
What’s New in Python
Release 3.6.0

A. M. Kuchling

December 22, 2016

Python Software Foundation
Email: docs@python.org

Contents

1 Summary – Release highlights 3

2 New Features 5
2.1 PEP 498: Formatted string literals . 5
2.2 PEP 526: Syntax for variable annotations . 5
2.3 PEP 515: Underscores in Numeric Literals . 5
2.4 PEP 525: Asynchronous Generators . 6
2.5 PEP 530: Asynchronous Comprehensions . 6
2.6 PEP 487: Simpler customization of class creation . 6
2.7 PEP 487: Descriptor Protocol Enhancements . 7
2.8 PEP 519: Adding a file system path protocol . 7
2.9 PEP 495: Local Time Disambiguation . 8
2.10 PEP 529: Change Windows filesystem encoding to UTF-8 . 8
2.11 PEP 528: Change Windows console encoding to UTF-8 . 9
2.12 PEP 520: Preserving Class Attribute Definition Order . 9
2.13 PEP 468: Preserving Keyword Argument Order . 9
2.14 New dict implementation . 9
2.15 PEP 523: Adding a frame evaluation API to CPython . 10
2.16 PYTHONMALLOC environment variable . 10
2.17 DTrace and SystemTap probing support . 11

3 Other Language Changes 11

4 New Modules 12
4.1 secrets . 12

5 Improved Modules 12
5.1 array . 12
5.2 ast . 12
5.3 asyncio . 12
5.4 binascii . 13
5.5 cmath . 13
5.6 collections . 13
5.7 concurrent.futures . 14
5.8 contextlib . 14
5.9 datetime . 14
5.10 decimal . 14
5.11 distutils . 14

5.12 email . 15
5.13 encodings . 15
5.14 enum . 15
5.15 faulthandler . 15
5.16 fileinput . 15
5.17 hashlib . 15
5.18 http.client . 16
5.19 idlelib and IDLE . 16
5.20 importlib . 16
5.21 inspect . 16
5.22 json . 17
5.23 logging . 17
5.24 math . 17
5.25 multiprocessing . 17
5.26 os . 17
5.27 pathlib . 17
5.28 pdb . 17
5.29 pickle . 17
5.30 pickletools . 18
5.31 pydoc . 18
5.32 random . 18
5.33 re . 18
5.34 readline . 18
5.35 rlcompleter . 18
5.36 shlex . 18
5.37 site . 18
5.38 sqlite3 . 19
5.39 socket . 19
5.40 socketserver . 19
5.41 ssl . 19
5.42 statistics . 19
5.43 struct . 20
5.44 subprocess . 20
5.45 sys . 20
5.46 telnetlib . 20
5.47 time . 20
5.48 timeit . 20
5.49 tkinter . 20
5.50 traceback . 20
5.51 tracemalloc . 21
5.52 typing . 21
5.53 unicodedata . 21
5.54 unittest.mock . 22
5.55 urllib.request . 22
5.56 urllib.robotparser . 22
5.57 venv . 22
5.58 warnings . 22
5.59 winreg . 23
5.60 winsound . 23
5.61 xmlrpc.client . 23
5.62 zipfile . 23
5.63 zlib . 23

6 Optimizations 23

7 Build and C API Changes 24

8 Other Improvements 25

9 Deprecated 25
9.1 New Keywords . 25
9.2 Deprecated Python behavior . 25
9.3 Deprecated Python modules, functions and methods . 25

asynchat . 25
asyncore . 25
dbm . 25
distutils . 26
grp . 26
importlib . 26
os . 26
re . 26
ssl . 26
tkinter . 26
venv . 26

9.4 Deprecated functions and types of the C API . 27
9.5 Deprecated Build Options . 27

10 Removed 27
10.1 API and Feature Removals . 27

11 Porting to Python 3.6 27
11.1 Changes in ‘python’ Command Behavior . 27
11.2 Changes in the Python API . 28
11.3 Changes in the C API . 29
11.4 CPython bytecode changes . 30

Index 31

Release 3.6.0

Date December 22, 2016

Editors Elvis Pranskevichus <elvis@magic.io>, Yury Selivanov <yury@magic.io>

This article explains the new features in Python 3.6, compared to 3.5. Python 3.6 was released on December 23,
2016. See the changelog for a full list of changes.

See also:

PEP 494 - Python 3.6 Release Schedule

1 Summary – Release highlights

New syntax features:

• PEP 498, formatted string literals.

• PEP 515, underscores in numeric literals.

• PEP 526, syntax for variable annotations.

• PEP 525, asynchronous generators.

• PEP 530: asynchronous comprehensions.

New library modules:

• secrets : PEP 506 – Adding A Secrets Module To The Standard Library.

mailto:elvis@magic.io
mailto:yury@magic.io
https://docs.python.org/3.6/whatsnew/changelog.html
https://www.python.org/dev/peps/pep-0494

CPython implementation improvements:

• The dict type has been reimplemented to use a more compact representation similar to the PyPy dict imple-
mentation. This resulted in dictionaries using 20% to 25% less memory when compared to Python 3.5.

• Customization of class creation has been simplified with the new protocol.

• The class attribute definition order is now preserved.

• The order of elements in **kwargs now corresponds to the order in which keyword arguments were
passed to the function.

• DTrace and SystemTap probing support has been added.

• The new PYTHONMALLOC environment variable can now be used to debug the interpreter memory allo-
cation and access errors.

Significant improvements in the standard library:

• The asyncio module has received new features, significant usability and performance improvements, and
a fair amount of bug fixes. Starting with Python 3.6 the asyncio module is no longer provisional and its
API is considered stable.

• A new file system path protocol has been implemented to support path-like objects. All standard library
functions operating on paths have been updated to work with the new protocol.

• The datetime module has gained support for Local Time Disambiguation.

• The typing module received a number of improvements and is no longer provisional.

• The tracemalloc module has been significantly reworked and is now used to provide better output
for ResourceWarning as well as provide better diagnostics for memory allocation errors. See the
PYTHONMALLOC section for more information.

Security improvements:

• The new secrets module has been added to simplify the generation of cryptographically strong pseudo-
random numbers suitable for managing secrets such as account authentication, tokens, and similar.

• On Linux, os.urandom() now blocks until the system urandom entropy pool is initialized to increase
the security. See the PEP 524 for the rationale.

• The hashlib and ssl modules now support OpenSSL 1.1.0.

• The default settings and feature set of the ssl module have been improved.

• The hashlib module received support for the BLAKE2, SHA-3 and SHAKE hash algorithms and the
scrypt() key derivation function.

Windows improvements:

• PEP 528 and PEP 529, Windows filesystem and console encoding changed to UTF-8.

• The py.exe launcher, when used interactively, no longer prefers Python 2 over Python 3 when the user
doesn’t specify a version (via command line arguments or a config file). Handling of shebang lines remains
unchanged - “python” refers to Python 2 in that case.

• python.exe and pythonw.exe have been marked as long-path aware, which means that the 260
character path limit may no longer apply. See removing the MAX_PATH limitation for details.

• A ._pth file can be added to force isolated mode and fully specify all search paths to avoid registry and
environment lookup. See the documentation for more information.

• A python36.zip file now works as a landmark to infer PYTHONHOME . See the documentation for more
information.

https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html
https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html
https://www.python.org/dev/peps/pep-0524

2 New Features

2.1 PEP 498: Formatted string literals

PEP 498 introduces a new kind of string literals: f-strings, or formatted string literals.

Formatted string literals are prefixed with 'f' and are similar to the format strings accepted by str.format()
. They contain replacement fields surrounded by curly braces. The replacement fields are expressions, which are
evaluated at run time, and then formatted using the format() protocol:

>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
>>> width = 10
>>> precision = 4
>>> value = decimal.Decimal("12.34567")
>>> f"result: {value:{width}.{precision}}" # nested fields
'result: 12.35'

See also:

PEP 498 – Literal String Interpolation. PEP written and implemented by Eric V. Smith.

Feature documentation.

2.2 PEP 526: Syntax for variable annotations

PEP 484 introduced the standard for type annotations of function parameters, a.k.a. type hints. This PEP adds
syntax to Python for annotating the types of variables including class variables and instance variables:

primes: List[int] = []

captain: str # Note: no initial value!

class Starship:
stats: Dict[str, int] = {}

Just as for function annotations, the Python interpreter does not attach any particular meaning to variable annota-
tions and only stores them in the __annotations__ attribute of a class or module.

In contrast to variable declarations in statically typed languages, the goal of annotation syntax is to provide an
easy way to specify structured type metadata for third party tools and libraries via the abstract syntax tree and the
__annotations__ attribute.

See also:

PEP 526 – Syntax for variable annotations. PEP written by Ryan Gonzalez, Philip House, Ivan Levkivskyi,
Lisa Roach, and Guido van Rossum. Implemented by Ivan Levkivskyi.

Tools that use or will use the new syntax: mypy, pytype, PyCharm, etc.

2.3 PEP 515: Underscores in Numeric Literals

PEP 515 adds the ability to use underscores in numeric literals for improved readability. For example:

>>> 1_000_000_000_000_000
1000000000000000
>>> 0x_FF_FF_FF_FF
4294967295

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526
http://github.com/python/mypy
http://github.com/google/pytype
https://www.python.org/dev/peps/pep-0515

Single underscores are allowed between digits and after any base specifier. Leading, trailing, or multiple under-
scores in a row are not allowed.

The string formatting language also now has support for the '_' option to signal the use of an underscore for
a thousands separator for floating point presentation types and for integer presentation type 'd' . For integer
presentation types 'b' , 'o' , 'x' , and 'X' , underscores will be inserted every 4 digits:

>>> '{:_}'.format(1000000)
'1_000_000'
>>> '{:_x}'.format(0xFFFFFFFF)
'ffff_ffff'

See also:

PEP 515 – Underscores in Numeric Literals PEP written by Georg Brandl and Serhiy Storchaka.

