point arithmetic

Source code: Lib/decimal.py

The decimal module provides support for fast correctly-rounded decimal floating point arithmetic. It offers several
advantages over the £ 1oat datatype:

e Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle — computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

274 Chapter 9. Numeric and Mathematical Modules

https://github.com/python/cpython/tree/3.7/Lib/decimal.py

The Python Library Reference, Release 3.7.15

¢ Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have exact
representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as
3.3000000000000003 as it does with binary floating point.

 The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 — 0.3 isexactly
equal to zero. In binary floating point, the resultis 5.5511151231257827e-017. While near to zero,
the differences prevent reliable equality testing and differences can accumulate. For this reason, decimal is
preferred in accounting applications which have strict equality invariants.

* The decimal module incorporates a notion of significant places sothat 1 .30 + 1.201is 2.50. The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For mul-
tiplication, the “schoolbook” approach uses all the figures in the multiplicands. For instance, 1.3 * 1.2
gives 1 .56 while 1.30 * 1.20 gives 1.5600.

¢ Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting to
28 places) which can be as large as needed for a given problem:

>>> from decimal import *

>>> getcontext () .prec = 6

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857")

>>> getcontext () .prec = 28

>>> Decimal (1) / Decimal (7)

Decimal ('0.1428571428571428571428571429")

* Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of
the standard. When needed, the programmer has full control over rounding and signal handling. This includes
an option to enforce exact arithmetic by using exceptions to block any inexact operations.

e The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the coef-
ficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity, -Infinity,
and NaN. The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags
indicating the results of operations, and trap enablers which determine whether signals are treated as excep-
tions. Rounding options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF _DOWN,
ROUND_HALF_EVEN, ROUND_HALF_UP, ROUND_UP, and ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs of
the application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the deci-
mal module are: C1lamped, TnvalidOperation,DivisionByZero, Inexact, Rounded, Subnormal,
Overflow, Underflowand FloatOperation.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the trap
enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring a
calculation.

See also:

* IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

9.4. decimal — Decimal fixed point and floating point arithmetic 275

http://speleotrove.com/decimal/decarith.html

The Python Library Reference, Release 3.7.15

9.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with get context () and,
if necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *
>>> getcontext ()
Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,

capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])
>>> getcontext () .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer or a float
performs an exact conversion of the value of that integer or float. Decimal numbers include special values such as
NaN which stands for “Not a number”, positive and negative Infinity, and -0:

>>> getcontext () .prec = 28

>>> Decimal (10)

Decimal ('10")

>>> Decimal ('3.14")

Decimal ('3.14")

>>> Decimal (3.14)

Decimal ('3.140000000000000124344978758017532527446746826171875")
>>> Decimal ((O0, (3, 1, 4), -2))

Decimal ('3.14")

>>> Decimal (str (2.0 ** 0.5))

Decimal ('1.4142135623730951")

>>> Decimal (2) ** Decimal('0.5")

Decimal ('1.414213562373095048801688724")
>>> Decimal ('NaN')

Decimal ('NaN"')

>>> Decimal ('-Infinity")

Decimal ('-Infinity")

If the FloatOperation signal is trapped, accidental mixing of decimals and floats in constructors or ordering
comparisons raises an exception:

>>> ¢ = getcontext ()

>>> c.traps[FloatOperation] = True
>>> Decimal (3.14)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal ('3.5") < 3.7
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') == 3.5
True

New in version 3.3.

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ('3.0")

Decimal ('3.0")

>>> Decimal ('3.1415926535")

Decimal ('3.1415926535")

>>> Decimal ('3.1415926535") + Decimal ('2.7182818285")

(continues on next page)

276 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

(continued from previous page)

Decimal ('5.85987")

>>> getcontext () .rounding = ROUND_UP

>>> Decimal ('3.1415926535") + Decimal('2.7182818285")
Decimal ('5.85988")

If the internal limits of the C version are exceeded, constructing a decimal raises TnvalidOperation:

>>> Decimal ("1e€9999999999999999999™")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

Changed in version 3.3.

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = list (map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25".split()))
>>> max (data)

Decimal ('9.25")

>>> min (data)

Decimal ('0.03")

>>> sorted(data)

[Decimal ('0.03'"), Decimal('1.00'), Decimal('1.34"),
Decimal ('2.35"), Decimal('3.45'"), Decimal('9.25")]
>>> sum(data)

Decimal ('19.29")

>>> a,b,c = datal[:3]

>>> str(a)

'1.34"

>>> float (a)

1.34

>>> round(a, 1)

Decimal('1.3")
>>> int (a)

1

>>> a * 5
Decimal ('6.70")
>>> a * b
Decimal ('2.5058")
>>> c % a
Decimal ('0.77")

Decimal ('1.87"),

And some mathematical functions are also available to Decimal:

>>> getcontext () .prec = 28

>>> Decimal (2) .sqgrt ()

Decimal ('1.414213562373095048801688724")
>>> Decimal (1) .exp ()

Decimal ('2.718281828459045235360287471")
>>> Decimal ('10") .1n ()

Decimal ('2.302585092994045684017991455")
>>> Decimal ('10") .1ogl0 ()

Decimal ('1")

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal ('7.325") .quantize (Decimal('.01"), rounding=ROUND_DOWN)
Decimal ('7.32")

>>> Decimal ('7.325") .quantize (Decimal('1."'), rounding=ROUND_UP)
Decimal ('8")

9.4. decimal — Decimal fixed point and floating point arithmetic 277

The Python Library Reference, Release 3.7.15

As shown above, the get context () function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use the set context () function.

In accordance with the standard, the decimal module provides two ready to use standard contexts, BasicCon—
text and ExtendedContext. The former is especially useful for debugging because many of the traps are
enabled:

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext (myothercontext)

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857143")

>>> Decimal (42) / Decimal (0)

Decimal ("Infinity")

>>> setcontext (BasicContext)
>>> Decimal (42) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal (42) / Decimal (0)
DivisionByZero: x / O

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using
the clear_flags () method.

>>> setcontext (ExtendedContext)

>>> getcontext () .clear_flags()

>>> Decimal (355) / Decimal (113)

Decimal ('3.14159292")

>>> getcontext ()

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to Pi was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the t raps field of a context:

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (0)

Decimal ('Infinity")

>>> getcontext () .traps[DivisionByZero] = 1

>>> Decimal (1) / Decimal (0)

Traceback (most recent call last):

File "<pyshell#112>", line 1, in -toplevel-

Decimal (1) / Decimal (0)

DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric types.

278 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

9.4.2 Decimal objects

class decimal.Decimal (value="0", context=None)

Construct a new Decimal object based from value.

value can be an integer, string, tuple, F1oat, or another Decimal object. If no value is given, returns
Decimal ('0"). If value is a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters, as well as underscores throughout, are removed:

sign ci= T+ | Tt

digit I T e e L S L R I AL R A
indicator = 'e' | 'E'

digits ::= digit [digit]...

decimal-part ::= digits '.' [digits] | ['.'] digits

exponent-part ::= 1indicator [sign] digits

infinity ::= 'Infinity' | 'Inf'

nan c:= 'NaN' [digits] | 'sNaN' [digits]

numeric-value ::= decimal-part [exponent-part] | infinity

numeric-string ::= [sign] numeric-value | [sign] nan

Other Unicode decimal digits are also permitted where digit appears above. These include decimal digits
from various other alphabets (for example, Arabic-Indic and DevanagarT digits) along with the fullwidth digits
"\uff10"' through "\uff19"'.

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple
of digits, and an integer exponent. For example, Decimal ((0, (1, 4, 1, 4), -3)) returns
Decimal ('1.414").

If value is a f1oat, the binary floating point value is losslessly converted to its exact decimal equivalent. This
conversion can often require 53 or more digits of precision. For example, Decimal (float ('1.1")) con-
verts to Decimal ('1.100000000000000088817841970012523233890533447265625").

The context precision does not affect how many digits are stored. That is determined exclusively by the number
of digits in value. For example, Decimal ('3.00000") records all five zeros even if the context precision
is only three.

The purpose of the confext argument is determining what to do if value is a malformed string. If the context
traps TnvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with
the value of NaN.

Once constructed, Decimal objects are immutable.
Changed in version 3.2: The argument to the constructor is now permitted to be a 1 oat instance.

Changed in version 3.3: £1oat arguments raise an exception if the 1 oatOperat iontrapis set. By default
the trap is off.

Changed in version 3.6: Underscores are allowed for grouping, as with integral and floating-point literals in
code.

Decimal floating point objects share many properties with the other built-in numeric types such as £ 1oat and
int. All of the usual math operations and special methods apply. Likewise, decimal objects can be copied,
pickled, printed, used as dictionary keys, used as set elements, compared, sorted, and coerced to another type
(such as float or int).

There are some small differences between arithmetic on Decimal objects and arithmetic on integers and floats.
When the remainder operator % is applied to Decimal objects, the sign of the result is the sign of the dividend
rather than the sign of the divisor:

>>> (=7) % 4

1
>>> Decimal (-7) % Decimal (4)
Decimal ('-3")

9.4. decimal — Decimal fixed point and floating point arithmetic 279

The Python Library Reference, Release 3.7.15

The integer division operator / / behaves analogously, returning the integer part of the true quotient (truncating
towards zero) rather than its floor, so as to preserve the usual identity x == (x // y) * v + x % y:

>>> -7 // 4

-2
>>> Decimal (-7) // Decimal (4)
Decimal ('—-1")

The % and // operators implement the remainder and divide-integer operations (respectively) as
described in the specification.

Decimal objects cannot generally be combined with floats or instances of fractions.Fraction in arith-
metic operations: an attempttoadda Decimaltoa float, forexample, will raisea TypeError. However,
it is possible to use Python’s comparison operators to compare a Decimal instance x with another number
y. This avoids confusing results when doing equality comparisons between numbers of different types.

Changed in version 3.2: Mixed-type comparisons between Decimal instances and other numeric types are

now fully supported.
In addition to the standard numeric properties, decimal floating point objects also have a number of specialized
methods:
adjusted ()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains: Decimal ('321e+5"') .adjusted () returns seven. Used for determining the position of

the most significant digit with respect to the decimal point.

as_integer_ratio ()
Return a pair (n, d) of integers that represent the given Decimal instance as a fraction, in lowest
terms and with a positive denominator:

>>> Decimal ('-3.14") .as_integer_ratio()
(=157, 50)

The conversion is exact. Raise OverflowError on infinities and ValueError on NaNs.
New in version 3.6.

as_tuple ()
Return a named tuple representation of the number: DecimalTuple (sign, digits, expo-
nent).

canonical ()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is
always canonical, so this operation returns its argument unchanged.

compare (other, context=None)
Compare the values of two Decimal instances. compare () returns a Decimal instance, and if either
operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal ('NaN")
a < b ==> Decimal ('-1")
a == Db ==> Decimal ('0")
a>>b ==> Decimal('1")

compare_signal (other, context=None)
This operation is identical to the compare () method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.

compare_total (other, context=None)
Compare two operands using their abstract representation rather than their numerical value. Similar to
the compare () method, but the result gives a total ordering on Decimal instances. Two Decimal
instances with the same numeric value but different representations compare unequal in this ordering:

280 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

>>> Decimal ('12.0") .compare_total (Decimal ('12"))
Decimal ('-1")

Quiet and signaling NaNs are also included in the total ordering. The result of this function is Deci—
mal ('0"') if both operands have the same representation, Decimal ('—1") if the first operand is
lower in the total order than the second, and Decimal ('1"') if the first operand is higher in the total
order than the second operand. See the specification for details of the total order.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

compare_total_mag (other, context=None)
Compare two operands using their abstract representation rather than their value as in com-
pare_total (),butignoring the sign of each operand. x . compare_total_mag (y) isequivalent
to x.copy_abs () .compare_total (y.copy_abs()).

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

conjugate ()
Just returns self, this method is only to comply with the Decimal Specification.

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed.

copy_negate ()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags
are changed and no rounding is performed.

copy_sign (other, context=None)
Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For
example:

>>> Decimal ('2.3") .copy_sign(Decimal ('-1.5"))
Decimal ('-2.3")

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

exp (context=None)
Return the value of the (natural) exponential function e * *x at the given number. The result is correctly
rounded using the ROUND_HALF _EVEN rounding mode.

>>> Decimal (1) .exp ()

Decimal ('2.718281828459045235360287471")

>>> Decimal (321) .exp ()

Decimal ('2.561702493119680037517373933E+139")

from_float (f)
Classmethod that converts a float to a decimal number, exactly.

Note Decimal.from_float(0.1) is not the same as Decimal(0.1’). Since 0.1 is not ex-
actly representable in binary floating point, the value is stored as the nearest repre-
sentable value which is 0x1.999999999999ap-4. That equivalent value in decimal is
0.1000000000000000055511151231257827021181583404541015625.

Note: From Python 3.2 onwards, a Decimal instance can also be constructed directly from a float.

9.4. decimal — Decimal fixed point and floating point arithmetic 281

The Python Library Reference, Release 3.7.15

>>> Decimal.from_float (0.1)

Decimal ('0.1000000000000000055511151231257827021181583404541015625")
>>> Decimal.from_float (float ('nan'))

Decimal ('NaN"')

>>> Decimal.from_float (float ('inf'))

Decimal ('Infinity")

>>> Decimal.from_float (float ('—inf'"))

Decimal ('-Infinity")

New in version 3.1.

£ma (other, third, context=None)
Fused multiply-add. Return self*other+third with no rounding of the intermediate product self *other.

>>> Decimal (2) .fma (3, 5)
Decimal ('11")

is_canonical ()
Return True if the argument is canonical and F'a1se otherwise. Currently, a Decimal instance is
always canonical, so this operation always returns True.

is_finite()
Return True if the argument is a finite number, and Fa 1 se if the argument is an infinity or a NaN.

is_infinite()
Return True if the argument is either positive or negative infinity and Fa 1 se otherwise.

is_nan{()
Return True if the argument is a (quiet or signaling) NaN and a1 se otherwise.

is_normal (context=None)
Return True if the argument is a normal finite number. Return Fa 1 se if the argument is zero, subnor-
mal, infinite or a NaN.

is_qgnan ()
Return True if the argument is a quiet NaN, and F'a 1 se otherwise.

is_signed ()
Return True if the argument has a negative sign and Fa I se otherwise. Note that zeros and NaNs can
both carry signs.

is_snan ()
Return True if the argument is a signaling NaN and Fa I se otherwise.

is_subnormal (context=None)
Return True if the argument is subnormal, and Fa I se otherwise.

is_zero()
Return True if the argument is a (positive or negative) zero and F'a I se otherwise.

1n (context=None)
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

1o0g10 (context=None)
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND__HALF_EVEN rounding mode.

logb (context=None)
For a nonzero number, return the adjusted exponent of its operand as a Decima I instance. If the operand
is a zero then Decimal ('-Infinity") is returned and the DivisionByZero flag is raised. If
the operand is an infinity then Decimal ('Infinity") is returned.

logical_and (other, context=None)
logical_and() is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise and of the two operands.

282

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

logical_invert (context=None)
logical_invert () is alogical operation. The result is the digit-wise inversion of the operand.

logical_or (other, context=None)
logical_or () is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands.

logical_xor (other, context=None)
logical_xor () is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise exclusive or of the two operands.

max (other, context=None)
Like max (self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

max_mag (other, context=None)
Similar to the max () method, but the comparison is done using the absolute values of the operands.

min (other, context=None)
Like min (self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

min_mag (other, context=None)
Similar to the min () method, but the comparison is done using the absolute values of the operands.

next_minus (context=None)
Return the largest number representable in the given context (or in the current thread’s context if no
context is given) that is smaller than the given operand.

next_plus (context=None)
Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand.

next_toward (other, context=None)
If the two operands are unequal, return the number closest to the first operand in the direction of the
second operand. If both operands are numerically equal, return a copy of the first operand with the sign
set to be the same as the sign of the second operand.

normalize (context=None)
Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Dec—
imal ('0"') toDecimal ('0e0"). Used for producing canonical values for attributes of an equiva-
lence class. For example, Decimal ('32.100"') and Decimal ('0.321000e+2") both normal-
ize to the equivalent value Decimal ('32.1").

number_class (context=None)
Return a string describing the class of the operand. The returned value is one of the following ten strings.

e "-Infinity", indicating that the operand is negative infinity.

e "-Normal", indicating that the operand is a negative normal number.

* "-Subnormal", indicating that the operand is negative and subnormal.
e "-Zero", indicating that the operand is a negative zero.

e "+Zero", indicating that the operand is a positive zero.

* "+Subnormal", indicating that the operand is positive and subnormal.
* "+Normal™", indicating that the operand is a positive normal number.

e "+Infinity", indicating that the operand is positive infinity.

e "NaN", indicating that the operand is a quiet NaN (Not a Number).

* "sNaN", indicating that the operand is a signaling NaN.

9.4. decimal — Decimal fixed point and floating point arithmetic 283

The Python Library Reference, Release 3.7.15

quantize (exp, rounding=None, context=None)

Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal ('1.41421356") .quantize (Decimal ('1.000"))
Decimal ('1.414")

Unlike other operations, if the length of the coefficient after the quantize operation would be greater
than precision, then an TnvalidOperation issignaled. This guarantees that, unless there is an error
condition, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary.
In this case, the rounding mode is determined by the rounding argument if given, else by the given
context argument; if neither argument is given the rounding mode of the current thread’s context is
used.

An error is returned whenever the resulting exponent is greater than Emax or less than Etiny.

radix ()

Return Decimal (10), the radix (base) in which the Decimal class does all its arithmetic. Included
for compatibility with the specification.

remainder_near (other, context=None)

Return the remainder from dividing self by other. This differs from self % other in that the sign of
the remainder is chosen so as to minimize its absolute value. More precisely, the return value is se1 £ -
n * other where n is the integer nearest to the exact value of self / other, and if two integers
are equally near then the even one is chosen.

If the result is zero then its sign will be the sign of self.

>>> Decimal (18) .remainder_near (Decimal (10))
Decimal ('-2")

>>> Decimal (25) .remainder_near (Decimal (10))
Decimal ('5")

>>> Decimal (35) .remainder_near (Decimal (10))
Decimal ('-5")

rotate (other, context=None)

Return the result of rotating the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to rotate. If the second operand is positive then rotation
is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left
with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged.

same_quantum (other, context=None)

Test whether self and other have the same exponent or whether both are NaN.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

scaleb (other, context=None)

Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10**other. The second operand must be an integer.

shift (other, context=None)

Return the result of shifting the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to shift. If the second operand is positive then the shift
is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and
exponent of the first operand are unchanged.

sqrt (context=None)

Return the square root of the argument to full precision.

284

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

to_eng_string (context=None)
Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of
the decimal place and may require the addition of either one or two trailing zeros.

For example, this converts Decimal ('123E+1"') toDecimal ('1.23E+3").

to_integral (rounding=None, context=None)
Identical to the to_integral value () method. The to_integral name has been kept for
compatibility with older versions.

to_integral_exact (rounding=None, context=None)
Round to the nearest integer, signaling Tnexact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by the rounding parameter if given, else by the given context. If
neither parameter is given then the rounding mode of the current context is used.

to_integral_value (rounding=None, context=None)
Round to the nearest integer without signaling Tnexact or Rounded. If given, applies rounding;
otherwise, uses the rounding method in either the supplied context or the current context.

Logical operands

The logical_and(),logical_invert (),logical_or(),and logical_xor () methods expect their
arguments to be logical operands. A logical operand is a Decimal instance whose exponent and sign are both zero,
and whose digits are all either O or 1.

9.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the get context () and setcon—
text () functions:

decimal.getcontext ()
Return the current context for the active thread.

decimal.setcontext (c)
Set the current context for the active thread to c.

You can also use the with statement and the 1ocalcontext () function to temporarily change the active context.

decimal.localcontext (ctx=None)
Return a context manager that will set the current context for the active thread to a copy of ctx on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified, a
copy of the current context is used.

For example, the following code sets the current decimal precision to 42 places, performs a calculation, and
then automatically restores the previous context:

from decimal import localcontext

with localcontext () as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something ()
s = +s # Round the final result back to the default precision

New contexts can also be created using the Context constructor described below. In addition, the module provides
three pre-made contexts:

9.4. decimal — Decimal fixed point and floating point arithmetic 285

The Python Library Reference, Release 3.7.15

class decimal .BasicContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions)
except Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class decimal.ExtendedContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are
not raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result value of NaN
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence of
conditions that would otherwise halt the program.

class decimal .DefaultContext

This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts created by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are
started has the effect of setting system-wide defaults. Changing the fields after threads have started is not
recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are prec=28, rounding=ROUND_HALF _EVEN, and enabled traps for Overflow,
InvalidOperation,and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class decimal.Context (prec=None, rounding=None, Emin=None, Emax=None, capitals=None,

clamp=None, flags=None, traps=None)
Creates a new context. If a field is not specified or is None, the default values are copied from the Default -
Context. If the flags field is not specified or is None, all flags are cleared.

prec is an integer in the range [1, MAX_PREC] that sets the precision for arithmetic operations in the context.
The rounding option is one of the constants listed in the section Rounding Modes.

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave the
flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents. Emin must be in
the range [MIN_EMIN, 0], Emax in the range [0, MAX_EMAX].

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise, a
lowercase e is used: Decimal ('6.02e+23").

The clamp field is either O (the default) or 1. If set to 1, the exponent e of a Decimal instance representable
in this context is strictly limited to the range Emin - prec + 1 <= e <= Emax - prec + 1.If
clamp is 0 then a weaker condition holds: the adjusted exponent of the Decimal instance is at most Emax.
When clamp is 1, a large normal number will, where possible, have its exponent reduced and a corresponding
number of zeros added to its coefficient, in order to fit the exponent constraints; this preserves the value of the
number but loses information about significant trailing zeros. For example:

>>> Context (prec=6, Emax=999, clamp=1).create_decimal ('1.23e999")
Decimal ('1.23000E+999")

A clamp value of 1 allows compatibility with the fixed-width decimal interchange formats specified in IEEE
754.

