
What's New in Python
Release 3.12.0rc2

A. M. Kuchling

September 06, 2023
Python Software Foundation

Email: docs@python.org

Contents

1 Summary – Release highlights 3

2 Improved Error Messages 3

3 New Features 4
3.1 PEP 701: Syntactic formalization of f-strings . 4
3.2 PEP 709: Comprehension inlining . 5
3.3 PEP 688: Making the buffer protocol accessible in Python . 6
3.4 PEP 684: A Per-Interpreter GIL . 6
3.5 PEP 669: Low impact monitoring for CPython . 6

4 New Features Related to Type Hints 7
4.1 PEP 692: Using TypedDict for more precise **kwargs typing 7
4.2 PEP 698: Override Decorator for Static Typing . 7
4.3 PEP 695: Type Parameter Syntax . 8

5 Other Language Changes 9

6 New Modules 10

7 Improved Modules 10
7.1 array . 10
7.2 asyncio . 10
7.3 calendar . 11
7.4 csv . 11
7.5 dis . 11
7.6 fractions . 11
7.7 inspect . 11
7.8 itertools . 11
7.9 math . 11
7.10 os . 12
7.11 os.path . 12
7.12 pathlib . 12
7.13 pdb . 12

1

7.14 random . 13
7.15 shutil . 13
7.16 sqlite3 . 13
7.17 statistics . 13
7.18 sys . 14
7.19 tempfile . 14
7.20 threading . 14
7.21 tkinter . 14
7.22 tokenize . 14
7.23 types . 15
7.24 typing . 15
7.25 unicodedata . 16
7.26 unittest . 16
7.27 uuid . 16

8 Optimizations 16

9 CPython bytecode changes 17

10 Demos and Tools 17

11 Deprecated 17
11.1 Pending Removal in Python 3.13 . 18
11.2 Pending Removal in Python 3.14 . 19
11.3 Pending Removal in Future Versions . 20

12 Removed 21

13 Porting to Python 3.12 25
13.1 Changes in the Python API . 25

14 Build Changes 26

15 C API Changes 27
15.1 New Features . 27
15.2 Porting to Python 3.12 . 29
15.3 Deprecated . 31
15.4 Removed . 32

Index 33

Release 3.12.0rc2
Date September 05, 2023

This article explains the new features in Python 3.12, compared to 3.11.
For full details, see the changelog.

Note: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially as
Python 3.12 moves towards release, so it’s worth checking back even after reading earlier versions.

2

1 Summary – Release highlights

New grammar features:
• PEP 701: Syntactic formalization of f-strings

Interpreter improvements:
• PEP 684: A Per-Interpreter GIL

• PEP 669: Low impact monitoring for CPython

New typing features:
• PEP 688: Making the buffer protocol accessible in Python

• PEP 692: Using TypedDict for more precise **kwargs typing

• PEP 695: Type Parameter Syntax

• PEP 698: Override Decorator for Static Typing

Important deprecations, removals or restrictions:
• PEP 623: Remove wstr from Unicode
• PEP 632: Remove the distutils package. See the migration guide for advice on its replacement.

2 Improved Error Messages

• Modules from the standard library are now potentially suggested as part of the error messages displayed by the
interpreter when a NameError is raised to the top level. Contributed by Pablo Galindo in gh-98254.

>>> sys.version_info
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'sys' is not defined. Did you forget to import 'sys'?

• Improve the error suggestion for NameError exceptions for instances. Now if a NameError is raised in a
method and the instance has an attribute that’s exactly equal to the name in the exception, the suggestion will include
self.<NAME> instead of the closest match in the method scope. Contributed by Pablo Galindo in gh-99139.

>>> class A:
... def __init__(self):
... self.blech = 1
...
... def foo(self):
... somethin = blech

>>> A().foo()
Traceback (most recent call last):
File "<stdin>", line 1
somethin = blech

^^^^^
NameError: name 'blech' is not defined. Did you mean: 'self.blech'?

• Improve the SyntaxError error message when the user types import x from y instead of from y
import x. Contributed by Pablo Galindo in gh-98931.

3

https://peps.python.org/pep-0623/
https://peps.python.org/pep-0632/
https://peps.python.org/pep-0632/#migration-advice
https://github.com/python/cpython/issues/98254
https://github.com/python/cpython/issues/99139
https://github.com/python/cpython/issues/98931

>>> import a.y.z from b.y.z
Traceback (most recent call last):
File "<stdin>", line 1
import a.y.z from b.y.z
^^^^^^^^^^^^^^^^^^^^^^^

SyntaxError: Did you mean to use 'from ... import ...' instead?

• ImportError exceptions raised from failed from <module> import <name> statements now include
suggestions for the value of <name> based on the available names in <module>. Contributed by Pablo Galindo
in gh-91058.

>>> from collections import chainmap
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: cannot import name 'chainmap' from 'collections'. Did you mean:
↪→'ChainMap'?

3 New Features

3.1 PEP 701: Syntactic formalization of f-strings

PEP 701 lifts some restrictions on the usage of f-strings. Expression components inside f-strings can now be any
valid Python expression including backslashes, unicode escaped sequences, multi-line expressions, comments and strings
reusing the same quote as the containing f-string. Let’s cover these in detail:

• Quote reuse: in Python 3.11, reusing the same quotes as the containing f-string raises a SyntaxError, forcing
the user to either use other available quotes (like using double quotes or triple quotes if the f-string uses single
quotes). In Python 3.12, you can now do things like this:

>>> songs = ['Take me back to Eden', 'Alkaline', 'Ascensionism']
>>> f"This is the playlist: {", ".join(songs)}"
'This is the playlist: Take me back to Eden, Alkaline, Ascensionism'

