Python Frequently Asked Questions
Release 3.6.7rc2

Guido van Rossum
and the Python development team

October 13, 2018

Python Software Foundation
Email: docs@python.org

oo

g a w »

General Python FAQ
Programming FAQ

Design and History FAQ
Library and Extension FAQ
Extending/Embedding FAQ
Python on Windows FAQ
Graphic User Interface FAQ
“Why is Python Installed on my Computer?” FAQ
Glossary

About these documents
History and License

Copyright

Index

CONTENTS

39
53
65
73
79
83
85
99
101
119

121

CHAPTER
ONE

GENERAL PYTHON FAQ

1.1 General Information

1.1.1 What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, ex-
ceptions, dynamic typing, very high level dynamic data types, and classes. Python combines remarkable
power with very clear syntax. It has interfaces to many system calls and libraries, as well as to various
window systems, and is extensible in C or C++. It is also usable as an extension language for applications
that need a programmable interface. Finally, Python is portable: it runs on many Unix variants, on the
Mac, and on Windows 2000 and later.

To find out more, start with tutorial-index. The Beginner’s Guide to Python links to other introductory
tutorials and resources for learning Python.

1.1.2 What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that holds the copyright on
Python versions 2.1 and newer. The PSF’s mission is to advance open source technology related to the
Python programming language and to publicize the use of Python. The PSF’s home page is at https:
//www.python.org/psf/.

Donations to the PSF are tax-exempt in the US. If you use Python and find it helpful, please contribute via
the PSF donation page.

1.1.3 Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the copyrights in and display those
copyrights in any documentation about Python that you produce. If you honor the copyright rules, it’s OK
to use Python for commercial use, to sell copies of Python in source or binary form (modified or unmodified),
or to sell products that incorporate Python in some form. We would still like to know about all commercial
use of Python, of course.

See the PSF license page to find further explanations and a link to the full text of the license.

The Python logo is trademarked, and in certain cases permission is required to use it. Consult the Trademark
Usage Policy for more information.

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://www.python.org/psf/license/
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, Release 3.6.7rc2

1.1.4 Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at CWI,
and from working with this group I had learned a lot about language design. This is the origin of
many Python features, including the use of indentation for statement grouping and the inclusion
of very-high-level data types (although the details are all different in Python).

I had a number of gripes about the ABC language, but also liked many of its features. It was
impossible to extend the ABC language (or its implementation) to remedy my complaints — in
fact its lack of extensibility was one of its biggest problems. I had some experience with using
Modula-2+ and talked with the designers of Modula-3 and read the Modula-3 report. Modula-3
is the origin of the syntax and semantics used for exceptions, and some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We needed a better
way to do system administration than by writing either C programs or Bourne shell scripts,
since Amoeba had its own system call interface which wasn’t easily accessible from the Bourne
shell. My experience with error handling in Amoeba made me acutely aware of the importance
of exceptions as a programming language feature.

It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba
system calls would fill the need. I realized that it would be foolish to write an Amoeba-specific
language, so I decided that I needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try.
During the next year, while still mostly working on it in my own time, Python was used in the
Amoeba project with increasing success, and the feedback from colleagues made me add many
early improvements.

In February 1991, after just over a year of development, I decided to post to USENET. The rest
is in the Misc/HISTORY file.

1.1.5 What is Python good for?

Python is a high-level general-purpose programming language that can be applied to many different classes
of problems.

The language comes with a large standard library that covers areas such as string processing (regular expres-
sions, Unicode, calculating differences between files), Internet protocols (HTTP, FTP, SMTP, XML-RPC,
POP, IMAP, CGI programming), software engineering (unit testing, logging, profiling, parsing Python code),
and operating system interfaces (system calls, filesystems, TCP/IP sockets). Look at the table of contents
for library-index to get an idea of what’s available. A wide variety of third-party extensions are also available.
Consult the Python Package Index to find packages of interest to you.

1.1.6 How does the Python version numbering scheme work?

Python versions are numbered A.B.C or A.B. A is the major version number — it is only incremented for
really major changes in the language. B is the minor version number, incremented for less earth-shattering
changes. C is the micro-level — it is incremented for each bugfix release. See PEP 6 for more information
about bugfix releases.

Not all releases are bugfix releases. In the run-up to a new major release, a series of development releases are
made, denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet
finalized; it’s not unexpected to see an interface change between two alpha releases. Betas are more stable,

2 Chapter 1. General Python FAQ

https://pypi.org
https://www.python.org/dev/peps/pep-0006

Python Frequently Asked Questions, Release 3.6.7rc2

preserving existing interfaces but possibly adding new modules, and release candidates are frozen, making
no changes except as needed to fix critical bugs.

Alpha, beta and release candidate versions have an additional suffix. The suffix for an alpha version is “aN”
for some small number N, the suffix for a beta version is “bN” for some small number N, and the suffix
for a release candidate version is “cN” for some small number N. In other words, all versions labeled 2.0aN
precede the versions labeled 2.0bN,; which precede versions labeled 2.0cN, and those precede 2.0.

You may also find version numbers with a “+4” suffix, e.g. “2.2+”. These are unreleased versions, built
directly from the CPython development repository. In practice, after a final minor release is made, the
version is incremented to the next minor version, which becomes the “a0” version, e.g. “2.4a0".

See also the documentation for sys.version, sys.hexversion, and sys.version_info.

1.1.7 How do | obtain a copy of the Python source?
The latest Python source distribution is always available from python.org, at https://www.python.org/
downloads/. The latest development sources can be obtained at https://github.com/python/cpython/.

The source distribution is a gzipped tar file containing the complete C source, Sphinx-formatted documen-
tation, Python library modules, example programs, and several useful pieces of freely distributable software.
The source will compile and run out of the box on most UNIX platforms.

Consult the Getting Started section of the Python Developer’s Guide for more information on getting the
source code and compiling it.

1.1.8 How do | get documentation on Python?

The standard documentation for the current stable version of Python is available at https://docs.python.
org/3/. PDF, plain text, and downloadable HTML versions are also available at https://docs.python.org/
3/download.html.

The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The
reStructured Text source for the documentation is part of the Python source distribution.

1.1.9 I’'ve never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation includes tutorial-index.

Consult the Beginner’s Guide to find information for beginning Python programmers, including lists of
tutorials.

1.1.10 Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp. lang.python, and a mailing list, python-list. The newsgroup and mailing list
are gatewayed into each other — if you can read news it’s unnecessary to subscribe to the mailing list. comp.
lang.python is high-traffic, receiving hundreds of postings every day, and Usenet readers are often more
able to cope with this volume.

Announcements of new software releases and events can be found in comp.lang.python.announce, a low-traffic
moderated list that receives about five postings per day. It’s available as the python-announce mailing list.

More info about other mailing lists and newsgroups can be found at https://www.python.org/community/
lists/.

1.1. General Information 3

https://www.python.org/downloads/
https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/download.html
https://docs.python.org/3/download.html
http://sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman/listinfo/python-announce-list
https://www.python.org/community/lists/
https://www.python.org/community/lists/

Python Frequently Asked Questions, Release 3.6.7rc2

1.1.11 How do | get a beta test version of Python?

Alpha and beta releases are available from https://www.python.org/downloads/. All releases are announced
on the comp.lang.python and comp.lang.python.announce newsgroups and on the Python home page at
https://www.python.org/; an RSS feed of news is available.

You can also access the development version of Python through Git. See The Python Developer’s Guide for
details.

1.1.12 How do | submit bug reports and patches for Python?

To report a bug or submit a patch, please use the Roundup installation at https://bugs.python.org/.

You must have a Roundup account to report bugs; this makes it possible for us to contact you if we have
follow-up questions. It will also enable Roundup to send you updates as we act on your bug. If you had
previously used SourceForge to report bugs to Python, you can obtain your Roundup password through
Roundup’s password reset procedure.

For more information on how Python is developed, consult the Python Developer’s Guide.

1.1.13 Are there any published articles about Python that | can reference?

It’s probably best to cite your favorite book about Python.
The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers Using the Python
Programming Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp
283-303.

1.1.14 Are there any books on Python?

Yes, there are many, and more are being published. See the python.org wiki at https://wiki.python.org/
moin/PythonBooks for a list.

You can also search online bookstores for “Python” and filter out the Monty Python references; or perhaps
search for “Python” and “language”.

1.1.15 Where in the world is www.python.org located?

The Python project’s infrastructure is located all over the world. www.python.org is graciously hosted by
Rackspace, with CDN caching provided by Fastly. Upfront Systems hosts bugs.python.org. Many other
Python services like the Wiki are hosted by Oregon State University Open Source Lab.

1.1.16 Why is it called Python?

When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty
Python’s Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that
was short, unique, and slightly mysterious, so he decided to call the language Python.

4 Chapter 1. General Python FAQ

https://www.python.org/downloads/
https://www.python.org/
https://devguide.python.org/
https://bugs.python.org/
https://bugs.python.org/user?@template=forgotten
https://devguide.python.org/
https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
https://www.python.org
https://www.rackspace.com
https://www.fastly.com
http://www.upfrontsystems.co.za/
https://bugs.python.org
https://wiki.python.org
https://osuosl.org
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python

Python Frequently Asked Questions, Release 3.6.7rc2

1.1.17 Do | have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

1.2 Python in the real world

1.2.1 How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this
seems likely to continue. Currently there are usually around 18 months between major releases.

The developers issue “bugfix” releases of older versions, so the stability of existing releases gradually improves.
Bugfix releases, indicated by a third component of the version number (e.g. 2.5.3, 2.6.2), are managed for
stability; only fixes for known problems are included in a bugfix release, and it’s guaranteed that interfaces
will remain the same throughout a series of bugfix releases.