The Context class defines several general purpose methods as well as a large number of methods for do-
ing arithmetic directly in a given context. In addition, for each of the Decimal methods described above
(with the exception of the adjusted () and as_tuple () methods) there is a corresponding Context
method. For example, for a Context instance C and Decimal instance x, C.exp (x) is equivalent to

286

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

x.exp (context=C). Each Context method accepts a Python integer (an instance of int) anywhere
that a Decimal instance is accepted.

clear_flags ()
Resets all of the flags to 0.

clear_traps ()
Resets all of the traps to 0.

New in version 3.3.

copy ()
Return a duplicate of the context.

copy_decimal (num)
Return a copy of the Decimal instance num.

create_decimal (num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor,
the context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that adding zero to a sum can change
the result:

>>> getcontext () .prec = 3

>>> Decimal ('3.4445'") + Decimal('1.0023")

Decimal ('4.45"

>>> Decimal ('3.4445') + Decimal (0) + Decimal('1.0023")
Decimal ('4.44")

This method implements the to-number operation of the IBM specification. If the argument is a string,
no leading or trailing whitespace or underscores are permitted.

create_decimal_from_float (f)
Creates a new Decimal instance from a float f but rounding using self as the context. Unlike the
Decimal.from_float () class method, the context precision, rounding method, flags, and traps
are applied to the conversion.

>>> context = Context (prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float (math.pi)
Decimal ('3.1415")

>>> context = Context (prec=5, traps=[Inexact])

>>> context.create_decimal_from_float (math.pi)
Traceback (most recent call last):

decimal.Inexact: None

New in version 3.1.

Etiny ()
Returns a value equal to Emin — prec + 1 which is the minimum exponent value for subnormal
results. When underflow occurs, the exponent is set to Et iny.

Etop ()
Returns a value equal to Emax - prec + 1.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic op-
erations which take place within the current context for the active thread. An alternative approach is to use
context methods for calculating within a specific context. The methods are similar to those for the Decimal
class and are only briefly recounted here.

abs (x)
Returns the absolute value of x.

9.4. decimal — Decimal fixed point and floating point arithmetic 287

The Python Library Reference, Release 3.7.15

add (x, y)
Return the sum of x and y.

canonical (x)
Returns the same Decimal object x.

compare (x, y)
Compares x and y numerically.

compare_signal (x, y)
Compares the values of the two operands numerically.

compare_total (x, y)
Compares two operands using their abstract representation.

compare_total_mag (x, y)
Compares two operands using their abstract representation, ignoring sign.

copy_abs (x)
Returns a copy of x with the sign set to 0.

copy_negate (x)
Returns a copy of x with the sign inverted.

copy_sign (x,y)
Copies the sign from y to x.

divide (x, y)
Return x divided by y.

divide_int (x, y)
Return x divided by y, truncated to an integer.

divmod (x, y)
Divides two numbers and returns the integer part of the result.

exp (x)
Returns e ** x.

fma (x, y, 2)
Returns x multiplied by y, plus z.

is_canonical (x)

Returns True if x is canonical; otherwise returns False.
is_finite (x)

Returns True if x is finite; otherwise returns False.
is_infinite (x)

Returns True if x is infinite; otherwise returns False.

is_nan (x)
Returns True if x is a qNaN or sNaN; otherwise returns False.

is_normal (x)
Returns True if x is a normal number; otherwise returns False.

is_gnan (x)

Returns True if x is a quiet NaN; otherwise returns False.
is_signed (x)

Returns True if x is negative; otherwise returns False.

is_snan (x)
Returns True if x is a signaling NaN; otherwise returns False.

is_subnormal (x)
Returns True if x is subnormal; otherwise returns False.

288

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

is_zero (x)
Returns True if x is a zero; otherwise returns False.

1n (x)
Returns the natural (base e) logarithm of x.

logl0 (x)
Returns the base 10 logarithm of x.

logb (x)
Returns the exponent of the magnitude of the operand’s MSD.

logical_and (x, y)
Applies the logical operation and between each operand’s digits.

logical_invert (x)
Invert all the digits in x.

logical_or (x,y)
Applies the logical operation or between each operand’s digits.

logical_xor (x,y)
Applies the logical operation xor between each operand’s digits.

max (x, y)
Compares two values numerically and returns the maximum.

max_mag (x, y)
Compares the values numerically with their sign ignored.

min (x, y)
Compares two values numerically and returns the minimum.

min_mag (x, y)
Compares the values numerically with their sign ignored.

minus (x)
Minus corresponds to the unary prefix minus operator in Python.

multiply (x, y)
Return the product of x and y.

next_minus (x)
Returns the largest representable number smaller than x.

next_plus (x)
Returns the smallest representable number larger than x.

next_toward (x, y)
Returns the number closest to x, in direction towards y.

normalize (x)
Reduces x to its simplest form.

number_class (x)
Returns an indication of the class of x.

plus (x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision
and rounding, so it is not an identity operation.

power (x, y, modulo=None)
Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x* *y. If x is negative then y must be integral. The result will be inexact
unless v is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The rounding
mode of the context is used. Results are always correctly-rounded in the Python version.

9.4. decimal — Decimal fixed point and floating point arithmetic 289

The Python Library Reference, Release 3.7.15

Changed in version 3.3: The C module computes power () in terms of the correctly-rounded exp ()
and 1n () functions. The result is well-defined but only “almost always correctly-rounded”.

With three arguments, compute (x**y) % modulo. For the three argument form, the following
restrictions on the arguments hold:

« all three arguments must be integral

¢ y must be nonnegative

e at least one of x or y must be nonzero

¢ modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context .power (x, y, modulo) isequal to the value that would be ob-
tained by computing (x**y) % modulo with unbounded precision, but is computed more efficiently.
The exponent of the result is zero, regardless of the exponents of x, y and modulo. The result is always
exact.

quantize (x, y)
Returns a value equal to x (rounded), having the exponent of y.

radix ()
Just returns 10, as this is Decimal, :)

remainder (x, y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near (x, y)
Returns x - y * n, where n is the integer nearest the exact value of x / vy (if the result is O then its
sign will be the sign of x).

rotate (x, y)
Returns a rotated copy of x, y times.

same_quantum (x, y)
Returns True if the two operands have the same exponent.

scaleb (x, y)
Returns the first operand after adding the second value its exp.

shift (x, y)
Returns a shifted copy of x, y times.

sqgrt (x)
Square root of a non-negative number to context precision.

subtract (x, y)
Return the difference between x and y.

to_eng_string (x)
Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of
the decimal place and may require the addition of either one or two trailing zeros.

to_integral_exact (x)
Rounds to an integer.

to_sci_string (x)
Converts a number to a string using scientific notation.

290 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

9.4.4 Constants

The constants in this section are only relevant for the C module. They are also included in the pure Python version
for compatibility.

32-bit 64-bit

. 425000000 999999999999999999
decimal .MAX PREC

, 425000000 999999999999999999
decimal .MAX_EMAX

, -425000000 -999999999999999999
decimal .MIN_EMIN

, -849999999 -1999999999999999997
decimal .MIN_ETINY

decimal . HAVE_THREADS
The value is True. Deprecated, because Python now always has threads.

Deprecated since version 3.9.

decimal .HAVE_CONTEXTVAR
The default value is True. If Python is compiled ——without-decimal-contextvar, the C version
uses a thread-local rather than a coroutine-local context and the value is False. This is slightly faster in some
nested context scenarios.

New in version 3.9: backported to 3.7 and 3.8

9.4.5 Rounding modes

decimal .ROUND_CEILING
Round towards Infinity.

decimal .ROUND_DOWN
Round towards zero.

decimal .ROUND_FLOOR
Round towards -Infinity.

decimal .ROUND_HALF_DOWN
Round to nearest with ties going towards zero.

decimal .ROUND_HALF_EVEN
Round to nearest with ties going to nearest even integer.

decimal .ROUND_HALF_ UP
Round to nearest with ties going away from zero.

decimal .ROUND_UP
Round away from zero.

decimal .ROUND_O05UP
Round away from zero if last digit after rounding towards zero would have been O or 5; otherwise round towards
Zero.

9.4. decimal — Decimal fixed point and floating point arithmetic 291

The Python Library Reference, Release 3.7.15

9.4.6 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For
example, if the DivisionByZero trapis set, thena DivisionByZero exception is raised upon encountering
the condition.

class decimal.Clamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible,
the exponent is reduced to fit by adding zeros to the coefficient.

class decimal.DecimalException
Base class for other signals and a subclass of ArithmeticError.

class decimal.DivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not
trapped, returns Infinity or —~Infinity with the sign determined by the inputs to the calculation.

class decimal.Inexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag
or trap is used to detect when results are inexact.

class decimal.InvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible
causes include:

Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0

Infinity % x

sgqrt (-x) and x > 0
0 ** 0

X ** (non-integer)
x ** Infinity

class decimal.Overflow
Numerical overflow.

Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result depends
on the rounding mode, either pulling inward to the largest representable finite number or rounding outward to
Infinity. In either case, Tnexact and Rounded are also signaled.

class decimal.Rounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5. 0). If
not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class decimal.Subnormal
Exponent was lower than Emin prior to rounding.

292 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

class decimal.Underflow
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Tnexact and Subnormal are also signaled.

class decimal.FloatOperation
Enable stricter semantics for mixing floats and Decimals.

If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal constructor,
create_decimal () and all comparison operators. Both conversion and comparisons are exact. Any oc-
currence of a mixed operation is silently recorded by setting "1 oat Operat ion in the context flags. Explicit
conversions with from_float () or create_decimal_from_float () donot set the flag.

Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All other mixed
operations raise F'l oatOperation.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError (exceptions.Exception)
DecimalException
Clamped
DivisionByZero (DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow (Inexact, Rounded)
Underflow (Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal
FloatOperation (DecimalException, exceptions.TypeError)

9.4.7 Floating Point Notes
Mitigating round-off error with increased precision
The use of decimal floating point eliminates decimal representation error (making it possible to represent 0. 1 ex-

actly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities resulting in
loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with insufficient
precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext () .prec = 8

>>> u, v, w = Decimal (11111113), Decimal(-11111111), Decimal('7.51111111")
>>> (u + v) + w

Decimal ('9.5111111")

>>> u + (v + w)

Decimal ('10")

>>> u, v, w = Decimal (20000), Decimal (-6), Decimal ('6.0000003")
>>> (u*v) + (u*w)

Decimal ('0.01")

>>> u * (vtw)

Decimal ('0.0060000")

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss
of significance:

9.4. decimal — Decimal fixed point and floating point arithmetic 293

The Python Library Reference, Release 3.7.15

>>> getcontext () .prec = 20

>>> u, v, w = Decimal(11111113), Decimal (-11111111), Decimal('7.51111111")
>>> (u + v) + w

Decimal ("9.51111111")

>>> u + (Vv + w)

Decimal ('9.51111111")

>>>

>>> u, v, w = Decimal (20000), Decimal (-6), Decimal ('6.0000003")
>>> (u*v) + (u*w)

Decimal ('0.0060000")

>>> u * (vtw)

Decimal ('0.0060000")

Special values

The number system for the decimal module provides special values including NaN, sNaN, —Infinity, In-
finity, and two zeros, +0 and -0.

Infinities can be constructed directly with: Decimal ('Infinity"'). Also, they can arise from dividing by zero
when the DivisionByZero signal is not trapped. Likewise, when the Overf1ow signal is not trapped, infinity
can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, inde-
terminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the TnvalidOperation signal is trapped, raise an
exception. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once
created, will flow through other computations always resulting in another NaN. This behavior can be useful for a
series of computations that occasionally have missing inputs — it allows the calculation to proceed while flagging
specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value when
an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test for
equality where one of the operands is a quiet or signaling NaN always returns False (even when doing Deci-—
mal ('NaN')==Decimal ('NaN"')), while a test for inequality always returns True. An attempt to compare
two Decimals using any of the <, <=, > or >= operators will raise the TnvalidOperat ion signal if either operand
is a NaN, and return False if this signal is not trapped. Note that the General Decimal Arithmetic specification
does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN were taken from
the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use the compare () and
compare—-signal () methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros
are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating
point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal ('Infinity")
Decimal ('0OE-1000026")

294 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

9.4.8 Working with threads

The getcontext () function accesses a different Context object for each thread. Having separate thread con-
texts means that threads may make changes (such as getcontext () .prec=10) without interfering with other
threads.

Likewise, the set context () function automatically assigns its target to the current thread.

If setcontext () hasnot been called before get context (), then get context () will automatically create
a new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each thread
will use the same values throughout the application, directly modify the DefaultContext object. This should be done
before any threads are started so that there won’t be a race condition between threads calling get context (). For
example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy ()
DefaultContext.traps[InvalidOperation] = 1

setcontext (DefaultContext)

Afterwards, the threads can be started
tl.start ()
t2.start ()
t3.start ()

9.4.9 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decima I class:

def moneyfmt (value, places=2, curr='"', sep=',', dp='".",
pos='"', neg='-"', trailneg="'"):

"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)
only specify as blank when places 1s zero
pos: optional sign for positive numbers: '+', space or blank
neg: optional sign for negative numbers: '-', '(', space or blank
trailneg:optional trailing minus indicator: '-', ')'", space or blank

>>> d = Decimal ('-1234567.8901")

>>> moneyfmt (d, curr='S$")

'-51,234,567.89"

>>> moneyfmt (d, places=0, sep='.', dp='"', neg='"', trailneg='-")
'1.234.568-"

>>> moneyfmt (d, curr='S', neg='('"', trailneg=")")
'($1,234,567.89) "'

>>> moneyfmt (Decimal (123456789), sep=' ")

'123 456 789.00"

>>> moneyfmt (Decimal ('-0.02"'), neg='<', trailneg='>")
'<0.02>"

men

g = Decimal (10) ** -places # 2 places —-—> '0.01"'
sign, digits, exp = value.quantize(q).as_tuple()

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 295

The Python Library Reference, Release 3.7.15

(continued from previous page)

result =

digits list (map(str,

build, next

if sign:
build(trailneq)

for i in range(places):
build(next () if digits else

if places:

(]

digits))
result.append, digits.pop

'O')

build (dp)
if not digits:

build('0")
i=0

while digits:
build (next ())

i+=1

if i == 3 and digits:
i =0
build(sep)

build(curr)
build(neg if sign else pos)
return ''.join (reversed(result))
def pi():
"""Compute Pi to the current precision.

>>> print (pi())
3.141592653589793238462643383

men

getcontext () .prec += 2 # extra digits

three = Decimal (3) # substitute "t
lasts, t, s, n, na, d, da = 0, three, 3
while s != lasts:

lasts = s

n, na = nt+na, na+8

d, da = d+da, da+32

t = (t *n) / d

s += t
getcontext () .prec —= 2

return +s
def exp (x):
"""Return e raised to the power of x.

>>> print (exp (Decimal (1)))
2.718281828459045235360287471
>>> print (exp (Decimal (2)))
7.389056098930650227230427461
>>> print (exp(2.0))
7.38905609893

>>> print (exp (2+07))
(7.38905609893+07)

men

getcontext () .prec += 2

for intermediate steps
hree=3.0" for regular floats
1, 0, 0, 24

14

unary plus applies the new precision

Result type matches input type.

i, lasts, s, fact, num = 0, O, 1, 1, 1
while s != lasts:
lasts = s
i+=1
fact *= 1i
num *= x
(continues on next page)
296 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

(continued from previous page)

s += num / fact
getcontext () .prec —= 2
return +s

def cos(x):
"""Return the cosine of x as measured in radians.

The Taylor series approximation works best for a small value of x.

o

For larger values, first compute x = x % (2 * pi).
>>> print (cos (Decimal ('0.5")))
0.8775825618903727161162815826

>>> print (cos(0.5))

0.87758256189

>>> print (cos (0.5+07))
(0.87758256189+037)

men

getcontext () .prec += 2

i, lasts, s, fact, num, sign = 0, O, 1, 1, 1, 1
while s != lasts:

lasts = s

i +=2

fact *= 1 * (i-1)
num *= x * x

sign *= -1
s += num / fact * sign
getcontext () .prec —= 2

return +s

def sin(x):
"""Return the sine of x as measured in radians.

The Taylor series approximation works best for a small value of x.

-3

For larger values, first compute x = x % (2 * pi).

>>> print (sin(Decimal ('0.5")))
0.4794255386042030002732879352
>>> print (sin(0.5))
0.479425538604

>>> print (sin(0.5+07))
(0.479425538604+037)

men

getcontext () .prec += 2

i, lasts, s, fact, num, sign =1, 0, x, 1, x, 1
while s != lasts:

lasts = s

i +=2

fact *= 1 * (i-1)
num *= x * x

sign *= -1
s += num / fact * sign
getcontext () .prec —= 2

return +s

9.4. decimal — Decimal fixed point and floating point arithmetic

297

The Python Library Reference, Release 3.7.15

9.4.10 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal ('1234.5"). Is there a way to minimize typing when using
the interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D('1.23") + D('3.45")
Decimal('4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded. Others
are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize () method rounds to a fixed number of decimal places. If the Thexact trap is set, it is also
useful for validation:

>>> TWOPLACES = Decimal (10) ** -2 # same as Decimal ('0.01")

>>> # Round to two places
>>> Decimal ('3.214") .quantize (TWOPLACES)
Decimal ('3.21")

>>> # Validate that a number does not exceed two places
>>> Decimal ('3.21") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Decimal ('3.21")

>>> Decimal ('3.214") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Traceback (most recent call last):

Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed point.
Others operations, like division and non-integer multiplication, will change the number of decimal places and need
to be followed-up with a quantize () step:

>>> a = Decimal ('102.72") # Initial fixed-point values

>>> b = Decimal ('3.17")

>>> a + b # Addition preserves fixed-point
Decimal ('105.89")

>>> a — b

Decimal ('99.55")

>>> a * 42 # So does integer multiplication
Decimal ('4314.24")

>>> (a * b).quantize (TWOPLACES) # Must quantize non-integer multiplication
Decimal ('325.62")

>>> (b / a).quantize (TWOPLACES) # And quantize division

Decimal ('0.03")

In developing fixed-point applications, it is convenient to define functions to handle the quantize () step:

>>> def mul(x, y, fp=TWOPLACES) :

C return (x * y).quantize (fp)

>>> def div(x, y, fp=TWOPLACES) :
return (x / y).quantize (fp)

>>> mul (a, b) # Automatically preserve fixed-point
Decimal ('325.62")

>>> div (b, a)

Decimal ('0.03")

298 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and 02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A.The normalize () method maps all equivalent values to a single representative:

>>> values = map (Decimal, '200 200.000 2E2 .02E+4'".split())
>>> [v.normalize () for v in values]
[Decimal ('2E+2"'), Decimal ('2E+2'), Decimal ('2E+2'), Decimal ('2E+2"')]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number of significant places in the coeffi-
cient. For example, expressing 5. 0E+3 as 5000 keeps the value constant but cannot show the original’s two-place
significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes, losing
significance, but keeping the value unchanged:

>>> def remove_exponent (d) :
return d.quantize (Decimal (1)) if d == d.to_integral() else d.normalize ()

>>> remove_exponent (Decimal ('5E+3"))
Decimal ('5000")

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, any binary floating point number can be exactly expressed as a Decimal though an exact conversion may take
more precision than intuition would suggest:

>>> Decimal (math.pi)
Decimal ('3.141592653589793115997963468544185161590576171875")

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only the
results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that the
results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext () .prec = 3

>>> Decimal ('3.104"'") + Decimal('2.104")

Decimal ('5.21")

>>> Decimal ('3.104"') + Decimal('0.000") + Decimal('2.104")
Decimal ('5.20")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext () .prec = 3
>>> +Decimal ('1.23456789") # unary plus triggers rounding
Decimal ('1.23")

Alternatively, inputs can be rounded upon creation using the Context.create_decimal () method:

>>> Context (prec=5, rounding=ROUND_DOWN) .create_decimal ('1.2345678")
Decimal ('1.2345")

9.4. decimal — Decimal fixed point and floating point arithmetic 299

The Python Library Reference, Release 3.7.15

Q. Is the CPython implementation fast for large numbers?

A. Yes. In the CPython and PyPy3 implementations, the C/CFFI versions of the decimal module integrate the high
speed libmpdec library for arbitrary precision correctly-rounded decimal floating point arithmetic. 1ibmpdec uses
Karatsuba multiplication for medium-sized numbers and the Number Theoretic Transform for very large numbers.
However, to realize this performance gain, the context needs to be set for unrounded calculations.

>>> c = getcontext ()

>>> c.prec = MAX_PREC
>>> c.Emax = MAX_EMAX
>>> c.Emin = MIN_EMIN

New in version 3.3.

9.5 fractions — Rational numbers

Source code: Lib/fractions.py

The fractions module provides support for rational number arithmetic.
A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

class fractions.Fraction (numerator=0, denominator=1)

class fractions.Fraction (other_fraction)

class fractions.Fraction (float)

class fractions.Fraction (decimal)

class fractions.Fraction (string)
The first version requires that numerator and denominator are instances of numbers.Rational and returns
anew Fract ion instance with value numerator/denominator. If denominatoris 0, itraisesa Zero—
DivisionError. The second version requires that other_fraction is an instance of numbers.Rational
and returns a Fract ion instance with the same value. The next two versions accept either a f1oat or a
decimal.Decimal instance, and return a Fract ion instance with exactly the same value. Note that
due to the usual issues with binary floating-point (see tut-fp-issues), the argument to Fraction(1.1) is
not exactly equal to 11/10, and so Fraction (1.1) does not return Fraction (11, 10) asone might
expect. (But see the documentation for the 1imit_denominator () method below.) The last version of
the constructor expects a string or unicode instance. The usual form for this instance is:

[sign] numerator ['/' denominator]

where the optional sign may be either ‘+ or -’ and numerator and denominator (if present) are strings
of decimal digits. In addition, any string that represents a finite value and is accepted by the £ 1 oat constructor
is also accepted by the FFract ion constructor. In either form the input string may also have leading and/or
trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction (16, —-10)

Fraction (-8, 5)

>>> Fraction (123)

Fraction (123, 1)

>>> Fraction

)
)

(
Fraction (0, 1
>>> Fraction('3/7")
Fraction (3, 7)
>>> Fraction(' -3/7 ")

Fraction (-3, 7)

>>> Fraction('1.414213 \t\n")
Fraction (1414213, 1000000)
>>> Fraction('—-.125")

(continues on next page)

300 Chapter 9. Numeric and Mathematical Modules

https://www.bytereef.org/mpdecimal/doc/libmpdec/index.html
https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)#Number-theoretic_transform
https://github.com/python/cpython/tree/3.7/Lib/fractions.py

The Python Library Reference, Release 3.7.15

(continued from previous page)

Fraction (-1, 8)

>>> Fraction('7e-6")

Fraction (7, 1000000)

>>> Fraction(2.25)

Fraction (9, 4)

>>> Fraction(1.1)

Fraction(2476979795053773, 22517998136852438)
>>> from decimal import Decimal

>>> Fraction(Decimal ('1.1"))

Fraction (11, 10)

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of
the methods and operations from that class. Fraction instances are hashable, and should be treated as
immutable. In addition, Fract ion has the following properties and methods:

Changed in version 3.2: The Fraction constructor now accepts float and decimal.Decimal in-
stances.

numerator
Numerator of the Fraction in lowest term.

denominator
Denominator of the Fraction in lowest term.

from_float (fit)
This class method constructs a F'ract ion representing the exact value of fif, which must be a f1oat.
Beware that Fraction.from_float (0.3) is not the same value as Fraction (3, 10).