Note that before this change there was no explicit limit in how f-strings can be nested, but the fact that string quotes
cannot be reused inside the expression component of f-strings made it impossible to nest f-strings arbitrarily. In
fact, this is the most nested f-string that could be written:

>>> f"""{f'''{f'{f"{1+1}"}'}'''}"""
'2'

As now f-strings can contain any valid Python expression inside expression components, it is now possible to nest
f-strings arbitrarily:

>>> f"{f"{f"{f"{f"{f"{1+1}"}"}"}"}"}"
'2'

• Multi-line expressions and comments: In Python 3.11, f-strings expressions must be defined in a single line even if
outside f-strings expressions could span multiple lines (like literal lists being defined over multiple lines), making
them harder to read. In Python 3.12 you can now define expressions spanning multiple lines and include comments
on them:

>>> f"This is the playlist: {", ".join([
... 'Take me back to Eden', # My, my, those eyes like fire

(continues on next page)

4

https://github.com/python/cpython/issues/91058
https://peps.python.org/pep-0701/

(continued from previous page)
... 'Alkaline', # Not acid nor alkaline
... 'Ascensionism' # Take to the broken skies at last
...])}"
'This is the playlist: Take me back to Eden, Alkaline, Ascensionism'

• Backslashes and unicode characters: before Python 3.12 f-string expressions couldn’t contain any \ character. This
also affected unicode escaped sequences (such as \N{snowman}) as these contain the \N part that previously
could not be part of expression components of f-strings. Now, you can define expressions like this:

>>> print(f"This is the playlist: {"\n".join(songs)}")
This is the playlist: Take me back to Eden
Alkaline
Ascensionism
>>> print(f"This is the playlist: {"\N{BLACK HEART SUIT}".join(songs)}")
This is the playlist: Take me back to Eden♥Alkaline♥Ascensionism

See PEP 701 for more details.
As a positive side-effect of how this feature has been implemented (by parsing f-strings with the PEG parser (see PEP
617), now error messages for f-strings are more precise and include the exact location of the error. For example, in Python
3.11, the following f-string raises a SyntaxError:

>>> my_string = f"{x z y}" + f"{1 + 1}"
File "<stdin>", line 1
(x z y)
^^^

SyntaxError: f-string: invalid syntax. Perhaps you forgot a comma?

but the error message doesn’t include the exact location of the error within the line and also has the expression artificially
surrounded by parentheses. In Python 3.12, as f-strings are parsed with the PEG parser, error messages can be more
precise and show the entire line:

>>> my_string = f"{x z y}" + f"{1 + 1}"
File "<stdin>", line 1
my_string = f"{x z y}" + f"{1 + 1}"

^^^
SyntaxError: invalid syntax. Perhaps you forgot a comma?

(Contributed by Pablo Galindo, Batuhan Taskaya, Lysandros Nikolaou, Cristián Maureira-Fredes and Marta Gómez in
gh-102856. PEP written by Pablo Galindo, Batuhan Taskaya, Lysandros Nikolaou and Marta Gómez).

3.2 PEP 709: Comprehension inlining

Dictionary, list, and set comprehensions are now inlined, rather than creating a new single-use function object for each
execution of the comprehension. This speeds up execution of a comprehension by up to 2x.
Comprehension iteration variables remain isolated; they don’t overwrite a variable of the same name in the outer scope,
nor are they visible after the comprehension. This isolation is now maintained via stack/locals manipulation, not via
separate function scope.
Inlining does result in a few visible behavior changes:

• There is no longer a separate frame for the comprehension in tracebacks, and tracing/profiling no longer shows the
comprehension as a function call.

• Calling locals() inside a comprehension now includes variables from outside the comprehension, and no longer
includes the synthetic .0 variable for the comprehension “argument”.

5

https://peps.python.org/pep-0701/
https://peps.python.org/pep-0617/
https://peps.python.org/pep-0617/
https://github.com/python/cpython/issues/102856

• A comprehension iterating directly over locals() (e.g. [k for k in locals()]) may see “RuntimeError:
dictionary changed size during iteration” when run under tracing (e.g. code coverage measurement). This is the
same behavior already seen in e.g. for k in locals():. To avoid the error, first create a list of keys to
iterate over: keys = list(locals()); [k for k in keys].

Contributed by Carl Meyer and Vladimir Matveev in PEP 709.

3.3 PEP 688: Making the buffer protocol accessible in Python

PEP 688 introduces a way to use the buffer protocol from Python code. Classes that implement the __buffer__()
method are now usable as buffer types.
The new collections.abc.Buffer ABC provides a standard way to represent buffer objects, for example in
type annotations. The new inspect.BufferFlags enum represents the flags that can be used to customize buffer
creation. (Contributed by Jelle Zijlstra in gh-102500.)

3.4 PEP 684: A Per-Interpreter GIL

Sub-interpretersmay now be createdwith a uniqueGIL per interpreter. This allows Python programs to take full advantage
of multiple CPU cores.
Use the new Py_NewInterpreterFromConfig() function to create an interpreter with its own GIL:

PyInterpreterConfig config = {
.check_multi_interp_extensions = 1,
.gil = PyInterpreterConfig_OWN_GIL,

};
PyThreadState *tstate = NULL;
PyStatus status = Py_NewInterpreterFromConfig(&tstate, &config);
if (PyStatus_Exception(status)) {

return -1;
}
/* The new interpeter is now active in the current thread. */

For further examples how to use the C-API for sub-interpreters with a per-interpreter GIL, see Mod-
ules/_xxsubinterpretersmodule.c.
A Python API is anticipated for 3.13. (See PEP 554.)
(Contributed by Eric Snow in gh-104210, etc.)

3.5 PEP 669: Low impact monitoring for CPython

CPython 3.12 now supports the ability to monitor calls, returns, lines, exceptions and other events using instrumentation.
This means that you only pay for what you use, providing support for near-zero overhead debuggers and coverage tools.
See sys.monitoring for details.