The latest stable releases can always be found on the Python download page. There are two recommended
production-ready versions at this point in time, because at the moment there are two branches of stable
releases: 2.x and 3.x. Python 3.x may be less useful than 2.x, since currently there is more third party
software available for Python 2 than for Python 3. Python 2 code will generally not run unchanged in
Python 3.

1.2.2 How many people are using Python?

There are probably tens of thousands of users, though it’s difficult to obtain an exact count.

Python is available for free download, so there are no sales figures, and it’s available from many different
sites and packaged with many Linux distributions, so download statistics don’t tell the whole story either.

The comp.lang.python newsgroup is very active, but not all Python users post to the group or even read it.

1.2.3 Have any significant projects been done in Python?

See https://www.python.org/about /success for a list of projects that use Python. Consulting the proceedings
for past Python conferences will reveal contributions from many different companies and organizations.

High-profile Python projects include the Mailman mailing list manager and the Zope application server.
Several Linux distributions, most notably Red Hat, have written part or all of their installer and system
administration software in Python. Companies that use Python internally include Google, Yahoo, and
Lucasfilm Ltd.

1.2.4 What new developments are expected for Python in the future?

See https://www.python.org/dev/peps/ for the Python Enhancement Proposals (PEPs). PEPs are design
documents describing a suggested new feature for Python, providing a concise technical specification and a
rationale. Look for a PEP titled “Python X.Y Release Schedule”, where X.Y is a version that hasn’t been
publicly released yet.

New development is discussed on the python-dev mailing list.

1.2. Python in the real world 5

https://www.python.org/downloads/
https://www.python.org/about/success
https://www.python.org/community/workshops/
http://www.list.org
http://www.zope.org
https://www.redhat.com
https://www.python.org/dev/peps/
https://mail.python.org/mailman/listinfo/python-dev/

Python Frequently Asked Questions, Release 3.6.7rc2

1.2.5 Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the world, so any change in the
language that invalidates more than a very small fraction of existing programs has to be frowned upon.
Even if you can provide a conversion program, there’s still the problem of updating all documentation; many
books have been written about Python, and we don’t want to invalidate them all at a single stroke.

Providing a gradual upgrade path is necessary if a feature has to be changed. PEP 5 describes the procedure
followed for introducing backward-incompatible changes while minimizing disruption for users.

1.2.6 Is Python a good language for beginning programmers?

Yes.

It is still common to start students with a procedural and statically typed language such as Pascal, C, or a
subset of C4++ or Java. Students may be better served by learning Python as their first language. Python
has a very simple and consistent syntax and a large standard library and, most importantly, using Python in
a beginning programming course lets students concentrate on important programming skills such as problem
decomposition and data type design. With Python, students can be quickly introduced to basic concepts
such as loops and procedures. They can probably even work with user-defined objects in their very first
course.

For a student who has never programmed before, using a statically typed language seems unnatural. It
presents additional complexity that the student must master and slows the pace of the course. The stu-
dents are trying to learn to think like a computer, decompose problems, design consistent interfaces, and
encapsulate data. While learning to use a statically typed language is important in the long term, it is not
necessarily the best topic to address in the students’ first programming course.

Many other aspects of Python make it a good first language. Like Java, Python has a large standard
library so that students can be assigned programming projects very early in the course that do something.
Assignments aren’t restricted to the standard four-function calculator and check balancing programs. By
using the standard library, students can gain the satisfaction of working on realistic applications as they
learn the fundamentals of programming. Using the standard library also teaches students about code reuse.
Third-party modules such as PyGame are also helpful in extending the students’ reach.

Python’s interactive interpreter enables students to test language features while they’re programming. They
can keep a window with the interpreter running while they enter their program’s source in another window.
If they can’t remember the methods for a list, they can do something like this:

>>> L = []

>>> dir(L)

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__',
'__dir__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__"',
'__dimul__', '__init__', '__iter__', '__le__', '__len__', '__1t__"',

' mul__', '_ne__', '__new__', '__reduce__', '__reduce_ex__"',
'__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__',
'__sizeof__', '__str__', '__subclasshook__', 'append', 'clear',
'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']

>>> [d for d in dir(L) if '__' not in d]

['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort
]

>>> help(L.append)
Help on built-in function append:

(continues on next page)

6 Chapter 1. General Python FAQ

https://www.python.org/dev/peps/pep-0005

Python Frequently Asked Questions, Release 3.6.7rc2

(continued from previous page)

append(...)
L.append(object) -> None -- append object to end

>>> L.append (1)
>>> L

[1]

With the interpreter, documentation is never far from the student as they are programming.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python
using Tkinter. PythonWin is a Windows-specific IDE. Emacs users will be happy to know that there is a
very good Python mode for Emacs. All of these programming environments provide syntax highlighting,
auto-indenting, and access to the interactive interpreter while coding. Consult the Python wiki for a full list
of Python editing environments.

If you want to discuss Python’s use in education, you may be interested in joining the edu-sig mailing list.

1.2. Python in the real world 7

https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

Python Frequently Asked Questions, Release 3.6.7rc2

8 Chapter 1. General Python FAQ

CHAPTER
TWO

PROGRAMMING FAQ

2.1 General Questions

2.1.1 Is there a source code level debugger with breakpoints, single-stepping, etc.?

Yes.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard
Python library, and is documented in the Library Reference Manual. You can also write your own
debugger by using the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally
available as Tools/scripts/idle), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The Pythonwin debugger colors
breakpoints and has quite a few cool features such as debugging non-Pythonwin programs. Pythonwin is
available as part of the Python for Windows Extensions project and as a part of the ActivePython distribution
(see https://www.activestate.com/activepython).

Boa Constructor is an IDE and GUI builder that uses wxWidgets. It offers visual frame creation and
manipulation, an object inspector, many views on the source like object browsers, inheritance hierarchies,
doc string generated html documentation, an advanced debugger, integrated help, and Zope support.

Eric is an IDE built on PyQt and the Scintilla editing component.

Pydb is a version of the standard Python debugger pdb, modified for use with DDD (Data Display Debugger),
a popular graphical debugger front end. Pydb can be found at http://bashdb.sourceforge.net/pydb/ and
DDD can be found at https://www.gnu.org/software/ddd.

There are a number of commercial Python IDEs that include graphical debuggers. They include:
o Wing IDE (https://wingware.com/)
o Komodo IDE (https://komodoide.com/)
e PyCharm (https://www.jetbrains.com/pycharm/)

2.1.2 Is there a tool to help find bugs or perform static analysis?

Yes.

PyChecker is a static analysis tool that finds bugs in Python source code and warns about code complexity
and style. You can get PyChecker from http://pychecker.sourceforge.net/.

Pylint is another tool that checks if a module satisfies a coding standard, and also makes it possible to write
plug-ins to add a custom feature. In addition to the bug checking that PyChecker performs, Pylint offers

https://sourceforge.net/projects/pywin32/
https://www.activestate.com/activepython
http://boa-constructor.sourceforge.net/
http://eric-ide.python-projects.org/
http://bashdb.sourceforge.net/pydb/
https://www.gnu.org/software/ddd
https://wingware.com/
https://komodoide.com/
https://www.jetbrains.com/pycharm/
http://pychecker.sourceforge.net/
https://www.pylint.org/

Python Frequently Asked Questions, Release 3.6.7rc2

some additional features such as checking line length, whether variable names are well-formed according to
your coding standard, whether declared interfaces are fully implemented, and more. https://docs.pylint.org/
provides a full list of Pylint’s features.

2.1.3 How can | create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users
can download and run without having to install the Python distribution first. There are a number of tools
that determine the set of modules required by a program and bind these modules together with a Python
binary to produce a single executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts
Python byte code to C arrays; a C compiler you can embed all your modules into a new program, which is
then linked with the standard Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the
modules in the standard Python path as well as in the source directory (for built-in modules). It then turns
the bytecode for modules written in Python into C code (array initializers that can be turned into code
objects using the marshal module) and creates a custom-made config file that only contains those built-in
modules which are actually used in the program. It then compiles the generated C code and links it with
the rest of the Python interpreter to form a self-contained binary which acts exactly like your script.

Obviously, freeze requires a C compiler. There are several other utilities which don’t. One is Thomas Heller’s
py2exe (Windows only) at

http://www.py2exe.org/
Another tool is Anthony Tuininga’s c¢x_ Freeze.
2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am | getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding
an assignment statement somewhere in the body of a function.

This code:

>>> x = 10

>>> def bar():

. print(x)
>>> bar()
10

works, but this code:

>>> x = 10

>>> def foo():
print(x)
x += 1

10 Chapter 2. Programming FAQ

https://docs.pylint.org/
http://www.py2exe.org/
http://cx-freeze.sourceforge.net/
https://www.python.org/dev/peps/pep-0008

Python Frequently Asked Questions, Release 3.6.7rc2

results in an UnboundLocalError:

>>> foo()
Traceback (most recent call last):

UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that
scope and shadows any similarly named variable in the outer scope. Since the last statement in foo assigns
a new value to x, the compiler recognizes it as a local variable. Consequently when the earlier print (x)
attempts to print the uninitialized local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():
global x
print(x)

Ce x += 1

>>> foobar ()

10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation
with class and instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print(x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def foo():

x = 10
def bar(Q):
nonlocal x
print(x)
x += 1
bar ()
print(x)
>>> foo()
10
11

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned
a value anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for
assigned variables provides a bar against unintended side-effects. On the other hand, if global was required
for all global references, you’d be using global all the time. You’d have to declare as global every reference
to a built-in function or to a component of an imported module. This clutter would defeat the usefulness of
the global declaration for identifying side-effects.