2.4 PEP 525: Asynchronous Generators

PEP 492 introduced support for native coroutines and async / await syntax to Python 3.5. A notable limitation
of the Python 3.5 implementation is that it was not possible to use await and yield in the same function body.
In Python 3.6 this restriction has been lifted, making it possible to define asynchronous generators:

async def ticker(delay, to):
"""Yield numbers from 0 to *to* every *delay* seconds."""
for i in range(to):

yield i
await asyncio.sleep(delay)

The new syntax allows for faster and more concise code.

See also:

PEP 525 – Asynchronous Generators PEP written and implemented by Yury Selivanov.

2.5 PEP 530: Asynchronous Comprehensions

PEP 530 adds support for using async for in list, set, dict comprehensions and generator expressions:

result = [i async for i in aiter() if i % 2]

Additionally, await expressions are supported in all kinds of comprehensions:

result = [await fun() for fun in funcs if await condition()]

See also:

PEP 530 – Asynchronous Comprehensions PEP written and implemented by Yury Selivanov.

2.6 PEP 487: Simpler customization of class creation

It is now possible to customize subclass creation without using a metaclass. The new __init_subclass__
classmethod will be called on the base class whenever a new subclass is created:

class PluginBase:
subclasses = []

def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
cls.subclasses.append(cls)

class Plugin1(PluginBase):
pass

https://www.python.org/dev/peps/pep-0515
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0530
https://www.python.org/dev/peps/pep-0530

class Plugin2(PluginBase):
pass

In order to allow zero-argument super() calls to work correctly from __init_subclass__() imple-
mentations, custom metaclasses must ensure that the new __classcell__ namespace entry is propagated to
type.__new__ (as described in class-object-creation).

See also:

PEP 487 – Simpler customization of class creation PEP written and implemented by Martin Teichmann.

Feature documentation

2.7 PEP 487: Descriptor Protocol Enhancements

PEP 487 extends the descriptor protocol has to include the new optional __set_name__() method. Whenever
a new class is defined, the new method will be called on all descriptors included in the definition, providing them
with a reference to the class being defined and the name given to the descriptor within the class namespace. In
other words, instances of descriptors can now know the attribute name of the descriptor in the owner class:

class IntField:
def __get__(self, instance, owner):

return instance.__dict__[self.name]

def __set__(self, instance, value):
if not isinstance(value, int):

raise ValueError(f'expecting integer in {self.name}')
instance.__dict__[self.name] = value

this is the new initializer:
def __set_name__(self, owner, name):

self.name = name

class Model:
int_field = IntField()

See also:

PEP 487 – Simpler customization of class creation PEP written and implemented by Martin Teichmann.

Feature documentation

2.8 PEP 519: Adding a file system path protocol

File system paths have historically been represented as str or bytes objects. This has led to people who
write code which operate on file system paths to assume that such objects are only one of those two types (an
int representing a file descriptor does not count as that is not a file path). Unfortunately that assumption
prevents alternative object representations of file system paths like pathlib from working with pre-existing
code, including Python’s standard library.

To fix this situation, a new interface represented by os.PathLike has been defined. By implementing the
__fspath__() method, an object signals that it represents a path. An object can then provide a low-level
representation of a file system path as a str or bytes object. This means an object is considered path-like
if it implements os.PathLike or is a str or bytes object which represents a file system path. Code
can use os.fspath() , os.fsdecode() , or os.fsencode() to explicitly get a str and/or bytes
representation of a path-like object.

The built-in open() function has been updated to accept os.PathLike objects, as have all relevant func-
tions in the os and os.path modules, and most other functions and classes in the standard library. The
os.DirEntry class and relevant classes in pathlib have also been updated to implement os.PathLike .

https://www.python.org/dev/peps/pep-0487
https://www.python.org/dev/peps/pep-0487
https://www.python.org/dev/peps/pep-0487

The hope is that updating the fundamental functions for operating on file system paths will lead to third-party code
to implicitly support all path-like objects without any code changes, or at least very minimal ones (e.g. calling
os.fspath() at the beginning of code before operating on a path-like object).

Here are some examples of how the new interface allows for pathlib.Path to be used more easily and
transparently with pre-existing code:

>>> import pathlib
>>> with open(pathlib.Path("README")) as f:
... contents = f.read()
...
>>> import os.path
>>> os.path.splitext(pathlib.Path("some_file.txt"))
('some_file', '.txt')
>>> os.path.join("/a/b", pathlib.Path("c"))
'/a/b/c'
>>> import os
>>> os.fspath(pathlib.Path("some_file.txt"))
'some_file.txt'

(Implemented by Brett Cannon, Ethan Furman, Dusty Phillips, and Jelle Zijlstra.)

See also:

PEP 519 – Adding a file system path protocol PEP written by Brett Cannon and Koos Zevenhoven.

2.9 PEP 495: Local Time Disambiguation

In most world locations, there have been and will be times when local clocks are moved back. In those times,
intervals are introduced in which local clocks show the same time twice in the same day. In these situations,
the information displayed on a local clock (or stored in a Python datetime instance) is insufficient to identify a
particular moment in time.

PEP 495 adds the new fold attribute to instances of datetime.datetime and datetime.time classes to
differentiate between two moments in time for which local times are the same:

>>> u0 = datetime(2016, 11, 6, 4, tzinfo=timezone.utc)
>>> for i in range(4):
... u = u0 + i*HOUR
... t = u.astimezone(Eastern)
... print(u.time(), 'UTC =', t.time(), t.tzname(), t.fold)
...
04:00:00 UTC = 00:00:00 EDT 0
05:00:00 UTC = 01:00:00 EDT 0
06:00:00 UTC = 01:00:00 EST 1
07:00:00 UTC = 02:00:00 EST 0

The values of the fold attribute have the value 0 for all instances except those that represent the second
(chronologically) moment in time in an ambiguous case.

See also:

PEP 495 – Local Time Disambiguation PEP written by Alexander Belopolsky and Tim Peters, implementation
by Alexander Belopolsky.

2.10 PEP 529: Change Windows filesystem encoding to UTF-8

Representing filesystem paths is best performed with str (Unicode) rather than bytes. However, there are some
situations where using bytes is sufficient and correct.

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0495
https://www.python.org/dev/peps/pep-0495

Prior to Python 3.6, data loss could result when using bytes paths on Windows. With this change, using bytes to
represent paths is now supported on Windows, provided those bytes are encoded with the encoding returned by
sys.getfilesystemencoding() , which now defaults to 'utf-8' .

Applications that do not use str to represent paths should use os.fsencode() and
os.fsdecode() to ensure their bytes are correctly encoded. To revert to the previous behaviour, set
PYTHONLEGACYWINDOWSFSENCODING or call sys._enablelegacywindowsfsencoding() .

See PEP 529 for more information and discussion of code modifications that may be required.

2.11 PEP 528: Change Windows console encoding to UTF-8

The default console on Windows will now accept all Unicode characters and provide correctly read str objects to
Python code. sys.stdin , sys.stdout and sys.stderr now default to utf-8 encoding.

This change only applies when using an interactive console, and not when redirecting files or pipes. To revert to
the previous behaviour for interactive console use, set PYTHONLEGACYWINDOWSIOENCODING .

See also:

PEP 528 – Change Windows console encoding to UTF-8 PEP written and implemented by Steve Dower.

2.12 PEP 520: Preserving Class Attribute Definition Order

Attributes in a class definition body have a natural ordering: the same order in which the names appear in the
source. This order is now preserved in the new class’s __dict__ attribute.

Also, the effective default class execution namespace (returned from type.__prepare__()) is now an insertion-
order-preserving mapping.

See also:

PEP 520 – Preserving Class Attribute Definition Order PEP written and implemented by Eric Snow.

2.13 PEP 468: Preserving Keyword Argument Order

**kwargs in a function signature is now guaranteed to be an insertion-order-preserving mapping.

See also:

PEP 468 – Preserving Keyword Argument Order PEP written and implemented by Eric Snow.

2.14 New dict implementation

The dict type now uses a “compact” representation pioneered by PyPy. The memory usage of the new dict()
is between 20% and 25% smaller compared to Python 3.5.

The order-preserving aspect of this new implementation is considered an implementation detail and should not be
relied upon (this may change in the future, but it is desired to have this new dict implementation in the language for
a few releases before changing the language spec to mandate order-preserving semantics for all current and future
Python implementations; this also helps preserve backwards-compatibility with older versions of the language
where random iteration order is still in effect, e.g. Python 3.5).

(Contributed by INADA Naoki in issue 27350. Idea originally suggested by Raymond Hettinger.)

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528
https://www.python.org/dev/peps/pep-0520
https://www.python.org/dev/peps/pep-0468
https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html
https://bugs.python.org/issue27350
https://mail.python.org/pipermail/python-dev/2012-December/123028.html

2.15 PEP 523: Adding a frame evaluation API to CPython

While Python provides extensive support to customize how code executes, one place it has not done so is in the
evaluation of frame objects. If you wanted some way to intercept frame evaluation in Python there really wasn’t
any way without directly manipulating function pointers for defined functions.

PEP 523 changes this by providing an API to make frame evaluation pluggable at the C level. This will allow for
tools such as debuggers and JITs to intercept frame evaluation before the execution of Python code begins. This
enables the use of alternative evaluation implementations for Python code, tracking frame evaluation, etc.

This API is not part of the limited C API and is marked as private to signal that usage of this API is expected to
be limited and only applicable to very select, low-level use-cases. Semantics of the API will change with Python
as necessary.

See also:

PEP 523 – Adding a frame evaluation API to CPython PEP written by Brett Cannon and Dino Viehland.

2.16 PYTHONMALLOC environment variable

The new PYTHONMALLOC environment variable allows setting the Python memory allocators and installing
debug hooks.

It is now possible to install debug hooks on Python memory allocators on Python compiled in release mode using
PYTHONMALLOC=debug . Effects of debug hooks:

• Newly allocated memory is filled with the byte 0xCB

• Freed memory is filled with the byte 0xDB

• Detect violations of the Python memory allocator API. For example, PyObject_Free() called on a
memory block allocated by PyMem_Malloc() .