6

https://peps.python.org/pep-0709/
https://peps.python.org/pep-0688/
https://github.com/python/cpython/issues/102500
https://github.com/python/cpython/tree/3.12/Modules/_xxsubinterpretersmodule.c
https://github.com/python/cpython/tree/3.12/Modules/_xxsubinterpretersmodule.c
https://peps.python.org/pep-0554/
https://github.com/python/cpython/issues/104210

4 New Features Related to Type Hints

This section covers major changes affecting PEP 484 type hints and the typing module.

4.1 PEP 692: Using TypedDict for more precise **kwargs typing

Typing **kwargs in a function signature as introduced by PEP 484 allowed for valid annotations only in cases where
all of the **kwargs were of the same type.
This PEP specifies a more precise way of typing **kwargs by relying on typed dictionaries:

from typing import TypedDict, Unpack

class Movie(TypedDict):
name: str
year: int

def foo(**kwargs: Unpack[Movie]): ...

See PEP 692 for more details.
(Contributed by Franek Magiera in gh-103629.)

4.2 PEP 698: Override Decorator for Static Typing

A new decorator typing.override() has been added to the typing module. It indicates to type checkers that
the method is intended to override a method in a superclass. This allows type checkers to catch mistakes where a method
that is intended to override something in a base class does not in fact do so.
Example:

from typing import override

class Base:
def get_color(self) -> str:
return "blue"

class GoodChild(Base):
@override # ok: overrides Base.get_color
def get_color(self) -> str:
return "yellow"

class BadChild(Base):
@override # type checker error: does not override Base.get_color
def get_colour(self) -> str:
return "red"

(Contributed by Steven Troxler in gh-101561.)

7

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0692/
https://github.com/python/cpython/issues/103629
https://github.com/python/cpython/issues/101561

4.3 PEP 695: Type Parameter Syntax

Generic classes and functions under PEP 484 were declared using a verbose syntax that left the scope of type parameters
unclear and required explicit declarations of variance.
PEP 695 introduces a new, more compact and explicit way to create generic classes and functions:

def max[T](args: Iterable[T]) -> T:
...

class list[T]:
def __getitem__(self, index: int, /) -> T:

...

def append(self, element: T) -> None:
...

In addition, the PEP introduces a new way to declare type aliases using the type statement, which creates an instance of
TypeAliasType:

type Point = tuple[float, float]

Type aliases can also be generic:

type Point[T] = tuple[T, T]

The new syntax allows declaring TypeVarTuple and ParamSpec parameters, as well as TypeVar parameters with
bounds or constraints:

type IntFunc[**P] = Callable[P, int] # ParamSpec
type LabeledTuple[*Ts] = tuple[str, *Ts] # TypeVarTuple
type HashableSequence[T: Hashable] = Sequence[T] # TypeVar with bound
type IntOrStrSequence[T: (int, str)] = Sequence[T] # TypeVar with constraints

The value of type aliases and the bound and constraints of type variables created through this syntax are evaluated only
on demand (see lazy-evaluation). This means type aliases are able to refer to other types defined later in the file.
Type parameters declared through a type parameter list are visible within the scope of the declaration and any nested
scopes, but not in the outer scope. For example, they can be used in the type annotations for the methods of a generic
class or in the class body. However, they cannot be used in the module scope after the class is defined. See type-params
for a detailed description of the runtime semantics of type parameters.
In order to support these scoping semantics, a new kind of scope is introduced, the annotation scope. Annotation scopes
behave for the most part like function scopes, but interact differently with enclosing class scopes. In Python 3.13, anno-
tations will also be evaluated in annotation scopes.
See PEP 695 for more details.
(PEP written by Eric Traut. Implementation by Jelle Zijlstra, Eric Traut, and others in gh-103764.)

8

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0695/
https://peps.python.org/pep-0695/
https://github.com/python/cpython/issues/103764

5 Other Language Changes

• Add perf_profiling through the new environment variable PYTHONPERFSUPPORT, the new command-
line option -X perf, as well as the new sys.activate_stack_trampoline(), sys.
deactivate_stack_trampoline(), and sys.is_stack_trampoline_active() APIs.
(Design by Pablo Galindo. Contributed by Pablo Galindo and Christian Heimes with contributions from Gregory
P. Smith [Google] and Mark Shannon in gh-96123.)

• The extraction methods in tarfile, and shutil.unpack_archive(), have a new a filter argument that
allows limiting tar features than may be surprising or dangerous, such as creating files outside the destination di-
rectory. See tarfile-extraction-filter for details. In Python 3.14, the default will switch to 'data'. (Contributed
by Petr Viktorin in PEP 706.)

• types.MappingProxyType instances are now hashable if the underlying mapping is hashable. (Contributed
by Serhiy Storchaka in gh-87995.)

• memoryview now supports the half-float type (the “e” format code). (Contributed by Dong-hee Na and Antoine
Pitrou in gh-90751.)

• The parser now raises SyntaxError when parsing source code containing null bytes. (Contributed by Pablo
Galindo in gh-96670.)

• ast.parse() now raises SyntaxError instead of ValueError when parsing source code containing null
bytes. (Contributed by Pablo Galindo in gh-96670.)

• The Garbage Collector now runs only on the eval breaker mechanism of the Python bytecode evaluation loop instead
of object allocations. The GC can also run when PyErr_CheckSignals() is called so C extensions that need
to run for a long time without executing any Python code also have a chance to execute the GC periodically.
(Contributed by Pablo Galindo in gh-97922.)