2.2. Core Language 11

Python Frequently Asked Questions, Release 3.6.7rc2

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
squares.append (lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x**2. You might expect that, when called, they
would return, respectively, 0, 1, 4, 9, and 16. However, when you actually try you will see that they all
return 16:

>>> squares[2])
16
>>> squares[4] ()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when
the lambda is called — not when it is defined. At the end of the loop, the value of x is 4, so all the functions
now return 4**2 i.e. 16. You can also verify this by changing the value of x and see how the results of the
lambdas change:

>>> x = 8
>>> squares[2])
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely
on the value of the global x:

>>> squares = []
>>> for x in range(5):
squares.append(lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that
it has the same value that x had at that point in the loop. This means that the value of n will be 0 in the
first lambda, 1 in the second, 2 in the third, and so on. Therefore each lambda will now return the correct
result:

>>> squares[2] ()
4
>>> squares[4]1 ()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

2.2.4 How do | share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module
(often called config or cfg). Just import the config module in all modules of your application; the module
then becomes available as a global name. Because there is only one instance of each module, any changes
made to the module object get reflected everywhere. For example:

config.py:

12 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

x =0 # Default value of the 'z' configuration setting

mod.py:

import config
config.x = 1

main.py:

import config
import mod
print(config.x)

Note that using a module is also the basis for implementing the Singleton design pattern, for the same reason.

2.2.5 What are the “best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the importer’s namespace, and makes
it much harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and
avoids questions of whether the module name is in scope. Using one import per line makes it easy to add
and delete module imports, but using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:
1. standard library modules — e.g. sys, os, getopt, re

2. third-party library modules (anything installed in Python’s site-packages directory) — e.g.
mx.DateTime, ZODB, PIL.Image, etc.

3. locally-developed modules

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports.
Gordon McMillan says:

Circular imports are fine where both modules use the “import <module>” form of import. They
fail when the 2nd module wants to grab a name out of the first (“from module import name”)
and the import is at the top level. That’s because names in the 1st are not yet available, because
the first module is busy importing the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that
function. By the time the import is called, the first module will have finished initializing, and the second
module can do its import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-
specific. In that case, it may not even be possible to import all of the modules at the top of the file. In this
case, importing the correct modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem
such as avoiding a circular import or are trying to reduce the initialization time of a module. This technique
is especially helpful if many of the imports are unnecessary depending on how the program executes. You
may also want to move imports into a function if the modules are only ever used in that function. Note that
loading a module the first time may be expensive because of the one time initialization of the module, but
loading a module multiple times is virtually free, costing only a couple of dictionary lookups. Even if the
module name has gone out of scope, the module is probably available in sys.modules.

2.2. Core Language 13

Python Frequently Asked Questions, Release 3.6.7rc2

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo(mydict={}): # Danger: shared reference to one dict for all calls
. compute something ...
mydict [key] = value
return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two
items because when foo() begins executing, mydict starts out with an item already in it.

It is often expected that a function call creates new objects for default values. This is not what happens.
Default values are created exactly once, when the function is defined. If that object is changed, like the
dictionary in this example, subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes
to mutable objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable objects as default values.
Instead, use None as the default value and inside the function, check if the parameter is None and create a
new list/dictionary /whatever if it is. For example, don’t write:

def foo(mydict={}):

but:

def foo(mydict=None):
if mydict is None:
mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique
is to cache the parameters and the resulting value of each call to the function, and return the cached value
if the same value is requested again. This is called “memoizing”, and can be implemented like this:

Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(argl, arg2, *, _cache={}):
if (argl, arg2) in _cache:
return _cache[(argl, arg2)]

Calculate the wvalue

result = ... expensive computation ...

_cache[(argl, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

2.2.7 How can | pass optional or keyword parameters from one function to another?

Collect the arguments using the * and *x specifiers in the function’s parameter list; this gives you the
positional arguments as a tuple and the keyword arguments as a dictionary. You can then pass these
arguments when calling another function by using * and **:

def f(x, *args, **kwargs):

(continues on next page)

14 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

(continued from previous page)

kwargs['width'] = '14.3c'

g(x, *args, **kwargs)

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values
actually passed to a function when calling it. Parameters define what types of arguments a function can
accept. For example, given the function definition:

def func(foo, bar=None, **kwargs):
pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

func (42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list ‘y’ also change list ‘x’?

If you wrote code like:

>>>
>>>
>>>
>>>
[10]
>>> x
[10]

=0
=x
.append (10)

<< <9 M

you might be wondering why appending an element to y changed x too.
There are two factors that produce this result:

1. Variables are simply names that refer to objects. Doing y = x doesn’t create a copy of the list — it
creates a new variable y that refers to the same object x refers to. This means that there is only one
object (the list), and both x and y refer to it.

2. Lists are mutable, which means that you can change their content.

After the call to append (), the content of the mutable object has changed from [] to [10]. Since both the
variables refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

>>>
>>>
>>>
>>>
6

>>> y

=5 # ints are immutable
=X
=x+1 # 5 can't be mutated, we are creating a new object here

M oM< M

2.2. Core Language 15

Python Frequently Asked Questions, Release 3.6.7rc2

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and
when we do x = x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a
new object (the int 6) and assigning it to x (that is, changing which object x refers to). After this assignment
we have two objects (the ints 6 and 5) and two variables that refer to them (x now refers to 6 but y still
refers to 5).

Some operations (for example y.append (10) and y.sort ()) mutate the object, whereas superficially similar
operations (for example y = y + [10] and sorted(y)) create a new object. In general in Python (and in
all cases in the standard library) a method that mutates an object will return None to help avoid getting the
two types of operations confused. So if you mistakenly write y.sort () thinking it will give you a sorted copy
of y, you'll instead end up with None, which will likely cause your program to generate an easily diagnosed
error.

However, there is one class of operations where the same operation sometimes has different behaviors with
different types: the augmented assignment operators. For example, += mutates lists but not tuples or
ints (a_list += [1, 2, 3] is equivalent to a_list.extend([1, 2, 3]) and mutates a_list, whereas
some_tuple += (1, 2, 3) and some_int += 1 create new objects).

In other words:

« If we have a mutable object (1ist, dict, set, etc.), we can use some specific operations to mutate it
and all the variables that refer to it will see the change.

o If we have an immutable object (str, int, tuple, etc.), all the variables that refer to it will always see
the same value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the
built-in function id().

2.2.10 How do | write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to
objects, there’s no alias between an argument name in the caller and callee, and so no call-by-reference per
se. You can achieve the desired effect in a number of ways.

1. By returning a tuple of the results:

def func2(a, b):

a = 'new-value' # a and b are local names
b=>b+1 # assigned to nmew objects
return a, b # return new values

X, y = 'old-value', 99
x, y = func2(x, y)
print(x, y) # output: new-value 100

This is almost always the clearest solution.
2. By using global variables. This isn’t thread-safe, and is not recommended.

3. By passing a mutable (changeable in-place) object:

def funci(a):
af[0] = 'new-value' # 'a' references a mutable list
al1] = af1] + 1 # changes a shared object

args = ['old-value', 99]
funcl(args)
print(args[0], args([1]) # output: new-value 100

16 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

4. By passing in a dictionary that gets mutated:

def func3(args):
args['a']l] = 'new-value' # args is a mutable dictionary
args['b'] = args['b'] + 1 # change it in-place

args = {'a': 'old-value', 'b': 99}
func3(args)
print(args['a'l, args['b'])

5. Or bundle up values in a class instance:

class callByRef:
def __init__(self, **args):
for (key, value) in args.items():
setattr(self, key, value)

def func4(args):
args.a = 'new-value' # args s a mutable callByRef
args.b = args.b + 1 # change object in-place

args = callByRef(a='old-value', b=99)
func4(args)
print(args.a, args.b)

There’s almost never a good reason to get this complicated.

Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you
wanted to define linear(a,b) which returns a function £ (x) that computes the value a*x+b. Using nested
scopes:

def linear(a, b):

def result(x):
return a * x + b

return result

Or using a callable object:

class linear:

def __init__(self, a, b):
self.a, self.b = a, b

def __call__(self, x):
return self.a * x + self.b

In both cases,

taxes = linear (0.3, 2)

gives a callable object where taxes(10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code.
However, note that a collection of callables can share their signature via inheritance:

2.2. Core Language 17

Python Frequently Asked Questions, Release 3.6.7rc2

class exponential(linear):
__init__ inherited
def __call__(self, x):
return self.a *x (x ** self.b)

Object can encapsulate state for several methods:

class counter:
value = 0

def set(self, x):
self.value = x

def up(self):
self.value = self.value + 1

def down(self):
self.value = self.value - 1

count = counter()
inc, dec, reset = count.up, count.down, count.set

Here inc(), dec() and reset() act like functions which share the same counting variable.

2.2.12 How do | copy an object in Python?

In general, try copy.copy() or copy.deepcopy() for the general case. Not all objects can be copied, but
most can.

Some objects can be copied more easily. Dictionaries have a copy () method:

’newdict = olddict.copy()

Sequences can be copied by slicing:

new_1 = 1[:]

2.2.13 How can | find the methods or attributes of an object?

For an instance x of a user-defined class, dir(x) returns an alphabetized list of the names containing the
instance attributes and methods and attributes defined by its class.

2.2.14 How can my code discover the name of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds
a name to a value; The same is true of def and class statements, but in that case the value is a callable.
Consider the following code:

>>> class A:
pass

>>> B = A

(continues on next page)

18 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

(continued from previous page)

>>> a = BQO

>>> b = a

>>> print(b)

<__main__.A object at 0x16D07CC>
>>> print(a)

<__main__.A object at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B
the created instance is still reported as an instance of class A. However, it is impossible to say whether the
instance’s name is a or b, since both names are bound to the same value.

Generally speaking it should not be necessary for your code to “know the names” of particular values. Unless
you are deliberately writing introspective programs, this is usually an indication that a change of approach
might be beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself
cannot tell you its name, and it doesn’t really care — so the only way to find out what it’s called
is to ask all your neighbours (namespaces) if it’s their cat (object)...