Note: From Python 3.2 onwards, you can also construct a Fract ion instance directly froma f1oat.

from_decimal (dec)
This class method constructs a Fraction representing the exact value of dec, which must be a
decimal.Decimal instance.

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a
decimal.Decimal instance.

limit_denominator (max_denominator=1000000)
Finds and returns the closest F’ract ionto self that has denominator at most max_denominator. This
method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932") .1imit_denominator (1000)
Fraction (355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos

>>> Fraction(cos (pi/3))

Fraction (4503599627370497, 9007199254740992)
>>> Fraction(cos (pi/3)) .limit_denominator ()
Fraction (1, 2)

>>> Fraction(1.1).limit_denominator ()
Fraction (11, 10)

__floor__ ()
Returns the greatest int <= self. This method can also be accessed through the math. floor ()
function:

9.5. fractions — Rational numbers 301

The Python Library Reference, Release 3.7.15

>>> from math import floor
>>> floor (Fraction (355, 113))

3

__ceil__ ()
Returns the least int >= self. This method can also be accessed through the math.ceil () func-
tion.

__round__ ()

__round__ (ndigits)
The first version returns the nearest int to self, rounding half to even. The second version rounds
self tothenearest multiple of Fraction (1, 10**ndigits) (logically,if ndigits isnegative),
again rounding half toward even. This method can also be accessed through the round () function.

fractions.ged(a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the absolute value
of gcd (a, D) is the largest integer that divides both @ and b. gcd (a,b) has the same sign as b if b is
nonzero; otherwise it takes the sign of a. gcd (0, 0) returns O.

Deprecated since version 3.5: Use math. gcd () instead.
See also:

Module numbers The abstract base classes making up the numeric tower.

9.6 random — Generate pseudo-random numbers

Source code: Lib/random.py

This module implements pseudo-random number generators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random element, a
function to generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma,
and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random (), which generates a random float uniformly
in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2#**19937-1. The underlying implementation in C is both fast and threadsafe.
The Mersenne Twister is one of the most extensively tested random number generators in existence. However, being
completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random. Random
class. You can instantiate your own instances of Random to get generators that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in that case,
override the random (), seed (), getstate (), and setstate () methods. Optionally, a new generator can
supply a getrandbits () method — this allows randrange () to produce selections over an arbitrarily large
range.

The random module also provides the SystemRandom class which uses the system function os. urandom ()
to generate random numbers from sources provided by the operating system.

Warning: The pseudo-random generators of this module should not be used for security purposes. For security
or cryptographic uses, see the secret.s module.

See also:

302 Chapter 9. Numeric and Mathematical Modules

https://github.com/python/cpython/tree/3.7/Lib/random.py

The Python Library Reference, Release 3.7.15

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long period
and comparatively simple update operations.

9.6.1 Bookkeeping functions

random. seed (a=None, version=2)
Initialize the random number generator.

If a is omitted or None, the current system time is used. If randomness sources are provided by the operating
system, they are used instead of the system time (see the os . urandom () function for details on availability).

If a is an int, it is used directly.

With version 2 (the default), a st r, bytes, or bytearray object gets converted to an int and all of its
bits are used.

With version 1 (provided for reproducing random sequences from older versions of Python), the algorithm for
strand bytes generates a narrower range of seeds.

Changed in version 3.2: Moved to the version 2 scheme which uses all of the bits in a string seed.

random.getstate ()
Return an object capturing the current internal state of the generator. This object can be passed to set -
state () to restore the state.

random.setstate (state)
state should have been obtained from a previous call to get state (),and set state () restores the internal
state of the generator to what it was at the time getstate () was called.

random.getrandbits (k)
Returns a Python integer with k random bits. This method is supplied with the MersenneTwister generator and
some other generators may also provide it as an optional part of the API. When available, get randbits ()
enables randrange () to handle arbitrarily large ranges.

9.6.2 Functions for integers

random.randrange (sfop)

random.randrange (sfart, stop[, step])
Return a randomly selected element from range (start, stop, step). This is equivalent to
choice (range (start, stop, step)), butdoesn’t actually build a range object.

The positional argument pattern matches that of range (). Keyword arguments should not be used because
the function may use them in unexpected ways.

Changed in version 3.2: randrange () is more sophisticated about producing equally distributed values.
Formerly it used a style like int (random () *n) which could produce slightly uneven distributions.

random.randint (a, b)
Return a random integer N such that a <= N <= b. Alias for randrange (a, b+1).

9.6. random — Generate pseudo-random humbers 303

https://code.activestate.com/recipes/576707/

The Python Library Reference, Release 3.7.15

9.6.3 Functions for sequences

random. choice (seq)

Return a random element from the non-empty sequence seq. If seq is empty, raises TndexError.

random. choices (population, weights=None, *, cum_weights=None, k=1)

Return a k sized list of elements chosen from the population with replacement. If the population is empty,
raises TndexError.

If a weights sequence is specified, selections are made according to the relative weights. Alternatively, if a
cum_weights sequence is given, the selections are made according to the cumulative weights (perhaps computed
using itertools.accumulate ()). For example, the relative weights [10, 5, 30, 5] areequivalent
to the cumulative weights [10, 15, 45, 50]. Internally, the relative weights are converted to cumulative
weights before making selections, so supplying the cumulative weights saves work.

If neither weights nor cum_weights are specified, selections are made with equal probability. If a weights
sequence is supplied, it must be the same length as the population sequence. It is a TypeError to specify
both weights and cum_weights.

The weights or cum_weights can use any numeric type that interoperates with the f7oat values returned by
random () (that includes integers, floats, and fractions but excludes decimals).

For a given seed, the choices () function with equal weighting typically produces a different sequence
than repeated calls to choice (). The algorithm used by choices () uses floating point arithmetic for
internal consistency and speed. The algorithm used by choice () defaults to integer arithmetic with repeated
selections to avoid small biases from round-off error.

New in version 3.6.

random.shuffle (x[, random])

Shuffle the sequence x in place.

The optional argument random is a 0-argument function returning a random float in [0.0, 1.0); by default, this
is the function random ().

To shuffle an immutable sequence and return a new shuffled list, use sample (x, k=len (x)) instead.

Note that even for small 1len (x), the total number of permutations of x can quickly grow larger than the
period of most random number generators. This implies that most permutations of a long sequence can never
be generated. For example, a sequence of length 2080 is the largest that can fit within the period of the
Mersenne Twister random number generator.

random. sample (population, k)

Return a k length list of unique elements chosen from the population sequence or set. Used for random sampling
without replacement.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle
winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use a range () object as an argument. This is especially fast
and space efficient for sampling from a large population: sample (range (10000000), k=60).

If the sample size is larger than the population size, a ValueError is raised.

304

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

9.6.4 Real-valued distributions

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random.random ()
Return the next random floating point number in the range [0.0, 1.0).

random.uniform (a, b)
Return a random floating point number N suchthata <= N <= bfora <= bandb <= N <= aforb
< a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the
equationa + (b-a) * random().

random.triangular (low, high, mode)
Return a random floating point number N such that low <= N <= high and with the specified mode
between those bounds. The low and high bounds default to zero and one. The mode argument defaults to the
midpoint between the bounds, giving a symmetric distribution.

random.betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between O and 1.

random.expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter
would be called “lambda”, but that is a reserved word in Python.) Returned values range from O to positive
infinity if lambd is positive, and from negative infinity to O if lambd is negative.

random.gammavariate (alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta
> 0.

The probability distribution function is:

math.gamma (alpha) * beta ** alpha

random.gauss (mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the
normalvariate () function defined below.

random. lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

random.normalvariate (mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

random.vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter,
which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform
random angle over the range 0 to 2*pi.

random.paretovariate (alpha)
Pareto distribution. alpha is the shape parameter.

random.weibullvariate (alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

9.6. random — Generate pseudo-random humbers 305

The Python Library Reference, Release 3.7.15

9.6.5 Alternative Generator

class random.Random ([seed])
Class that implements the default pseudo-random number generator used by the random module.

class random.SystemRandom ([seed])
Class that uses the os. urandom () function for generating random numbers from sources provided by the
operating system. Not available on all systems. Does not rely on software state, and sequences are not re-
producible. Accordingly, the seed () method has no effect and is ignored. The getstate () and set—
state () methods raise Not ITmplementedError if called.

9.6.6 Notes on Reproducibility
Sometimes it is useful to be able to reproduce the sequences given by a pseudo random number generator. By re-using
a seed value, the same sequence should be reproducible from run to run as long as multiple threads are not running.

Most of the random module’s algorithms and seeding functions are subject to change across Python versions, but two
aspects are guaranteed not to change:

* If a new seeding method is added, then a backward compatible seeder will be offered.

¢ The generator’s random () method will continue to produce the same sequence when the compatible seeder
is given the same seed.

9.6.7 Examples and Recipes

Basic examples:

>>> random () # Random float: 0.0 <= x < 1.0
0.37444887175646646

>>> uniform (2.5, 10.0) # Random float: 2.5 <= x < 10.0
3.1800146073117523

>>> expovariate(l / 5) # Interval between arrivals averaging 5.
—~seconds
5.148957571865031

>>> randrange (10) # Integer from 0 to 9 inclusive

5

>>> randrange (0, 101, 2) # Even integer from 0 to 100 inclusive
26

>>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
'draw'

>>> deck = 'ace two three four'.split()

>>> shuffle (deck) # Shuffle a 1list

>>> deck

["four', 'two', 'ace', 'three']

>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
[40, 10, 50, 30]

Simulations:

>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']

(continues on next page)

306 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> # Deal 20 cards without replacement from a deck of 52 playing cards
>>> # and determine the proportion of cards with a ten-value
>>> # (a ten, jack, queen, or king).

>>> deck = collections.Counter (tens=16, low_cards=36)
>>> seen = sample(list (deck.elements()), k=20)

>>> seen.count ('tens') / 20

0.15

>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> def trial():
return choices ('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5

>>> sum(trial() for i in range (10000)) / 10000
0.4169

>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
return 2500 <= sorted(choices(range (10000), k=5))[2] < 7500

>>> sum(trial () for i in range (10000)) / 10000
0.7958

Example of statistical bootstrapping using resampling with replacement to estimate a confidence interval for the mean
of a sample of size five:

http://statistics.about.com/od/Applications/a/Example-0Of—-Bootstrapping.htm
from statistics import mean
from random import choices

data = 1, 2, 4, 4, 10

means = sorted(mean (choices(data, k=5)) for i in range (20))

print (f'The sample mean of {mean(data) :.1f} has a 90% confidence
f'interval from {means[1]:.1f} to {means[-2]:.1f}")

Example of a resampling permutation test to determine the statistical significance or p-value of an observed difference
between the effects of a drug versus a placebo:

Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import mean
from random import shuffle

drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean (placebo)

n = 10000

count = 0

combined = drug + placebo

for i in range(n):
shuffle (combined)
new_diff = mean (combined[:len(drug)]) - mean (combined[len (drug):])
count += (new_diff >= observed_diff)

f'{n} label reshufflings produced only {count} instances with a difference')
f'at least as extreme as the observed difference of {observed_diff:.1f}.")
f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
f'hypothesis that there is no difference between the drug and the placebo.')

print
print
print
print

Simulation of arrival times and service deliveries in a single server queue:

9.6. random — Generate pseudo-random numbers 307

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests
https://en.wikipedia.org/wiki/P-value

The Python Library Reference, Release 3.7.15

from random import expovariate, gauss

from statistics import mean, median, stdev
average_arrival_interval = 5.6
average_service_time = 5.0
stdev_service_time = 0.5

num_waiting = 0

arrivals = []

starts = []

arrival = service_end = 0.0

for i in range(20000) :

if arrival <= service_end:

num_waiting += 1
arrival += expovariate(1.0 / average_arrival_interval)
arrivals.append(arrival)

else:
num_waiting —= 1
service_start = service_end if num_waiting else arrival
service_time = gauss (average_service_time, stdev_service_time)
service_end = service_start + service_time

starts.append(service_start)

waits = [start - arrival for arrival, start in zip(arrivals, starts)]
print (f'Mean wait: {mean(waits) :.1f}. Stdev wait: stdev (waits) :.1f/}.")
print (f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.")
See also:

Statistics for Hackers a video tutorial by Jake Vanderplas on statistical analysis using just a few fundamental concepts
including simulation, sampling, shuffling, and cross-validation.

Economics Simulation a simulation of a marketplace by Peter Norvig that shows effective use of many of the tools
and distributions provided by this module (gauss, uniform, sample, betavariate, choice, triangular, and randrange).

A Concrete Introduction to Probability (using Python) a tutorial by Peter Norvig covering the basics of probability
theory, how to write simulations, and how to perform data analysis using Python.

9.7 statistics — Mathematical statistics functions

New in version 3.4.

Source code: Lib/statistics.py

This module provides functions for calculating mathematical statistics of numeric (Real-valued) data.

Note: Unless explicitly noted otherwise, these functions support int, float, decimal.Decimal and
fractions.Fraction. Behaviour with other types (whether in the numeric tower or not) is currently unsup-
ported. Mixed types are also undefined and implementation-dependent. If your input data consists of mixed types,
you may be able to use map () to ensure a consistent result, e.g. map (float, input_data).

308 Chapter 9. Numeric and Mathematical Modules

https://www.youtube.com/watch?v=Iq9DzN6mvYA
https://us.pycon.org/2016/speaker/profile/295/
http://nbviewer.jupyter.org/url/norvig.com/ipython/Economics.ipynb
http://norvig.com/bio.html
http://nbviewer.jupyter.org/url/norvig.com/ipython/Probability.ipynb
http://norvig.com/bio.html
https://github.com/python/cpython/tree/3.7/Lib/statistics.py

The Python Library Reference, Release 3.7.15

9.7.1 Averages and measures of central location

These functions calculate an average or typical value from a population or sample.

mean () Arithmetic mean (“average”) of data.
harmonic_mean () Harmonic mean of data.

median () Median (middle value) of data.
median_low() Low median of data.

median_high () High median of data.

median_grouped () | Median, or 50th percentile, of grouped data.
mode () Mode (most common value) of discrete data.

9.7.2 Measures of spread

These functions calculate a measure of how much the population or sample tends to deviate from the typical or average
values.

pstdev () Population standard deviation of data.
pvariance () | Population variance of data.

stdev () Sample standard deviation of data.
variance () Sample variance of data.

9.7.3 Function details
Note: The functions do not require the data given to them to be sorted. However, for reading convenience, most of
the examples show sorted sequences.

statistics.mean (data)
Return the sample arithmetic mean of data which can be a sequence or iterator.

The arithmetic mean is the sum of the data divided by the number of data points. It is commonly called “the
average”, although it is only one of many different mathematical averages. It is a measure of the central location
of the data.

If data is empty, StatisticsError will be raised.

Some examples of use:

>>> mean([1, 2, 3, 4, 41)

2.8

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625

>>> from fractions import Fraction as F
>>> mean ([F (3, 7), F(l, 21), F(5, 3), F(l, 3)])
Fraction (13, 21)

>>> from decimal import Decimal as D
>>> mean ([D("0.5"), D("0.75"), D("0.625"), D("0.375")1])
Decimal ('0.5625")

Note: The mean is strongly affected by outliers and is not a robust estimator for central location: the mean
is not necessarily a typical example of the data points. For more robust, although less efficient, measures of
central location, see median () and mode (). (In this case, “efficient” refers to statistical efficiency rather
than computational efficiency.)

The sample mean gives an unbiased estimate of the true population mean, which means that, taken on average
over all the possible samples, mean (sample) converges on the true mean of the entire population. If data

9.7. statistics — Mathematical statistics functions 309

The Python Library Reference, Release 3.7.15

represents the entire population rather than a sample, then mean (data) is equivalent to calculating the true
population mean .

statistics.harmonic_mean (data)

Return the harmonic mean of data, a sequence or iterator of real-valued numbers.

The harmonic mean, sometimes called the subcontrary mean, is the reciprocal of the arithmetic mean () of
the reciprocals of the data. For example, the harmonic mean of three values a, b and ¢ will be equivalent to
3/(1/a + 1/b + 1/c).

The harmonic mean is a type of average, a measure of the central location of the data. It is often appropriate
when averaging quantities which are rates or ratios, for example speeds. For example:

Suppose an investor purchases an equal value of shares in each of three companies, with P/E (price/earning)
ratios of 2.5, 3 and 10. What is the average P/E ratio for the investor’s portfolio?

>>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio.
3.6

Using the arithmetic mean would give an average of about 5.167, which is too high.
StatisticsError israised if data is empty, or any element is less than zero.

New in version 3.6.

statistics.median (data)

Return the median (middle value) of numeric data, using the common “mean of middle two” method. If data
isempty, StatisticsError israised. data can be a sequence or iterator.

The median is a robust measure of central location, and is less affected by the presence of outliers in your data.
When the number of data points is odd, the middle data point is returned:

>>> median([1, 3, 5])
3

When the number of data points is even, the median is interpolated by taking the average of the two middle
values:

>>> median([1, 3, 5, 71)
4.0

This is suited for when your data is discrete, and you don’t mind that the median may not be an actual data
point.

If your data is ordinal (supports order operations) but not numeric (doesn’t support addition), you should use
median_low () or median_high () instead.

See also:

median_low (), median_high (), median_grouped/ ()

statistics.median_low (data)

Return the low median of numeric data. If data is empty, StatisticsError is raised. data can be a
sequence or iterator.

The low median is always a member of the data set. When the number of data points is odd, the middle value
is returned. When it is even, the smaller of the two middle values is returned.

>>> median_low ([1, 3, 5])

3

>>> median_low([1, 3, 5, 71)
3

Use the low median when your data are discrete and you prefer the median to be an actual data point rather
than interpolated.

310

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

statistics.median_high (data)
Return the high median of data. If data is empty, StatisticsError israised. data can be a sequence or
iterator.

The high median is always a member of the data set. When the number of data points is odd, the middle value
is returned. When it is even, the larger of the two middle values is returned.

>>> median_high([1, 3, 51)

3

>>> median_high([1, 3, 5, 71)
5

Use the high median when your data are discrete and you prefer the median to be an actual data point rather
than interpolated.

statistics.median_grouped (data, interval=1)
Return the median of grouped continuous data, calculated as the 50th percentile, using interpolation. If data
isempty, StatisticsError israised. data can be a sequence or iterator.

>>> median_grouped([52, 52, 53, 54])
52.5

In the following example, the data are rounded, so that each value represents the midpoint of data classes, e.g.
1 is the midpoint of the class 0.5-1.5, 2 is the midpoint of 1.5-2.5, 3 is the midpoint of 2.5-3.5, etc. With the
data given, the middle value falls somewhere in the class 3.5-4.5, and interpolation is used to estimate it:

>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
3.7

Optional argument interval represents the class interval, and defaults to 1. Changing the class interval naturally
will change the interpolation:

>>> median_grouped([1, 3, 3, 5, 7], interval=1l)
3.25

>>> median_grouped([1, 3, 3, 5, 7], interval=2)
3.5

This function does not check whether the data points are at least inferval apart.

CPython implementation detail: Under some circumstances, median_grouped () may coerce data
points to floats. This behaviour is likely to change in the future.

See also:

 “Statistics for the Behavioral Sciences”, Frederick J Gravetter and Larry B Wallnau (8th Edition).
e The SSMEDIAN function in the Gnome Gnumeric spreadsheet, including this discussion.
statistics.mode (data)

Return the most common data point from discrete or nominal data. The mode (when it exists) is the most
typical value, and is a robust measure of central location.

If data is empty, or if there is not exactly one most common value, StatisticsError is raised.

mode assumes discrete data, and returns a single value. This is the standard treatment of the mode as commonly
taught in schools:

>>> mode ([1, 1, 2, 3, 3, 3, 3, 41)
3

The mode is unique in that it is the only statistic which also applies to nominal (non-numeric) data:

>>> mode (["red", "blue", "blue", "red", nqreen", "red", "red"})
'red'

9.7. statistics — Mathematical statistics functions 311

https://help.gnome.org/users/gnumeric/stable/gnumeric.html#gnumeric-function-SSMEDIAN
https://mail.gnome.org/archives/gnumeric-list/2011-April/msg00018.html

The Python Library Reference, Release 3.7.15

statistics.pstdev (data, mu=None)

Return the population standard deviation (the square root of the population variance). See pvariance ()
for arguments and other details.

>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251

statistics.pvariance (data, mu=None)

Return the population variance of data, a non-empty iterable of real-valued numbers. Variance, or second
moment about the mean, is a measure of the variability (spread or dispersion) of data. A large variance indicates
that the data is spread out; a small variance indicates it is clustered closely around the mean.

If the optional second argument mu is given, it should be the mean of data. If it is missing or None (the
default), the mean is automatically calculated.

Use this function to calculate the variance from the entire population. To estimate the variance from a sample,
the variance () function is usually a better choice.

Raises StatisticsError if data is empty.