• A backslash-character pair that is not a valid escape sequence now generates a SyntaxWarning, instead of
DeprecationWarning. For example, re.compile("\d+\.\d+") now emits a SyntaxWarning ("\
d" is an invalid escape sequence), use raw strings for regular expression: re.compile(r"\d+\.\d+"). In a
future Python version, SyntaxError will eventually be raised, instead of SyntaxWarning. (Contributed by
Victor Stinner in gh-98401.)

• Octal escapes with value larger than 0o377 (ex: "\477"), deprecated in Python 3.11, now produce a Syn-
taxWarning, instead of DeprecationWarning. In a future Python version they will be eventually a Syn-
taxError. (Contributed by Victor Stinner in gh-98401.)

• All builtin and extension callables expecting boolean parameters now accept arguments of any type instead of just
bool and int. (Contributed by Serhiy Storchaka in gh-60203.)

• Variables used in the target part of comprehensions that are not stored to can now be used in assignment expressions
(:=). For example, in [(b := 1) for a, b.prop in some_iter], the assignment to b is now allowed.
Note that assigning to variables stored to in the target part of comprehensions (like a) is still disallowed, as per
PEP 572. (Contributed by Nikita Sobolev in gh-100581.)

• slice objects are now hashable, allowing them to be used as dict keys and set items. (Contributed by Will
Bradshaw, Furkan Onder, and Raymond Hettinger in gh-101264.)

• sum() now uses Neumaier summation to improve accuracy when summing floats or mixed ints and floats. (Con-
tributed by Raymond Hettinger in gh-100425.)

• Exceptions raised in a typeobject’s __set_name__method are no longer wrapped by a RuntimeError. Con-
text information is added to the exception as a PEP 678 note. (Contributed by Irit Katriel in gh-77757.)

• When a try-except* construct handles the entire ExceptionGroup and raises one other exception, that
exception is no longer wrapped in an ExceptionGroup. Also changed in version 3.11.4. (Contributed by Irit
Katriel in gh-103590.)

9

https://github.com/python/cpython/issues/96123
https://peps.python.org/pep-0706/
https://github.com/python/cpython/issues/87995
https://github.com/python/cpython/issues/90751
https://github.com/python/cpython/issues/96670
https://github.com/python/cpython/issues/96670
https://github.com/python/cpython/issues/97922
https://github.com/python/cpython/issues/98401
https://github.com/python/cpython/issues/98401
https://github.com/python/cpython/issues/60203
https://peps.python.org/pep-0572/
https://github.com/python/cpython/issues/100581
https://github.com/python/cpython/issues/101264
https://github.com/python/cpython/issues/100425
https://peps.python.org/pep-0678/
https://github.com/python/cpython/issues/77757
https://github.com/python/cpython/issues/103590

6 New Modules

• None.

7 Improved Modules

7.1 array

• The array.array class now supports subscripting, making it a generic type. (Contributed by Jelle Zijlstra in
gh-98658.)

7.2 asyncio

• The performance of writing to sockets in asyncio has been significantly improved. asyncio now avoids un-
necessary copying when writing to sockets and uses sendmsg() if the platform supports it. (Contributed by
Kumar Aditya in gh-91166.)

• Added asyncio.eager_task_factory() and asyncio.create_eager_task_factory()
functions to allow opting an event loop in to eager task execution, making some use-cases 2x to 5x faster.
(Contributed by Jacob Bower & Itamar O in gh-102853, gh-104140, and gh-104138)

• On Linux, asyncio uses PidfdChildWatcher by default if os.pidfd_open() is available and func-
tional instead of ThreadedChildWatcher. (Contributed by Kumar Aditya in gh-98024.)

• The child watcher classes MultiLoopChildWatcher, FastChildWatcher, AbstractChild-
Watcher and SafeChildWatcher are deprecated and will be removed in Python 3.14. It is recommended to
not manually configure a child watcher as the event loop now uses the best available child watcher for each platform
(PidfdChildWatcher if supported and ThreadedChildWatcher otherwise). (Contributed by Kumar
Aditya in gh-94597.)

• asyncio.set_child_watcher(), asyncio.get_child_watcher(),
asyncio.AbstractEventLoopPolicy.set_child_watcher() and asyncio.
AbstractEventLoopPolicy.get_child_watcher() are deprecated and will be removed in
Python 3.14. (Contributed by Kumar Aditya in gh-94597.)

• Add loop_factory parameter to asyncio.run() to allow specifying a custom event loop factory. (Contributed
by Kumar Aditya in gh-99388.)

• Add C implementation of asyncio.current_task() for 4x-6x speedup. (Contributed by Itamar Ostricher
and Pranav Thulasiram Bhat in gh-100344.)

• asyncio.iscoroutine() now returns False for generators as asyncio does not support legacy
generator-based coroutines. (Contributed by Kumar Aditya in gh-102748.)

• asyncio.wait() and asyncio.as_completed() now accepts generators yielding tasks. (Contributed
by Kumar Aditya in gh-78530.)

10

https://github.com/python/cpython/issues/98658
https://github.com/python/cpython/issues/91166
https://github.com/python/cpython/issues/102853
https://github.com/python/cpython/issues/104140
https://github.com/python/cpython/issues/104138
https://github.com/python/cpython/issues/98024
https://github.com/python/cpython/issues/94597
https://github.com/python/cpython/issues/94597
https://github.com/python/cpython/issues/99388
https://github.com/python/cpython/issues/100344
https://github.com/python/cpython/issues/102748
https://github.com/python/cpython/issues/78530

7.3 calendar

• Add enums Month and Day. (Contributed by Prince Roshan in gh-103636.)

7.4 csv

• Add QUOTE_NOTNULL and QUOTE_STRINGS flags to provide finer grained control of None and empty strings
by writer objects.