....and don’t be surprised if you’ll find that it’s known by many names, or no name at all!

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> |Ial| in l|'b|l, l|all
(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you
had entered:

’("a" in "b"), "a"

not:

"a" in ("b", "a")
|

The same is true of the various assignment operators (=, += etc). They are not truly operators but syntactic
delimiters in assignment statements.

2.2.16 Is there an equivalent of C’s “?:” ternary operator?

Yes, there is. The syntax is as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25
small = x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

[expression] and [on_true] or [on_false]

2.2. Core Language 19

Python Frequently Asked Questions, Release 3.6.7rc2

However, this idiom is unsafe, as it can give wrong results when on__true has a false boolean value. Therefore,
it is always better to use the ... if ... else ... form.

2.2.17 Is it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting lambda within lambda. See the following three examples, due to Ulf
Bartelt:

from functools import reduce

Primes < 1000
print(list(filter(None,map(lambda y:y*reduce(lambda x,y:x*y!=0,
map (lambda x,y=y:y%x,range(2,int (pow(y,0.5)+1))),1),range(2,1000)))))

First 10 Fibonacct numbers
print(list(map(lambda x,f=lambda x,f:(f(x-1,f)+f(x-2,f)) if x>1 else 1:
f(x,f), range(10))))

Mandelbrot set

print((lambda Ru,Ro,Iu,Io,IM,Sx,Sy:reduce(lambda x,y:x+y,map(lambda y,
Tu=Iu,Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc,Iu=Iu,Ilo=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx,Sy=Sy:reduce(lambda x,y:x+y,map(lambda x,xc=Ru,yc=yc,Ru=Ru,Ro=Ro,
i=i,8x=8x,F=lambda xc,yc,x,y,k,f=lambda xc,yc,x,y,k,f:(k<=0)or (x*x+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f) :f(xc,yc,x,y,k,f) chr(
64+F (Ru+x* (Ro-Ru) /Sx,yc,0,0,1)) ,range(Sx))) :L(Iuty* (Io-Iu) /Sy) ,range(Sy
2.1, 0.7, -1.2, 1.2, 30, 80, 24))

___ / o\ ___ /| / |__ lines on screen

4 /4 / | columns on screen

/ / o mazimum of "iterations”
/ e range on y axwis

e range on T azis

Don’t try this at home, kids!

2.3 Numbers and strings

2.3.1 How do | specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase “o”. For example,
to set the variable “a” to the octal value “10” (8 in decimal), type:

>>> a = 0010
>>> a
8

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or

uppercase “x”. Hexadecimal digits can be specified in lower or uppercase. For example, in the Python
interpreter:

>>> a = 0Oxab
>>> a
165

>>> b

0XB2

(continues on next page)

20 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

(continued from previous page)

>>> b
178

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that i % j have the same sign as j. If you want that, and also want:

i= G/ §)*xji+G&%P

then integer division has to return the floor. C also requires that identity to hold, and then compilers that
truncate i // j need to make i % j have the same sign as i.

There are few real use cases for i % j when j is negative. When j is positive, there are many, and in
virtually all of them it’s more useful for i % j to be >= 0. If the clock says 10 now, what did it say 200
hours ago? -190 % 12 == 2 is useful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do | convert a string to a number?

For integers, use the built-in int () type constructor, e.g. int('144') == 144. Similarly, float () converts
to floating-point, e.g. float('144') == 144.0.

By default, these interpret the number as decimal, so that int('0144') == 144 and int('0x144') raises
ValueError. int(string, base) takes the base to convert from as a second optional argument, so
int ('0x144', 16) == 324. If the base is specified as 0, the number is interpreted using Python’s rules: a
leading ‘0o’ indicates octal, and ‘0x’ indicates a hex number.

Do not use the built-in function eval() if all you need is to convert strings to numbers. eval() will be
significantly slower and it presents a security risk: someone could pass you a Python expression that might
have unwanted side effects. For example, someone could pass __import__('os').system("rm -rf $HOME")
which would erase your home directory.

eval() also has the effect of interpreting numbers as Python expressions, so that e.g. eval('09') gives a
syntax error because Python does not allow leading ‘0’ in a decimal number (except ‘0’).

2.3.4 How do | convert a number to a string?

To convert, e.g., the number 144 to the string ‘144’, use the built-in type constructor str(). If you want a
hexadecimal or octal representation, use the built-in functions hex() or oct (). For fancy formatting, see the
f-strings and formatstrings sections, e.g. "{:04d}".format (144) yields '0144' and "{:.3f}".format (1.
0/3.0) yields '0.333".

2.3.5 How do | modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from
the various parts you want to assemble it from. However, if you need an object with the ability to modify
in-place unicode data, try using an io.StringIO0 object or the array module:

>>> import io

>>> s = "Hello, world"
>>> sio = io.StringI0(s)
>>> sio.getvalue()

(continues on next page)

2.3. Numbers and strings 21

Python Frequently Asked Questions, Release 3.6.7rc2

(continued from previous page)

'Hello, world'
>>> sio.seek(7)

7

>>> sio.write("there!")

6

>>> sio.getvalue()
'Hello, there!'

>>> import array

>>> a

= array.array('u', s)

>>> print(a)

array('u', 'Hello, world')
>>> al0] = 'y’

>>> print(a)

array('u', 'yello, world')
>>> a.tounicode()

'yello, world'

2.3.6 How do | use strings to call functions/methods?

There are various techniques.

The best is to use a dictionary that maps strings to functions. The primary advantage of this technique
is that the strings do not need to match the names of the functions. This is also the primary technique
used to emulate a case construct:

def a():
pass

def b(O):
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input(O]1() # Note trailing parens to call function

Use the built-in function getattr():

import foo
getattr(foo, 'bar')()

Note that getattr() works on any object, including classes, class instances, modules, and so on.

This is used in several places in the standard library, like this:

class Foo:
def do_foo(self):

def do_bar(self):

f = getattr(foo_instance, 'do_' + opname)

£0O

Use locals() or eval() to resolve the function name:

22

Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

def myFunc(Q):
print("hello")

fname = "myFunc"

f = locals() [fname]
£0O

f = eval(fname)

£0O

Note: Using eval() is slow and dangerous. If you don’t have absolute control over the contents of the
string, someone could pass a string that resulted in an arbitrary function being executed.

2.3.7 Is there an equivalent to Perl’s chomp() for removing trailing newlines from
strings?

You can use S.rstrip("\r\n") to remove all occurrences of any line terminator from the end of the string
S without removing other trailing whitespace. If the string S represents more than one line, with several
empty lines at the end, the line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
n \r\nll

- "\r\n")

>>> lines.rstrip("\n\r")

'line 1

Since this is typically only desired when reading text one line at a time, using S.rstrip() this way works
well.

2.3.8 Is there a scanf() or sscanf() equivalent?

Not as such.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words
using the split () method of string objects and then convert decimal strings to numeric values using int ()
or float (). split () supports an optional “sep” parameter which is useful if the line uses something other
than whitespace as a separator.

For more complicated input parsing, regular expressions are more powerful than C’s sscanf () and better
suited for the task.

2.3.9 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?

See the unicode-howto.

2.4 Performance

2.4.1 My program is too slow. How do | speed it up?

That’s a tough one, in general. First, here are a list of things to remember before diving further:

2.4. Performance 23

Python Frequently Asked Questions, Release 3.6.7rc2

e Performance characteristics vary across Python implementations. This FAQ focusses on CPython.
« Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.

e You should always find the hot spots in your program before attempting to optimize any code (see the
profile module).

o Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the
timeit module).

o It is highly recommended to have good code coverage (through unit testing or any other technique)
before potentially introducing regressions hidden in sophisticated optimizations.

That being said, there are many tricks to speed up Python code. Here are some general principles which go
a long way towards reaching acceptable performance levels:

o Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying
to sprinkle micro-optimization tricks all over your code.

e Use the right data structures. Study documentation for the bltin-types and the collections module.

o When the standard library provides a primitive for doing something, it is likely (although not guar-
anteed) to be faster than any alternative you may come up with. This is doubly true for primitives
written in C, such as builtins and some extension types. For example, be sure to use either the 1ist.
sort () built-in method or the related sorted() function to do sorting (and see the sortinghowto for
examples of moderately advanced usage).

e Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirec-
tion outweigh the amount of useful work done, your program will be slower. You should avoid excessive
abstraction, especially under the form of tiny functions or methods (which are also often detrimental
to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For
example, Cython can compile a slightly modified version of Python code into a C extension, and can be used
on many different platforms. Cython can take advantage of compilation (and optional type annotations)
to make your code significantly faster than when interpreted. If you are confident in your C programming
skills, you can also write a C extension module yourself.

See also:

The wiki page devoted to performance tips.

2.4.2 What is the most efficient way to concatenate many strings together?

str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each
concatenation creates a new object. In the general case, the total runtime cost is quadratic in the total string
length.

To accumulate many str objects, the recommended idiom is to place them into a list and call str. join()
at the end:

chunks = []

for s in my_strings:
chunks . append(s)

result = ''.join(chunks)

(another reasonably efficient idiom is to use io.StringI0)

To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place
concatenation (the += operator):

24 Chapter 2. Programming FAQ

http://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, Release 3.6.7rc2

result = bytearray()
for b in my_bytes_objects:
result += b

2.5 Sequences (Tuples/Lists)

2.5.1 How do | convert between tuples and lists?

The type constructor tuple(seq) converts any sequence (actually, any iterable) into a tuple with the same
items in the same order.

For example, tuple([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c'). If the
argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple ()
when you aren’t sure that an object is already a tuple.