• Detect writes before the start of a buffer (buffer underflows)

• Detect writes after the end of a buffer (buffer overflows)

• Check that the GIL is held when allocator functions of PYMEM_DOMAIN_OBJ (ex:
PyObject_Malloc()) and PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are
called.

Checking if the GIL is held is also a new feature of Python 3.6.

See the PyMem_SetupDebugHooks() function for debug hooks on Python memory allocators.

It is now also possible to force the usage of the malloc() allocator of the C library for all Python memory allo-
cations using PYTHONMALLOC=malloc . This is helpful when using external memory debuggers like Valgrind
on a Python compiled in release mode.

On error, the debug hooks on Python memory allocators now use the tracemalloc module to get the traceback
where a memory block was allocated.

Example of fatal error on buffer overflow using python3.6 -X tracemalloc=5 (store 5 frames in traces):

Debug memory block at address p=0x7fbcd41666f8: API 'o'
4 bytes originally requested
The 7 pad bytes at p-7 are FORBIDDENBYTE, as expected.
The 8 pad bytes at tail=0x7fbcd41666fc are not all FORBIDDENBYTE (0xfb):

at tail+0: 0x02 *** OUCH
at tail+1: 0xfb
at tail+2: 0xfb
at tail+3: 0xfb
at tail+4: 0xfb
at tail+5: 0xfb
at tail+6: 0xfb
at tail+7: 0xfb

https://www.python.org/dev/peps/pep-0523
https://www.python.org/dev/peps/pep-0523

The block was made by call #1233329 to debug malloc/realloc.
Data at p: 1a 2b 30 00

Memory block allocated at (most recent call first):
File "test/test_bytes.py", line 323
File "unittest/case.py", line 600
File "unittest/case.py", line 648
File "unittest/suite.py", line 122
File "unittest/suite.py", line 84

Fatal Python error: bad trailing pad byte

Current thread 0x00007fbcdbd32700 (most recent call first):
File "test/test_bytes.py", line 323 in test_hex
File "unittest/case.py", line 600 in run
File "unittest/case.py", line 648 in __call__
File "unittest/suite.py", line 122 in run
File "unittest/suite.py", line 84 in __call__
File "unittest/suite.py", line 122 in run
File "unittest/suite.py", line 84 in __call__
...

(Contributed by Victor Stinner in issue 26516 and issue 26564.)

2.17 DTrace and SystemTap probing support

Python can now be built --with-dtrace which enables static markers for the following events in the inter-
preter:

• function call/return

• garbage collection started/finished

• line of code executed.

This can be used to instrument running interpreters in production, without the need to recompile specific debug
builds or providing application-specific profiling/debugging code.

More details in instrumentation.

The current implementation is tested on Linux and macOS. Additional markers may be added in the future.

(Contributed by Łukasz Langa in issue 21590, based on patches by Jesús Cea Avión, David Malcolm, and Nikhil
Benesch.)

3 Other Language Changes

Some smaller changes made to the core Python language are:

• A global or nonlocal statement must now textually appear before the first use of the affected name
in the same scope. Previously this was a SyntaxWarning .

• It is now possible to set a special method to None to indicate that the corresponding operation is not
available. For example, if a class sets __iter__() to None , the class is not iterable. (Contributed by
Andrew Barnert and Ivan Levkivskyi in issue 25958.)

• Long sequences of repeated traceback lines are now abbreviated as "[Previous line repeated
{count} more times]" (see traceback for an example). (Contributed by Emanuel Barry in issue
26823.)

https://bugs.python.org/issue26516
https://bugs.python.org/issue26564
https://bugs.python.org/issue21590
https://bugs.python.org/issue25958
https://bugs.python.org/issue26823
https://bugs.python.org/issue26823

• Import now raises the new exception ModuleNotFoundError (subclass of ImportError) when it
cannot find a module. Code that currently checks for ImportError (in try-except) will still work. (Con-
tributed by Eric Snow in issue 15767.)

• Class methods relying on zero-argument super() will now work correctly when called from metaclass
methods during class creation. (Contributed by Martin Teichmann in issue 23722.)

4 New Modules

4.1 secrets

The main purpose of the new secrets module is to provide an obvious way to reliably generate cryptograph-
ically strong pseudo-random values suitable for managing secrets, such as account authentication, tokens, and
similar.

Warning: Note that the pseudo-random generators in the random module should NOT be used for security
purposes. Use secrets on Python 3.6+ and os.urandom() on Python 3.5 and earlier.

See also:

PEP 506 – Adding A Secrets Module To The Standard Library PEP written and implemented by Steven
D’Aprano.

5 Improved Modules

5.1 array

Exhausted iterators of array.array will now stay exhausted even if the iterated array is extended. This is
consistent with the behavior of other mutable sequences.

Contributed by Serhiy Storchaka in issue 26492.

5.2 ast

The new ast.Constant AST node has been added. It can be used by external AST optimizers for the purposes
of constant folding.

Contributed by Victor Stinner in issue 26146.

5.3 asyncio

Starting with Python 3.6 the asyncio module is no longer provisional and its API is considered stable.

Notable changes in the asyncio module since Python 3.5.0 (all backported to 3.5.x due to the provisional
status):

• The get_event_loop() function has been changed to always return the currently running loop when
called from couroutines and callbacks. (Contributed by Yury Selivanov in issue 28613.)

• The ensure_future() function and all functions that use it, such as
loop.run_until_complete() , now accept all kinds of awaitable objects. (Contributed by
Yury Selivanov.)

• New run_coroutine_threadsafe() function to submit coroutines to event loops from other
threads. (Contributed by Vincent Michel.)

https://bugs.python.org/issue15767
https://bugs.python.org/issue23722
https://www.python.org/dev/peps/pep-0506
https://bugs.python.org/issue26492
https://bugs.python.org/issue26146
https://bugs.python.org/issue28613

• New Transport.is_closing() method to check if the transport is closing or closed. (Contributed
by Yury Selivanov.)

• The loop.create_server() method can now accept a list of hosts. (Contributed by Yann Sionneau.)

• New loop.create_future() method to create Future objects. This allows alternative event loop
implementations, such as uvloop, to provide a faster asyncio.Future implementation. (Contributed
by Yury Selivanov in issue 27041.)

• New loop.get_exception_handler() method to get the current exception handler. (Contributed
by Yury Selivanov in issue 27040.)

• New StreamReader.readuntil() method to read data from the stream until a separator bytes se-
quence appears. (Contributed by Mark Korenberg.)

• The performance of StreamReader.readexactly() has been improved. (Contributed by Mark
Korenberg in issue 28370.)

• The loop.getaddrinfo() method is optimized to avoid calling the system getaddrinfo function
if the address is already resolved. (Contributed by A. Jesse Jiryu Davis.)

• The loop.stop() method has been changed to stop the loop immediately after the current iteration.
Any new callbacks scheduled as a result of the last iteration will be discarded. (Contributed by Guido van
Rossum in issue 25593.)

• Future.set_exception will now raise TypeError when passed an instance of the
StopIteration exception. (Contributed by Chris Angelico in issue 26221.)

• New loop.connect_accepted_socket() method to be used by servers that accept connections
outside of asyncio, but that use asyncio to handle them. (Contributed by Jim Fulton in issue 27392.)

• TCP_NODELAY flag is now set for all TCP transports by default. (Contributed by Yury Selivanov in issue
27456.)

• New loop.shutdown_asyncgens() to properly close pending asynchronous generators before clos-
ing the loop. (Contributed by Yury Selivanov in issue 28003.)

• Future and Task classes now have an optimized C implementation which makes asyncio code up to
30% faster. (Contributed by Yury Selivanov and INADA Naoki in issue 26081 and issue 28544.)

5.4 binascii

The b2a_base64() function now accepts an optional newline keyword argument to control whether the new-
line character is appended to the return value. (Contributed by Victor Stinner in issue 25357.)

5.5 cmath

The new cmath.tau (𝜏) constant has been added. (Contributed by Lisa Roach in issue 12345, see PEP 628 for
details.)

New constants: cmath.inf and cmath.nan to match math.inf and math.nan , and also cmath.infj
and cmath.nanj to match the format used by complex repr. (Contributed by Mark Dickinson in issue 23229.)

5.6 collections

The new Collection abstract base class has been added to represent sized iterable container classes. (Con-
tributed by Ivan Levkivskyi, docs by Neil Girdhar in issue 27598.)

The new Reversible abstract base class represents iterable classes that also provide the __reversed__()
method. (Contributed by Ivan Levkivskyi in issue 25987.)

The new AsyncGenerator abstract base class represents asynchronous generators. (Contributed by Yury
Selivanov in issue 28720.)

https://github.com/MagicStack/uvloop
https://bugs.python.org/issue27041
https://bugs.python.org/issue27040
https://bugs.python.org/issue28370
https://bugs.python.org/issue25593
https://bugs.python.org/issue26221
https://bugs.python.org/issue27392
https://bugs.python.org/issue27456
https://bugs.python.org/issue27456
https://bugs.python.org/issue28003
https://bugs.python.org/issue26081
https://bugs.python.org/issue28544
https://bugs.python.org/issue25357
https://bugs.python.org/issue12345
https://www.python.org/dev/peps/pep-0628
https://bugs.python.org/issue23229
https://bugs.python.org/issue27598
https://bugs.python.org/issue25987
https://bugs.python.org/issue28720

The namedtuple() function now accepts an optional keyword argument module, which, when specified, is
used for the __module__ attribute of the returned named tuple class. (Contributed by Raymond Hettinger in
issue 17941.)

The verbose and rename arguments for namedtuple() are now keyword-only. (Contributed by Raymond
Hettinger in issue 25628.)

Recursive collections.deque instances can now be pickled. (Contributed by Serhiy Storchaka in issue
26482.)

5.7 concurrent.futures

The ThreadPoolExecutor class constructor now accepts an optional thread_name_prefix argument to make
it possible to customize the names of the threads created by the pool. (Contributed by Gregory P. Smith in issue
27664.)