7.5 dis

• Pseudo instruction opcodes (which are used by the compiler but do not appear in executable bytecode) are now
exposed in the dis module. HAVE_ARGUMENT is still relevant to real opcodes, but it is not useful for pseudo
instructions. Use the new hasarg collection instead. (Contributed by Irit Katriel in gh-94216.)

7.6 fractions

• Objects of type fractions.Fraction now support float-style formatting. (Contributed by Mark Dickinson
in gh-100161.)

7.7 inspect

• Add inspect.markcoroutinefunction() to mark sync functions that return a coroutine for use with
inspect.iscoroutinefunction(). (Contributed Carlton Gibson in gh-99247.)

• Add inspect.getasyncgenstate() and inspect.getasyncgenlocals() for determining the
current state of asynchronous generators. (Contributed by Thomas Krennwallner in bpo-35759.)

• The performance of inspect.getattr_static() has been considerably improved. Most calls to the func-
tion should be at least 2x faster than they were in Python 3.11, and some may be 6x faster or more. (Contributed
by Alex Waygood in gh-103193.)

7.8 itertools

• Added itertools.batched() for collecting into even-sized tuples where the last batch may be shorter than
the rest. (Contributed by Raymond Hettinger in gh-98363.)

7.9 math

• Added math.sumprod() for computing a sum of products. (Contributed by RaymondHettinger in gh-100485.)
• Extended math.nextafter() to include a steps argument for moving up or down multiple steps at a time. (By
Matthias Goergens, Mark Dickinson, and Raymond Hettinger in gh-94906.)

11

https://github.com/python/cpython/issues/103636
https://github.com/python/cpython/issues/94216
https://github.com/python/cpython/issues/100161
https://github.com/python/cpython/issues/99247
https://bugs.python.org/issue?@action=redirect&bpo=35759
https://github.com/python/cpython/issues/103193
https://github.com/python/cpython/issues/98363
https://github.com/python/cpython/issues/100485
https://github.com/python/cpython/issues/94906

7.10 os

• Add os.PIDFD_NONBLOCK to open a file descriptor for a process with os.pidfd_open() in non-blocking
mode. (Contributed by Kumar Aditya in gh-93312.)

• os.DirEntry now includes an os.DirEntry.is_junction()method to check if the entry is a junction.
(Contributed by Charles Machalow in gh-99547.)

• Add os.listdrives(), os.listvolumes() and os.listmounts() functions on Windows for enu-
merating drives, volumes and mount points. (Contributed by Steve Dower in gh-102519.)

• os.stat() and os.lstat() are now more accurate on Windows. The st_birthtime field will now be
filled with the creation time of the file, and st_ctime is deprecated but still contains the creation time (but in
the future will return the last metadata change, for consistency with other platforms). st_dev may be up to 64
bits and st_ino up to 128 bits depending on your file system, and st_rdev is always set to zero rather than
incorrect values. Both functions may be significantly faster on newer releases of Windows. (Contributed by Steve
Dower in gh-99726.)

7.11 os.path

• Add os.path.isjunction() to check if a given path is a junction. (Contributed by Charles Machalow in
gh-99547.)

• Add os.path.splitroot() to split a path into a triad (drive, root, tail). (Contributed by Barney
Gale in gh-101000.)

7.12 pathlib

• Add support for subclassing pathlib.PurePath and Path, plus their Posix- and Windows-specific variants.
Subclasses may override the with_segments() method to pass information between path instances.

• Add walk() for walking the directory trees and generating all file or directory names within them, similar to
os.walk(). (Contributed by Stanislav Zmiev in gh-90385.)

• Add walk_up optional parameter to pathlib.PurePath.relative_to() to allow the insertion of ..
entries in the result; this behavior is more consistent with os.path.relpath(). (Contributed by Domenico
Ragusa in bpo-40358.)

• Addpathlib.Path.is_junction() as a proxy toos.path.isjunction(). (Contributed byCharles
Machalow in gh-99547.)

• Add case_sensitive optional parameter to pathlib.Path.glob(), pathlib.Path.rglob() and
pathlib.PurePath.match() for matching the path’s case sensitivity, allowing for more precise control
over the matching process.

7.13 pdb

• Add convenience variables to hold values temporarily for debug session and provide quick access to values like the
current frame or the return value. (Contributed by Tian Gao in gh-103693.)

12

https://github.com/python/cpython/issues/93312
https://github.com/python/cpython/issues/99547
https://github.com/python/cpython/issues/102519
https://github.com/python/cpython/issues/99726
https://github.com/python/cpython/issues/99547
https://github.com/python/cpython/issues/101000
https://github.com/python/cpython/issues/90385
https://bugs.python.org/issue?@action=redirect&bpo=40358
https://github.com/python/cpython/issues/99547
https://github.com/python/cpython/issues/103693

7.14 random

• Added random.binomialvariate(). (Contributed by Raymond Hettinger in gh-81620.)
• Added a default of lamb=1.0 to random.expovariate(). (Contributed by Raymond Hettinger in gh-
100234.)

7.15 shutil

• shutil.make_archive() now passes the root_dir argument to custom archivers which support it. In this
case it no longer temporarily changes the current working directory of the process to root_dir to perform archiving.
(Contributed by Serhiy Storchaka in gh-74696.)

• shutil.rmtree() now accepts a new argument onexc which is an error handler like onerror but which expects
an exception instance rather than a (typ, val, tb) triplet. onerror is deprecated and will be removed in Python 3.14.
(Contributed by Irit Katriel in gh-102828.)

• shutil.which() now consults the PATHEXT environment variable to find matches within PATH on Windows
even when the given cmd includes a directory component. (Contributed by Charles Machalow in gh-103179.)
shutil.which() will call NeedCurrentDirectoryForExePathW when querying for executables on
Windows to determine if the current working directory should be prepended to the search path. (Contributed by
Charles Machalow in gh-103179.)
shutil.which()will return a path matching the cmd with a component from PATHEXT prior to a direct match
elsewhere in the search path on Windows. (Contributed by Charles Machalow in gh-103179.)