The type constructor 1ist(seq) converts any sequence or iterable into a list with the same items in the
same order. For example, 1ist((1, 2, 3)) yields [1, 2, 3] and list('abc') yields ['a', 'b', 'c'].
If the argument is a list, it makes a copy just like seq[:] would.

2.5.2 What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the
first index 1 is the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate
(next to last) index and so forth. Think of seq[-n] as the same as seq[len(seq)-n].

Using negative indices can be very convenient. For example S[:-1] is all of the string except for its last
character, which is useful for removing the trailing newline from a string.

2.5.3 How do | iterate over a sequence in reverse order?

Use the reversed() built-in function, which is new in Python 2.4:

for x in reversed(sequence):
do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

With Python 2.3, you can use an extended slice syntax:

for x in sequencel[::-1]:
do something with z ...

2.5.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:
https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as
you go:

2.5. Sequences (Tuples/Lists) 25

https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, Release 3.6.7rc2

if mylist:
mylist.sort()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):
if last == mylist[il:
del mylist[i]
else:
last = mylist[i]

If all elements of the list may be used as set keys (i.e. they are all hashable) this is often faster

mylist = list(set(mylist))

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5.5 How do you make an array in Python?

Use a list:

["this", 1, "iS", nanu’ ||array||]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python
list can contain objects of many different types.

The array module also provides methods for creating arrays of fixed types with compact representations,
but they are slower to index than lists. Also note that the Numeric extensions and others define array-like
structures with various characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the analogue of lisp car is 1isp_list [0]
and the analogue of cdr is 1isp_list[1]. Only do this if you're sure you really need to, because it’s usually
a lot slower than using Python lists.

2.5.6 How do | create a multidimensional list?

You probably tried to make a multidimensional array like this:

>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, Nonel]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] =5
>>> A
[[5, Nonel, [5, Nonel, [5, Nonell

26 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing
objects. The *3 creates a list containing 3 references to the same list of length two. Changes to one row will
show in all rows, which is almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then fill in each element with a
newly created list:

A = [None] * 3
for i in range(3):
A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h=2,3
A = [[None] * w for i in range(h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

2.5.7 How do | apply a method to a sequence of objects?

Use a list comprehension:

result = [obj.method() for obj in mylist]

2.5.8 Why does a_tuple[i] += [‘item’] raise an exception when the addition works?
This is because of a combination of the fact that augmented assignment operators are assignment operators,
and the difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple
that point to mutable objects, but we’ll use a 1ist and += as our exemplar.

If you wrote:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple [0] points to (1),
producing the result object, 2, but when we attempt to assign the result of the computation, 2, to element
0 of the tuple, we get an error because we can’t change what an element of a tuple points to.

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

It is the assignment part of the operation that produces the error, since a tuple is immutable.

When you write something like:

2.5. Sequences (Tuples/Lists) 27

http://www.numpy.org/

Python Frequently Asked Questions, Release 3.6.7rc2

>>> a_tuple = (['foo'], 'bar')
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an
error, the append worked:

>>> a_tuple[0]
['foo', 'item']

To see why this happens, you need to know that (a) if an object implements an __iadd__ magic method,
it gets called when the += augmented assignment is executed, and its return value is what gets used in the
assignment statement; and (b) for lists, __iadd__ is equivalent to calling extend on the list and returning
the list. That’s why we say that for lists, += is a “shorthand” for 1ist.extend:

>>> a_list = []
>>> a_list += [1]
>>> a_list

[1]

This is equivalent to:

>>> result = a_list.__iadd__([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back
to a_list. The end result of the assignment is a no-op, since it is a pointer to the same object that a_list
was previously pointing to, but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__(['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The __iadd__ succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple[0] already points to, that final assignment still results in an error, because tuples are immutable.

2.6 Dictionaries

2.6.1 How can | get a dictionary to store and display its keys in a consistent order?

Use collections.OrderedDict.

2.6.2 | want to do a complicated sort: can you do a Schwartzian Transform in Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric
which maps each element to its “sort value”. In Python, use the key argument for the list.sort () method:

28 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

Isorted = L[:]
Isorted.sort(key=lambda s: int(s[10:15]))

2.6.3 How can | sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> listl = ["what", "I'm", "sorting", "by"]

>>> 1list2 = ["something", "else", "to", "sort"]

>>> pairs = zip(listl, list2)

>>> pairs = sorted(pairs)

>>> pairs

[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]
>>> result = [x[1] for x in pairs]

>>> result

['else', 'sort', 'to', 'something']

An alternative for the last step is:

>>> result = []
>>> for p in pairs: result.append(p[1])

If you find this more legible, you might prefer to use this instead of the final list comprehension. However,
it is almost twice as slow for long lists. Why? First, the append () operation has to reallocate memory, and
while it uses some tricks to avoid doing that each time, it still has to do it occasionally, and that costs quite
a bit. Second, the expression “result.append” requires an extra attribute lookup, and third, there’s a speed
reduction from having to make all those function calls.

2.7 Objects

2.7.1 What is a class?

A class is the particular object type created by executing a class statement. Class objects are used as
templates to create instance objects, which embody both the data (attributes) and code (methods) specific
to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes
and methods of its base classes. This allows an object model to be successively refined by inheritance. You
might have a generic Mailbox class that provides basic accessor methods for a mailbox, and subclasses such
as MboxMailbox, MaildirMailbox, OutlookMailbox that handle various specific mailbox formats.

2.7.2 What is a method?

A method is a function on some object x that you normally call as x.name (arguments...). Methods are
defined as functions inside the class definition:

class C:
def meth(self, arg):
return arg * 2 + self.attribute

2.7. Objects 29

Python Frequently Asked Questions, Release 3.6.7rc2

2.7.3 What is self?

Self is merely a conventional name for the first argument of a method. A method defined as meth(self, a,
b, c¢) should be called as x.meth(a, b, c) for some instance x of the class in which the definition occurs;
the called method will think it is called as meth(x, a, b, c).

See also Why must ‘self” be used explicitly in method definitions and calls?.

2.7.4 How do | check if an object is an instance of a given class or of a subclass of it?

Use the built-in function isinstance(obj, cls). You can check if an object is an instance of any of a
number of classes by providing a tuple instead of a single class, e.g. isinstance(obj, (classl, class2,
...)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance(obj, str)
or isinstance(obj, (int, float, complex)).

Note that most programs do not use isinstance() on user-defined classes very often. If you are developing
the classes yourself, a more proper object-oriented style is to define methods on the classes that encapsulate
a particular behaviour, instead of checking the object’s class and doing a different thing based on what class
it is. For example, if you have a function that does something;:

def search(obj):
if isinstance(obj, Mailbox):
code to search a mailbozx
elif isinstance(obj, Document):
code to search a document
elif ...

A better approach is to define a search() method on all the classes and just call it:

class Mailbox:
def search(self):
code to search a matilbozx

class Document:
def search(self):

code to search a document

obj.search()

2.7.5 What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x
and want to change the behaviour of just one of its methods. You can create a new class that provides
a new implementation of the method you’re interested in changing and delegates all other methods to the
corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class
that behaves like a file but converts all written data to uppercase:

class UpperQOut:

def __init__(self, outfile):
self._outfile = outfile

def write(self, s):

(continues on next page)

30 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

(continued from previous page)

self._outfile.write(s.upper())

def __getattr__(self, name):
return getattr(self._outfile, name)

Here the UpperQOut class redefines the write () method to convert the argument string to uppercase before
calling the underlying self.__outfile.write() method. All other methods are delegated to the underlying
self.__outfile object. The delegation is accomplished via the __getattr__ method; consult the language
reference for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved,
the class must define a __setattr__() method too, and it must do so carefully. The basic implementation
of __setattr__() is roughly equivalent to the following:

class X:

def __setattr__(self, name, value):
self. dict__[name] = value

Most __setattr__() implementations must modify self.__dict__ to store local state for self without
causing an infinite recursion.

2.7.6 How do | call a method defined in a base class from a derived class that overrides
it?

Use the built-in super () function:

class Derived(Base):
def meth(self):
super (Derived, self).meth()

For version prior to 3.0, you may be using classic classes: For a class definition such as class
Derived(Base): ... you can call method meth() defined in Base (or one of Base’s base classes) as Base.
meth(self, arguments...). Here, Base.meth is an unbound method, so you need to provide the self
argument.

2.7.7 How can | organize my code to make it easier to change the base class?

You could define an alias for the base class, assign the real base class to it before your class definition, and use
the alias throughout your class. Then all you have to change is the value assigned to the alias. Incidentally,
this trick is also handy if you want to decide dynamically (e.g. depending on availability of resources) which
base class to use. Example:

BaseAlias = <real base class>

class Derived(BaseAlias):
def meth(self):
BaseAlias.meth(self)

2.7. Objects 31

Python Frequently Asked Questions, Release 3.6.7rc2

2.7.8 How do | create static class data and static class methods?

Both static data and static methods (in the sense of C4++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly
use the class name in the assignment:

class C:
count = 0 # number of times C.__init__ called

def __init__(self):
C.count = C.count + 1

def getcount(self):
return C.count # or return self.count

c.count also refers to C.count for any c such that isinstance(c, C) holds, unless overridden by c itself
or by some class on the base-class search path from c.__class__ back to C.

Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance
named “count” in self’s own dict. Rebinding of a class-static data name must always specify the class
whether inside a method or not:

C.count = 314

Static methods are possible:

class C:
@staticmethod
def static(argl, arg2, arg3):
No 'self' parameter!

However, a far more straightforward way to get the effect of a static method is via a simple module-level
function:

def getcount():
return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies
the desired encapsulation.

2.7.9 How can | overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of
constructors.

In C++ you’d write

class C {
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

In Python you have to write a single constructor that catches all cases using default arguments. For example:

32 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

class C:
def __init__(self, i=None):
if i is None:
print("No arguments")
else:
print("Argument is", i)

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def __init__(self, *args):

The same approach works for all method definitions.