5.8 contextlib

The contextlib.AbstractContextManager class has been added to provide an abstract base class
for context managers. It provides a sensible default implementation for __enter__() which returns self
and leaves __exit__() an abstract method. A matching class has been added to the typing module as
typing.ContextManager . (Contributed by Brett Cannon in issue 25609.)

5.9 datetime

The datetime and time classes have the new fold attribute used to disambiguate local time when necessary.
Many functions in the datetime have been updated to support local time disambiguation. See Local Time
Disambiguation section for more information. (Contributed by Alexander Belopolsky in issue 24773.)

The datetime.strftime() and date.strftime() methods now support ISO 8601 date directives %G
, %u and %V . (Contributed by Ashley Anderson in issue 12006.)

The datetime.isoformat() function now accepts an optional timespec argument that specifies the num-
ber of additional components of the time value to include. (Contributed by Alessandro Cucci and Alexander
Belopolsky in issue 19475.)

The datetime.combine() now accepts an optional tzinfo argument. (Contributed by Alexander Belopolsky
in issue 27661.)

5.10 decimal

New Decimal.as_integer_ratio() method that returns a pair (n,d) of integers that represent the
given Decimal instance as a fraction, in lowest terms and with a positive denominator:

>>> Decimal('-3.14').as_integer_ratio()
(-157, 50)

(Contributed by Stefan Krah amd Mark Dickinson in issue 25928.)

5.11 distutils

The default_format attribute has been removed from distutils.command.sdist.sdist and the
formats attribute defaults to ['gztar'] . Although not anticipated, any code relying on the presence of
default_format may need to be adapted. See issue 27819 for more details.

https://bugs.python.org/issue17941
https://bugs.python.org/issue25628
https://bugs.python.org/issue26482
https://bugs.python.org/issue26482
https://bugs.python.org/issue27664
https://bugs.python.org/issue27664
https://bugs.python.org/issue25609
https://bugs.python.org/issue24773
https://bugs.python.org/issue12006
https://bugs.python.org/issue19475
https://bugs.python.org/issue27661
https://bugs.python.org/issue25928
https://bugs.python.org/issue27819

5.12 email

The new email API, enabled via the policy keyword to various constructors, is no longer provisional. The email
documentation has been reorganized and rewritten to focus on the new API, while retaining the old documentation
for the legacy API. (Contributed by R. David Murray in issue 24277.)

The email.mime classes now all accept an optional policy keyword. (Contributed by Berker Peksag in issue
27331.)

The DecodedGenerator now supports the policy keyword.

There is a new policy attribute, message_factory , that controls what class is used by default when the
parser creates new message objects. For the email.policy.compat32 policy this is Message , for the new
policies it is EmailMessage . (Contributed by R. David Murray in issue 20476.)

5.13 encodings

On Windows, added the 'oem' encoding to use CP_OEMCP , and the 'ansi' alias for the existing 'mbcs'
encoding, which uses the CP_ACP code page. (Contributed by Steve Dower in issue 27959.)

5.14 enum

Two new enumeration base classes have been added to the enum module: Flag and IntFlags . Both are
used to define constants that can be combined using the bitwise operators. (Contributed by Ethan Furman in issue
23591.)

Many standard library modules have been updated to use the IntFlags class for their constants.

The new enum.auto value can be used to assign values to enum members automatically:

>>> from enum import Enum, auto
>>> class Color(Enum):
... red = auto()
... blue = auto()
... green = auto()
...
>>> list(Color)
[<Color.red: 1>, <Color.blue: 2>, <Color.green: 3>]

5.15 faulthandler

On Windows, the faulthandler module now installs a handler for Windows exceptions: see
faulthandler.enable() . (Contributed by Victor Stinner in issue 23848.)

5.16 fileinput

hook_encoded() now supports the errors argument. (Contributed by Joseph Hackman in issue 25788.)

5.17 hashlib

hashlib supports OpenSSL 1.1.0. The minimum recommend version is 1.0.2. (Contributed by Christian
Heimes in issue 26470.)

BLAKE2 hash functions were added to the module. blake2b() and blake2s() are always available and
support the full feature set of BLAKE2. (Contributed by Christian Heimes in issue 26798 based on code by Dmitry
Chestnykh and Samuel Neves. Documentation written by Dmitry Chestnykh.)

https://bugs.python.org/issue24277
https://bugs.python.org/issue27331
https://bugs.python.org/issue27331
https://bugs.python.org/issue20476
https://bugs.python.org/issue27959
https://bugs.python.org/issue23591
https://bugs.python.org/issue23591
https://bugs.python.org/issue23848
https://bugs.python.org/issue25788
https://bugs.python.org/issue26470
https://bugs.python.org/issue26798

The SHA-3 hash functions sha3_224() , sha3_256() , sha3_384() , sha3_512() , and SHAKE hash
functions shake_128() and shake_256() were added. (Contributed by Christian Heimes in issue 16113.
Keccak Code Package by Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer.)

The password-based key derivation function scrypt() is now available with OpenSSL 1.1.0 and newer. (Con-
tributed by Christian Heimes in issue 27928.)

5.18 http.client

HTTPConnection.request() and endheaders() both now support chunked encoding request bodies.
(Contributed by Demian Brecht and Rolf Krahl in issue 12319.)

5.19 idlelib and IDLE

The idlelib package is being modernized and refactored to make IDLE look and work better and to make the code
easier to understand, test, and improve. Part of making IDLE look better, especially on Linux and Mac, is using
ttk widgets, mostly in the dialogs. As a result, IDLE no longer runs with tcl/tk 8.4. It now requires tcl/tk 8.5 or
8.6. We recommend running the latest release of either.

‘Modernizing’ includes renaming and consolidation of idlelib modules. The renaming of files with partial upper-
case names is similar to the renaming of, for instance, Tkinter and TkFont to tkinter and tkinter.font in 3.0. As
a result, imports of idlelib files that worked in 3.5 will usually not work in 3.6. At least a module name change
will be needed (see idlelib/README.txt), sometimes more. (Name changes contributed by Al Swiegart and Terry
Reedy in issue 24225. Most idlelib patches since have been and will be part of the process.)

In compensation, the eventual result with be that some idlelib classes will be easier to use, with better APIs and
docstrings explaining them. Additional useful information will be added to idlelib when available.

5.20 importlib

Import now raises the new exception ModuleNotFoundError (subclass of ImportError) when it cannot
find a module. Code that current checks for ImportError (in try-except) will still work. (Contributed by Eric
Snow in issue 15767.)

importlib.util.LazyLoader now calls create_module() on the wrapped
loader, removing the restriction that importlib.machinery.BuiltinImporter
and importlib.machinery.ExtensionFileLoader couldn’t be used with
importlib.util.LazyLoader .

importlib.util.cache_from_source() , importlib.util.source_from_cache() , and
importlib.util.spec_from_file_location() now accept a path-like object.

5.21 inspect

The inspect.signature() function now reports the implicit .0 parameters generated by the compiler for
comprehension and generator expression scopes as if they were positional-only parameters called implicit0 .
(Contributed by Jelle Zijlstra in issue 19611.)

To reduce code churn when upgrading from Python 2.7 and the legacy inspect.getargspec() API, the
previously documented deprecation of inspect.getfullargspec() has been reversed. While this function
is convenient for single/source Python 2/3 code bases, the richer inspect.signature() interface remains
the recommended approach for new code. (Contributed by Nick Coghlan in issue 27172)

https://bugs.python.org/issue16113
https://bugs.python.org/issue27928
https://bugs.python.org/issue12319
https://bugs.python.org/issue24225
https://bugs.python.org/issue15767
https://bugs.python.org/issue19611
https://bugs.python.org/issue27172

5.22 json

json.load() and json.loads() now support binary input. Encoded JSON should be represented using
either UTF-8, UTF-16, or UTF-32. (Contributed by Serhiy Storchaka in issue 17909.)

5.23 logging

The new WatchedFileHandler.reopenIfNeeded() method has been added to add the ability to check
if the log file needs to be reopened. (Contributed by Marian Horban in issue 24884.)

5.24 math

The tau (𝜏) constant has been added to the math and cmath modules. (Contributed by Lisa Roach in issue
12345, see PEP 628 for details.)

5.25 multiprocessing

Proxy Objects returned by multiprocessing.Manager() can now be nested. (Contributed by Davin Potts
in issue 6766.)

5.26 os

See the summary of PEP 519 for details on how the os and os.path modules now support path-like objects.

scandir() now supports bytes paths on Windows.

A new close() method allows explicitly closing a scandir() iterator. The scandir() iterator now
supports the context manager protocol. If a scandir() iterator is neither exhausted nor explicitly closed a
ResourceWarning will be emitted in its destructor. (Contributed by Serhiy Storchaka in issue 25994.)

On Linux, os.urandom() now blocks until the system urandom entropy pool is initialized to increase the
security. See the PEP 524 for the rationale.

The Linux getrandom() syscall (get random bytes) is now exposed as the new os.getrandom() function.
(Contributed by Victor Stinner, part of the PEP 524)

5.27 pathlib

pathlib now supports path-like objects. (Contributed by Brett Cannon in issue 27186.)

See the summary of PEP 519 for details.

5.28 pdb

The Pdb class constructor has a new optional readrc argument to control whether .pdbrc files should be read.

5.29 pickle

Objects that need __new__ called with keyword arguments can now be pickled using pickle protocols older
than protocol version 4. Protocol version 4 already supports this case. (Contributed by Serhiy Storchaka in issue
24164.)

https://bugs.python.org/issue17909
https://bugs.python.org/issue24884
https://bugs.python.org/issue12345
https://bugs.python.org/issue12345
https://www.python.org/dev/peps/pep-0628
https://bugs.python.org/issue6766
https://bugs.python.org/issue25994
https://www.python.org/dev/peps/pep-0524
https://www.python.org/dev/peps/pep-0524
https://bugs.python.org/issue27186
https://bugs.python.org/issue24164
https://bugs.python.org/issue24164

5.30 pickletools

pickletools.dis() now outputs the implicit memo index for the MEMOIZE opcode. (Contributed by
Serhiy Storchaka in issue 25382.)