7.16 sqlite3

• Add a command-line interface. (Contributed by Erlend E. Aasland in gh-77617.)
• Add the autocommit attribute to Connection and the autocommit parameter to connect() to controlPEP
249-compliant transaction handling. (Contributed by Erlend E. Aasland in gh-83638.)

• Add entrypoint keyword-only parameter to load_extension(), for overriding the SQLite extension entry
point. (Contributed by Erlend E. Aasland in gh-103015.)

• Add getconfig() and setconfig() to Connection to make configuration changes to a database con-
nection. (Contributed by Erlend E. Aasland in gh-103489.)

7.17 statistics

• Extended statistics.correlation() to include as a ranked method for computing the Spearman cor-
relation of ranked data. (Contributed by Raymond Hettinger in gh-95861.)

13

https://github.com/python/cpython/issues/81620
https://github.com/python/cpython/issues/100234
https://github.com/python/cpython/issues/100234
https://github.com/python/cpython/issues/74696
https://github.com/python/cpython/issues/102828
https://github.com/python/cpython/issues/103179
https://github.com/python/cpython/issues/103179
https://github.com/python/cpython/issues/103179
https://github.com/python/cpython/issues/77617
https://peps.python.org/pep-0249/
https://peps.python.org/pep-0249/
https://github.com/python/cpython/issues/83638
https://github.com/python/cpython/issues/103015
https://github.com/python/cpython/issues/103489
https://github.com/python/cpython/issues/95861

7.18 sys

• Add sys.activate_stack_trampoline() and sys.deactivate_stack_trampoline() for
activating and deactivating stack profiler trampolines, and sys.is_stack_trampoline_active() for
querying if stack profiler trampolines are active. (Contributed by Pablo Galindo and Christian Heimes with con-
tributions from Gregory P. Smith [Google] and Mark Shannon in gh-96123.)

• Add sys.last_exc which holds the last unhandled exception that was raised (for post-mortem debugging use
cases). Deprecate the three fields that have the same information in its legacy form: sys.last_type, sys.
last_value and sys.last_traceback. (Contributed by Irit Katriel in gh-102778.)

• sys._current_exceptions() now returns a mapping from thread-id to an exception instance, rather than
to a (typ, exc, tb) tuple. (Contributed by Irit Katriel in gh-103176.)

• sys.setrecursionlimit() and sys.getrecursionlimit(). The recursion limit now applies only
to Python code. Builtin functions do not use the recursion limit, but are protected by a different mechanism that
prevents recursion from causing a virtual machine crash.

7.19 tempfile

• The tempfile.NamedTemporaryFile function has a new optional parameter delete_on_close (Contributed
by Evgeny Zorin in gh-58451.)

• tempfile.mkdtemp() now always returns an absolute path, even if the argument provided to the dir parameter
is a relative path.

7.20 threading

• Add threading.settrace_all_threads() and threading.setprofile_all_threads()
that allow to set tracing and profiling functions in all running threads in addition to the calling one. (Contributed
by Pablo Galindo in gh-93503.)

7.21 tkinter

• tkinter.Canvas.coords() now flattens its arguments. It now accepts not only coordinates as separate
arguments (x1, y1, x2, y2, ...) and a sequence of coordinates ([x1, y1, x2, y2, ...]), but
also coordinates grouped in pairs ((x1, y1), (x2, y2), ... and [(x1, y1), (x2, y2), ...]),
like create_*() methods. (Contributed by Serhiy Storchaka in gh-94473.)

7.22 tokenize

• The tokenizemodule includes the changes introduced in PEP 701. (Contributed by Marta Gómez Macías and
Pablo Galindo in gh-102856.) See Porting to Python 3.12 for more information on the changes to the tokenize
module.

14

https://github.com/python/cpython/issues/96123
https://github.com/python/cpython/issues/102778
https://github.com/python/cpython/issues/103176
https://github.com/python/cpython/issues/58451
https://github.com/python/cpython/issues/93503
https://github.com/python/cpython/issues/94473
https://peps.python.org/pep-0701/
https://github.com/python/cpython/issues/102856

7.23 types

• Add types.get_original_bases() to allow for further introspection of user-defined-generics when sub-
classed. (Contributed by James Hilton-Balfe and Alex Waygood in gh-101827.)

7.24 typing

• isinstance() checks against runtime-checkable protocols now use inspect.
getattr_static() rather than hasattr() to lookup whether attributes exist. This means that descriptors
and __getattr__() methods are no longer unexpectedly evaluated during isinstance() checks against
runtime-checkable protocols. However, it may also mean that some objects which used to be considered instances
of a runtime-checkable protocol may no longer be considered instances of that protocol on Python 3.12+, and vice
versa. Most users are unlikely to be affected by this change. (Contributed by Alex Waygood in gh-102433.)

• The members of a runtime-checkable protocol are now considered “frozen” at runtime as soon as the class has been
created. Monkey-patching attributes onto a runtime-checkable protocol will still work, but will have no impact on
isinstance() checks comparing objects to the protocol. For example:

>>> from typing import Protocol, runtime_checkable
>>> @runtime_checkable
... class HasX(Protocol):
... x = 1
...
>>> class Foo: ...
...
>>> f = Foo()
>>> isinstance(f, HasX)
False
>>> f.x = 1
>>> isinstance(f, HasX)
True
>>> HasX.y = 2
>>> isinstance(f, HasX) # unchanged, even though HasX now also has a "y"␣
↪→attribute
True

This change was made in order to speed up isinstance() checks against runtime-checkable protocols.
• The performance profile ofisinstance() checks againstruntime-checkable protocols has changed
significantly. Most isinstance() checks against protocols with only a few members should be at least 2x faster
than in 3.11, and some may be 20x faster or more. However, isinstance() checks against protocols with
fourteen or more members may be slower than in Python 3.11. (Contributed by Alex Waygood in gh-74690 and
gh-103193.)