2.7.10 | try to use ___spam and | get an error about _SomeClassName___spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to
define class private variables. Any identifier of the form __spam (at least two leading underscores, at most
one trailing underscore) is textually replaced with _classname__spam, where classname is the current class
name with any leading underscores stripped.

“

This doesn’t guarantee privacy: an outside user can still deliberately access the “_ classname spam”
attribute, and private values are visible in the object’s __dict__. Many Python programmers never bother
to use private variable names at all.

2.7.11 My class defines __del__ but it is not called when | delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__() — it simply decrements the object’s reference count,
and if this reaches zero __del__() is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each
parent has a list of children) the reference counts will never go back to zero. Once in a while Python runs
an algorithm to detect such cycles, but the garbage collector might run some time after the last reference
to your data structure vanishes, so your __del__() method may be called at an inconvenient and random
time. This is inconvenient if you’re trying to reproduce a problem. Worse, the order in which object’s
__del__() methods are executed is arbitrary. You can run gc.collect() to force a collection, but there
are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close () method on objects to be called
whenever you're done with them. The close() method can then remove attributes that refer to subobjects.
Don’t call __del__() directly — __del__() should call close() and close() should make sure that it can
be called more than once for the same object.

Another way to avoid cyclical references is to use the weakref module, which allows you to point to objects
without incrementing their reference count. Tree data structures, for instance, should use weak references
for their parent and sibling references (if they need them!).

Finally, if your __del__() method raises an exception, a warning message is printed to sys.stderr.

2.7. Objects 33

Python Frequently Asked Questions, Release 3.6.7rc2

2.7.12 How do | get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s
constructor to keep track of all instances by keeping a list of weak references to each instance.

2.7.13 Why does the result of id() appear to be not unique?

The id () builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since
in CPython, this is the object’s memory address, it happens frequently that after an object is deleted from
memory, the next freshly created object is allocated at the same position in memory. This is illustrated by
this example:

>>> id(1000)
13901272
>>> id(2000)
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after exe-
cution of the id() call. To be sure that objects whose id you want to examine are still alive, create another
reference to the object:

>>> a = 1000; b = 2000
>>> id(a)
13901272
>>> id(b)
13891296

2.8 Modules

2.8.1 How do | create a .pyc file?

When a module is imported for the first time (or when the source file has changed since the current compiled
file was created) a .pyc file containing the compiled code should be created in a __pycache__ subdirectory
of the directory containing the .py file. The .pyc file will have a filename that starts with the same name
as the .py file, and ends with .pyc, with a middle component that depends on the particular python binary
that created it. (See PEP 3147 for details.)

One reason that a .pyc file may not be created is a permissions problem with the directory containing the
source file, meaning that the __pycache__ subdirectory cannot be created. This can happen, for example,
if you develop as one user but run as another, such as if you are testing with a web server.

Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if
you’re importing a module and Python has the ability (permissions, free space, etc...) to create a __pycache__
subdirectory and write the compiled module to that subdirectory.

Running Python on a top level script is not considered an import and no .pyc will be created. For example,
if you have a top-level module foo.py that imports another module xyz.py, when you run foo (by typing
python foo.py as a shell command), a .pyc will be created for xyz because xyz is imported, but no .pyc
file will be created for foo since foo.py isn’t being imported.

If you need to create a .pyc file for foo — that is, to create a .pyc file for a module that is not imported —
you can, using the py_compile and compileall modules.

34 Chapter 2. Programming FAQ

https://www.python.org/dev/peps/pep-3147

Python Frequently Asked Questions, Release 3.6.7rc2

The py_compile module can manually compile any module. One way is to use the compile() function in
that module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py"')

This will write the .pyc to a __pycache__ subdirectory in the same location as foo.py (or you can override
that with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using the compileall module. You
can do it from the shell prompt by running compileall.py and providing the path of a directory containing
Python files to compile:

python -m compileall .

2.8.2 How do | find the current module name?

A module can find out its own module name by looking at the predefined global variable __name__. If
this has the value '__main__', the program is running as a script. Many modules that are usually used
by importing them also provide a command-line interface or a self-test, and only execute this code after
checking __name__:

def main():
print ('Running test...')

if __name__ == '__main__"':

main()

2.8.3 How can | have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:
e main imports foo
o Empty globals for foo are created
e foo is compiled and starts executing
o foo imports bar
e Empty globals for bar are created
e bar is compiled and starts executing

e bar imports foo (which is a no-op since there already is a module named foo)

2.8. Modules 35

Python Frequently Asked Questions, Release 3.6.7rc2

e bar.foo var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for
foo is still empty.

The same thing happens when you use import foo, and then try to access foo.foo_var in global code.
There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import ..., and placing all code inside
functions. Initializations of global variables and class variables should use constants or built-in functions
only. This means everything from an imported module is referenced as <module>.<name>.

Jim Roskind suggests performing steps in the following order in each module:
o exports (globals, functions, and classes that don’t need imported base classes)
e import statements
o active code (including globals that are initialized from imported values).
van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.

Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the
first place.

These solutions are not mutually exclusive.

2.8.4 __import__(‘x.y.z’) returns <module ‘x’>; how do | get z?

Consider using the convenience function import_module() from importlib instead:

z = importlib.import_module('x.y.z')

2.8.5 When | edit an imported module and reimport it, the changes don’t show up.
Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module
is imported. If it didn’t, in a program consisting of many modules where each one imports the same basic
module, the basic module would be parsed and re-parsed many times. To force re-reading of a changed
module, do this:

import importlib
import modname
importlib.reload(modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions,
existing class instances will not be updated to use the new class definition. This can result in the following
paradoxical behaviour:

>>> import importlib

>>> import cls

>>> ¢ = cls.C() # Create an instance of C
>>> importlib.reload(cls)

(continues on next page)

36 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

(continued from previous page)

<module 'cls' from 'cls.py'>
>>> isinstance(c, cls.C) # isinstance is false?!?
False

The nature of the problem is made clear if you print out the “identity” of the class objects:

>>> hex(id(c.__class__))
'0x7352a0'

>>> hex(id(cls.C))
'0x4198d0"

2.8. Modules 37

Python Frequently Asked Questions, Release 3.6.7rc2

38

Chapter 2. Programming FAQ

CHAPTER

THREE

DESIGN AND HISTORY FAQ

3.1 Why does Python use indentation for grouping of statements?

Guido van Rossum believes that using indentation for grouping is extremely elegant and contributes a lot
to the clarity of the average Python program. Most people learn to love this feature after a while.

Since there are no begin/end brackets there cannot be a disagreement between grouping perceived by the
parser and the human reader. Occasionally C programmers will encounter a fragment of code like this:

if (x <= y)
X++;
Yy
ZH+;

)

Only the x++ statement is executed if the condition is true, but the indentation leads you to believe otherwise.
Even experienced C programmers will sometimes stare at it a long time wondering why y is being decremented
even for x > y.

Because there are no begin/end brackets, Python is much less prone to coding-style conflicts. In C there are
many different ways to place the braces. If you're used to reading and writing code that uses one style, you
will feel at least slightly uneasy when reading (or being required to write) another style.

Many coding styles place begin/end brackets on a line by themselves. This makes programs considerably
longer and wastes valuable screen space, making it harder to get a good overview of a program. Ideally, a
function should fit on one screen (say, 20-30 lines). 20 lines of Python can do a lot more work than 20 lines
of C. This is not solely due to the lack of begin/end brackets — the lack of declarations and the high-level
data types are also responsible — but the indentation-based syntax certainly helps.

3.2 Why am | getting strange results with simple arithmetic operations?

See the next question.

3.3 Why are floating-point calculations so inaccurate?

Users are often surprised by results like this:

>>> 1.2 - 1.0
0.19999999999999996

39

Python Frequently Asked Questions, Release 3.6.7rc2

and think it is a bug in Python. It’s not. This has little to do with Python, and much more to do with how
the underlying platform handles floating-point numbers.

The float type in CPython uses a C double for storage. A float object’s value is stored in binary floating-
point with a fixed precision (typically 53 bits) and Python uses C operations, which in turn rely on the
hardware implementation in the processor, to perform floating-point operations. This means that as far as
floating-point operations are concerned, Python behaves like many popular languages including C and Java.

Many numbers that can be written easily in decimal notation cannot be expressed exactly in binary floating-
point. For example, after:

’>>> x =1.2

the value stored for x is a (very good) approximation to the decimal value 1.2, but is not exactly equal to
it. On a typical machine, the actual stored value is:

’ 1.0011001100110011001100110011001100110011001100110011 (binary)

which is exactly:

’ 1.1999999999999999555910790149937383830547332763671875 (decimal)

The typical precision of 53 bits provides Python floats with 15-16 decimal digits of accuracy.

For a fuller explanation, please see the floating point arithmetic chapter in the Python tutorial.

3.4 Why are Python strings immutable?

There are several advantages.

One is performance: knowing that a string is immutable means we can allocate space for it at creation time,
and the storage requirements are fixed and unchanging. This is also one of the reasons for the distinction
between tuples and lists.

Another advantage is that strings in Python are considered as “elemental” as numbers. No amount of activity
will change the value 8 to anything else, and in Python, no amount of activity will change the string “eight”
to anything else.

3.5 Why must ‘self’ be used explicitly in method definitions and calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a variety of reasons.

First, it’s more obvious that you are using a method or instance attribute instead of a local variable. Reading
self.x or self.meth() makes it absolutely clear that an instance variable or method is used even if you
don’t know the class definition by heart. In C++4, you can sort of tell by the lack of a local variable
declaration (assuming globals are rare or easily recognizable) — but in Python, there are no local variable
declarations, so you’d have to look up the class definition to be sure. Some C++ and Java coding standards
call for instance attributes to have an m_ prefix, so this explicitness is still useful in those languages, too.