5.31 pydoc

The pydoc module has learned to respect the MANPAGER environment variable. (Contributed by Matthias Klose
in issue 8637.)

help() and pydoc can now list named tuple fields in the order they were defined rather than alphabetically.
(Contributed by Raymond Hettinger in issue 24879.)

5.32 random

The new choices() function returns a list of elements of specified size from the given population with optional
weights. (Contributed by Raymond Hettinger in issue 18844.)

5.33 re

Added support of modifier spans in regular expressions. Examples: '(?i:p)ython' matches 'python'
and 'Python' , but not 'PYTHON' ; '(?i)g(?-i:v)r' matches 'GvR' and 'gvr' , but not 'GVR' .
(Contributed by Serhiy Storchaka in issue 433028.)

Match object groups can be accessed by __getitem__ , which is equivalent to group() . So mo['name']
is now equivalent to mo.group('name') . (Contributed by Eric Smith in issue 24454.)

Match objects now support index-like objects as group indices. (Contributed by Jeroen Demeyer and
Xiang Zhang in issue 27177.)

5.34 readline

Added set_auto_history() to enable or disable automatic addition of input to the history list. (Contributed
by Tyler Crompton in issue 26870.)

5.35 rlcompleter

Private and special attribute names now are omitted unless the prefix starts with underscores. A space or a colon
is added after some completed keywords. (Contributed by Serhiy Storchaka in issue 25011 and issue 25209.)

5.36 shlex

The shlex has much improved shell compatibility through the new punctuation_chars argument to control
which characters are treated as punctuation. (Contributed by Vinay Sajip in issue 1521950.)

5.37 site

When specifying paths to add to sys.path in a .pth file, you may now specify file paths on top of directories
(e.g. zip files). (Contributed by Wolfgang Langner in issue 26587).

https://bugs.python.org/issue25382
https://bugs.python.org/issue8637
https://bugs.python.org/issue24879
https://bugs.python.org/issue18844
https://bugs.python.org/issue433028
https://bugs.python.org/issue24454
https://bugs.python.org/issue27177
https://bugs.python.org/issue26870
https://bugs.python.org/issue25011
https://bugs.python.org/issue25209
https://bugs.python.org/issue1521950
https://bugs.python.org/issue26587

5.38 sqlite3

sqlite3.Cursor.lastrowid now supports the REPLACE statement. (Contributed by Alex LordThorsen
in issue 16864.)

5.39 socket

The ioctl() function now supports the SIO_LOOPBACK_FAST_PATH control code. (Contributed by Daniel
Stokes in issue 26536.)

The getsockopt() constants SO_DOMAIN , SO_PROTOCOL , SO_PEERSEC , and SO_PASSSEC are now
supported. (Contributed by Christian Heimes in issue 26907.)

The setsockopt() now supports the setsockopt(level,optname,None,optlen: int) form.
(Contributed by Christian Heimes in issue 27744.)

The socket module now supports the address family AF_ALG to interface with Linux Kernel crypto API. ALG_* ,
SOL_ALG and sendmsg_afalg() were added. (Contributed by Christian Heimes in issue 27744 with support
from Victor Stinner.)

5.40 socketserver

Servers based on the socketserver module, including those defined in http.server , xmlrpc.server
and wsgiref.simple_server , now support the context manager protocol. (Contributed by Aviv Palivoda
in issue 26404.)

The wfile attribute of StreamRequestHandler classes now implements the io.BufferedIOBase
writable interface. In particular, calling write() is now guaranteed to send the data in full. (Contributed by
Martin Panter in issue 26721.)

5.41 ssl

ssl supports OpenSSL 1.1.0. The minimum recommend version is 1.0.2. (Contributed by Christian Heimes in
issue 26470.)

3DES has been removed from the default cipher suites and ChaCha20 Poly1305 cipher suites have been added.
(Contributed by Christian Heimes in issue 27850 and issue 27766.)

SSLContext has better default configuration for options and ciphers. (Contributed by Christian Heimes in issue
28043.)

SSL session can be copied from one client-side connection to another with the new SSLSession class. TLS
session resumption can speed up the initial handshake, reduce latency and improve performance (Contributed by
Christian Heimes in issue 19500 based on a draft by Alex Warhawk.)

The new get_ciphers() method can be used to get a list of enabled ciphers in order of cipher priority.

All constants and flags have been converted to IntEnum and IntFlags . (Contributed by Christian Heimes in
issue 28025.)

Server and client-side specific TLS protocols for SSLContext were added. (Contributed by Christian Heimes
in issue 28085.)

5.42 statistics

A new harmonic_mean() function has been added. (Contributed by Steven D’Aprano in issue 27181.)

https://bugs.python.org/issue16864
https://bugs.python.org/issue26536
https://bugs.python.org/issue26907
https://bugs.python.org/issue27744
https://bugs.python.org/issue27744
https://bugs.python.org/issue26404
https://bugs.python.org/issue26721
https://bugs.python.org/issue26470
https://bugs.python.org/issue27850
https://bugs.python.org/issue27766
https://bugs.python.org/issue28043
https://bugs.python.org/issue28043
https://bugs.python.org/issue19500
https://bugs.python.org/issue28025
https://bugs.python.org/issue28085
https://bugs.python.org/issue27181

5.43 struct

struct now supports IEEE 754 half-precision floats via the 'e' format specifier. (Contributed by Eli Stevens,
Mark Dickinson in issue 11734.)

5.44 subprocess

subprocess.Popen destructor now emits a ResourceWarning warning if the child process is still run-
ning. Use the context manager protocol (with proc: ...) or explicitly call the wait() method to read
the exit status of the child process. (Contributed by Victor Stinner in issue 26741.)

The subprocess.Popen constructor and all functions that pass arguments through to it now accept encoding
and errors arguments. Specifying either of these will enable text mode for the stdin, stdout and stderr streams.
(Contributed by Steve Dower in issue 6135.)

5.45 sys

The new getfilesystemencodeerrors() function returns the name of the error mode used to convert
between Unicode filenames and bytes filenames. (Contributed by Steve Dower in issue 27781.)

On Windows the return value of the getwindowsversion() function now includes the platform_version
field which contains the accurate major version, minor version and build number of the current operating system,
rather than the version that is being emulated for the process (Contributed by Steve Dower in issue 27932.)

5.46 telnetlib

Telnet is now a context manager (contributed by Stéphane Wirtel in issue 25485).

5.47 time

The struct_time attributes tm_gmtoff and tm_zone are now available on all platforms.

5.48 timeit

The new Timer.autorange() convenience method has been added to call Timer.timeit() repeatedly
so that the total run time is greater or equal to 200 milliseconds. (Contributed by Steven D’Aprano in issue 6422.)

timeit now warns when there is substantial (4x) variance between best and worst times. (Contributed by Serhiy
Storchaka in issue 23552.)

5.49 tkinter

Added methods trace_add() , trace_remove() and trace_info() in the tkinter.Variable
class. They replace old methods trace_variable() , trace() , trace_vdelete() and
trace_vinfo() that use obsolete Tcl commands and might not work in future versions of Tcl. (Contributed
by Serhiy Storchaka in issue 22115).

5.50 traceback

Both the traceback module and the interpreter’s builtin exception display now abbreviate long sequences of re-
peated lines in tracebacks as shown in the following example:

https://bugs.python.org/issue11734
https://bugs.python.org/issue26741
https://bugs.python.org/issue6135
https://bugs.python.org/issue27781
https://bugs.python.org/issue27932
https://bugs.python.org/issue25485
https://bugs.python.org/issue6422
https://bugs.python.org/issue23552
https://bugs.python.org/issue22115

>>> def f(): f()
...
>>> f()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in f
File "<stdin>", line 1, in f
File "<stdin>", line 1, in f
[Previous line repeated 995 more times]

RecursionError: maximum recursion depth exceeded

(Contributed by Emanuel Barry in issue 26823.)

5.51 tracemalloc

The tracemalloc module now supports tracing memory allocations in multiple different address spaces.

The new DomainFilter filter class has been added to filter block traces by their address space (domain).

(Contributed by Victor Stinner in issue 26588.)

5.52 typing

Starting with Python 3.6 the typing module is no longer provisional and its API is considered stable.

Since the typing module was provisional in Python 3.5, all changes introduced in Python 3.6 have also been
backported to Python 3.5.x.

The typing module has a much improved support for generic type aliases. For example
Dict[str,Tuple[S,T]] is now a valid type annotation. (Contributed by Guido van Rossum in Github
#195.)

The typing.ContextManager class has been added for representing
contextlib.AbstractContextManager . (Contributed by Brett Cannon in issue 25609.)

The typing.Collection class has been added for representing collections.abc.Collection .
(Contributed by Ivan Levkivskyi in issue 27598.)

The typing.ClassVar type construct has been added to mark class variables. As introduced in PEP 526, a
variable annotation wrapped in ClassVar indicates that a given attribute is intended to be used as a class variable
and should not be set on instances of that class. (Contributed by Ivan Levkivskyi in Github #280.)

A new TYPE_CHECKING constant that is assumed to be True by the static type chekers, but is False at
runtime. (Contributed by Guido van Rossum in Github #230.)

A new NewType() helper function has been added to create lightweight distinct types for annotations:

from typing import NewType

UserId = NewType('UserId', int)
some_id = UserId(524313)

The static type checker will treat the new type as if it were a subclass of the original type. (Contributed by Ivan
Levkivskyi in Github #189.)

5.53 unicodedata

The unicodedata module now uses data from Unicode 9.0.0. (Contributed by Benjamin Peterson.)

https://bugs.python.org/issue26823
https://bugs.python.org/issue26588
https://github.com/python/typing/pull/195
https://github.com/python/typing/pull/195
https://bugs.python.org/issue25609
https://bugs.python.org/issue27598
https://www.python.org/dev/peps/pep-0526
https://github.com/python/typing/issues/280
https://github.com/python/typing/issues/230
https://github.com/python/typing/issues/189
http://unicode.org/versions/Unicode9.0.0/

5.54 unittest.mock

The Mock class has the following improvements:

• Two new methods, Mock.assert_called() and Mock.assert_called_once() to check if the
mock object was called. (Contributed by Amit Saha in issue 26323.)