• All typing.TypedDict and typing.NamedTuple classes now have the __orig_bases__ attribute.
(Contributed by Adrian Garcia Badaracco in gh-103699.)

• Add frozen_default parameter to typing.dataclass_transform(). (Contributed by Erik De
Bonte in gh-99957.)

15

https://github.com/python/cpython/issues/101827
https://github.com/python/cpython/issues/102433
https://github.com/python/cpython/issues/74690
https://github.com/python/cpython/issues/103193
https://github.com/python/cpython/issues/103699
https://github.com/python/cpython/issues/99957

7.25 unicodedata

• The Unicode database has been updated to version 15.0.0. (Contributed by Benjamin Peterson in gh-96734).

7.26 unittest

Added --durations command line option, showing the N slowest test cases:

python3 -m unittest --durations=3 lib.tests.test_threading
.....
Slowest test durations
--
1.210s test_timeout (Lib.test.test_threading.BarrierTests)
1.003s test_default_timeout (Lib.test.test_threading.BarrierTests)
0.518s test_timeout (Lib.test.test_threading.EventTests)

(0.000 durations hidden. Use -v to show these durations.)
--
Ran 158 tests in 9.869s

OK (skipped=3)

(Contributed by Giampaolo Rodola in bpo-4080)

7.27 uuid

• Add a command-line interface. (Contributed by Adam Chhina in gh-88597.)

8 Optimizations

• Removed wstr and wstr_length members from Unicode objects. It reduces object size by 8 or 16 bytes on
64bit platform. (PEP 623) (Contributed by Inada Naoki in gh-92536.)

• Added experimental support for using the BOLT binary optimizer in the build process, which improves performance
by 1-5%. (Contributed by Kevin Modzelewski in gh-90536 and tuned by Dong-hee Na in gh-101525)

• Speed up the regular expression substitution (functions re.sub() and re.subn() and corresponding re.
Pattern methods) for replacement strings containing group references by 2–3 times. (Contributed by Serhiy
Storchaka in gh-91524.)

• Speed up asyncio.Task creation by deferring expensive string formatting. (Contributed by Itamar O in gh-
103793.)

• The tokenize.tokenize() and tokenize.generate_tokens() functions are up to 64% faster as a
side effect of the changes required to cover PEP 701 in the tokenize module. (Contributed by Marta Gómez
Macías and Pablo Galindo in gh-102856.)

• Speed up super()method calls and attribute loads via the new LOAD_SUPER_ATTR instruction. (Contributed
by Carl Meyer and Vladimir Matveev in gh-103497.)

16

https://github.com/python/cpython/issues/96734
https://bugs.python.org/issue?@action=redirect&bpo=4080
https://github.com/python/cpython/issues/88597
https://peps.python.org/pep-0623/
https://github.com/python/cpython/issues/92536
https://github.com/python/cpython/issues/90536
https://github.com/python/cpython/issues/101525
https://github.com/python/cpython/issues/91524
https://github.com/python/cpython/issues/103793
https://github.com/python/cpython/issues/103793
https://peps.python.org/pep-0701/
https://github.com/python/cpython/issues/102856
https://github.com/python/cpython/issues/103497

9 CPython bytecode changes

• Remove the LOAD_METHOD instruction. It has been merged into LOAD_ATTR. LOAD_ATTR will now behave
like the old LOAD_METHOD instruction if the low bit of its oparg is set. (Contributed by Ken Jin in gh-93429.)

• Remove the JUMP_IF_FALSE_OR_POP and JUMP_IF_TRUE_OR_POP instructions. (Contributed by Irit
Katriel in gh-102859.)

• Add the LOAD_FAST_AND_CLEAR instruction as part of the implementation of PEP 709. (Contributed by Carl
Meyer in gh-101441.)

• Add theLOAD_FROM_DICT_OR_DEREF,LOAD_FROM_DICT_OR_GLOBALS, andLOAD_LOCALS opcodes
as part of the implementation of PEP 695. Remove the LOAD_CLASSDEREF opcode, which can be replaced
with LOAD_LOCALS plus LOAD_FROM_DICT_OR_DEREF. (Contributed by Jelle Zijlstra in gh-103764.)

• Add the LOAD_SUPER_ATTR instruction. (Contributed by Carl Meyer and Vladimir Matveev in gh-103497.)

10 Demos and Tools

• Remove the Tools/demo/ directory which contained old demo scripts. A copy can be found in the old-demos
project. (Contributed by Victor Stinner in gh-97681.)

• Remove outdated example scripts of the Tools/scripts/ directory. A copy can be found in the old-demos
project. (Contributed by Victor Stinner in gh-97669.)

11 Deprecated

• asyncio: The get_event_loop() method of the default event loop policy now emits a Deprecation-
Warning if there is no current event loop set and it decides to create one. (Contributed by Serhiy Storchaka and
Guido van Rossum in gh-100160.)

• calendar: calendar.January and calendar.February constants are deprecated and replaced by
calendar.JANUARY and calendar.FEBRUARY. (Contributed by Prince Roshan in gh-103636.)

• datetime: datetime.datetime’s utcnow() and utcfromtimestamp() are deprecated and will be
removed in a future version. Instead, use timezone-aware objects to represent datetimes in UTC: respectively, call
now() and fromtimestamp() with the tz parameter set to datetime.UTC. (Contributed by Paul Ganssle
in gh-103857.)