Second, it means that no special syntax is necessary if you want to explicitly reference or call the method
from a particular class. In C++, if you want to use a method from a base class which is overridden in a
derived class, you have to use the :: operator — in Python you can write baseclass.methodname (self,
<argument list>). This is particularly useful for __init__() methods, and in general in cases where a
derived class method wants to extend the base class method of the same name and thus has to call the base
class method somehow.

40 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

Finally, for instance variables it solves a syntactic problem with assignment: since local variables in Python
are (by definition!) those variables to which a value is assigned in a function body (and that aren’t explicitly
declared global), there has to be some way to tell the interpreter that an assignment was meant to assign
to an instance variable instead of to a local variable, and it should preferably be syntactic (for efficiency
reasons). C++ does this through declarations, but Python doesn’t have declarations and it would be a pity
having to introduce them just for this purpose. Using the explicit self.var solves this nicely. Similarly,
for using instance variables, having to write self.var means that references to unqualified names inside a
method don’t have to search the instance’s directories. To put it another way, local variables and instance
variables live in two different namespaces, and you need to tell Python which namespace to use.

3.6 Why can’t | use an assignment in an expression?

Many people used to C or Perl complain that they want to use this C idiom:

while (line = readline(f)) {
// do something with line
}

where in Python you’re forced to write this:

while True:
line = f.readline()
if not line:
break
do something with line

The reason for not allowing assignment in Python expressions is a common, hard-to-find bug in those other
languages, caused by this construct:

if (x =0) {
// error handling

}
else {
// code that only works for nonzero

}

The error is a simple typo: x = 0, which assigns 0 to the variable x, was written while the comparison x ==
0 is certainly what was intended.

Many alternatives have been proposed. Most are hacks that save some typing but use arbitrary or cryptic
syntax or keywords, and fail the simple criterion for language change proposals: it should intuitively suggest
the proper meaning to a human reader who has not yet been introduced to the construct.

An interesting phenomenon is that most experienced Python programmers recognize the while True idiom
and don’t seem to be missing the assignment in expression construct much; it’s only newcomers who express
a strong desire to add this to the language.

There’s an alternative way of spelling this that seems attractive but is generally less robust than the “while
True” solution:

line = f.readline()
while line:
do something with line...
line = f.readline()

3.6. Why can’t | use an assignment in an expression? 41

Python Frequently Asked Questions, Release 3.6.7rc2

The problem with this is that if you change your mind about exactly how you get the next line (e.g. you
want to change it into sys.stdin.readline()) you have to remember to change two places in your program
— the second occurrence is hidden at the bottom of the loop.

The best approach is to use iterators, making it possible to loop through objects using the for statement.
For example, file objects support the iterator protocol, so you can write simply:

for line in f:
do something with line...

3.7 Why does Python use methods for some functionality (e.g.
list.index()) but functions for other (e.g. len(list))?

As Guido said:

(a) For some operations, prefix notation just reads better than postfix — prefix (and infix!)
operations have a long tradition in mathematics which likes notations where the visuals help the
mathematician thinking about a problem. Compare the easy with which we rewrite a formula
like x*(a+b) into x*a + x*b to the clumsiness of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something.
This tells me two things: the result is an integer, and the argument is some kind of container.
To the contrary, when I read x.len(), I have to already know that x is some kind of container
implementing an interface or inheriting from a class that has a standard len(). Witness the
confusion we occasionally have when a class that is not implementing a mapping has a get() or
keys() method, or something that isn’t a file has a write() method.

—https://mail.python.org/pipermail /python-3000/2006- November/004643.html

3.8 Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when methods were added which
give the same functionality that has always been available using the functions of the string module. Most of
these new methods have been widely accepted, but the one which appears to make some programmers feel
uncomfortable is:

n’ ".join(['l‘, |2|, |4|’ ‘8‘, ‘16‘])

which gives the result:

’”1, 2, 4, 8, 16"

There are two common arguments against this usage.

The first runs along the lines of: “It looks really ugly using a method of a string literal (string constant)”, to
which the answer is that it might, but a string literal is just a fixed value. If the methods are to be allowed
on names bound to strings there is no logical reason to make them unavailable on literals.

The second objection is typically cast as: “I am really telling a sequence to join its members together with
a string constant”. Sadly, you aren’t. For some reason there seems to be much less difficulty with having
split () as a string method, since in that case it is easy to see that

"1, 2, 4, 8, 16".split(", ")

42 Chapter 3. Design and History FAQ

https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, Release 3.6.7rc2

is an instruction to a string literal to return the substrings delimited by the given separator (or, by default,
arbitrary runs of white space).

join() is a string method because in using it you are telling the separator string to iterate over a sequence
of strings and insert itself between adjacent elements. This method can be used with any argument which
obeys the rules for sequence objects, including any new classes you might define yourself. Similar methods
exist for bytes and bytearray objects.

3.9 How fast are exceptions?

A try/except block is extremely efficient if no exceptions are raised. Actually catching an exception is
expensive. In versions of Python prior to 2.0 it was common to use this idiom:

try:
value = mydict [key]

except KeyError:
mydict [key] = getvalue(key)
value = mydict [key]

This only made sense when you expected the dict to have the key almost all the time. If that wasn’t the
case, you coded it like this:

if key in mydict:
value = mydict[key]
else:
value = mydict[key] = getvalue(key)

For this specific case, you could also use value = dict.setdefault(key, getvalue(key)), but only if the
getvalue() call is cheap enough because it is evaluated in all cases.

3.10 Why isn’t there a switch or case statement in Python?

You can do this easily enough with a sequence of if... elif... elif... else. There have been some
proposals for switch statement syntax, but there is no consensus (yet) on whether and how to do range tests.
See PEP 275 for complete details and the current status.

For cases where you need to choose from a very large number of possibilities, you can create a dictionary
mapping case values to functions to call. For example:

def function_1(...):

functions = {'a': function_1,
'b': function_2,
'c': self.method_1, ...}

func = functions[value]
func ()

For calling methods on objects, you can simplify yet further by using the getattr() built-in to retrieve
methods with a particular name:

3.9. How fast are exceptions? 43

https://www.python.org/dev/peps/pep-0275

Python Frequently Asked Questions, Release 3.6.7rc2

def visit_a(self, ...):

def dispatch(self, value):

method_name = 'visit_' + str(value)
method = getattr(self, method_name)
method ()

It’s suggested that you use a prefix for the method names, such as visit_ in this example. Without such a
prefix, if values are coming from an untrusted source, an attacker would be able to call any method on your
object.

3.11 Can’t you emulate threads in the interpreter instead of relying on
an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for each Python stack frame.
Also, extensions can call back into Python at almost random moments. Therefore, a complete threads
implementation requires thread support for C.

Answer 2: Fortunately, there is Stackless Python, which has a completely redesigned interpreter loop that
avoids the C stack.

3.12 Why can’t lambda expressions contain statements?

Python lambda expressions cannot contain statements because Python’s syntactic framework can’t handle
statements nested inside expressions. However, in Python, this is not a serious problem. Unlike lambda
forms in other languages, where they add functionality, Python lambdas are only a shorthand notation if
you're too lazy to define a function.

Functions are already first class objects in Python, and can be declared in a local scope. Therefore the only
advantage of using a lambda instead of a locally-defined function is that you don’t need to invent a name for
the function — but that’s just a local variable to which the function object (which is exactly the same type
of object that a lambda expression yields) is assigned!

3.13 Can Python be compiled to machine code, C or some other lan-
guage?

Cython compiles a modified version of Python with optional annotations into C extensions. Nuitka is an up-
and-coming compiler of Python into C++ code, aiming to support the full Python language. For compiling
to Java you can consider VOC.

3.14 How does Python manage memory?

The details of Python memory management depend on the implementation. The standard implementation
of Python, C'Python, uses reference counting to detect inaccessible objects, and another mechanism to collect
reference cycles, periodically executing a cycle detection algorithm which looks for inaccessible cycles and

44 Chapter 3. Design and History FAQ

http://www.stackless.com
http://cython.org/
http://www.nuitka.net/
https://voc.readthedocs.io

Python Frequently Asked Questions, Release 3.6.7rc2

deletes the objects involved. The gc module provides functions to perform a garbage collection, obtain
debugging statistics, and tune the collector’s parameters.

Other implementations (such as Jython or PyPy), however, can rely on a different mechanism such as a
full-blown garbage collector. This difference can cause some subtle porting problems if your Python code
depends on the behavior of the reference counting implementation.

In some Python implementations, the following code (which is fine in CPython) will probably run out of file
descriptors:

for file in very_long_list_of_files:
f = open(file)
c = f.read(1)

Indeed, using CPython’s reference counting and destructor scheme, each new assignment to f closes the
previous file. With a traditional GC, however, those file objects will only get collected (and closed) at
varying and possibly long intervals.

If you want to write code that will work with any Python implementation, you should explicitly close the
file or use the with statement; this will work regardless of memory management scheme:

for file in very_long_list_of_files:
with open(file) as f:
c = f.read(1)

3.15 Why doesn’t CPython use a more traditional garbage collection
scheme?

For one thing, this is not a C standard feature and hence it’s not portable. (Yes, we know about the Boehm
GC library. It has bits of assembler code for most common platforms, not for all of them, and although it
is mostly transparent, it isn’t completely transparent; patches are required to get Python to work with it.)

Traditional GC also becomes a problem when Python is embedded into other applications. While in a
standalone Python it’s fine to replace the standard malloc() and free() with versions provided by the GC
library, an application embedding Python may want to have its own substitute for malloc() and free(), and
may not want Python’s. Right now, CPython works with anything that implements malloc() and free()

properly.