Examples:

>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance (data)

1.25

If you have already calculated the mean of your data, you can pass it as the optional second argument mu to
avoid recalculation:

>>> mu = mean (data)
>>> pvariance (data, mu)
1.25

This function does not attempt to verify that you have passed the actual mean as mu. Using arbitrary values
for mu may lead to invalid or impossible results.

Decimals and Fractions are supported:

>>> from decimal import Decimal as D
>>> pvariance ([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")1)
Decimal ('24.815")

>>> from fractions import Fraction as F
>>> pvariance ([F (1, 4), F(5, 4), F(1, 2)1)
Fraction (13, 72)

Note: When called with the entire population, this gives the population variance 62. When called on a sample
instead, this is the biased sample variance s2, also known as variance with N degrees of freedom.

If you somehow know the true population mean p, you may use this function to calculate the variance of a
sample, giving the known population mean as the second argument. Provided the data points are representative
(e.g. independent and identically distributed), the result will be an unbiased estimate of the population variance.

statistics.stdev (data, xbar=None)

Return the sample standard deviation (the square root of the sample variance). See variance () for argu-
ments and other details.

>>> stdev([l.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827

statistics.variance (data, xbar=None)

Return the sample variance of data, an iterable of at least two real-valued numbers. Variance, or second

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.7.15

moment about the mean, is a measure of the variability (spread or dispersion) of data. A large variance indicates
that the data is spread out; a small variance indicates it is clustered closely around the mean.

If the optional second argument xbar is given, it should be the mean of data. If it is missing or None (the
default), the mean is automatically calculated.

Use this function when your data is a sample from a population. To calculate the variance from the entire
population, see pvariance ().

Raises StatisticsError if data has fewer than two values.

Examples:

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance (data)
1.3720238095238095

If you have already calculated the mean of your data, you can pass it as the optional second argument xbar to
avoid recalculation:

>>> m = mean (data)
>>> variance (data, m)
1.3720238095238095

This function does not attempt to verify that you have passed the actual mean as xbar. Using arbitrary values
for xbar can lead to invalid or impossible results.

Decimal and Fraction values are supported:

>>> from decimal import Decimal as D
>>> variance ([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")1)
Decimal ('31.01875")

>>> from fractions import Fraction as F
>>> variance ([F (1, 6), F(1, 2), F(5, 3)1)
Fraction (67, 108)

Note: This is the sample variance s> with Bessel’s correction, also known as variance with N-1 degrees of
freedom. Provided that the data points are representative (e.g. independent and identically distributed), the
result should be an unbiased estimate of the true population variance.

If you somehow know the actual population mean u you should pass it to the pvariance () function as the
mu parameter to get the variance of a sample.

9.7.4 Exceptions

A single exception is defined:

exception statistics.StatisticsError
Subclass of ValueError for statistics-related exceptions.

9.7. statistics — Mathematical statistics functions 313

The Python Library Reference, Release 3.7.15

314 Chapter 9. Numeric and Mathematical Modules

CHAPTER
TEN

FUNCTIONAL PROGRAMMING MODULES

The modules described in this chapter provide functions and classes that support a functional programming style, and
general operations on callables.

The following modules are documented in this chapter:

10.1 itertools — Functions creating iterators for efficient loop-
ing

This module implements a number of iterator building blocks inspired by constructs from APL, Haskell, and SML.
Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Together, they form an “iterator algebra” making it possible to construct specialized tools succinctly and efficiently in
pure Python.

For instance, SML provides a tabulation tool: tabulate (f) which produces a sequence £ (0), £ (1),
The same effect can be achieved in Python by combining map () and count () to form map (£, count ()).

These tools and their built-in counterparts also work well with the high-speed functions in the operator mod-
ule. For example, the multiplication operator can be mapped across two vectors to form an efficient dot-product:
sum (map (operator.mul, vectorl, vector2)).

Infinite iterators:

Iterator Argu- Results Example
ments
count () | start, start, start+step, start+2*step, ... count (10) --> 10 11 12 13 14
[step] .
cy-— p p0, pl1, ... plast, pO, p1, ... cycle('ABCD') --> A B C D A B
cle() CcD
re— elem [,n] | elem, elem, elem, ... endlessly or up | repeat (10, 3) —--> 10 10 10
peat () to n times

Iterators terminating on the shortest input sequence:

315

The Python Library Reference, Release 3.7.15

Iterator Arguments | Results Example
accumu- p [,func] pO, pO+pl, pO+pl+p2, | accumulate([1,2,3,4,5]) -—> 1 3
late () .- 6 10 15
chain () Pq - pO, pl, ... plast,q0, ql, | chain('ABC', 'DEF') --> A B C D
E F
chain. iterable pO, pl, ... plast,q0, ql, | chain.from_iterable (['ABC',
from iterablqg() ... 'DEF']) ——> A B CDEF
compress () data, selec- | (d[O] if s[0]), (d[1] if | compress ('ABCDEF', [1,0,1,0,1,
tors s[1]), ... 11) -——> A C E F
dropwhile () pred, seq seq[n], seq[n+1], start- | dropwhile (lambda x: x<5, [1,4,
ing when pred fails 6,4,11) ——> 6 4 1
filter— pred, seq elements of seq where | filterfalse (lambda x: x%2,
false () pred(elem) is false range (10)) -—> 0 2 4 6 8
groupby () iterable[, sub-iterators grouped
key] by value of key(v)
islice() seq, [start,] | elements from | islice ('ABCDEFG', 2, None) ——> C
stop [, step] seq[start:stop:step] DEFG
starmap () func, seq func(*seq[0]), starmap (pow, [(2,5), (3,2), (10,
func(*seq[1]), ... 3)1) ——> 32 9 1000
takewhile () pred, seq seq[0], seq[l], until | takewhile (lambda x: x<5, [1,4,
pred fails 6,4,1]1) ——> 1 4
tee() it, n itl, it2, ... itn splits one
iterator into n
zip_longest ()| p,q, --- (pl0], q[OD, (pll], | zip_longest ('ABCD', 'xy', fill-
q(1D, ... value='-') —--> Ax By C- D-
Combinatoric iterators:
Iterator Arguments | Results
product () p, g, ... [re- | cartesian product, equivalent to a nested for-loop
peat=1]
permutations () pl, 1] r-length tuples, all possible orderings, no repeated
elements
combinations () p,T r-length tuples, in sorted order, no repeated ele-
ments
combina- p,T r-length tuples, in sorted order, with repeated ele-
tions_with_replacement () ments
product ('"ABCD', repeat=2) AA AB AC AD BA BB BC BD CA CB CC

CD DA DB DC DD

permutations ('ABCD', 2) AB AC AD BA BC BD CA CB CD DA DB
DC

combinations ('ABCD', 2) AB AC AD BC BD CD

combina- AA AB AC AD BB BC BD CC CD DD

tions_with_replacement ('ABCD'|,

2)
316 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.7.15

10.1.1 Itertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

itertools.accumulate (itemble[, func])
Make an iterator that returns accumulated sums, or accumulated results of other binary functions (specified
via the optional func argument). If func is supplied, it should be a function of two arguments. Elements of
the input iterable may be any type that can be accepted as arguments to func. (For example, with the default
operation of addition, elements may be any addable type including Decimal or Fraction.) If the input
iterable is empty, the output iterable will also be empty.

Roughly equivalent to:

def accumulate (iterable, func=operator.add):
'Return running totals'
accumulate([1,2,3,4,5]) ——> 1 3 6 10 15
accumulate([1,2,3,4,5], operator.mul) —--> 1 2 6 24 120
it = iter (iterable)
try:
total = next (it)
except Stoplteration:
return
yield total
for element in it:
total = func(total, element)
yield total

There are a number of uses for the func argument. It can be set to min () for a running minimum, max ()
for a running maximum, or operator.mul () for a running product. Amortization tables can be built by
accumulating interest and applying payments. First-order recurrence relations can be modeled by supplying
the initial value in the iterable and using only the accumulated total in func argument:

>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]

>>> list (accumulate (data, operator.mul)) # running product
[3, 12, 72, 144, 144, 1296, 0, 0, 0, O]

>>> list (accumulate (data, max)) # running maximum

[3I 4’ 6/ 6[6’ 9’ 9/ 9[9’ 9]

Amortize a 5% loan of 1000 with 4 annual payments of 90

>>> cashflows = [1000, -90, -90, -90, -90]

>>> list (accumulate (cashflows, lambda bal, pmt: bal*1.05 + pmt))
[1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001]

Chaotic recurrence relation https://en.wikipedia.org/wiki/Logistic_map

>>> logistic_map = lambda x, _: r * x * (1 - Xx)

>>> r = 3.8

>>> x0 = 0.4

>>> inputs = repeat (x0, 36) # only the initial value is used
>>> [format(x, '.2f') for x in accumulate (inputs, logistic_map)]

[o.40', 'o0.91, 'o.30', 'o.s81', 'o.e0', '0.92', '0.29', '0.79', '0.63'",
'‘o.8g8', '0.39', '0.90', '0.33', '0.84', '0.52', '0.95', '0.18', '0.57"',
'‘o.93', '0.25', '0.72', '0.79', '0.63', '0.88', '0.39', '0.91', '0.32',
'‘o.83', '0.54', '0.95', '0.20', '0.60', '0.91', '0.30"', '0.80', '0.60"']

See functools.reduce () for a similar function that returns only the final accumulated value.
New in version 3.2.
Changed in version 3.3: Added the optional func parameter.

itertools.chain (*iterables)
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the next

10.1. itertools — Functions creating iterators for efficient looping 317

https://en.wikipedia.org/wiki/Recurrence_relation

The Python Library Reference, Release 3.7.15

iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single sequence.
Roughly equivalent to:

def chain(*iterables):
chain('ABC', 'DEF') >A BCDETF
for it in iterables:
for element in it:
yield element

classmethod chain.from_iterable (iterable)
Alternate constructor for chain (). Gets chained inputs from a single iterable argument that is evaluated
lazily. Roughly equivalent to:

def from_iterable(iterables):
chain.from iterable(['ABC', 'DEF']) --—> A B C D E F
for it in iterables:
for element in it:
yield element

itertools.combinations (iterable, r)
Return r length subsequences of elements from the input iterable.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination tuples
will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique,
there will be no repeat values in each combination.

Roughly equivalent to:

def combinations(iterable, r):
combinations ('ABCD', 2) —--> AB AC AD BC BD CD
combinations (range(4), 3) —-—> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = list (range(r))
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != i + n - r:
break
else:
return
indices[i] += 1
for j in range(i+l, r):
indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)

The code for combinations () can be also expressed as a subsequence of permutations () after fil-
tering entries where the elements are not in sorted order (according to their position in the input pool):

def combinations (iterable, r):
pool = tuple(iterable)

n = len(pool)
for indices in permutations(range(n), r):
if sorted(indices) == list (indices):

yield tuple(pool[i] for i in indices)

The number of items returnedisn! / r! / (n-r)! when0 <= r <= norzerowhenr > n.

itertools.combinations_with_replacement (iterable, r)
Return r length subsequences of elements from the input iferable allowing individual elements to be repeated

318 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.7.15

more than once.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination tuples
will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique,
the generated combinations will also be unique.

Roughly equivalent to:

def combinations_with_replacement (iterable, r):
combinations_with_replacement ('"ABC', 2) —--> AA AB AC BB BC CC
pool = tuple(iterable)
n = len(pool)
if not n and r:
return
indices = [0] * r
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
- 1:

if indices[i] != n
break
else:
return
indices[i:] = [indices[i] + 1] * (r - 1)

yield tuple(pool[i] for i in indices)

The code for combinations_with_replacement () can be also expressed as a subsequence of
product () after filtering entries where the elements are not in sorted order (according to their position
in the input pool):

def combinations_with_replacement (iterable, r):
pool = tuple(iterable)

n = len(pool)
for indices in product (range(n), repeat=r):
if sorted(indices) == list (indices):

yield tuple (pool[i] for i in indices)

The number of items returned is (n+r-1)! / r! / (n-1)! whenn > 0.

New in version 3.1.

itertools.compress (data, selectors)

Make an iterator that filters elements from data returning only those that have a corresponding element in
selectors that evaluates to True. Stops when either the data or selectors iterables has been exhausted. Roughly
equivalent to:

def compress (data, selectors):
compress ('ABCDEF', [1,0,1,0,1,1]) --> A C E F
return (d for d, s in zip(data, selectors) if s)

New in version 3.1.

itertools.count (start=0, step=1)

Make an iterator that returns evenly spaced values starting with number start. Often used as an argument
to map () to generate consecutive data points. Also, used with zip () to add sequence numbers. Roughly
equivalent to:

def count (start=0, step=1):
count (10) —--> 10 11 12 13 14
count (2.5, 0.5) —> 2.5 3.0 3.5
n = start
while True:

(continues on next page)

10.1. itertools — Functions creating iterators for efficient looping 319

The Python Library Reference, Release 3.7.15

(continued from previous page)

yield n
n += step

When counting with floating point numbers, better accuracy can sometimes be achieved by substituting multi-
plicative code such as: (start + step * i for i in count()).

Changed in version 3.1: Added step argument and allowed non-integer arguments.

itertools.cycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is exhausted,
return elements from the saved copy. Repeats indefinitely. Roughly equivalent to:

def cycle(iterable):

cycle('ABCD') -—> A B CDABCDABCD
saved = []
for element in iterable:

yield element

saved.append (element)
while saved:

for element in saved:

yield element

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the
iterable).

itertools.dropwhile (predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every
element. Note, the iterator does not produce any output until the predicate first becomes false, so it may have
a lengthy start-up time. Roughly equivalent to:

def dropwhile (predicate, iterable):
dropwhile (lambda x: x<5, [1,4,6,4,1]) ——> 6 4 1
iterable = iter (iterable)
for x in iterable:
if not predicate (x):
yield x
break
for x in iterable:
yield x

itertools. filterfalse (predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is False. If
predicate is None, return the items that are false. Roughly equivalent to:

def filterfalse (predicate, iterable):
filterfalse(lambda x: x%2, range(l10)) —-—-> 0 2 4 6 8
if predicate is None:
predicate = bool
for x in iterable:
if not predicate (x):
yield x

itertools.groupby (iterable, key=None)
Make an iterator that returns consecutive keys and groups from the iterable. The key is a function computing
a key value for each element. If not specified or is None, key defaults to an identity function and returns the
element unchanged. Generally, the iterable needs to already be sorted on the same key function.

The operation of groupby () is similar to the uniq filter in Unix. It generates a break or new group every
time the value of the key function changes (which is why it is usually necessary to have sorted the data using
the same key function). That behavior differs from SQL’s GROUP BY which aggregates common elements
regardless of their input order.

320 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.7.15

The returned group is itself an iterator that shares the underlying iterable with groupby (). Because the
source is shared, when the groupby () object is advanced, the previous group is no longer visible. So, if that
data is needed later, it should be stored as a list:

groups = []

uniquekeys = []

data = sorted(data, key=keyfunc)

for k, g in groupby(data, keyfunc):
groups.append (list (g)) # Store group iterator as a list
uniquekeys.append (k)

groupby () is roughly equivalent to:

class groupby:

[k for k, g in groupby ('AAAABBBCCDAABBB')] --> A B C D A B
[list (g) for k, g in groupby ('AAAABBBCCD')] --> AAAA BBB CC D
def _ _init__ (self, iterable, key=None) :

if key is None:

key = lambda x: x

self.keyfunc = key

self.it = iter (iterable)

self.tgtkey = self.currkey = self.currvalue = object ()
def _ iter_ (self):

return self
def _ next_ (self):

self.id = object ()

while self.currkey == self.tgtkey:
self.currvalue = next (self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

self.tgtkey = self.currkey
return (self.currkey, self._grouper (self.tgtkey, self.id))
def _grouper(self, tgtkey, id):

while self.id is id and self.currkey == tgtkey:
yield self.currvalue
try:
self.currvalue = next (self.it)
except Stoplteration:
return
self.currkey = self.keyfunc(self.currvalue)

itertools.islice (iterable, stop)
itertools.islice (iterable, start, stop[, step])

Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements from the
iterable are skipped until start is reached. Afterward, elements are returned consecutively unless step is set
higher than one which results in items being skipped. If sfop is None, then iteration continues until the iterator
is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slicing, i s1ice () does not
support negative values for start, stop, or step. Can be used to extract related fields from data where the internal
structure has been flattened (for example, a multi-line report may list a name field on every third line). Roughly
equivalent to:

def islice(iterable, *args):
islice('ABCDEFG', 2) --> A B
islice('ABCDEFG', 2, 4) —--> C D
islice('ABCDEFG', 2, None) —-—-> C D E F G
islice('ABCDEFG', 0, None, 2) ——> A C E G
s = slice(*args)

start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1
it = iter(range(start, stop, step))
try:

nexti = next (it)

except Stoplteration:
Consume *iterable* up to the *start* position.

(continues on next page)

10.1. itertools — Functions creating iterators for efficient looping 321

The Python Library Reference, Release 3.7.15

(continued from previous page)

for i, element in zip(range(start), iterable):
pass
return
try:
for i, element in enumerate (iterable) :
if i == nexti:
yield element
nexti = next (it)
except Stoplteration:
Consume to *stop*.
for i, element in zip(range(i + 1, stop), iterable):
pass

If start is None, then iteration starts at zero. If step is None, then the step defaults to one.

itertools.permutations (iterable, r=None)

Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length permu-
tations are generated.

Permutations are emitted in lexicographic sort order. So, if the input iterable is sorted, the permutation tuples
will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique,
there will be no repeat values in each permutation.

Roughly equivalent to:

def permutations(iterable, r=None) :
permutations('ABCD', 2) —--> AB AC AD BA BC BD CA CB CD DA DB DC
permutations (range (3)) —--> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:

return
indices = list (range (n))
cycles = list(range(n, n-r, —-1))
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[1i:] = indices[i+1:] + indices[1i:1+1]
cycles[i] = n — i
else:
J = cycles|[i]
indices[i], indices[-J] = indices[-]j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return

The code for permutations () canbe also expressed as a subsequence of product (), filtered to exclude
entries with repeated elements (those from the same position in the input pool):

def permutations(iterable, r=None) :
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product (range(n), repeat=r):

(continues on next page)

322

Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.7.15

(continued from previous page)

if len(set (indices)) == r:
yield tuple (pool[i] for i in indices)

The number of items returnedisn! / (n-r)! when0 <= r <= norzerowhenr > n.

itertools.product (*iterables, repeat=1)
Cartesian product of input iterables.

Roughly equivalent to nested for-loops in a generator expression. For example, product (A, B) returns the
same as ((x,y) for x in A for y in B).

The nested loops cycle like an odometer with the rightmost element advancing on every iteration. This pattern
creates a lexicographic ordering so that if the input’s iterables are sorted, the product tuples are emitted in
sorted order.

To compute the product of an iterable with itself, specify the number of repetitions with the optional repeat
keyword argument. For example, product (A, repeat=4) means the same as product (A, A, A,
A).

This function is roughly equivalent to the following code, except that the actual implementation does not build
up intermediate results in memory:

def product (*args, repeat=1):
product ('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
product (range (2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple (prod)

itertools.repeat (object[, times])
Make an iterator that returns object over and over again. Runs indefinitely unless the times argument is specified.
Used as argument to map () for invariant parameters to the called function. Also used with zip () to create
an invariant part of a tuple record.

Roughly equivalent to:

def repeat (object, times=None) :
repeat (10, 3) —--> 10 10 10
if times is None:
while True:
yield object
else:
for i in range(times) :
yield object

A common use for repeat is to supply a stream of constant values to map or zip:

>>> list (map (pow, range(10), repeat(2)))
(o, 1, 4, 9, 16, 25, 36, 49, 64, 81]

itertools.starmap (function, iterable)
Make an iterator that computes the function using arguments obtained from the iterable. Used instead of
map () when argument parameters are already grouped in tuples from a single iterable (the data has been “pre-
zipped”). The difference between map () and starmap () parallels the distinction between function (a,
b) and function (*c). Roughly equivalent to:

def starmap (function, iterable):
starmap (pow, [(2,5), (3,2), (10,3)]) ——> 32 9 1000

(continues on next page)

10.1. itertools — Functions creating iterators for efficient looping 323

The Python Library Reference, Release 3.7.15

(continued from previous page)

for args in iterable:
yield function(*args)

itertools.takewhile (predicate, iterable)

Make an iterator that returns elements from the iterable as long as the predicate is true. Roughly equivalent to:

iterable) :
x<5, [1,4,6,4,1])

def takewhile (predicate,
takewhile (lambda x:
for x in iterable:
if predicate(x):
yield x
else:
break

-—> 1 4

itertools.tee (iterable, n=2)
Return 7 independent iterators from a single iterable.

The following Python code helps explain what fee does (although the actual implementation is more complex

and uses only a single underlying FIFO queue).

Roughly equivalent to:

def tee(iterable, n=2):
it = iter (iterable)
deques = [collections.deque ()
def gen (mydeque) :
while True:
if not mydeque:

try:
newval = next (it)
except Stoplteration:
return

for d in deques:
d.append (newval)
yield mydeque.popleft ()
return tuple(gen(d) for d in deques)

for i in range(n)]

when the local deque 1is empty

fetch a new value and

load it to all the deques

Once tee () has made a split, the original iterable should not be used anywhere else; otherwise, the iterable

could get advanced without the tee objects being informed.

tee iterators are not threadsafe. A RuntimeError may be raised when using simultaneously iterators
returned by the same tee () call, even if the original iterable is threadsafe.

This itertool may require significant auxiliary storage (depending on how much temporary data needs to be
stored). In general, if one iterator uses most or all of the data before another iterator starts, it is faster to use

1ist () instead of tee ().

itertools.zip_longest (*iterables, fillvalue=None)

Make an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length,
missing values are filled-in with fillvalue. Iteration continues until the longest iterable is exhausted. Roughly

equivalent to:

def zip_longest (*args, fillvalue=None) :
zip_longest ('ABCD', 'xy', fillvalue='-")
[iter(it) for it in args]
len (iterators)
if not num_active:
return
while True:
values = []
for i,
try:

iterators =
num_active =

it in enumerate (iterators):

--> Ax By C- D-

(continues on next page)

324

Chapter 10.