• The Mock.reset_mock() method now has two optional keyword only arguments: return_value and
side_effect. (Contributed by Kushal Das in issue 21271.)

5.55 urllib.request

If a HTTP request has a file or iterable body (other than a bytes object) but no Content-Length header,
rather than throwing an error, AbstractHTTPHandler now falls back to use chunked transfer encoding.
(Contributed by Demian Brecht and Rolf Krahl in issue 12319.)

5.56 urllib.robotparser

RobotFileParser now supports the Crawl-delay and Request-rate extensions. (Contributed by
Nikolay Bogoychev in issue 16099.)

5.57 venv

venv accepts a new parameter --prompt . This parameter provides an alternative prefix for the virtual envi-
ronment. (Proposed by Łukasz Balcerzak and ported to 3.6 by Stéphane Wirtel in issue 22829.)

5.58 warnings

A new optional source parameter has been added to the warnings.warn_explicit() function: the
destroyed object which emitted a ResourceWarning . A source attribute has also been added to
warnings.WarningMessage (contributed by Victor Stinner in issue 26568 and issue 26567).

When a ResourceWarning warning is logged, the tracemalloc module is now used to try to retrieve the
traceback where the destroyed object was allocated.

Example with the script example.py :

import warnings

def func():
return open(__file__)

f = func()
f = None

Output of the command python3.6 -Wd -X tracemalloc=5 example.py :

example.py:7: ResourceWarning: unclosed file <_io.TextIOWrapper name='example.py' mode='r' encoding='UTF-8'>
f = None

Object allocated at (most recent call first):
File "example.py", lineno 4

return open(__file__)
File "example.py", lineno 6

f = func()

The “Object allocated at” traceback is new and is only displayed if tracemalloc is tracing Python memory
allocations and if the warnings module was already imported.

https://bugs.python.org/issue26323
https://bugs.python.org/issue21271
https://bugs.python.org/issue12319
https://bugs.python.org/issue16099
https://bugs.python.org/issue22829
https://bugs.python.org/issue26568
https://bugs.python.org/issue26567

5.59 winreg

Added the 64-bit integer type REG_QWORD . (Contributed by Clement Rouault in issue 23026.)

5.60 winsound

Allowed keyword arguments to be passed to Beep , MessageBeep , and PlaySound (issue 27982).

5.61 xmlrpc.client

The xmlrpc.client module now supports unmarshalling additional data types used by the Apache XML-RPC
implementation for numerics and None . (Contributed by Serhiy Storchaka in issue 26885.)

5.62 zipfile

A new ZipInfo.from_file() class method allows making a ZipInfo instance from a filesystem file.
A new ZipInfo.is_dir() method can be used to check if the ZipInfo instance represents a directory.
(Contributed by Thomas Kluyver in issue 26039.)

The ZipFile.open() method can now be used to write data into a ZIP file, as well as for extracting data.
(Contributed by Thomas Kluyver in issue 26039.)

5.63 zlib

The compress() and decompress() functions now accept keyword arguments. (Contributed by Aviv
Palivoda in issue 26243 and Xiang Zhang in issue 16764 respectively.)

6 Optimizations

• The Python interpreter now uses a 16-bit wordcode instead of bytecode which made a number of opcode
optimizations possible. (Contributed by Demur Rumed with input and reviews from Serhiy Storchaka and
Victor Stinner in issue 26647 and issue 28050.)

• The asyncio.Future class now has an optimized C implementation. (Contributed by Yury Selivanov
and INADA Naoki in issue 26081.)

• The asyncio.Task class now has an optimized C implementation. (Contributed by Yury Selivanov in
issue 28544.)

• Various implementation improvements in the typing module (such as caching of generic types) allow up
to 30 times performance improvements and reduced memory footprint.

• The ASCII decoder is now up to 60 times as fast for error handlers surrogateescape , ignore and
replace (Contributed by Victor Stinner in issue 24870).

• The ASCII and the Latin1 encoders are now up to 3 times as fast for the error handler surrogateescape
(Contributed by Victor Stinner in issue 25227).

• The UTF-8 encoder is now up to 75 times as fast for error handlers ignore , replace ,
surrogateescape , surrogatepass (Contributed by Victor Stinner in issue 25267).

• The UTF-8 decoder is now up to 15 times as fast for error handlers ignore , replace and
surrogateescape (Contributed by Victor Stinner in issue 25301).

• bytes % args is now up to 2 times faster. (Contributed by Victor Stinner in issue 25349).

• bytearray % args is now between 2.5 and 5 times faster. (Contributed by Victor Stinner in issue
25399).

https://bugs.python.org/issue23026
https://bugs.python.org/issue27982
https://bugs.python.org/issue26885
https://bugs.python.org/issue26039
https://bugs.python.org/issue26039
https://bugs.python.org/issue26243
https://bugs.python.org/issue16764
https://bugs.python.org/issue26647
https://bugs.python.org/issue28050
https://bugs.python.org/issue26081
https://bugs.python.org/issue28544
https://bugs.python.org/issue24870
https://bugs.python.org/issue25227
https://bugs.python.org/issue25267
https://bugs.python.org/issue25301
https://bugs.python.org/issue25349
https://bugs.python.org/issue25399
https://bugs.python.org/issue25399

• Optimize bytes.fromhex() and bytearray.fromhex() : they are now between 2x and 3.5x
faster. (Contributed by Victor Stinner in issue 25401).

• Optimize bytes.replace(b'',b'.') and bytearray.replace(b'',b'.') : up to 80%
faster. (Contributed by Josh Snider in issue 26574).

• Allocator functions of the PyMem_Malloc() domain (PYMEM_DOMAIN_MEM) now use the pymalloc
memory allocator instead of malloc() function of the C library. The pymalloc allocator is optimized for
objects smaller or equal to 512 bytes with a short lifetime, and use malloc() for larger memory blocks.
(Contributed by Victor Stinner in issue 26249).

• pickle.load() and pickle.loads() are now up to 10% faster when deserializing many small
objects (Contributed by Victor Stinner in issue 27056).

• Passing keyword arguments to a function has an overhead in comparison with passing positional argu-
ments. Now in extension functions implemented with using Argument Clinic this overhead is significantly
decreased. (Contributed by Serhiy Storchaka in issue 27574).

• Optimized glob() and iglob() functions in the glob module; they are now about 3–6 times faster.
(Contributed by Serhiy Storchaka in issue 25596).

• Optimized globbing in pathlib by using os.scandir() ; it is now about 1.5–4 times faster. (Con-
tributed by Serhiy Storchaka in issue 26032).

• xml.etree.ElementTree parsing, iteration and deepcopy performance has been significantly im-
proved. (Contributed by Serhiy Storchaka in issue 25638, issue 25873, and issue 25869.)

• Creation of fractions.Fraction instances from floats and decimals is now 2 to 3 times faster. (Con-
tributed by Serhiy Storchaka in issue 25971.)

7 Build and C API Changes

• Python now requires some C99 support in the toolchain to build. Most notably, Python now uses standard
integer types and macros in place of custom macros like PY_LONG_LONG . For more information, see PEP
7 and issue 17884.

• Cross-compiling CPython with the Android NDK and the Android API level set to 21 (Android 5.0 Lollilop)
or greater runs successfully. While Android is not yet a supported platform, the Python test suite runs on
the Android emulator with only about 16 tests failures. See the Android meta-issue issue 26865.

• The --enable-optimizations configure flag has been added. Turning it on will activate expensive
optimizations like PGO. (Original patch by Alecsandru Patrascu of Intel in issue 26539.)

• The GIL must now be held when allocator functions of PYMEM_DOMAIN_OBJ (ex:
PyObject_Malloc()) and PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are
called.

• New Py_FinalizeEx() API which indicates if flushing buffered data failed. (Contributed by Martin
Panter in issue 5319.)

• PyArg_ParseTupleAndKeywords() now supports positional-only parameters. Positional-only pa-
rameters are defined by empty names. (Contributed by Serhiy Storchaka in issue 26282).

• PyTraceback_Print method now abbreviates long sequences of repeated lines as "[Previous
line repeated {count} more times]" . (Contributed by Emanuel Barry in issue 26823.)

• The new PyErr_SetImportErrorSubclass() function allows for specifying a subclass of
ImportError to raise. (Contributed by Eric Snow in issue 15767.)

• The new PyErr_ResourceWarning() function can be used to generate a ResourceWarning pro-
viding the source of the resource allocation. (Contributed by Victor Stinner in issue 26567.)

• The new PyOS_FSPath() function returns the file system representation of a path-like object. (Con-
tributed by Brett Cannon in issue 27186.)

https://bugs.python.org/issue25401
https://bugs.python.org/issue26574
https://bugs.python.org/issue26249
https://bugs.python.org/issue27056
https://bugs.python.org/issue27574
https://bugs.python.org/issue25596
https://bugs.python.org/issue26032
https://bugs.python.org/issue25638
https://bugs.python.org/issue25873
https://bugs.python.org/issue25869
https://bugs.python.org/issue25971
https://www.python.org/dev/peps/pep-0007
https://www.python.org/dev/peps/pep-0007
https://bugs.python.org/issue17884
https://bugs.python.org/issue26865
https://bugs.python.org/issue26539
https://bugs.python.org/issue5319
https://bugs.python.org/issue26282
https://bugs.python.org/issue26823
https://bugs.python.org/issue15767
https://bugs.python.org/issue26567
https://bugs.python.org/issue27186

• The PyUnicode_FSConverter() and PyUnicode_FSDecoder() functions will now accept
path-like objects.

8 Other Improvements

• When --version (short form: -V) is supplied twice, Python prints sys.version for detailed infor-
mation.