3.16 Why isn’t all memory freed when CPython exits?

Objects referenced from the global namespaces of Python modules are not always deallocated when Python
exits. This may happen if there are circular references. There are also certain bits of memory that are
allocated by the C library that are impossible to free (e.g. a tool like Purify will complain about these).
Python is, however, aggressive about cleaning up memory on exit and does try to destroy every single object.

If you want to force Python to delete certain things on deallocation use the atexit module to run a function
that will force those deletions.

3.15. Why doesn’t CPython use a more traditional garbage collection scheme? 45

http://www.jython.org
http://www.pypy.org

Python Frequently Asked Questions, Release 3.6.7rc2

3.17 Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in fundamentally different ways. Tuples
can be thought of as being similar to Pascal records or C structs; they’re small collections of related data
which may be of different types which are operated on as a group. For example, a Cartesian coordinate is
appropriately represented as a tuple of two or three numbers.

Lists, on the other hand, are more like arrays in other languages. They tend to hold a varying number of
objects all of which have the same type and which are operated on one-by-one. For example, os.listdir("'.
') returns a list of strings representing the files in the current directory. Functions which operate on this
output would generally not break if you added another file or two to the directory.

Tuples are immutable, meaning that once a tuple has been created, you can’t replace any of its elements
with a new value. Lists are mutable, meaning that you can always change a list’s elements. Only immutable
elements can be used as dictionary keys, and hence only tuples and not lists can be used as keys.

3.18 How are lists implemented in CPython?

CPython’s lists are really variable-length arrays, not Lisp-style linked lists. The implementation uses a
contiguous array of references to other objects, and keeps a pointer to this array and the array’s length in a
list head structure.

This makes indexing a list a[i] an operation whose cost is independent of the size of the list or the value of
the index.

When items are appended or inserted, the array of references is resized. Some cleverness is applied to improve
the performance of appending items repeatedly; when the array must be grown, some extra space is allocated
so the next few times don’t require an actual resize.

3.19 How are dictionaries implemented in CPython?

CPython’s dictionaries are implemented as resizable hash tables. Compared to B-trees, this gives better per-
formance for lookup (the most common operation by far) under most circumstances, and the implementation
is simpler.

Dictionaries work by computing a hash code for each key stored in the dictionary using the hash() built-in
function. The hash code varies widely depending on the key and a per-process seed; for example, “Python”
could hash to -539294296 while “python”, a string that differs by a single bit, could hash to 1142331976. The
hash code is then used to calculate a location in an internal array where the value will be stored. Assuming
that you're storing keys that all have different hash values, this means that dictionaries take constant time
— O(1), in computer science notation — to retrieve a key. It also means that no sorted order of the keys is
maintained, and traversing the array as the .keys() and .items() do will output the dictionary’s content
in some arbitrary jumbled order that can change with every invocation of a program.

3.20 Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from the key value to find the
key. If the key were a mutable object, its value could change, and thus its hash could also change. But since
whoever changes the key object can’t tell that it was being used as a dictionary key, it can’t move the entry
around in the dictionary. Then, when you try to look up the same object in the dictionary it won’t be found

46 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

because its hash value is different. If you tried to look up the old value it wouldn’t be found either, because
the value of the object found in that hash bin would be different.

If you want a dictionary indexed with a list, simply convert the list to a tuple first; the function tuple (L)
creates a tuple with the same entries as the list L. Tuples are immutable and can therefore be used as
dictionary keys.

Some unacceptable solutions that have been proposed:

o Hash lists by their address (object ID). This doesn’t work because if you construct a new list with the
same value it won’t be found; e.g.:

mydict = {[1, 2]: '12'}
print (mydict[[1, 211)

would raise a KeyError exception because the id of the [1, 2] used in the second line differs from
that in the first line. In other words, dictionary keys should be compared using ==, not using is.

e Make a copy when using a list as a key. This doesn’t work because the list, being a mutable object,
could contain a reference to itself, and then the copying code would run into an infinite loop.

o Allow lists as keys but tell the user not to modify them. This would allow a class of hard-to-track bugs
in programs when you forgot or modified a list by accident. It also invalidates an important invariant
of dictionaries: every value in d.keys() is usable as a key of the dictionary.

e Mark lists as read-only once they are used as a dictionary key. The problem is that it’s not just the
top-level object that could change its value; you could use a tuple containing a list as a key. Entering
anything as a key into a dictionary would require marking all objects reachable from there as read-only
— and again, self-referential objects could cause an infinite loop.

There is a trick to get around this if you need to, but use it at your own risk: You can wrap a mutable
structure inside a class instance which has both a __eq__() and a __hash__() method. You must then
make sure that the hash value for all such wrapper objects that reside in a dictionary (or other hash based
structure), remain fixed while the object is in the dictionary (or other structure).

class ListWrapper:
def __init__(self, the_list):
self.the_list = the_list

def __eq__(self, other):
return self.the_list == other.the_list

def __hash__(self):
1 = self.the_list
result = 98767 - len(l)*555
for i, el in enumerate(l):
try:
result = result + (hash(el) % 9999999) * 1001 + i
except Exception:
result = (result % 7777777) + i * 333
return result

Note that the hash computation is complicated by the possibility that some members of the list may be
unhashable and also by the possibility of arithmetic overflow.

Furthermore it must always be the case that if o1 == 02 (ie o1.__eq__(02) is True) then hash(ol) ==
hash(02) (ie, ol.__hash__() == 02.__hash__()), regardless of whether the object is in a dictionary or
not. If you fail to meet these restrictions dictionaries and other hash based structures will misbehave.

In the case of ListWrapper, whenever the wrapper object is in a dictionary the wrapped list must not change

3.20. Why must dictionary keys be immutable? 47

Python Frequently Asked Questions, Release 3.6.7rc2

to avoid anomalies. Don’t do this unless you are prepared to think hard about the requirements and the
consequences of not meeting them correctly. Consider yourself warned.

3.21 Why doesn’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort it would be wasteful. Therefore,
list.sort() sorts the list in place. In order to remind you of that fact, it does not return the sorted list.
This way, you won’t be fooled into accidentally overwriting a list when you need a sorted copy but also need
to keep the unsorted version around.

If you want to return a new list, use the built-in sorted() function instead. This function creates a new
list from a provided iterable, sorts it and returns it. For example, here’s how to iterate over the keys of a
dictionary in sorted order:

for key in sorted(mydict):
do whatever with mydict[key]. ..

3.22 How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and Java describes the
prototypes for the methods and functions of the module. Many feel that compile-time enforcement of
interface specifications helps in the construction of large programs.

Python 2.6 adds an abc module that lets you define Abstract Base Classes (ABCs). You can then use
isinstance() and issubclass() to check whether an instance or a class implements a particular ABC. The
collections.abc module defines a set of useful ABCs such as Iterable, Container, and MutableMapping.

For Python, many of the advantages of interface specifications can be obtained by an appropriate test
discipline for components. There is also a tool, PyChecker, which can be used to find problems due to
subclassing.

A good test suite for a module can both provide a regression test and serve as a module interface specification
and a set of examples. Many Python modules can be run as a script to provide a simple “self test.” Even
modules which use complex external interfaces can often be tested in isolation using trivial “stub” emulations
of the external interface. The doctest and unittest modules or third-party test frameworks can be used
to construct exhaustive test suites that exercise every line of code in a module.

An appropriate testing discipline can help build large complex applications in Python as well as having
interface specifications would. In fact, it can be better because an interface specification cannot test certain
properties of a program. For example, the append () method is expected to add new elements to the end of
some internal list; an interface specification cannot test that your append () implementation will actually do
this correctly, but it’s trivial to check this property in a test suite.

Writing test suites is very helpful, and you might want to design your code with an eye to making it easily
tested. Onme increasingly popular technique, test-directed development, calls for writing parts of the test
suite first, before you write any of the actual code. Of course Python allows you to be sloppy and not write
test cases at all.

3.23 Why is there no goto?

You can use exceptions to provide a “structured goto” that even works across function calls. Many feel that
exceptions can conveniently emulate all reasonable uses of the “go” or “goto” constructs of C, Fortran, and

48 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.6.7rc2

other languages. For example:

class label(Exception): pass # declare a label
try:
if condition: raise label() # goto label

except label: # where to goto
pass

This doesn’t allow you to jump into the middle of a loop, but that’s usually considered an abuse of goto
anyway. Use sparingly.

3.24 Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired backslash at the end escapes
the closing quote character, leaving an unterminated string.

Raw strings were designed to ease creating input for processors (chiefly regular expression engines) that want
to do their own backslash escape processing. Such processors consider an unmatched trailing backslash to be
an error anyway, so raw strings disallow that. In return, they allow you to pass on the string quote character
by escaping it with a backslash. These rules work well when r-strings are used for their intended purpose.

If you're trying to build Windows pathnames, note that all Windows system calls accept forward slashes
too:

f = open("/mydir/file.txt") # works fine!

If you're trying to build a pathname for a DOS command, try e.g. one of

dir = r"\this\is\my\dos\dir" "\\"
dir = r"\this\is\my\dos\dir\ "[:-1]
"\\this\\is\\my\\dos\\dir\\"

dir

3.25 Why doesn’t Python have a “with” statement for attribute assign-
ments?

Python has a ‘with’ statement that wraps the execution of a block, calling code on the entrance and exit
from the block. Some language have a construct that looks like this:

with obj:
a=1 # equivalent to obj.a = 1
total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.

Other languages, such as Object Pascal, Delphi, and C++, use static types, so it’s possible to know, in an
unambiguous way, what member is being assigned to. This is the main point of static typing — the compiler
always knows the scope of every variable at compile time.

Python uses dynamic types. It is impossible to know in advance which attribute will be referenced at
runtime. Member attributes may be added or removed from objects on the fly. This makes it impossible

3.24. Why can’t raw strings (r-strings) end with a backsl