Functional Programming Modules

The Python Library Reference, Release 3.7.15

(continued from previous page)

value = next (it)
except Stoplteration:
num_active -= 1
if not num_active:
return
iterators([i] = repeat (fillvalue)
value = fillvalue
values.append(value)
yield tuple (values)

If one of the iterables is potentially infinite, then the zip_longest () function should be wrapped with
something that limits the number of calls (for example islice () or takewhile ()). If not specified,
fillvalue defaults to None.

10.1.2 Itertools Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset. The superior memory performance
is kept by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code
volume is kept small by linking the tools together in a functional style which helps eliminate temporary variables.
High speed is retained by preferring “vectorized” building blocks over the use of for-loops and generators which
incur interpreter overhead.

def

def

def

def

def

def

def

take (n, iterable):
"Return first n items of the iterable as a list"
return list (islice(iterable, n))

prepend(value, iterator):

"Prepend a single value in front of an iterator"
prepend (1, [2, 3, 4]) -> 1 2 3 4

return chain([value], iterator)

tabulate (function, start=0):
"Return function(0), function(l), ..."
return map (function, count (start))

tail(n, iterable):

"Return an iterator over the last n items"

tail (3, 'ABCDEFG') --> E F G

return iter(collections.deque (iterable, maxlen=n))

consume (iterator, n=None) :
"Advance the iterator n-steps ahead. If n is None, consume entirely."
Use functions that consume iterators at C speed.
if n is None:
feed the entire iterator into a zero-length deque
collections.deque (iterator, maxlen=0)
else:
advance to the empty slice starting at position n
next (islice (iterator, n, n), None)

nth(iterable, n, default=None) :
"Returns the nth item or a default value"
return next (islice(iterable, n, None), default)

all _equal (iterable) :

"Returns True if all the elements are equal to each other"
g = groupby (iterable)

return next (g, True) and not next (g, False)

(continues on next page)

10.1. itertools — Functions creating iterators for efficient looping 325

The Python Library Reference, Release 3.7.15

(continued from previous page)

def quantify(iterable, pred=bool):
"Count how many times the predicate is true"
return sum(map (pred, iterable))

def padnone (iterable):
"""Returns the sequence elements and then returns None indefinitely.

Useful for emulating the behavior of the built-in map() function.
mirrn

return chain(iterable, repeat (None))

def ncycles (iterable, n):
"Returns the sequence elements n times"
return chain.from_iterable (repeat (tuple (iterable), n))

def dotproduct (vecl, vec2):
return sum(map (operator.mul, vecl, vec2))

def flatten(listOfLists):
"Flatten one level of nesting"
return chain.from_iterable(listOfLists)

def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.

Example: repeatfunc (random.random)
mrrn
if times is None:
return starmap (func, repeat (args))
return starmap (func, repeat (args, times))

def pairwise (iterable):
"s -> (s0,s1), (sl1,s2), (s2, s3), ..."
a, b = tee(iterable)
next (b, None)
return zip(a, b)

def grouper (iterable, n, fillvalue=None) :
"Collect data into fixed-length chunks or blocks"
grouper ('ABCDEFG', 3, 'x') —--> ABC DEF Gxx"
args = [iter(iterable)] * n
return zip_longest (*args, fillvalue=fillvalue)

def roundrobin (*iterables) :

"roundrobin ('ABC', 'D', 'EF') -—> A DE B F C"
Recipe credited to George Sakkis
num_active = len(iterables)
nexts = cycle(iter(it).__next__ for it in iterables)
while num_active:
try:

for next in nexts:
yield next ()
except Stoplteration:
Remove the iterator we just exhausted from the cycle.
num_active —-= 1
nexts = cycle(islice(nexts, num_active))

def partition(pred, iterable):
'Use a predicate to partition entries into false entries and true entries'
partition(is_odd, range(10)) —--> 0 2 4 6 8 and 1 3 5 7 9

(continues on next page)

326 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.7.15

(continued from previous page)

tl, t2 = tee(iterable)
return filterfalse(pred, tl), filter(pred, t2)

def powerset (iterable):
"powerset ([1,2,3]) ——> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list (iterable)
return chain.from_iterable (combinations (s, r) for r in range(len(s)+1))

def unique_everseen (iterable, key=None) :
"List unique elements, preserving order. Remember all elements ever seen."
unique_everseen ('AAAABBBCCDAABBB') —--> A B C D
unique_everseen ('ABBCcAD', str.lower) --> A B C D
seen = set ()
seen_add = seen.add
if key is None:
for element in filterfalse(seen._ contains_ , iterable):
seen_add (element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add (k)
yield element

def unique_justseen(iterable, key=None) :
"List unique elements, preserving order. Remember only the element just seen."
unique_justseen ('AAAABBBCCDAABBB') --> A B C D A B
unique_justseen ('ABBCcAD', str.lower) --> A B C A D
return map (next, map(itemgetter (1), groupby(iterable, key)))

def iter_except (func, exception, first=None) :
""" Call a function repeatedly until an exception is raised.

Converts a call-until-exception interface to an iterator interface.
Like builtins.iter (func, sentinel) but uses an exception instead
of a sentinel to end the loop.

Examples:

iter_except (functools.partial (heappop, h), IndexError) # priority queue.
—literator

iter_except (d.popitem, KeyError) # non-blocking.
—dict iterator

iter_except (d.popleft, IndexError) # non-blocking.
—deque iterator

iter_except (g.get_nowait, Queue.Empty) # loop over a.
—producer Queue

iter_except (s.pop, KeyError) # non-blocking.

—set iterator

mirrn
try:
if first is not None:
yield first () # For database APIs needing an initial cast.
—~to db.first ()
while True:
yield func()
except exception:
pass

def first_true(iterable, default=False, pred=None):

(continues on next page)

10.1. itertools — Functions creating iterators for efficient looping 327

The Python Library Reference, Release 3.7.15

(continued from previous page)

def

def

def

def

def

"""Returns the first true value in the iterable.
If no true value 1is found, returns *default*

If *pred* is not None, returns the first item
for which pred(item) is true.

men

first_true(la,b,c], x) ——> a or b or ¢ or X
first_true(la,b], x, f) —-—> a if f(a) else b if f(b) else x
return next (filter (pred, iterable), default)

random_product (*args, repeat=1):

"Random selection from itertools.product (*args, **kwds)"
pools = [tuple(pool) for pool in args] * repeat

return tuple (random.choice (pool) for pool in pools)

random_permutation (iterable, r=None):

"Random selection from itertools.permutations (iterable, r)"
pool = tuple(iterable)

r = len(pool) if r is None else r

return tuple (random.sample (pool, r))

random_combination (iterable, r):

"Random selection from itertools.combinations (iterable, r)"
pool = tuple(iterable)

n = len(pool)

indices = sorted(random.sample (range(n), r))

return tuple(pool[i] for i in indices)

random_combination_with_replacement (iterable, r):

"Random selection from itertools.combinations_with_replacement (iterable, r)"
pool = tuple(iterable)

n = len(pool)

indices = sorted(random.randrange (n) for i in range(r))

return tuple(pool[i] for i in indices)

nth_combination(iterable, r, index):
'Equivalent to list (combinations (iterable, r)) [index]'
pool = tuple(iterable)
n = len(pool)
if r < 0 or r > n:
raise ValueError

c =1

k = min(r, n-r)

for i in range(l, k+1):
c=c* (n-%k +1i) // i

if index < 0:
index += c

if index < 0 or index >= c:
raise IndexError

result = []
while r:
c, n, r = c*r//n, n-1, r-1
while index >= c:
index -= ¢
c, n=c*(n-r)//n, n-1

result.append(pool[-1-n])
return tuple (result)

Note, many of the above recipes can be optimized by replacing global lookups with local variables defined as default
values. For example, the dofproduct recipe can be written as:

328

Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.7.15

def dotproduct (vecl, vec2, sum=sum, map=map, mul=operator.mul):
return sum(map (mul, vecl, vec2))

10.2 functools — Higher-order functions and operations on
callable objects

Source code: Lib/functools.py

The functools module is for higher-order functions: functions that act on or return other functions. In general,
any callable object can be treated as a function for the purposes of this module.

The functools module defines the following functions:

functools.cmp_to_key (func)
Transform an old-style comparison function to a key function. Used with tools that accept key functions
(such as sorted (), min (), max (), heapg.nlargest (), heapg.nsmallest (), itertools.
groupby ()). This function is primarily used as a transition tool for programs being converted from Python
2 which supported the use of comparison functions.

A comparison function is any callable that accept two arguments, compares them, and returns a negative number
for less-than, zero for equality, or a positive number for greater-than. A key function is a callable that accepts
one argument and returns another value to be used as the sort key.

Example:

sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order

For sorting examples and a brief sorting tutorial, see sortinghowto.
New in version 3.2.

@functools.lru_cache (maxsize=128, typed=False)
Decorator to wrap a function with a memoizing callable that saves up to the maxsize most recent calls. It can
save time when an expensive or I/O bound function is periodically called with the same arguments.

Since a dictionary is used to cache results, the positional and keyword arguments to the function must be
hashable.

Distinct argument patterns may be considered to be distinct calls with separate cache entries. For example,
fla=1, b=2) and f(b=2, a=1) differ in their keyword argument order and may have two separate cache entries.

If maxsize is set to None, the LRU feature is disabled and the cache can grow without bound. The LRU feature
performs best when maxsize is a power-of-two.

If typed is set to true, function arguments of different types will be cached separately. For example, £ (3) and
£ (3.0) will be treated as distinct calls with distinct results.

To help measure the effectiveness of the cache and tune the maxsize parameter, the wrapped function is instru-
mented witha cache_info () function that returns a named tuple showing hits, misses, maxsize and currsize.
In a multi-threaded environment, the hits and misses are approximate.

The decorator also provides a cache_clear () function for clearing or invalidating the cache.

The original underlying function is accessible through the __wrapped___ attribute. This is useful for intro-
spection, for bypassing the cache, or for rewrapping the function with a different cache.

An LRU (least recently used) cache works best when the most recent calls are the best predictors of upcoming
calls (for example, the most popular articles on a news server tend to change each day). The cache’s size limit
assures that the cache does not grow without bound on long-running processes such as web servers.

10.2. functools — Higher-order functions and operations on callable objects 329

https://github.com/python/cpython/tree/3.7/Lib/functools.py
https://en.wikipedia.org/wiki/Cache_algorithms#Examples

The Python Library Reference, Release 3.7.15

In general, the LRU cache should only be used when you want to reuse previously computed values. Accord-
ingly, it doesn’t make sense to cache functions with side-effects, functions that need to create distinct mutable
objects on each call, or impure functions such as time() or random().

Example of an LRU cache for static web content:

@lru_cache (maxsize=32)
def get_pep (num) :
'Retrieve text of a Python Enhancement Proposal'
resource = 'http://www.python.org/dev/peps/pep- /" % num
try:
with urllib.request.urlopen(resource) as s:
return s.read()
except urllib.error.HTTPError:
return 'Not Found'

>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:

pep = get_pep (n)
print (n, len (pep))

>>> get_pep.cache_info ()
CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)

Example of efficiently computing Fibonacci numbers using a cache to implement a dynamic programming
technique:

@lru_cache (maxsize=None)
def fib(n):
if n < 2:
return n
return fib(n-1) + fib(n-2)

>>> [fib(n) for n in range(16)]
(o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

>>> fib.cache_info ()
CacheInfo (hits=28, misses=16, maxsize=None, currsize=16)

New in version 3.2.

Changed in version 3.3: Added the fyped option.

@functools.total_ordering

Given a class defining one or more rich comparison ordering methods, this class decorator supplies the rest.
This simplifies the effort involved in specifying all of the possible rich comparison operations:

The class must defineone of __1t__ (), __le_ (),
should supply an __eqg___ () method.

gt__(),or __ge__ (). In addition, the class

For example:

@total_ordering
class Student:
def _is_valid_operand(self, other):
return (hasattr (other, "lastname") and
hasattr (other, "firstname"))
def _ _eq_ (self, other):
if not self._is_valid_operand (other) :
return NotImplemented
return ((self.lastname.lower (), self.firstname.lower()) ==
(other.lastname.lower (), other.firstname.lower()))
def _ 1t_ (self, other):
if not self._is_valid_operand (other):
return NotImplemented

(continues on next page)

330

Chapter 10. Functional Programming Modules

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Dynamic_programming

The Python Library Reference, Release 3.7.15

(continued from previous page)

return ((self.lastname.lower (), self.firstname.lower()) <
(other.lastname.lower (), other.firstname.lower()))

Note: While this decorator makes it easy to create well behaved totally ordered types, it does come at the cost
of slower execution and more complex stack traces for the derived comparison methods. If performance bench-
marking indicates this is a bottleneck for a given application, implementing all six rich comparison methods
instead is likely to provide an easy speed boost.

New in version 3.2.

Changed in version 3.4: Returning NotImplemented from the underlying comparison function for unrecognised
types is now supported.

functools.partial (func, *args, **keywords)
Return a new partial object which when called will behave like func called with the positional arguments args
and keyword arguments keywords. If more arguments are supplied to the call, they are appended to args. If
additional keyword arguments are supplied, they extend and override keywords. Roughly equivalent to:

def partial (func, *args, **keywords):
def newfunc(*fargs, **fkeywords):
newkeywords = keywords.copy ()
newkeywords.update (fkeywords)

return func(*args, *fargs, **newkeywords)

newfunc. func = func
newfunc.args = args
newfunc.keywords = keywords

return newfunc

The partial () is used for partial function application which “freezes” some portion of a function’s argu-
ments and/or keywords resulting in a new object with a simplified signature. For example, partial () can
be used to create a callable that behaves like the int () function where the base argument defaults to two:

>>> from functools import partial

>>> basetwo = partial (int, base=2)

>>> basetwo.__doc__ = 'Convert base 2 string to an int.'
>>> basetwo ('10010")

18

class functools.partialmethod (func, *args, **keywords)
Return a new partialmethod descriptor which behaves like partial except that it is designed to be
used as a method definition rather than being directly callable.

Sfunc must be a descriptor or a callable (objects which are both, like normal functions, are handled as descrip-
tors).

When func is a descriptor (such as a normal Python function, classmethod (), staticmethod(),
abstractmethod () or another instance of partialmethod), callsto ___get___ are delegated to the
underlying descriptor, and an appropriate partial object returned as the result.

When func is a non-descriptor callable, an appropriate bound method is created dynamically. This behaves
like a normal Python function when used as a method: the self argument will be inserted as the first positional
argument, even before the args and keywords supplied to the part ialmethod constructor.

Example:

>>> class Cell (object):
def _ init__ (self):
self._alive = False
@property
def alive(self):

(continues on next page)

10.2. functools — Higher-order functions and operations on callable objects 331

The Python Library Reference, Release 3.7.15

(continued from previous page)

return self._alive
def set_state(self, state):

self._alive = bool (state)
set_alive = partialmethod(set_state, True)
set_dead = partialmethod(set_state, False)

>>> ¢ = Cell()

>>> c.alive
False

>>> c.set_alive ()
>>> c.alive
True

New in version 3.4.

functools.reduce (function, iterable[, initializer])

Apply function of two arguments cumulatively to the items of sequence, from left to right, so as to reduce the
sequence to a single value. For example, reduce (lambda x, y: x+y, [1, 2, 3, 4, 51)
calculates ((((1+2)+3) +4) +5). The left argument, x, is the accumulated value and the right argument,
y, is the update value from the sequence. If the optional inifializer is present, it is placed before the items of
the sequence in the calculation, and serves as a default when the sequence is empty. If inifializer is not given
and sequence contains only one item, the first item is returned.

Roughly equivalent to:

def reduce (function, iterable, initializer=None) :
it = iter (iterable)
if initializer is None:
value = next (it)
else:
value = initializer
for element in it:
value = function (value, element)
return value

@functools.singledispatch

Transform a function into a single-dispatch generic function.

To define a generic function, decorate it with the @singledispatch decorator. Note that the dispatch
happens on the type of the first argument, create your function accordingly:

>>> from functools import singledispatch
>>> @singledispatch
def fun(arg, verbose=False):
if verbose:
print ("Let me just say,", end=" ")
print (arg)

To add overloaded implementations to the function, use the register () attribute of the generic function.
It is a decorator. For functions annotated with types, the decorator will infer the type of the first argument
automatically:

>>> @fun.register
def _(arg: int, verbose=False):
if verbose:
print ("Strength in numbers, eh?", end=" ")
print (arg)

>>> @fun.register
def _ (arg: list, verbose=False):
if verbose:

(continues on next page)

332

Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.7.15

(continued from previous page)

print ("Enumerate this:")
for i, elem in enumerate (arqg):
print (i, elem)

For code which doesn’t use type annotations, the appropriate type argument can be passed explicitly to the
decorator itself:

>>> @fun.register (complex)
def _ (arg, verbose=False):
if verbose:
print ("Better than complicated.", end=" ")
print (arg.real, arg.imag)

To enable registering lambdas and pre-existing functions, the register () attribute can be used in a func-
tional form:

>>> def nothing(arg, verbose=False):
print ("Nothing.")

>>> fun.register (type (None), nothing)

The register () attribute returns the undecorated function which enables decorator stacking, pickling, as
well as creating unit tests for each variant independently:

>>> @fun.register (float)
@fun.register (Decimal)
def fun_num(arg, verbose=False):
if verbose:
print ("Half of your number:", end=" ")
print (arg / 2)

>>> fun_num is fun
False

When called, the generic function dispatches on the type of the first argument:

>>> fun("Hello, world.")
Hello, world.

>>> fun("test.", verbose=True)
Let me just say, test.

>>> fun (42, verbose=True)
Strength in numbers, eh? 42
>>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True)
Enumerate this:

0 spam

1 spam

2 eggs

3 spam

>>> fun (None)

Nothing.

>>> fun(1.23)

0.615

Where there is no registered implementation for a specific type, its method resolution order is used to find a
more generic implementation. The original function decorated with @singledispatch is registered for
the base object type, which means it is used if no better implementation is found.

To check which implementation will the generic function choose for a given type, use the dispatch ()
attribute:

10.2. functools — Higher-order functions and operations on callable objects 333

The Python Library Reference, Release 3.7.15

>>> fun.dispatch (float)

<function fun_num at 0x1035a2840>

>>> fun.dispatch(dict) # note: default implementation
<function fun at 0x103fe0000>

To access all registered implementations, use the read-only registry attribute:

>>> fun.registry.keys()

dict_keys ([<class 'NoneType'>, <class 'int'>, <class 'object'>,
<class 'decimal.Decimal'>, <class 'list'>,
<class 'float'>])

>>> fun.registry[float]

<function fun_num at 0x1035a2840>

>>> fun.registry[object]

<function fun at 0x103fe0000>

New in version 3.4.
Changed in version 3.7: The register () attribute supports using type annotations.

functools.update_wrapper (wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, up-

dated=WRAPPER_UPDATES)
Update a wrapper function to look like the wrapped function. The optional arguments are tuples to specify

which attributes of the original function are assigned directly to the matching attributes on the wrapper function
and which attributes of the wrapper function are updated with the corresponding attributes from the original
function. The default values for these arguments are the module level constants WRAPPER_ASSIGNMENTS
(which assigns to the wrapper function’s __module__, name__, qualname__, annota-
tions__and __doc__, the documentation string) and WRAPPER_UPDATES (which updates the wrapper
function’s __dict__,1i.e. the instance dictionary).

To allow access to the original function for introspection and other purposes (e.g. bypassing a caching decorator
such as 1ru_cache ()), this function automatically adds a __wrapped___ attribute to the wrapper that
refers to the function being wrapped.

The main intended use for this function is in decorator functions which wrap the decorated function and return
the wrapper. If the wrapper function is not updated, the metadata of the returned function will reflect the
wrapper definition rather than the original function definition, which is typically less than helpful.

update_wrapper () may be used with callables other than functions. Any attributes named in assigned or
updated that are missing from the object being wrapped are ignored (i.e. this function will not attempt to set
them on the wrapper function). At t ributeError isstill raised if the wrapper function itself is missing any
attributes named in updated.

New in version 3.2: Automatic addition of the ___wrapped___ attribute.
New in version 3.2: Copying of the __annotations___ attribute by default.
Changed in version 3.2: Missing attributes no longer trigger an At t ributeError.

Changed in version 3.4: The ___wrapped___ attribute now always refers to the wrapped function, even if that
function defined a __wrapped___ attribute. (see bpo-17482)

@functools.wraps (wrapped, assigned= WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
This is a convenience function for invoking update_wrapper () as a function decorator when defin-
ing a wrapper function. It is equivalent to partial (update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated). For example:

>>> from functools import wraps
>>> def my_decorator (f) :
@wraps (f)
def wrapper (*args, **kwds):
print ('Calling decorated function')
return f (*args, **kwds)
return wrapper

(continues on next page)

334 Chapter 10. Functional Programming Modules

https://bugs.python.org/issue?@action=redirect&bpo=17482

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> @my_decorator
def example () :
”””Docstring”””
print ('Called example function')

>>> example ()

Calling decorated function
Called example function
>>> example. name_
'example'

>>> example. doc
'Docstring’

Without the use of this decorator factory, the name of the example function would have been 'wrapper',
and the docstring of the original example () would have been lost.

10.2.1 partial Objects

partial objects are callable objects created by partial (). They have three read-only attributes:

partial. func
A callable object or function. Calls to the part ial object will be forwarded to func with new arguments
and keywords.

partial.args
The leftmost positional arguments that will be prepended to the positional arguments provided to a partial
object call.

partial.keywords
The keyword arguments that will be supplied when the partial object is called.

partial objects are like function objects in that they are callable, weak referencable, and can have attributes.
There are some important differences. For instance, the __name__ and __doc___ attributes are not created au-
tomatically. Also, partial objects defined in classes behave like static methods and do not transform into bound
methods during instance attribute look-up.