$./python -VV
Python 3.6.0b4+ (3.6:223967b49e49+, Nov 21 2016, 20:55:04)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)]

9 Deprecated

9.1 New Keywords

async and await are not recommended to be used as variable, class, function or module names. Introduced
by PEP 492 in Python 3.5, they will become proper keywords in Python 3.7. Starting in Python 3.6, the use of
async or await as names will generate a DeprecationWarning .

9.2 Deprecated Python behavior

Raising the StopIteration exception inside a generator will now generate a DeprecationWarning , and
will trigger a RuntimeError in Python 3.7. See whatsnew-pep-479 for details.

The __aiter__() method is now expected to return an asynchronous iterator directly instead of returning an
awaitable as previously. Doing the former will trigger a DeprecationWarning . Backward compatibility will
be removed in Python 3.7. (Contributed by Yury Selivanov in issue 27243.)

A backslash-character pair that is not a valid escape sequence now generates a DeprecationWarning . Al-
though this will eventually become a SyntaxError , that will not be for several Python releases. (Contributed
by Emanuel Barry in issue 27364.)

When performing a relative import, falling back on __name__ and __path__ from the calling module when
__spec__ or __package__ are not defined now raises an ImportWarning . (Contributed by Rose Ames
in issue 25791.)

9.3 Deprecated Python modules, functions and methods

asynchat

The asynchat has been deprecated in favor of asyncio . (Contributed by Mariatta in issue 25002.)

asyncore

The asyncore has been deprecated in favor of asyncio . (Contributed by Mariatta in issue 25002.)

dbm

Unlike other dbm implementations, the dbm.dumb module creates databases with the 'rw' mode and allows
modifying the database opened with the 'r' mode. This behavior is now deprecated and will be removed in 3.8.
(Contributed by Serhiy Storchaka in issue 21708.)

https://www.python.org/dev/peps/pep-0492
https://bugs.python.org/issue27243
https://bugs.python.org/issue27364
https://bugs.python.org/issue25791
https://bugs.python.org/issue25002
https://bugs.python.org/issue25002
https://bugs.python.org/issue21708

distutils

The undocumented extra_path argument to the Distribution constructor is now considered deprecated
and will raise a warning if set. Support for this parameter will be removed in a future Python release. See issue
27919 for details.

grp

The support of non-integer arguments in getgrgid() has been deprecated. (Contributed by Serhiy Storchaka
in issue 26129.)

importlib

The importlib.machinery.SourceFileLoader.load_module() and
importlib.machinery.SourcelessFileLoader.load_module() methods are now depre-
cated. They were the only remaining implementations of importlib.abc.Loader.load_module()
in importlib that had not been deprecated in previous versions of Python in favour of
importlib.abc.Loader.exec_module() .

The importlib.machinery.WindowsRegistryFinder class is now deprecated. As of 3.6.0, it is still
added to sys.meta_path by default (on Windows), but this may change in future releases.

os

Undocumented support of general bytes-like objects as paths in os functions, compile() and similar functions
is now deprecated. (Contributed by Serhiy Storchaka in issue 25791 and issue 26754.)

re

Support for inline flags (?letters) in the middle of the regular expression has been deprecated and will be
removed in a future Python version. Flags at the start of a regular expression are still allowed. (Contributed by
Serhiy Storchaka in issue 22493.)

ssl

OpenSSL 0.9.8, 1.0.0 and 1.0.1 are deprecated and no longer supported. In the future the ssl module will require
at least OpenSSL 1.0.2 or 1.1.0.

SSL-related arguments like certfile , keyfile and check_hostname in ftplib , http.client ,
imaplib , poplib , and smtplib have been deprecated in favor of context . (Contributed by Christian
Heimes in issue 28022.)

A couple of protocols and functions of the ssl module are now deprecated. Some features will no longer be
available in future versions of OpenSSL. Other features are deprecated in favor of a different API. (Contributed
by Christian Heimes in issue 28022 and issue 26470.)

tkinter

The tkinter.tix module is now deprecated. tkinter users should use tkinter.ttk instead.

venv

The pyvenv script has been deprecated in favour of python3 -m venv . This prevents confusion as to
what Python interpreter pyvenv is connected to and thus what Python interpreter will be used by the virtual
environment. (Contributed by Brett Cannon in issue 25154.)

https://bugs.python.org/issue27919
https://bugs.python.org/issue27919
https://bugs.python.org/issue26129
https://bugs.python.org/issue25791
https://bugs.python.org/issue26754
https://bugs.python.org/issue22493
https://bugs.python.org/issue28022
https://bugs.python.org/issue28022
https://bugs.python.org/issue26470
https://bugs.python.org/issue25154

9.4 Deprecated functions and types of the C API

Undocumented functions PyUnicode_AsEncodedObject() , PyUnicode_AsDecodedObject() ,
PyUnicode_AsEncodedUnicode() and PyUnicode_AsDecodedUnicode() are deprecated now.
Use the generic codec based API instead.

9.5 Deprecated Build Options

The --with-system-ffi configure flag is now on by default on non-macOS UNIX platforms. It may be dis-
abled by using --without-system-ffi , but using the flag is deprecated and will not be accepted in Python
3.7. macOS is unaffected by this change. Note that many OS distributors already use the --with-system-ffi
flag when building their system Python.

10 Removed

10.1 API and Feature Removals

• Unknown escapes consisting of '\' and an ASCII letter in regular expressions will now cause an error. In
replacement templates for re.sub() they are still allowed, but deprecated. The re.LOCALE flag can
now only be used with binary patterns.

• inspect.getmoduleinfo() was removed (was deprecated since CPython 3.3).
inspect.getmodulename() should be used for obtaining the module name for a given path.
(Contributed by Yury Selivanov in issue 13248.)

• traceback.Ignore class and traceback.usage , traceback.modname
, traceback.fullmodname , traceback.find_lines_from_code
, traceback.find_lines , traceback.find_strings ,
traceback.find_executable_lines methods were removed from the traceback mod-
ule. They were undocumented methods deprecated since Python 3.2 and equivalent functionality is
available from private methods.

• The tk_menuBar() and tk_bindForTraversal() dummy methods in tkinter widget classes
were removed (corresponding Tk commands were obsolete since Tk 4.0).

• The open() method of the zipfile.ZipFile class no longer supports the 'U' mode (was deprecated
since Python 3.4). Use io.TextIOWrapper for reading compressed text files in universal newlines
mode.

• The undocumented IN , CDROM , DLFCN , TYPES , CDIO , and STROPTS modules have been removed.
They had been available in the platform specific Lib/plat-*/ directories, but were chronically out of
date, inconsistently available across platforms, and unmaintained. The script that created these modules is
still available in the source distribution at Tools/scripts/h2py.py.

• The deprecated asynchat.fifo class has been removed.

11 Porting to Python 3.6

This section lists previously described changes and other bugfixes that may require changes to your code.

11.1 Changes in ‘python’ Command Behavior

• The output of a special Python build with defined COUNT_ALLOCS , SHOW_ALLOC_COUNT or
SHOW_TRACK_COUNT macros is now off by default. It can be re-enabled using the -X
showalloccount option. It now outputs to stderr instead of stdout . (Contributed by Serhiy
Storchaka in issue 23034.)

https://bugs.python.org/issue13248
https://hg.python.org/cpython/file/3.6/Tools/scripts/h2py.py
https://bugs.python.org/issue23034

11.2 Changes in the Python API

• open() will no longer allow combining the 'U' mode flag with '+' . (Contributed by Jeff Balogh and
John O’Connor in issue 2091.)

• sqlite3 no longer implicitly commits an open transaction before DDL statements.

• On Linux, os.urandom() now blocks until the system urandom entropy pool is initialized to increase
the security.

• When importlib.abc.Loader.exec_module() is defined,
importlib.abc.Loader.create_module() must also be defined.

• PyErr_SetImportError() now sets TypeError when its msg argument is not set. Previously only
NULL was returned.

• The format of the co_lnotab attribute of code objects changed to support a negative line number
delta. By default, Python does not emit bytecode with a negative line number delta. Functions using
frame.f_lineno , PyFrame_GetLineNumber() or PyCode_Addr2Line() are not affected.
Functions directly decoding co_lnotab should be updated to use a signed 8-bit integer type for the line
number delta, but this is only required to support applications using a negative line number delta. See
Objects/lnotab_notes.txt for the co_lnotab format and how to decode it, and see the PEP
511 for the rationale.

• The functions in the compileall module now return booleans instead of 1 or 0 to represent success
or failure, respectively. Thanks to booleans being a subclass of integers, this should only be an issue if you
were doing identity checks for 1 or 0 . See issue 25768.

• Reading the port attribute of urllib.parse.urlsplit() and urlparse() results now raises
ValueError for out-of-range values, rather than returning None . See issue 20059.

• The imp module now raises a DeprecationWarning instead of PendingDeprecationWarning
.

• The following modules have had missing APIs added to their __all__ attributes to match the documented
APIs: calendar , cgi , csv , ElementTree , enum , fileinput , ftplib , logging , mailbox
, mimetypes , optparse , plistlib , smtpd , subprocess , tarfile , threading and wave
. This means they will export new symbols when import * is used. (Contributed by Joel Taddei and
Jacek Kołodziej in issue 23883.)

• When performing a relative import, if __package__ does not compare equal to __spec__.parent
then ImportWarning is raised. (Contributed by Brett Cannon in issue 25791.)

• When a relative import is performed and no parent package is known, then ImportError will be raised.
Previously, SystemError could be raised. (Contributed by Brett Cannon in issue 18018.)

• Servers based on the socketserver module, including those defined in http.server ,
xmlrpc.server and wsgiref.simple_server , now only catch exceptions derived from
Exception . Therefore if a request handler raises an exception like SystemExit or
KeyboardInterrupt , handle_error() is no longer called, and the exception will stop a single-
threaded server. (Contributed by Martin Panter in issue 23430.)

• spwd.getspnam() now raises a PermissionError instead of KeyError if the user doesn’t have
privileges.

• The socket.socket.close() method now raises an exception if an error (e.g. EBADF) was reported
by the underlying system call. (Contributed by Martin Panter in issue 26685.)