10.3 operator — Standard operators as functions

Source code: Lib/operator.py

The operator module exports a set of efficient functions corresponding to the intrinsic operators of Python. For
example, operator.add (x, vy) is equivalent to the expression x+y. Many function names are those used for
special methods, without the double underscores. For backward compatibility, many of these have a variant with the
double underscores kept. The variants without the double underscores are preferred for clarity.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations and
sequence operations.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

operator.lt (
operator.le(
operator.eq(
operator.ne (a,
operator.ge (
operator.gt (a,

10.3. operator — Standard operators as functions 335

https://github.com/python/cpython/tree/3.7/Lib/operator.py

The Python Library Reference, Release 3.7.15

operator.__1lt__ (a,b)
operator.__le__ (a,b)
operator.__eq__ (a,b)
operator.__ne__ (a,b)
operator.__ge__(a,b)
operator.__gt__(a,b)
Perform “rich comparisons” between a and b. Specifically, 1t (a, b) isequivalenttoa < b, le(a, b)
isequivalenttoa <= b,eqg(a, b) isequivalenttoa == b,ne (a, b) isequivalenttoa !'= b, gt (a,
b) isequivalentto a > b and ge (a, b) isequivalentto a >= Db. Note that these functions can return
any value, which may or may not be interpretable as a Boolean value. See comparisons for more information
about rich comparisons.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean
operations:

operator.not_ (obj)

operator.__not__ (obj)
Return the outcome of not obj. (Note that there is no ___not___ () method for object instances; only the
interpreter core defines this operation. The resultis affected by the __bool__ () and__len__ () methods.)

operator.truth (0bj)
Return True if obj is true, and F'alse otherwise. This is equivalent to using the boo 1 constructor.

operator.is_ (a, b)
Return a is b. Tests object identity.

operator.is_not (a, b)
Return a is not b. Tests object identity.

The mathematical and bitwise operations are the most numerous:

operator.abs (0bj)
operator.__abs__ (obj)
Return the absolute value of obj.

operator.add (a, b)
operator.__add__(a,b)
Return a + b, for a and b numbers.

operator.and_ (a, b)
operator.__and__ (a,b)
Return the bitwise and of a and b.

operator.floordiv (a, b)
operator.__floordiv__ (a,b)
Returna // b.

operator.index (a)
operator.__index__ (a)
Return a converted to an integer. Equivalentto a.__index__ ().

operator.inv (obj)
operator.invert (obj)
operator.__inv__ (obj)
operator.__invert__ (obj)
Return the bitwise inverse of the number obj. This is equivalent to ~obj.

operator.lshift (a, b)
operator.__lshift__ (a, b)
Return a shifted left by b.

operator.mod (a, b)
operator.__mod__ (a, b)
Returna % b.

operator.mul (a, b)

336 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.7.15

operator.__mul__ (a,b)
Return a * b, for a and b numbers.

operator.matmul (q, b)
operator.__matmul__ (a, b)
Returna @ b.

New in version 3.5.

operator.neg (obj)
operator._ _neg__ (obj)
Return obj negated (—ob 7).

operator.or_ (a,b)
operator.__or__ (a,b)
Return the bitwise or of a and b.

operator.pos (obj)
operator.__pos__ (obj)
Return obj positive (+ob 7).

operator.pow (a, b)
operator.__pow__ (a,b)
Return a ** Db, for a and b numbers.

operator.rshift (a, b)
operator.__rshift__ (a,b)
Return a shifted right by b.

operator.sub (a, b)
operator.__sub__ (a,b)
Returna - b.

operator.truediv (a, b)
operator.__truediv__ (a, b)

Return a / b where 2/3 is .66 rather than 0. This is also known as “true” division.

operator.xor (a, b)
operator.__xor__(a,b)
Return the bitwise exclusive or of a and b.

Operations which work with sequences (some of them with mappings too) include:

operator.concat (a, b)
operator.__concat__ (a,b)
Return a + b for a and b sequences.

operator.contains (a, b)
operator.__contains__ (a, b)
Return the outcome of the testb in a. Note the reversed operands.

operator.countOf (q, b)
Return the number of occurrences of b in a.

operator.delitem (a, b)
operator.__delitem__ (a,b)
Remove the value of a at index b.

operator.getitem (a, b)
operator.__getitem__ (a, b)
Return the value of « at index b.

operator.indexOf (a, b)
Return the index of the first of occurrence of b in a.

operator.setitem (q, b, c)

10.3. operator — Standard operators as functions

337

The Python Library Reference, Release 3.7.15

operator.__setitem__ (a,b,c)
Set the value of a at index b to c.

operator.length_hint (obj, default=0)
Return an estimated length for the object o. First try to return its actual length, then an estimate using object .
__length_hint__ (), and finally return the default value.

New in version 3.4.

The operat or module also defines tools for generalized attribute and item lookups. These are useful for making fast
field extractors as arguments for map (), sorted (), itertools.groupby (), or other functions that expect
a function argument.

operator.attrgetter (arfir)

operator.attrgetter (*atrs)
Return a callable object that fetches attr from its operand. If more than one attribute is requested, returns a
tuple of attributes. The attribute names can also contain dots. For example:

e After f = attrgetter ('name'), thecall £ (b) returns b .name
e After f = attrgetter ('name', 'date'),thecall f (b) returns (b.name, b.date).

e After f = attrgetter ('name.first', 'name.last'),thecall f (b) returns (b.name.
first, b.name.last).

Equivalent to:

def attrgetter (*items) :
if any(not isinstance(item, str) for item in items):
raise TypeError ('attribute name must be a string')
if len(items) ==

attr = items[0]
def g (obj):
return resolve_attr (obj, attr)
else:
def g (obj):
return tuple(resolve_attr(obj, attr) for attr in items)
return g

def resolve_attr (obj, attr):
for name in attr.split("."):
obj = getattr (obj, name)
return obj

operator.itemgetter (item)

operator.itemgetter (*items)
Return a callable object that fetches item from its operand using the operand’s ___getitem__ () method. If
multiple items are specified, returns a tuple of lookup values. For example:

e After f = itemgetter (2),thecall £ (r) returns r[2].
e Afterg = itemgetter (2, 5, 3),thecallg(r) returns (r[2], r[5], r[3]).

Equivalent to:

def itemgetter (*items) :
if len(items) == 1:
item = items[0]
def g (obj):
return obj[item]
else:
def g (obj):
return tuple (obj[item] for item in items)
return g

338 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.7.15

The items can be any type accepted by the operand’s __getitem _ () method. Dictionaries accept any
hashable value. Lists, tuples, and strings accept an index or a slice:

>>> itemgetter (1) ('ABCDEFG")

IB’

>>> itemgetter (1, 3,5) ('ABCDEFG")

('B', 'D', 'F')

>>> itemgetter (slice(2,None)) ('ABCDEFG")
'CDEFG'

>>> soldier = dict (rank='captain', name='dotterbart')
>>> itemgetter ('rank') (soldier)
'captain'

Example of using i temgetter () to retrieve specific fields from a tuple record:

>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
>>> getcount = itemgetter (1)

>>> list (map(getcount, inventory))

[3, 2, 5, 1]

>>> sorted(inventory, key=getcount)

[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]

operator.methodcaller (name[, args...])
Return a callable object that calls the method name on its operand. If additional arguments and/or keyword
arguments are given, they will be given to the method as well. For example:

e After f = methodcaller ('name'), thecall £ (b) returns b.name ().

e After £ = methodcaller ('name', 'foo', bar=1l), the call £ (b) returns b.
name ('foo', bar=1).

Equivalent to:

def methodcaller (name, *args, **kwargs):
def caller (obj):
return getattr (obj, name) (*args, **kwargs)
return caller

10.3.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in
the operator module.

Operation Syntax Function

Addition a + b add (a, b)
Concatenation seql + seqg2 concat (seqgl, seg2)
Containment Test obj in seq contains (seq, obj)
Division a/ b truediv(a, b)
Division a// b floordiv(a, b)
Bitwise And a &b and_ (a, b)

Bitwise Exclusive Or a b xor (a, b)

Bitwise Inversion ~ a invert (a)

Bitwise Or al b or_(a, b)
Exponentiation a ** b pow (a, b)

Identity a is b is_(a, b)

Identity a is not b is_not (a, b)
Indexed Assignment objlk] = v setitem(obj, k, v)

Continued on next page

10.3. operator — Standard operators as functions 339

The Python Library Reference, Release 3.7.15

Table 1 - continued from previous page

Operation Syntax Function

Indexed Deletion del objlk] delitem(obj, k)

Indexing obj[k] getitem(obj, k)

Left Shift a << b 1shift (a, b)

Modulo a %$ b mod (a, b)

Multiplication a *b mul (a, b)

Matrix Multiplication | a @ b matmul (a, b)

Negation (Arithmetic) | - a neg(a)

Negation (Logical) not a not_ (a)

Positive + a pos (a)

Right Shift a > b rshift (a, b)

Slice Assignment seq[i:j] = values | setitem(seq, slice(i, Jj), values)
Slice Deletion del seqgli:J] delitem(seq, slice (i, 3j))
Slicing seqli:j] getitem(seq, slice (i, 3J))
String Formatting s % obj mod (s, obj)

Subtraction a-b sub (a, b)

Truth Test obj truth (obj)

Ordering a<b 1t (a, b)

Ordering a <=b le(a, b)

Equality a ==>b eq(a, b)

Difference a'!=»b ne(a, b)

Ordering a > b ge(a, b)

Ordering a>b gt (a, Db)

10.3.2 In-place Operators

Many operations have an “in-place” version. Listed below are functions providing a more primitive access to in-place
operators than the usual syntax does; for example, the statement x += vy is equivalent to x = operator.
iadd (x, y). Another way to putitistosaythat z = operator.iadd(x, y) isequivalent to the compound
statement z = x; z += y.

In those examples, note that when an in-place method is called, the computation and assignment are performed in
two separate steps. The in-place functions listed below only do the first step, calling the in-place method. The second
step, assignment, is not handled.

For immutable targets such as strings, numbers, and tuples, the updated value is computed, but not assigned back to
the input variable:

>>> a = 'hello'

>>> iadd(a, ' world")
'hello world'

>>> a

'hello!'

For mutable targets such as lists and dictionaries, the in-place method will perform the update, so no subsequent
assignment is necessary:

>>> s = [th, |e|, lll, lll, IOIJ

>>> iadd(s, [, 'w', ‘o', 'vr', '1', 'd'l)

[lh" lel’ lll’ ll‘, lol,] l, lwl, |o|, 'r', 'll, 'd':|
>>> s

['h', 'e', '1', '1', 'o', ' ', 'w', 'o', 'vr', '1', 'd']

operator.iadd (a, b)
operator.__iadd__ (a,b)
a = iadd(a, b) isequivalenttoa += b.

operator.iand (a, b)

340 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.7.15

operator.__iand__ (a, b)
a = iand(a, b) isequivalenttoa &= b.

operator.iconcat (a, b)
operator.__iconcat__ (a, b)
a = iconcat (a, b) isequivalenttoa += b for aand b sequences.

operator.ifloordiv (a, b)
operator.__ifloordiv__ (a, b)
a = ifloordiv(a, D) isequivalenttoa //= b.

operator.ilshift (qa, b)
operator.__ilshift__ (a, b)
a = ilshift (a, b) isequivalenttoa <<= b.

operator.imod (a, b)
operator.__imod__ (a, b)
a = imod(a, b) isequivalenttoa %= b.

operator.imul (a, b)
operator.__imul__ (a, b)
a = imul (a, b) isequivalenttoa *= b.

operator.imatmul (q, b)
operator.__imatmul__ (a, b)
a = imatmul (a, b) isequivalenttoa @= b.

New in version 3.5.

operator.ior (a, b)
operator.__ior__(a,b)
a = ior(a, b) isequivalenttoa |= b.

operator.ipow (a, b)
operator._ _ipow__ (a,b)
a = ipow(a, b) isequivalenttoa **= b.

operator.irshift (a, b)
operator.__irshift__ (a,b)
a = irshift (a, b) isequivalenttoa >>= b.

operator.isub (a, b)
operator.__isub__ (a, b)
a = isub(a, b) isequivalenttoa -= b.

operator.itruediv (a, b)
operator.__itruediv__ (a, b)
a = itruediv(a, Db) isequivalenttoa /= b.

operator.ixor (a, b)
operator.__ixor__ (a,b)
a = ixor(a, b) isequivalenttoa "= b.

10.3. operator — Standard operators as functions 341

The Python Library Reference, Release 3.7.15

342 Chapter 10. Functional Programming Modules

CHAPTER
ELEVEN

FILE AND DIRECTORY ACCESS

The modules described in this chapter deal with disk files and directories. For example, there are modules for reading
the properties of files, manipulating paths in a portable way, and creating temporary files. The full list of modules in
this chapter is:

11.1 pathlib — Object-oriented filesystem paths

New in version 3.4.

Source code: Lib/pathlib.py

This module offers classes representing filesystem paths with semantics appropriate for different operating systems.
Path classes are divided between pure paths, which provide purely computational operations without I/O, and concrete
paths, which inherit from pure paths but also provide I/O operations.

PurePosixPath PureWindowsPath
I 9 I
PosixPath WindowsPath

If you've never used this module before or just aren’t sure which class is right for your task, Pat h is most likely what
you need. It instantiates a concrete path for the platform the code is running on.

Pure paths are useful in some special cases; for example:

1. If you want to manipulate Windows paths on a Unix machine (or vice versa). You cannot instantiate a 7in—
dowsPath when running on Unix, but you can instantiate PureWindowsPath.

343

https://github.com/python/cpython/tree/3.7/Lib/pathlib.py

The Python Library Reference, Release 3.7.15

2. You want to make sure that your code only manipulates paths without actually accessing the OS. In this case,
instantiating one of the pure classes may be useful since those simply don’t have any OS-accessing operations.

See also:
PEP 428: The pathlib module — object-oriented filesystem paths.
See also:

For low-level path manipulation on strings, you can also use the os. path module.

11.1.1 Basic use

Importing the main class:

>>> from pathlib import Path

Listing subdirectories:

>>> p = Path('.")

>>> [x for x in p.iterdir() if x.is_dir()]
[PosixPath('.hg'), PosixPath('docs'), PosixPath('dist'),
PosixPath('__pycache__ '), PosixPath('build')]

Listing Python source files in this directory tree:

>>> list(p.glob('**/*.py'))
[PosixPath('test_pathlib.py'), PosixPath('setup.py'),
PosixPath ('pathlib.py'), PosixPath('docs/conf.py'),
PosixPath('build/lib/pathlib.py")]

Navigating inside a directory tree:

>>> p Path('/etc'")

>>> g = p / 'init.d' / 'reboot'
>>> g
PosixPath('/etc/init.d/reboot")
>>> g.resolve ()

PosixPath('/etc/rc.d/init.d/halt")

Querying path properties:

>>> g.exists ()
True
>>> g.is_dir()
False

Opening a file:

>>> with g.open() as f: f.readline()

'#!/bin/bash\n'

344 Chapter 11. File and Directory Access

https://www.python.org/dev/peps/pep-0428

The Python Library Reference, Release 3.7.15

11.1.2 Pure paths

Pure path objects provide path-handling operations which don’t actually access a filesystem. There are three ways to
access these classes, which we also call flavours:

class pathlib.PurePath (*pathsegments)
A generic class that represents the system’s path flavour (instantiating it creates either a PurePosixPath or
a PureWindowsPath):

>>> PurePath ('setup.py') # Running on a Unix machine
PurePosixPath ('setup.py"')

Each element of pathsegments can be either a string representing a path segment, an object implementing the
o0s.PathLike interface which returns a string, or another path object:

>>> PurePath('foo', 'some/path', 'bar')
PurePosixPath ('foo/some/path/bar"')

>>> PurePath (Path('foo'), Path('bar'))
PurePosixPath ('foo/bar")

When pathsegments is empty, the current directory is assumed:

>>> PurePath ()
PurePosixPath('.")

When several absolute paths are given, the last is taken as an anchor (mimicking os.path. join ()’s be-
haviour):

>>> PurePath('/etc', '/usr', 'lib64"')
PurePosixPath ('/usr/1ib64")

>>> PureWindowsPath ('c:/Windows', 'd:bar")
PureWindowsPath ('d:bar"')

However, in a Windows path, changing the local root doesn’t discard the previous drive setting:

>>> PureWindowsPath('c:/Windows', '/Program Files')
PureWindowsPath ('c:/Program Files')

Spurious slashes and single dots are collapsed, but double dots (' . . ') are not, since this would change the
meaning of a path in the face of symbolic links:

>>> PurePath('foo//bar'")
PurePosixPath ('foo/bar')
>>> PurePath('foo/./bar")
PurePosixPath ('foo/bar"')
>>> PurePath('foo/../bar")
PurePosixPath('foo/../bar'")

(a naive approach would make PurePosixPath('foo/../bar') equivalent to PurePosix—
Path ('bar'), which is wrong if foo is a symbolic link to another directory)

Pure path objects implement the os . Pat hLi ke interface, allowing them to be used anywhere the interface
is accepted.

Changed in version 3.6: Added support for the os. Pat hLike interface.

class pathlib.PurePosixPath (*pathsegments)
A subclass of PurePat h, this path flavour represents non-Windows filesystem paths:

>>> PurePosixPath('/etc")
PurePosixPath ('/etc'")

pathsegments is specified similarly to PurePath.

11.1. pathlib — Object-oriented filesystem paths 345

The Python Library Reference, Release 3.7.15

class pathlib.PureWindowsPath (*pathsegments)
A subclass of PurePat h, this path flavour represents Windows filesystem paths:

>>> PureWindowsPath('c:/Program Files/"')
PureWindowsPath ('c:/Program Files')

pathsegments is specified similarly to PurePath.

Regardless of the system you’re running on, you can instantiate all of these classes, since they don’t provide any
operation that does system calls.

General properties

Paths are immutable and hashable. Paths of a same flavour are comparable and orderable. These properties respect
the flavour’s case-folding semantics:

>>> PurePosixPath('foo') == PurePosixPath ('FOO")

False

>>> PureWindowsPath ('foo') == PureWindowsPath ('FOO")
True

>>> PureWindowsPath ('FOO') in { PureWindowsPath('foo') }
True

>>> PureWindowsPath ('C:') < PureWindowsPath('d:")

True

Paths of a different flavour compare unequal and cannot be ordered:

>>> PureWindowsPath ('foo') == PurePosixPath('foo')
False
>>> PureWindowsPath ('foo') < PurePosixPath('foo')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'PureWindowsPath' and
—'PurePosixPath'

Operators

The slash operator helps create child paths, similarly to os.path. join ():

>>> p = PurePath('/etc')

>>> p

PurePosixPath ('/etc'")

>>> p / 'init.d' / 'apache2'
PurePosixPath ('/etc/init.d/apache2")
>>> g = PurePath('bin'")

>>> '/usr' / q

PurePosixPath ('/usr/bin'")

A path object can be used anywhere an object implementing os . PathLike is accepted:

>>> import os

>>> p = PurePath('/etc')
>>> os.fspath (p)

'/etc!

The string representation of a path is the raw filesystem path itself (in native form, e.g. with backslashes under
Windows), which you can pass to any function taking a file path as a string:

346 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

>>> p = PurePath('/etc")

>>> str(p)

'/etc!

>>> p = PureWindowsPath('c:/Program Files')
>>> str(p)

'c:\\Program Files'

Similarly, calling byt es on a path gives the raw filesystem path as a bytes object, as encoded by os. fsencode ():

>>> bytes (p)
b'/etc'

Note: Calling bytes is only recommended under Unix. Under Windows, the unicode form is the canonical
representation of filesystem paths.

Accessing individual parts

To access the individual “parts” (components) of a path, use the following property:

PurePath.parts
A tuple giving access to the path’s various components:

>>> p = PurePath('/usr/bin/python3")
>>> p.parts
(*/', 'usr', 'bin', 'python3'")

>>> p = PureWindowsPath('c:/Program Files/PSF")
>>> p.parts
('c:\\', 'Program Files', 'PSF')

(note how the drive and local root are regrouped in a single part)

Methods and properties

Pure paths provide the following methods and properties:

PurePath.drive
A string representing the drive letter or name, if any:

>>> PureWindowsPath('c:/Program Files/') .drive
'C:'
>>> PureWindowsPath('/Program Files/') .drive

(]

>>> PurePosixPath('/etc') .drive
T

UNC shares are also considered drives:

>>> PureWindowsPath ('//host/share/foo.txt") .drive
"\\\\host\\share"

PurePath.root
A string representing the (local or global) root, if any:

>>> PureWindowsPath('c:/Program Files/'").root
l\\l
>>> PureWindowsPath('c:Program Files/'") .root

(continues on next page)

11.1. pathlib — Object-oriented filesystem paths 347

The Python Library Reference, Release 3.7.15

(continued from previous page)

[}

>>> PurePosixPath('/etc') .root

l/l

UNC shares always have a root:

>>> PureWindowsPath ('//host/share') .root

l\\l

PurePath.anchor

The concatenation of the drive and root:

>>> PureWindowsPath('c:/Program Files/") .anchor
"o\

>>> PureWindowsPath ('c:Program Files/') .anchor
'C:'

>>> PurePosixPath('/etc') .anchor

l/l

>>> PureWindowsPath('//host/share') .anchor
"\\\\host\\share\\'

PurePath.parents

An immutable sequence providing access to the logical ancestors of the path:

>>> p = PureWindowsPath('c:/foo/bar/setup.py')
>>> p.parents[0]

PureWindowsPath ('c:/foo/bar'")

>>> p.parents[1]

PureWindowsPath ('c:/foo")

>>> p.parents[2]

PureWindowsPath('c:/")

PurePath.parent

The logical parent of the path:

>>> p = PurePosixPath('/a/b/c/d")
>>> p.parent
PurePosixPath('/a/b/c")

You cannot go past an anchor, or empty path:

>>> p = PurePosixPath('/")
>>> p.parent
PurePosixPath('/")

>>> p = PurePosixPath('.")
>>> p.parent
PurePosixPath('.")

Note: This is a purely lexical operation, hence the following behaviour:

>>> p = PurePosixPath('foo/..")
>>> p.parent
PurePosixPath('foo')

If you want to walk an arbitrary filesystem path upwards, it is recommended to first call Path. resolve ()

“«

s0 as to resolve symlinks and eliminate “.” components.

PurePath.name

A string representing the final path component, excluding the drive and root, if any:

348

Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

>>> PurePosixPath('my/library/setup.py') .name
'setup.py’

UNC drive names are not considered:

>>> PureWindowsPath('//some/share/setup.py') .name
'setup.py’
>>> PureWindowsPath ('//some/share') .name

(]

PurePath.suffix
The file extension of the final component, if any:

>>> PurePosixPath('my/library/setup.py') .suffix

-py’
>>> PurePosixPath('my/library.tar.gz') .suffix
l-gZV
>>> PurePosixPath('my/library') .suffix

(]

PurePath.suffixes
A list of the path’s file extensions:

>>> PurePosixPath('my/library.tar.gar') .suffixes
[".tar', '.gar']

>>> PurePosixPath('my/library.tar.gz') .suffixes
[".tar', '.gz']

>>> PurePosixPath('my/library') .suffixes

[]

PurePath.stem
The final path component, without its suffix:

>>> PurePosixPath('my/library.tar.gz') .stem
'library.tar'

>>> PurePosixPath('my/library.tar') .stem
'library'

>>> PurePosixPath ('my/library') .stem
'library'

PurePath.as_posix ()

Return a string representation of the path with forward slashes (/):

>>> p = PureWindowsPath ('c:\\windows"')
>>> str(p)

'c:\\windows'
>>> p.as_posix()
'c:/windows'

PurePath.as_uri ()

Represent the path asa file URIL ValueError israised if the path isn’t absolute.

>>> p = PurePosixPath('/etc/passwd')
>>> p.as_uri ()

'file:///etc/passwd’

>>> p = PureWindowsPath('c:/Windows")
>>> p.as_uri ()

'file:///c:/Windows'

PurePath.is_absolute ()

Return whether the path is absolute or not. A path is considered absolute if it has both a root and (if the flavour
allows) a drive:

11.1. pathlib — Object-oriented filesystem paths 349

The Python Library Reference, Release 3.7.15

>>> PurePosixPath('/a/b') .is_absolute ()
True

>>> PurePosixPath('a/b') .is_absolute ()
False

>>> PureWindowsPath('c:/a/b'") .is_absolute ()
True

>>> PureWindowsPath('/a/b') .is_absolute ()
False

>>> PureWindowsPath('c:'") .1s_absolute ()
False

>>> PureWindowsPath ('//some/share') .is_absolute ()
True

PurePath.is_reserved ()

With PureWindowsPath, return True if the path is considered reserved under Windows, False other-
wise. With PurePosixPath, False is always returned.

>>> PureWindowsPath ('nul') .is_reserved()
True

>>> PurePosixPath('nul').is_reserved()
False

File system calls on reserved paths can fail mysteriously or have unintended effects.

PurePath. joinpath (*other)

Calling this method is equivalent to combining the path with each of the other arguments in turn:

>>> PurePosixPath('/etc').joinpath('passwd")
PurePosixPath('/etc/passwd')
>>> PurePosixPath ('/etc') .joinpath (PurePosixPath ('passwd'))

PurePosixPath ('/etc/passwd')

>>> PurePosixPath('/etc').joinpath('init.d', 'apache2')
PurePosixPath('/etc/init.d/apache2")

>>> PureWindowsPath('c:').joinpath('/Program Files")
PureWindowsPath ('c:/Program Files')

PurePath.match (pattern)

Match this path against the provided glob-style pattern. Return True if matching is successful, False oth-
erwise.

If pattern is relative, the path can be either relative or absolute, and matching is done from the right:

>>> PurePath('a/b.py') .match('*.py")

True
>>> PurePath('/a/b/c.py') . .match('b/*.py")
True
>>> PurePath('/a/b/c.py') .match('a/*.py")
False

If pattern is absolute, the path must be absolute, and the whole path must match:

>>> PurePath('/a.py') .match('/*.py")
True

>>> PurePath('a/b.py") .match('/*.py")
False

As with other methods, case-sensitivity follows platform defaults:

>>> PurePosixPath('b.py') .match('*.PY")
False

(continues on next page)

350

Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

(continued from previous page)

>>> PureWindowsPath('b.py') .match('*.PY")
True

PurePath.relative_to (*other)

Compute a version of this path relative to the path represented by other. If it’s impossible, ValueError is raised:

>>> p = PurePosixPath('/etc/passwd')
>>> p.relative_to('/")
PurePosixPath ('etc/passwd')
>>> p.relative_to('/etc')
PurePosixPath ('passwd')
>>> p.relative_to('/usr")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pathlib.py", line 694, in relative_to
.format (str(self), str(formatted)))
ValueError: '/etc/passwd' does not start with '/usr'

PurePath.with_name (name)

Return a new path with the name changed. If the original path doesn’t have a name, ValueError is raised:

>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz")
>>> p.with_name ('setup.py')
PureWindowsPath ('c:/Downloads/setup.py"')
>>> p = PureWindowsPath('c:/")
>>> p.with_name ('setup.py')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/antoine/cpython/default/Lib/pathlib.py", line 751, in with_name
raise ValueError (" has an empty name" % (self,))
ValueError: PureWindowsPath('c:/') has an empty name

PurePath.with_suffix (suffix)

Return a new path with the suffix changed. If the original path doesn’t have a suffix, the new suffix is
appended instead. If the suffix is an empty string, the original suffix is removed:

>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz")
>>> p.with_suffix('.bz2")

PureWindowsPath ('c:/Downloads/pathlib.tar.bz2")

>>> p = PureWindowsPath ('README")

>>> p.with_suffix('.txt")

PureWindowsPath ('README.txt ")

>>> p = PureWindowsPath ('README.txt")

>>> p.with_suffix('")

PureWindowsPath ('README ")

11.1.3 Concrete paths

Concrete paths are subclasses of the pure path classes. In addition to operations provided by the latter, they also

provide methods to do system calls on path objects. There are three ways to instantiate concrete paths:

class pathlib.Path (*pathsegments)

A subclass of PurePath, this class represents concrete paths of the system’s path flavour (instantiating it

creates either a PosixPathora WindowsPath):

>>> Path('setup.py')
PosixPath ('setup.py')

pathsegments is specified similarly to PurePath.

11.1. pathlib — Object-oriented filesystem paths

351

The Python Library Reference, Release 3.7.15

class pathlib.PosixPath (*pathsegments)
A subclass of Path and PurePosixPat h, this class represents concrete non-Windows filesystem paths:

>>> PosixPath ('/etc')
PosixPath('/etc")

pathsegments is specified similarly to PurePath.

class pathlib.WindowsPath (*pathsegments)
A subclass of Path and PureWindowsPath, this class represents concrete Windows filesystem paths:

>>> WindowsPath ('c:/Program Files/")
WindowsPath('c:/Program Files"')

pathsegments is specified similarly to PurePath.

You can only instantiate the class flavour that corresponds to your system (allowing system calls on non-compatible
path flavours could lead to bugs or failures in your application):

>>> import os

>>> os.name

'posix'

>>> Path('setup.py")

PosixPath ('setup.py"')

>>> PosixPath ('setup.py"')

PosixPath ('setup.py')

>>> WindowsPath ('setup.py')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pathlib.py", line 798, in __new

% (cls._ _name_ ,))
NotImplementedError: cannot instantiate 'WindowsPath' on your system

Methods

Concrete paths provide the following methods in addition to pure paths methods. Many of these methods can raise
an OSError if a system call fails (for example because the path doesn’t exist):

classmethod Path.cwd ()
Return a new path object representing the current directory (as returned by os. getcwd ()):

>>> Path.cwd ()
PosixPath ('/home/antoine/pathlib")

classmethod Path.home ()
Return a new path object representing the user’s home directory (as returned by os . path.expanduser ()
with ~ construct):

>>> Path.home ()
PosixPath ('/home/antoine')

New in version 3.5.

Path.stat ()
Return a os. stat_result object containing information about this path, like os. stat (). The result is
looked up at each call to this method.

>>> p = Path('setup.py')

>>> p.stat () .st_size
956
>>> p.stat () .st_mtime

1327883547.852554

352 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

Path.chmod (mode)
Change the file mode and permissions, like os. chmod () :

>>> p = Path('setup.py')
>>> p.stat () .st_mode
33277

>>> p.chmod (0o444)

>>> p.stat () .st_mode
33060

Path.exists ()
Whether the path points to an existing file or directory:

>>> Path('.'"') .exists ()

True

>>> Path('setup.py') .exists()

True

>>> Path('/etc') .exists ()

True

>>> Path ('nonexistentfile') .exists ()
False

Note: If the path points to a symlink, exists () returns whether the symlink points fo an existing file or
directory.

Path.expanduser ()
Return a new path with expanded ~ and ~user constructs, as returned by os. path.expanduser ():

>>> p = PosixPath('~/films/Monty Python')
>>> p.expanduser ()
PosixPath ('/home/eric/films/Monty Python')

New in version 3.5.

Path.glob (pattern)
Glob the given relative pattern in the directory represented by this path, yielding all matching files (of any kind):

>>> sorted(Path('.").glob('"*.py"'))

[PosixPath ('pathlib.py'), PosixPath('setup.py'), PosixPath('test_pathlib.py')]
>>> sorted(Path('.') .glob('*/*.py"'))

[PosixPath ('docs/conf.py')]

The “**” pattern means “this directory and all subdirectories, recursively”. In other words, it enables recursive
globbing:

>>> sorted(Path('.') .glob('**/*.py'))

[PosixPath ('build/lib/pathlib.py"),

PosixPath ('docs/conf.py'),
(
(
(

PosixPath ('pathlib.py'),
PosixPath ('setup.py'),
PosixPath('test_pathlib.py"'")]

Note: Using the “**” pattern in large directory trees may consume an inordinate amount of time.

Path.group ()
Return the name of the group owning the file. KeyError is raised if the file’s gid isn’t found in the system
database.

11.1. pathlib — Object-oriented filesystem paths 353

The Python Library Reference, Release 3.7.15

Path.is_dir ()
Return True if the path points to a directory (or a symbolic link pointing to a directory), False if it points
to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

Path.is_file()
Return True if the path points to a regular file (or a symbolic link pointing to a regular file), False if it
points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

Path.is_mount ()
Return True if the path is a mount point: a point in a file system where a different file system has been
mounted. On POSIX, the function checks whether path’s parent, path/ . ., is on a different device than path,
or whether path/ . . and path point to the same i-node on the same device — this should detect mount points
for all Unix and POSIX variants. Not implemented on Windows.

New in version 3.7.

Path.is_symlink ()
Return True if the path points to a symbolic link, False otherwise.

False is also returned if the path doesn’t exist; other errors (such as permission errors) are propagated.

Path.is_socket ()
Return True if the path points to a Unix socket (or a symbolic link pointing to a Unix socket), False if it
points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

Path.is_fifo()
Return True if the path points to a FIFO (or a symbolic link pointing to a FIFO), False if it points to another
kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

Path.is_block_device ()
Return True if the path points to a block device (or a symbolic link pointing to a block device), False if it
points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

Path.is_char_device ()
Return True if the path points to a character device (or a symbolic link pointing to a character device), False
if it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

Path.iterdir ()
When the path points to a directory, yield path objects of the directory contents:

>>> p = Path('docs')
>>> for child in p.iterdir(): child

PosixPath ('docs/conf.py")
PosixPath ('docs/_templates')
PosixPath ('docs/make.bat"')
PosixPath (

PosixPath (

'docs/index.rst")
'docs/_build")

(continues on next page)

354 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

(continued from previous page)

PosixPath ('docs/_static'")
PosixPath ('docs/Makefile')

Path.lchmod (mode)

Like Path.chmod () but, if the path points to a symbolic link, the symbolic link’s mode is changed rather
than its target’s.

Path.1lstat ()

Like Path.stat () but, if the path points to a symbolic link, return the symbolic link’s information rather
than its target’s.

Path.mkdir (mode=00777, parents=False, exist_ok=False)

Create a new directory at this given path. If mode is given, it is combined with the process’ umask value to
determine the file mode and access flags. If the path already exists, Fi leExistsError is raised.

If parents is true, any missing parents of this path are created as needed; they are created with the default
permissions without taking mode into account (mimicking the POSIX mkdir -p command).

If parents is false (the default), a missing parent raises F'i leNot FoundError.
If exist_ok is false (the default), Fi 1eExistsError is raised if the target directory already exists.

If exist_ok is true, FileExistsError exceptions will be ignored (same behavior as the POSIX mkdir
—p command), but only if the last path component is not an existing non-directory file.

Changed in version 3.5: The exist_ok parameter was added.

Path.open (mode="r'", buffering=-1, encoding=None, errors=None, newline=None)

Open the file pointed to by the path, like the built-in open () function does:

>>> p = Path('setup.py')
>>> with p.open() as f:
f.readline ()

"#!/usr/bin/env python3\n'

Path.owner ()

Return the name of the user owning the file. KeyError is raised if the file’s uid isn’t found in the system
database.

Path.read_bytes ()

Return the binary contents of the pointed-to file as a bytes object:

>>> p = Path('my_binary_file'")

>>> p.write_bytes (b'Binary file contents')
20

>>> p.read_bytes ()

b'Binary file contents'

New in version 3.5.

Path.read_text (encoding=None, errors=None)

Return the decoded contents of the pointed-to file as a string:

>>> p = Path('my_text_file')

>>> p.write_text ('Text file contents')
18

>>> p.read_text ()

'Text file contents'

The file is opened and then closed. The optional parameters have the same meaning as in open ().

New in version 3.5.

11.1. pathlib — Object-oriented filesystem paths 355

The Python Library Reference, Release 3.7.15

Path.rename (farget)
Rename this file or directory to the given farget. On Unix, if target exists and is a file, it will be replaced silently
if the user has permission. farget can be either a string or another path object:

>>> p Path('foo")
>>> p.open('w') .write('some text')
9

>>> target = Path('bar')
>>> p.rename (target)

>>> target.open() .read()
'some text'

Path.replace (farget)
Rename this file or directory to the given target. If target points to an existing file or directory, it will be
unconditionally replaced.

Path.resolve (strict=False)
Make the path absolute, resolving any symlinks. A new path object is returned:

>>> p Path ()
>>> p
PosixPath('.")

>>> p.resolve ()
PosixPath ('/home/antoine/pathlib"')

“. .” components are also eliminated (this is the only method to do so):

>>> p = Path('docs/../setup.py"')
>>> p.resolve ()
PosixPath ('/home/antoine/pathlib/setup.py")

If the path doesn’t exist and strict is True, FileNotFoundError is raised. If strict is False, the path
is resolved as far as possible and any remainder is appended without checking whether it exists. If an infinite
loop is encountered along the resolution path, Runt imeError is raised.

New in version 3.6: The strict argument (pre-3.6 behavior is strict).

Path.rglob (pattern)
This is like calling Path. glob () with “**/” added in front of the given relative pattern:

>>> sorted(Path () .rglob ("*.py"))

[PosixPath ('build/lib/pathlib.py'),

PosixPath ('docs/conf.py'),
(
(
(

PosixPath ('pathlib.py'),
PosixPath ('setup.py'),
PosixPath('test_pathlib.py"'")]

Path.rmdir ()
Remove this directory. The directory must be empty.

Path.samefile (other_path)
Return whether this path points to the same file as other_path, which can be either a Path object, or a string.
The semantics are similar to os.path.samefile () and os.path.samestat ().

An OSError can be raised if either file cannot be accessed for some reason.

>>> p = Path('spam')
>>> g = Path('eggs"')
>>> p.samefile (q)
False

>>> p.samefile ('spam')
True

New in version 3.5.

356 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

Path.symlink_to (target, target_is_directory=False)
Make this path a symbolic link to farget. Under Windows, farget_is_directory must be true (default False)if
the link’s target is a directory. Under POSIX, target_is_directory’s value is ignored.

>>> p = Path('mylink")

>>> p.symlink_to('setup.py"')

>>> p.resolve ()

PosixPath ('/home/antoine/pathlib/setup.py')

>>> p.stat () .st_size
956

>>> p.lstat () .st_size
8

Note: The order of arguments (link, target) is the reverse of os. symlink ()’s.

Path.touch (mode=00666, exist_ok=True)
Create a file at this given path. If mode is given, it is combined with the process’ umask value to determine the
file mode and access flags. If the file already exists, the function succeeds if exist_ok is true (and its modification
time is updated to the current time), otherwise F'i leExist sError is raised.

Path.unlink ()
Remove this file or symbolic link. If the path points to a directory, use Path. rmdir () instead.

Path.write_bytes (data)
Open the file pointed to in bytes mode, write data to it, and close the file:

>>> p = Path('my_binary_file'")

>>> p.write_bytes (b'Binary file contents')
20

>>> p.read_bytes ()

b'Binary file contents'

An existing file of the same name is overwritten.
New in version 3.5.

Path.write_text (data, encoding=None, errors=None)
Open the file pointed to in text mode, write data to it, and close the file:

>>> p = Path('my_text_file')

>>> p.write_text ('Text file contents')
18

>>> p.read_text ()

'Text file contents'

New in version 3.5.

11.1.4 Correspondence to tools in the os module

Below is a table mapping various os functions to their corresponding PurePath/Path equivalent.

Note: Although os.path.relpath () and PurePath.relative_to () have some overlapping use-cases,
their semantics differ enough to warrant not considering them equivalent.

11.1. pathlib — Object-oriented filesystem paths 357

The Python Library Reference, Release 3.7.15

os and os.path pathlib

os.path.abspath () Path.resolve ()
os.chmod () Path.chmod ()

os.mkdir () Path.mkdir ()

os.rename () Path.rename ()
os.replace () Path.replace()
os.rmdir () Path.rmdir ()

os.remove (), o0s.unlink () Path.unlink ()
os.getcwd () Path.cwd ()
os.path.exists () Path.exists ()
os.path.expanduser () Path.expanduser () and Path.home ()
os.path.isdir () Path.is_dir()
os.path.isfile() Path.is_file()
os.path.islink () Path.is_symlink ()
os.stat () Path.stat (), Path.owner (), Path.group ()
os.path.isabs () PurePath.is_absolute()
os.path.join () PurePath. joinpath ()
os.path.basename () PurePath.name
os.path.dirname () PurePath.parent
os.path.samefile() Path.samefile ()
os.path.splitext () PurePath.suffix

11.2 os.path — Common pathname manipulations

Source code: Lib/posixpath.py (for POSIX), Lib/ntpath.py (for Windows NT), and Lib/macpath.py (for Macintosh)

This module implements some useful functions on pathnames. To read or write files see open (), and for accessing
the filesystem see the os module. The path parameters can be passed as either strings, or bytes. Applications
are encouraged to represent file names as (Unicode) character strings. Unfortunately, some file names may not be
representable as strings on Unix, so applications that need to support arbitrary file names on Unix should use bytes
objects to represent path names. Vice versa, using bytes objects cannot represent all file names on Windows (in the
standard mbcs encoding), hence Windows applications should use string objects to access all files.

Unlike a unix shell, Python does not do any aufomatic path expansions. Functions such as expanduser () and
expandvars () can be invoked explicitly when an application desires shell-like path expansion. (See also the
glob module.)

See also:

The pathlib module offers high-level path objects.

Note: All of these functions accept either only bytes or only string objects as their parameters. The result is an
object of the same type, if a path or file name is returned.

Note: Since different operating systems have different path name conventions, there are several versions of this
module in the standard library. The os. path module is always the path module suitable for the operating system
Python is running on, and therefore usable for local paths. However, you can also import and use the individual
modules if you want to manipulate a path that is always in one of the different formats. They all have the same
interface:

* posixpath for UNIX-style paths
* ntpath for Windows paths

* macpath for old-style MacOS paths

358 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.7/Lib/posixpath.py
https://github.com/python/cpython/tree/3.7/Lib/ntpath.py
https://github.com/python/cpython/tree/3.7/Lib/macpath.py

The Python Library Reference, Release 3.7.15

os.path.abspath (path)
Return a normalized absolutized version of the pathname path. On most platforms, this is equivalent to calling
the function normpath () as follows: normpath (join (os.getcwd (), path)).

Changed in version 3.6: Accepts a path-like object.

os.path.basename (path)
Return the base name of pathname parh. This is the second element of the pair returned by passing path to
the function split (). Note that the result of this function is different from the Unix basename program;
where basename for ' /foo/bar/ " returns 'bar', the basename () function returns an empty string
("").

Changed in version 3.6: Accepts a path-like object.

os.path.commonpath (paths)
Return the longest common sub-path of each pathname in the sequence paths. Raise ValueError if paths
contains both absolute and relative pathnames, or if paths is empty. Unlike commonprefix (), this returns
a valid path.

Availability: Unix, Windows.
New in version 3.5.
Changed in version 3.6: Accepts a sequence of path-like objects.

os.path.commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths in list. If list is empty,
return the empty string (' ').

Note: This function may return invalid paths because it works a character at a time. To obtain a valid path,
see commonpath ().

>>> os.path.commonprefix (['/usr/1lib', '/usr/local/lib'])
'/usr/1"'

>>> os.path.commonpath (['/usr/1lib', '/usr/local/lib'])
'/usr'

Changed in version 3.6: Accepts a path-like object.

os.path.dirname (path)
Return the directory name of pathname path. This is the first element of the pair returned by passing path to
the function split ().

Changed in version 3.6: Accepts a path-like object.

os.path.exists (path)
Return True if path refers to an existing path or an open file descriptor. Returns False for broken symbolic
links. On some platforms, this function may return F a1 se if permission is not granted to execute os . stat ()
on the requested file, even if the path physically exists.

Changed in version 3.3: path can now be an integer: True is returned if it is an open file descriptor, False
otherwise.

Changed in version 3.6: Accepts a path-like object.

os.path.lexists (path)
Return True if path refers to an existing path. Returns True for broken symbolic links. Equivalent to
exists () on platforms lacking os. Istat ().

Changed in version 3.6: Accepts a path-like object.

11.2. os.path — Common pathname manipulations 359

The Python Library Reference, Release 3.7.15

Oos.

oSs.

os

oSs.

oS

oS

oS

os.

oS

os.

path.expanduser (path)
On Unix and Windows, return the argument with an initial component of ~ or ~user replaced by that user’s
home directory.

On Unix, an initial ~ is replaced by the environment variable HOME if it is set; otherwise the current user’s
home directory is looked up in the password directory through the built-in module pwd. An initial ~user is
looked up directly in the password directory.