• The decode_data argument for the smtpd.SMTPChannel and smtpd.SMTPServer constructors is
now False by default. This means that the argument passed to process_message() is now a bytes
object by default, and process_message() will be passed keyword arguments. Code that has already
been updated in accordance with the deprecation warning generated by 3.5 will not be affected.

• All optional arguments of the dump() , dumps() , load() and loads() functions and
JSONEncoder and JSONDecoder class constructors in the json module are now keyword-only.
(Contributed by Serhiy Storchaka in issue 18726.)

https://bugs.python.org/issue2091
https://www.python.org/dev/peps/pep-0511
https://www.python.org/dev/peps/pep-0511
https://bugs.python.org/issue25768
https://bugs.python.org/issue20059
https://bugs.python.org/issue23883
https://bugs.python.org/issue25791
https://bugs.python.org/issue18018
https://bugs.python.org/issue23430
https://bugs.python.org/issue26685
https://bugs.python.org/issue18726

• Subclasses of type which don’t override type.__new__ may no longer use the one-argument form to
get the type of an object.

• As part of PEP 487, the handling of keyword arguments passed to type (other than the metaclass
hint, metaclass) is now consistently delegated to object.__init_subclass__() . This means
that type.__new__() and type.__init__() both now accept arbitrary keyword arguments, but
object.__init_subclass__() (which is called from type.__new__()) will reject them by
default. Custom metaclasses accepting additional keyword arguments will need to adjust their calls to
type.__new__() (whether direct or via super) accordingly.

• In distutils.command.sdist.sdist , the default_format attribute has been removed and
is no longer honored. Instead, the gzipped tarfile format is the default on all platforms and no platform-
specific selection is made. In environments where distributions are built on Windows and zip distributions
are required, configure the project with a setup.cfg file containing the following:

[sdist]
formats=zip

This behavior has also been backported to earlier Python versions by Setuptools 26.0.0.

• In the urllib.request module and the http.client.HTTPConnection.request() method,
if no Content-Length header field has been specified and the request body is a file object, it is now sent with
HTTP 1.1 chunked encoding. If a file object has to be sent to a HTTP 1.0 server, the Content-Length value
now has to be specified by the caller. (Contributed by Demian Brecht and Rolf Krahl with tweaks from
Martin Panter in issue 12319.)

• The DictReader now returns rows of type OrderedDict . (Contributed by Steve Holden in issue
27842.)

• The crypt.METHOD_CRYPT will no longer be added to crypt.methods if unsupported by the plat-
form. (Contributed by Victor Stinner in issue 25287.)

• The verbose and rename arguments for namedtuple() are now keyword-only. (Contributed by Ray-
mond Hettinger in issue 25628.)

• On Linux, ctypes.util.find_library() now looks in LD_LIBRARY_PATH for shared libraries.
(Contributed by Vinay Sajip in issue 9998.)

• The imaplib.IMAP4 class now handles flags containing the ']' character in messages sent from the
server to improve real-world compatibility. (Contributed by Lita Cho in issue 21815.)

• The mmap.write() function now returns the number of bytes written like other write methods. (Con-
tributed by Jakub Stasiak in issue 26335.)

• The pkgutil.iter_modules() and pkgutil.walk_packages() functions now return
ModuleInfo named tuples. (Contributed by Ramchandra Apte in issue 17211.)

• re.sub() now raises an error for invalid numerical group references in replacement templates even if the
pattern is not found in the string. The error message for invalid group references now includes the group
index and the position of the reference. (Contributed by SilentGhost, Serhiy Storchaka in issue 25953.)

• zipfile.ZipFile will now raise NotImplementedError for unrecognized compression values.
Previously a plain RuntimeError was raised. Additionally, calling ZipFile methods on a closed
ZipFile or calling the write() method on a ZipFile created with mode 'r' will raise a ValueError .
Previously, a RuntimeError was raised in those scenarios.

• when custom metaclasses are combined with zero-argument super() or direct references from methods to
the implicit __class__ closure variable, the implicit __classcell__ namespace entry must now be
passed up to type.__new__ for initialisation. Failing to do so will result in a DeprecationWarning
in 3.6 and a RuntimeWarning in the future.

11.3 Changes in the C API

• The PyMem_Malloc() allocator family now uses the pymalloc allocator rather than the system
malloc() . Applications calling PyMem_Malloc() without holding the GIL can now crash. Set

https://www.python.org/dev/peps/pep-0487
https://bugs.python.org/issue12319
https://bugs.python.org/issue27842
https://bugs.python.org/issue27842
https://bugs.python.org/issue25287
https://bugs.python.org/issue25628
https://bugs.python.org/issue9998
https://bugs.python.org/issue21815
https://bugs.python.org/issue26335
https://bugs.python.org/issue17211
https://bugs.python.org/issue25953

the PYTHONMALLOC environment variable to debug to validate the usage of memory allocators in your
application. See issue 26249.

• Py_Exit() (and the main interpreter) now override the exit status with 120 if flushing buffered data
failed. See issue 5319.

11.4 CPython bytecode changes

There have been several major changes to the bytecode in Python 3.6.

• The Python interpreter now uses a 16-bit wordcode instead of bytecode. (Contributed by Demur Rumed
with input and reviews from Serhiy Storchaka and Victor Stinner in issue 26647 and issue 28050.)

• The new FORMAT_VALUE and BUILD_STRING opcodes as part of the formatted string literal imple-
mentation. (Contributed by Eric Smith in issue 25483 and Serhiy Storchaka in issue 27078.)

• The new BUILD_CONST_KEY_MAP opcode to optimize the creation of dictionaries with constant keys.
(Contributed by Serhiy Storchaka in issue 27140.)

• The function call opcodes have been heavily reworked for better performance and simpler
implementation. The MAKE_FUNCTION , CALL_FUNCTION , CALL_FUNCTION_KW and
BUILD_MAP_UNPACK_WITH_CALL opcodes have been modified, the new CALL_FUNCTION_EX
and BUILD_TUPLE_UNPACK_WITH_CALL have been added, and CALL_FUNCTION_VAR ,
CALL_FUNCTION_VAR_KW and MAKE_CLOSURE opcodes have been removed. (Contributed by De-
mur Rumed in issue 27095, and Serhiy Storchaka in issue 27213, issue 28257.)

• The new SETUP_ANNOTATIONS and STORE_ANNOTATION opcodes have been added to support the
new variable annotation syntax. (Contributed by Ivan Levkivskyi in issue 27985.)

https://bugs.python.org/issue26249
https://bugs.python.org/issue5319
https://bugs.python.org/issue26647
https://bugs.python.org/issue28050
https://bugs.python.org/issue25483
https://bugs.python.org/issue27078
https://bugs.python.org/issue27140
https://bugs.python.org/issue27095
https://bugs.python.org/issue27213
https://bugs.python.org/issue28257
https://bugs.python.org/issue27985

Index

E
environment variable

PYTHONHOME, 4
PYTHONLEGACYWINDOWSFSENCODING,

9
PYTHONLEGACYWINDOWSIOENCODING,

9
PYTHONMALLOC, 10, 30

P
Python Enhancement Proposals

PEP 468, 9
PEP 484, 5
PEP 487, 7, 29
PEP 492, 6, 25
PEP 494, 3
PEP 495, 8
PEP 498, 5
PEP 506, 12
PEP 511, 28
PEP 515, 5, 6
PEP 519, 8
PEP 520, 9
PEP 523, 10
PEP 524, 4, 17
PEP 525, 6
PEP 526, 5, 21
PEP 528, 9
PEP 529, 9
PEP 530, 6
PEP 628, 13, 17
PEP 7, 24

PYTHONHOME, 4
PYTHONLEGACYWINDOWSFSENCODING, 9
PYTHONLEGACYWINDOWSIOENCODING, 9
PYTHONMALLOC, 10, 30

31

	Summary – Release highlights
	New Features
	PEP 498: Formatted string literals
	PEP 526: Syntax for variable annotations
	PEP 515: Underscores in Numeric Literals
	PEP 525: Asynchronous Generators
	PEP 530: Asynchronous Comprehensions
	PEP 487: Simpler customization of class creation
	PEP 487: Descriptor Protocol Enhancements
	PEP 519: Adding a file system path protocol
	PEP 495: Local Time Disambiguation
	PEP 529: Change Windows filesystem encoding to UTF-8
	PEP 528: Change Windows console encoding to UTF-8
	PEP 520: Preserving Class Attribute Definition Order
	PEP 468: Preserving Keyword Argument Order
	New dict implementation
	PEP 523: Adding a frame evaluation API to CPython
	PYTHONMALLOC environment variable
	DTrace and SystemTap probing support

	Other Language Changes
	New Modules
	secrets

	Improved Modules
	array
	ast
	asyncio
	binascii
	cmath
	collections
	concurrent.futures
	contextlib
	datetime
	decimal
	distutils
	email
	encodings
	enum
	faulthandler
	fileinput
	hashlib
	http.client
	idlelib and IDLE
	importlib
	inspect
	json
	logging
	math
	multiprocessing
	os
	pathlib
	pdb
	pickle
	pickletools
	pydoc
	random
	re
	readline
	rlcompleter
	shlex
	site
	sqlite3
	socket
	socketserver
	ssl
	statistics
	struct
	subprocess
	sys
	telnetlib
	time
	timeit
	tkinter
	traceback
	tracemalloc
	typing
	unicodedata
	unittest.mock
	urllib.request
	urllib.robotparser
	venv
	warnings
	winreg
	winsound
	xmlrpc.client
	zipfile
	zlib

	Optimizations
	Build and C API Changes
	Other Improvements
	Deprecated
	New Keywords
	Deprecated Python behavior
	Deprecated Python modules, functions and methods
	asynchat
	asyncore
	dbm
	distutils
	grp
	importlib
	os
	re
	ssl
	tkinter
	venv

	Deprecated functions and types of the C API
	Deprecated Build Options

	Removed
	API and Feature Removals

	Porting to Python 3.6
	Changes in `python' Command Behavior
	Changes in the Python API
	Changes in the C API
	CPython bytecode changes

	Index