On Windows, HOME and USERPROFILE will be used if set, otherwise a combination of HOMEPATH and
HOMEDRIVE will be used. An initial ~user is handled by stripping the last directory component from the
created user path derived above.

If the expansion fails or if the path does not begin with a tilde, the path is returned unchanged.
Changed in version 3.6: Accepts a path-like object.

path.expandvars (path)
Return the argument with environment variables expanded. Substrings of the form $name or ${name} are
replaced by the value of environment variable name. Malformed variable names and references to non-existing
variables are left unchanged.

On Windows, $name% expansions are supported in addition to $name and $ {name}.

Changed in version 3.6: Accepts a path-like object.

.path.getatime (path)

Return the time of last access of path. The return value is a floating point number giving the number of seconds
since the epoch (see the t ime module). Raise OSError if the file does not exist or is inaccessible.

path.getmtime (path)
Return the time of last modification of path. The return value is a floating point number giving the number of
seconds since the epoch (see the ¢ i me module). Raise OSError if the file does not exist or is inaccessible.

Changed in version 3.6: Accepts a path-like object.

.path.getctime (path)

Return the system’s ctime which, on some systems (like Unix) is the time of the last metadata change, and,
on others (like Windows), is the creation time for path. The return value is a number giving the number of
seconds since the epoch (see the ¢ i me module). Raise OSError if the file does not exist or is inaccessible.

Changed in version 3.6: Accepts a path-like object.

.path.getsize (path)

Return the size, in bytes, of path. Raise OSError if the file does not exist or is inaccessible.

Changed in version 3.6: Accepts a path-like object.

.path.isabs (path)

Return True if path is an absolute pathname. On Unix, that means it begins with a slash, on Windows that it
begins with a (back)slash after chopping off a potential drive letter.

Changed in version 3.6: Accepts a path-like object.

path.isfile (path)
Return True if path is an existing regular file. This follows symbolic links, so both islink () and
isfile () can be true for the same path.

Changed in version 3.6: Accepts a path-like object.

.path.isdir (path)

Return True if path is an exist ing directory. This follows symbolic links, so both is1ink () and is-
dir () can be true for the same path.

Changed in version 3.6: Accepts a path-like object.

path.islink (path)
Return True if path refers to an existing directory entry that is a symbolic link. Always False if
symbolic links are not supported by the Python runtime.

360

Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

Changed in version 3.6: Accepts a path-like object.

os.path.ismount (path)

Return True if pathname path is a mount point: a point in a file system where a different file system has
been mounted. On POSIX, the function checks whether path’s parent, path/ . ., is on a different device
than path, or whether path/ . . and path point to the same i-node on the same device — this should detect
mount points for all Unix and POSIX variants. It is not able to reliably detect bind mounts on the same
filesystem. On Windows, a drive letter root and a share UNC are always mount points, and for any other path
GetVolumePathName is called to see if it is different from the input path.

New in version 3.4: Support for detecting non-root mount points on Windows.

Changed in version 3.6: Accepts a path-like object.

os.path.join (path, *paths)

oS

[OFS}

os

os

Join one or more path components intelligently. The return value is the concatenation of path and any mem-
bers of *paths with exactly one directory separator (os . sep) following each non-empty part except the last,
meaning that the result will only end in a separator if the last part is empty. If a component is an absolute path,
all previous components are thrown away and joining continues from the absolute path component.

On Windows, the drive letter is not reset when an absolute path component (e.g., r ' \foo ") is encountered.
If a component contains a drive letter, all previous components are thrown away and the drive letter is reset.
Note that since there is a current directory for each drive, os.path.join ("c:", "foo") represents a
path relative to the current directory on drive C: (c: foo), not c: \ foo.

Changed in version 3.6: Accepts a path-like object for path and paths.

.path.normcase (path)

Normalize the case of a pathname. On Windows, convert all characters in the pathname to lowercase, and also
convert forward slashes to backward slashes. On other operating systems, return the path unchanged. Raise
a TypeError if the type of path is not str or bytes (directly or indirectly through the os.PathLike
interface).

Changed in version 3.6: Accepts a path-like object.

.path.normpath (path)

Normalize a pathname by collapsing redundant separators and up-level references so that A/ /B, A/B/, A/
./Band A/foo/../B all become A/B. This string manipulation may change the meaning of a path that
contains symbolic links. On Windows, it converts forward slashes to backward slashes. To normalize case, use
normcase ().

Changed in version 3.6: Accepts a path-like object.

.path.realpath (path)

Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path (if
they are supported by the operating system).

Changed in version 3.6: Accepts a path-like object.

.path.relpath (path, start=os.curdir)

Return a relative filepath to path either from the current directory or from an optional start directory. This is
a path computation: the filesystem is not accessed to confirm the existence or nature of path or start.

start defaults to os . curdir.
Availability: Unix, Windows.

Changed in version 3.6: Accepts a path-like object.

os.path.samefile (pathl, path2)

Return True if both pathname arguments refer to the same file or directory. This is determined by the device
number and i-node number and raises an exception if an os. stat () call on either pathname fails.

Availability: Unix, Windows.
Changed in version 3.2: Added Windows support.

Changed in version 3.4: Windows now uses the same implementation as all other platforms.

11.2. os.path — Common pathname manipulations 361

The Python Library Reference, Release 3.7.15

Changed in version 3.6: Accepts a path-like object.

os.path.sameopenfile (fpl, fp2)

Return True if the file descriptors fp! and fp2 refer to the same file.
Availability: Unix, Windows.
Changed in version 3.2: Added Windows support.

Changed in version 3.6: Accepts a path-like object.

os.path.samestat (statl, star2)

Return True if the stat tuples statl and star2 refer to the same file. These structures may have been returned
by os. fstat (), os.1lstat (), or os.stat (). This function implements the underlying comparison
used by samefile () and sameopenfile ().

Availability: Unix, Windows.
Changed in version 3.4: Added Windows support.

Changed in version 3.6: Accepts a path-like object.

os.path.split (path)

Split the pathname path into a pair, (head, tail) where tail is the last pathname component and head is
everything leading up to that. The fail part will never contain a slash; if path ends in a slash, tail will be empty.
If there is no slash in path, head will be empty. If path is empty, both head and tail are empty. Trailing slashes
are stripped from head unless it is the root (one or more slashes only). In all cases, join (head, tail)
returns a path to the same location as path (but the strings may differ). Also see the functions di rname ()
and basename ().

Changed in version 3.6: Accepts a path-like object.

os.path.splitdrive (path)

Split the pathname path into a pair (drive, tail) where drive is either a mount point or the empty string.
On systems which do not use drive specifications, drive will always be the empty string. In all cases, drive
+ tail will be the same as path.

On Windows, splits a pathname into drive/UNC sharepoint and relative path.

If the path contains a drive letter, drive will contain everything up to and including the colon. e.g.
splitdrive ("c:/dir") returns ("c:", "/dir")

If the path contains a UNC path, drive will contain the host name and share, up to but not including the fourth
separator. e.g. splitdrive ("//host/computer/dir") returns ("//host/computer", "/
dir")

Changed in version 3.6: Accepts a path-like object.

os.path.splitext (path)

Split the pathname path into a pair (root, ext) suchthat root + ext == path, and ext is empty or
begins with a period and contains at most one period. Leading periods on the basename are ignored; spli-
text ('.cshrc') returns ('.cshrc', '').

Changed in version 3.6: Accepts a path-like object.

os.path.supports_unicode_filenames

True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file system).

362

Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

11.3 fileinput — Iterate over lines from multiple input streams

Source code: Lib/fileinput.py

This module implements a helper class and functions to quickly write a loop over standard input or a list of files. If
you just want to read or write one file see open ().

The typical use is:

import fileinput
for line in fileinput.input():
process (line)

This iterates over the lines of all files listed in sys.argv [1:], defaulting to sys . stdin if the list is empty. If a
filename is ' - ', it is also replaced by sys . stdin and the optional arguments mode and openhook are ignored. To
specify an alternative list of filenames, pass it as the first argument to input (). A single file name is also allowed.

All files are opened in text mode by default, but you can override this by specifying the mode parameter in the call to
input () or FileInput. If an I/O error occurs during opening or reading a file, OSError is raised.

Changed in version 3.3: TOError used to be raised,; it is now an alias of OSError.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. using sys.stdin.seek (0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at
all is when the last file opened is empty.

Lines are returned with any newlines intact, which means that the last line in a file may not have one.

You can control how files are opened by providing an opening hook via the openhook parameter to fileinput.
input () or FileInput (). The hook must be a function that takes two arguments, filename and mode, and
returns an accordingly opened file-like object. Two useful hooks are already provided by this module.

The following function is the primary interface of this module:

fileinput .input (files=None, inplace=False, backup=", bufsize=0, mode="r', openhook=None)
Create an instance of the F'i Ie Tnput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration. The parameters to this function will be passed along to
the constructor of the F'i IeTnput class.

The FileInput instance can be used as a context manager in the with statement. In this example, input is
closed after the with statement is exited, even if an exception occurs:

with fileinput.input (files=('spam.txt', 'eggs.txt')) as f:
for line in f:
process (line)

Changed in version 3.2: Can be used as a context manager.
Deprecated since version 3.6, will be removed in version 3.8: The bufsize parameter.

The following functions use the global state created by £ileinput. input (); if there is no active state, Run—
timeError is raised.

fileinput.filename ()
Return the name of the file currently being read. Before the first line has been read, returns None.

fileinput.fileno ()
Return the integer “file descriptor” for the current file. When no file is opened (before the first line and between
files), returns — 1.

fileinput.lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read,
returns 0. After the last line of the last file has been read, returns the line number of that line.

11.3. fileinput — Iterate over lines from multiple input streams 363

https://github.com/python/cpython/tree/3.7/Lib/fileinput.py

The Python Library Reference, Release 3.7.15

fileinput.filelineno ()
Return the line number in the current file. Before the first line has been read, returns 0. After the last line of
the last file has been read, returns the line number of that line within the file.

fileinput.isfirstline ()
Return True if the line just read is the first line of its file, otherwise return False.

fileinput.isstdin()
Return True if the last line was read from sys . stdin, otherwise return False.

fileinput.nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

fileinput.close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

class fileinput.FileInput (files=None, inplace=False, backup=", bufsize=0, mode='r', open-

)) hook=None)
Class F'i 1e Input is the implementation; its methods i lename (), fileno (), lineno (), fileli-

neno (), isfirstline(), isstdin(), nextfile () and close () correspond to the functions of
the same name in the module. In addition it has a readline () method which returns the next input line,
anda___getitem__ () method which implements the sequence behavior. The sequence must be accessed
in strictly sequential order; random access and readline () cannot be mixed.

With mode you can specify which file mode will be passed to open (). It must be one of 'r', 'rU', 'U’
and 'rb'.

The openhook, when given, must be a function that takes two arguments, filename and mode, and returns an
accordingly opened file-like object. You cannot use inplace and openhook together.

A FileInput instance can be used as a context manager in the with statement. In this example, input is
closed after the with statement is exited, even if an exception occurs:

with FileInput (files=('spam.txt', 'eggs.txt')) as input:
process (input)

Changed in version 3.2: Can be used as a context manager.
Deprecated since version 3.4: The ' rU"' and 'U' modes.
Deprecated since version 3.6, will be removed in version 3.8: The bufsize parameter.

Optional in-place filtering: if the keyword argument inplace=True is passed to fileinput.input () or
to the F'i leInput constructor, the file is moved to a backup file and standard output is directed to the input file
(if a file of the same name as the backup file already exists, it will be replaced silently). This makes it possible to
write a filter that rewrites its input file in place. If the backup parameter is given (typically as backup=".<some
extension>"), it specifies the extension for the backup file, and the backup file remains around; by default, the
extension is ' .bak ' and it is deleted when the output file is closed. In-place filtering is disabled when standard input
is read.

The two following opening hooks are provided by this module:

fileinput .hook_compressed (filename, mode)
Transparently opens files compressed with gzip and bzip2 (recognized by the extensions ' .gz ' and ' .bz2")
using the gzip and bz2 modules. If the filename extension is not ' .gz"' or '.bz2", the file is opened
normally (ie, using open () without any decompression).

Usage example: £1 = fileinput.FileInput (openhook=fileinput.hook_compressed)

fileinput .hook_encoded (encoding, errors=None)
Returns a hook which opens each file with open (), using the given encoding and errors to read the file.

364 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

Usage example: fi = fileinput.FileInput (openhook=fileinput.
hook_encoded ("utf-8", "surrogateescape"))

Changed in version 3.6: Added the optional errors parameter.

11.4 stat — Interpreting stat () results

Source code: Lib/stat.py

The stat module defines constants and functions for interpreting the results of os. stat (), os. fstat () and
os.lstat () (if they exist). For complete details about the stat (), fstat () and 1stat () calls, consult the
documentation for your system.

Changed in version 3.4: The stat module is backed by a C implementation.
The stat module defines the following functions to test for specific file types:

stat .S_ISDIR (mode)
Return non-zero if the mode is from a directory.

stat .S_ISCHR (mode)
Return non-zero if the mode is from a character special device file.

stat .S_ISBLK (mode)
Return non-zero if the mode is from a block special device file.

stat .S_ISREG (mode)
Return non-zero if the mode is from a regular file.

stat .S_ISFIFO (mode)
Return non-zero if the mode is from a FIFO (named pipe).

stat .S_ISLNK (mode)
Return non-zero if the mode is from a symbolic link.

stat .S_ISSOCK (mode)
Return non-zero if the mode is from a socket.

stat .S_ISDOOR (mode)
Return non-zero if the mode is from a door.

New in version 3.4.

stat .S_ISPORT (mode)
Return non-zero if the mode is from an event port.

New in version 3.4.

stat .S_ISWHT (mode)
Return non-zero if the mode is from a whiteout.

New in version 3.4.
Two additional functions are defined for more general manipulation of the file’s mode:

stat .S_IMODE (mode)
Return the portion of the file’s mode that can be set by os . chmod () —that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

stat .S_IFMT (mode)
Return the portion of the file’s mode that describes the file type (used by the S_IS* () functions above).

Normally, you would use the os.path.is* () functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overhead of the stat () system call for each

11.4. stat — Interpreting stat () results 365

https://github.com/python/cpython/tree/3.7/Lib/stat.py

The Python Library Reference, Release 3.7.15

test. These are also useful when checking for information about a file that isn’t handled by os . path, like the tests
for block and character devices.

Example:

import os, sys
from stat import *

def walktree (top, callback):
""'recursively descend the directory tree rooted at top,
calling the callback function for each regular file'''

for £ in os.listdir (top):

pathname = os.path.join(top, f)

mode = os.stat (pathname) .st_mode

if S_ISDIR (mode) :
It's a directory, recurse into it
walktree (pathname, callback)

elif S_ISREG (mode) :
It's a file, call the callback function
callback (pathname)

else:
Unknown file type, print a message

<)

print ('Skipping ' % pathname)

def visitfile(file):
print ('visiting', file)

if name == '__main__ ':
walktree (sys.argv[1l], visitfile)

An additional utility function is provided to convert a file’s mode in a human readable string:

stat.filemode (mode)
Convert a file’s mode to a string of the form “-rwxrwxrwx’.

New in version 3.3.
Changed in version 3.4: The function supports S_TFDOOR, S_IFPORT and S_IFWHT.

All the variables below are simply symbolic indexes into the 10-tuple returned by os. stat (), os. fstat () or
os.lstat().

stat.ST_MODE
Inode protection mode.

stat.ST_INO
Inode number.

stat.ST_DEV
Device inode resides on.

stat .ST_NLINK
Number of links to the inode.

stat.ST_UID
User id of the owner.

stat.ST_GID
Group id of the owner.

stat.ST_SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

stat .ST_ATIME
Time of last access.

366 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

stat.ST_MTIME
Time of last modification.

stat.ST_CTIME
The “ctime” as reported by the operating system. On some systems (like Unix) is the time of the last metadata
change, and, on others (like Windows), is the creation time (see platform documentation for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file in bytes.
For FIFOs and sockets under most flavors of Unix (including Linux in particular), the “size” is the number of bytes
waiting to be read at the time of the call to os.stat (), os. fstat (),or os. lstat ();this can sometimes be
useful, especially for polling one of these special files after a non-blocking open. The meaning of the size field for
other character and block devices varies more, depending on the implementation of the underlying system call.

The variables below define the flags used in the ST_MODE field.
Use of the functions above is more portable than use of the first set of flags:

stat.S_IFSOCK
Socket.

stat.S_IFLNK
Symbolic link.

stat.S_IFREG
Regular file.

stat.S_IFBLK
Block device.

stat.S_IFDIR
Directory.

stat .S_IFCHR
Character device.

stat.S_IFIFO
FIFO.

stat.S_IFDOOR
Door.

New in version 3.4.

stat.S_IFPORT
Event port.

New in version 3.4.

stat .S_IFWHT
Whiteout.

New in version 3.4.

Note: S _TFDOOR, S_IFPORT or S_IFWHT are defined as 0 when the platform does not have support for the file
types.

The following flags can also be used in the mode argument of os. chmod ():

stat.S_ISUID
Set UID bit.

stat.S_ISGID
Set-group-ID bit. This bit has several special uses. For a directory it indicates that BSD semantics is to be used
for that directory: files created there inherit their group ID from the directory, not from the effective group ID
of the creating process, and directories created there will also get the S_TSGID bit set. For a file that does
not have the group execution bit (S_ IXGRP) set, the set-group-ID bit indicates mandatory file/record locking
(see also S_ENFMT).

11.4. stat — Interpreting stat () results 367

The Python Library Reference, Release 3.7.15

stat.S_ISVTX
Sticky bit. When this bit is set on a directory it means that a file in that directory can be renamed or deleted
only by the owner of the file, by the owner of the directory, or by a privileged process.

stat .S_IRWXU
Mask for file owner permissions.

stat.S_IRUSR
Owner has read permission.

stat.S_IWUSR
Owner has write permission.

stat .S_IXUSR
Owner has execute permission.

stat .S_IRWXG
Mask for group permissions.

stat .S_IRGRP
Group has read permission.

stat.S_IWGRP
Group has write permission.

stat .S_IXGRP
Group has execute permission.

stat .S_IRWXO
Mask for permissions for others (not in group).

stat.S_IROTH
Others have read permission.

stat.S_IWOTH
Others have write permission.

stat.S_IXOTH
Others have execute permission.

stat .S_ENFMT
System V file locking enforcement. This flag is shared with S_ 7SGID: file/record locking is enforced on files
that do not have the group execution bit (S_ I XGRP) set.

stat.S_IREAD
Unix V7 synonym for S_TRUSR.

stat.S_IWRITE
Unix V7 synonym for S_ ITWUSR.

stat .S_IEXEC
Unix V7 synonym for S_ TXUSR.

The following flags can be used in the flags argument of os.chflags ():

stat .UF_NODUMP
Do not dump the file.

stat .UF_IMMUTABLE
The file may not be changed.

stat .UF_APPEND
The file may only be appended to.

stat .UF_OPAQUE
The directory is opaque when viewed through a union stack.

stat .UF_NOUNLINK
The file may not be renamed or deleted.

368 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.7.15

stat .UF_COMPRESSED
The file is stored compressed (Mac OS X 10.6+).

stat .UF_HIDDEN
The file should not be displayed in a GUI (Mac OS X 10.5+).

stat.SF_ARCHIVED
The file may be archived.

stat.SF_IMMUTABLE
The file may not be changed.

stat .SF_APPEND
The file may only be appended to.

stat .SF_NOUNLINK
The file may not be renamed or deleted.

stat .SF_SNAPSHOT
The file is a snapshot file.

See the *BSD or Mac OS systems man page chflags (2) for more information.

On Windows, the following file attribute constants are available for use when testing bits in the
st_file_attributes member returned by os.stat (). See the Windows API documentation for more
detail on the meaning of these constants.

stat .FILE_ATTRIBUTE_ARCHIVE
stat .FILE_ATTRIBUTE_COMPRESSED
stat .FILE_ATTRIBUTE_DEVICE
stat .FILE_ATTRIBUTE_DIRECTORY
stat .FILE_ATTRIBUTE_ENCRYPTED
stat .FILE_ATTRIBUTE_HIDDEN
stat .FILE_ATTRIBUTE_INTEGRITY_STREAM
stat .FILE_ATTRIBUTE_NORMAL
stat .FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
stat .FILE_ATTRIBUTE_NO_SCRUB_DATA
stat .FILE_ATTRIBUTE_OFFLINE
stat .FILE_ATTRIBUTE_READONLY
stat .FILE_ATTRIBUTE_REPARSE_POINT
stat .FILE_ATTRIBUTE_SPARSE_FILE
stat .FILE_ATTRIBUTE_SYSTEM
stat .FILE_ATTRIBUTE_TEMPORARY
stat .FILE_ATTRIBUTE_VIRTUAL
New in version 3.5.

11.5 filecmp — File and Directory Comparisons

Source code: Lib/filecmp.py

The filecmp module defines functions to compare files and directories, with various optional time/correctness
trade-offs. For comparing files, see also the di £ 71 ib module.

The i Iecmp module defines the following functions:

filecmp.cmp (f1, 2, shallow=True)
Compare the files named f1 and f2, returning True if they seem equal, False otherwise.

If shallow is true, files with identical os. stat () signatures are taken to be equal. Otherwise, the contents
of the files are compared.

Note that no external programs are called from this function, giving it portability and efficiency.

11.5. filecmp — File and Directory Comparisons 369

https://msdn.microsoft.com/en-us/library/windows/desktop/gg258117.aspx
https://github.com/python/cpython/tree/3.7/Lib/filecmp.py

The Python Library Reference, Release 3.7.15

This function uses a cache for past comparisons and the results, with cache entries invalidated if the os.
stat () information for the file changes. The entire cache may be cleared using clear_cache ().

filecmp.cmpfiles (dirl, dir2, common, shallow="True)
Compare the files in the two directories dirl and dir2 whose names are given by common.

Returns three lists of file names: match, mismatch, errors. match contains the list of files that match, mismatch
contains the names of those that don’t, and errors lists the names of files which could not be compared. Files
are listed in errors if they don’t exist in one of the directories, the user lacks permission to read them or if the
comparison could not be done for some other reason.

The shallow parameter has the same meaning and default value as for i lecmp.cmp ().

For example, cmpfiles(