• os: The st_ctime fields return by os.stat() and os.lstat() on Windows are deprecated. In a future
release, they will contain the last metadata change time, consistent with other platforms. For now, they still contain
the creation time, which is also available in the new st_birthtime field. (Contributed by Steve Dower in
gh-99726.)

• shutil: The onerror argument of shutil.rmtree() is deprecated as will be removed in Python 3.14. Use
onexc instead. (Contributed by Irit Katriel in gh-102828.)

• sqlite3:
– default adapters and converters are now deprecated. Instead, use the sqlite3-adapter-converter-recipes
and tailor them to your needs. (Contributed by Erlend E. Aasland in gh-90016.)

– In execute(), DeprecationWarning is now emitted when named placeholders are used together
with parameters supplied as a sequence instead of as a dict. Starting from Python 3.14, using named
placeholders with parameters supplied as a sequence will raise a ProgrammingError. (Contributed
by Erlend E. Aasland in gh-101698.)

17

https://github.com/python/cpython/issues/93429
https://github.com/python/cpython/issues/102859
https://peps.python.org/pep-0709/
https://github.com/python/cpython/issues/101441
https://peps.python.org/pep-0695/
https://github.com/python/cpython/issues/103764
https://github.com/python/cpython/issues/103497
https://github.com/gvanrossum/old-demos
https://github.com/gvanrossum/old-demos
https://github.com/python/cpython/issues/97681
https://github.com/gvanrossum/old-demos
https://github.com/gvanrossum/old-demos
https://github.com/python/cpython/issues/97669
https://github.com/python/cpython/issues/100160
https://github.com/python/cpython/issues/103636
https://github.com/python/cpython/issues/103857
https://github.com/python/cpython/issues/99726
https://github.com/python/cpython/issues/102828
https://github.com/python/cpython/issues/90016
https://github.com/python/cpython/issues/101698

• sys: The sys.last_type, sys.last_value and sys.last_traceback fields are deprecated. Use
sys.last_exc instead. (Contributed by Irit Katriel in gh-102778.)

• tarfile: Extracting tar archives without specifying filter is deprecated until Python 3.14, when 'data' filter
will become the default. See tarfile-extraction-filter for details.

• typing: typing.Hashable and typing.Sized aliases for collections.abc.Hashable and
collections.abc.Sized. (gh-94309.)

• xml.etree.ElementTree: The module now emits DeprecationWarning when testing the truth value
of an xml.etree.ElementTree.Element. Before, the Python implementation emitted FutureWarn-
ing, and the C implementation emitted nothing.

• The 3-arg signatures (type, value, traceback) of throw(), throw() and athrow() are deprecated and may
be removed in a future version of Python. Use the single-arg versions of these functions instead. (Contributed by
Ofey Chan in gh-89874.)

• DeprecationWarning is now raised when __package__ on a module differs from __spec__.parent
(previously it was ImportWarning). (Contributed by Brett Cannon in gh-65961.)

• In accordance with PEP 699, the ma_version_tag field in PyDictObject is deprecated for extension
modules. Accessing this field will generate a compiler warning at compile time. This field will be removed in
Python 3.14. (Contributed by Ramvikrams and Kumar Aditya in gh-101193. PEP by Ken Jin.)

• The bitwise inversion operator (~) on bool is deprecated. It will throw an error in Python 3.14. Use not for logical
negation of bools instead. In the rare case that you really need the bitwise inversion of the underlying int, convert
to int explicitly with ~int(x). (Contributed by Tim Hoffmann in gh-103487.)

11.1 Pending Removal in Python 3.13

The following modules and APIs have been deprecated in earlier Python releases, and will be removed in Python 3.13.
Modules (see PEP 594):

• aifc

• audioop

• cgi

• cgitb

• chunk

• crypt

• imghdr

• mailcap

• msilib

• nis

• nntplib

• ossaudiodev

• pipes

• sndhdr

• spwd

• sunau

18

https://github.com/python/cpython/issues/102778
https://github.com/python/cpython/issues/94309
https://github.com/python/cpython/issues/89874
https://github.com/python/cpython/issues/65961
https://peps.python.org/pep-0699/
https://github.com/python/cpython/issues/101193
https://github.com/python/cpython/issues/103487
https://peps.python.org/pep-0594/

• telnetlib

• uu

• xdrlib

Other modules:
• lib2to3, and the 2to3 program (gh-84540)

APIs:
• configparser.LegacyInterpolation (gh-90765)
• locale.getdefaultlocale() (gh-90817)
• turtle.RawTurtle.settiltangle() (gh-50096)
• unittest.findTestCases() (gh-50096)
• unittest.getTestCaseNames() (gh-50096)
• unittest.makeSuite() (gh-50096)
• unittest.TestProgram.usageExit() (gh-67048)
• webbrowser.MacOSX (gh-86421)
• classmethod descriptor chaining (gh-89519)

11.2 Pending Removal in Python 3.14

• argparse: The type, choices, andmetavar parameters of argparse.BooleanOptionalAction are dep-
recated and will be removed in 3.14. (Contributed by Nikita Sobolev in gh-92248.)

• ast: The following ast features have been deprecated in documentation since Python 3.8, now cause a Dep-
recationWarning to be emitted at runtime when they are accessed or used, and will be removed in Python
3.14:
– ast.Num

– ast.Str

– ast.Bytes

– ast.NameConstant

– ast.Ellipsis

Use ast.Constant instead. (Contributed by Serhiy Storchaka in gh-90953.)
• asyncio: the msg parameter of both asyncio.Future.cancel() and asyncio.Task.cancel()
(gh-90985)

• collections.abc: Deprecated collections.abc.ByteString. Prefer Sequence or
collections.abc.Buffer. For use in typing, prefer a union, like bytes | bytearray, or
collections.abc.Buffer. (Contributed by Shantanu Jain in gh-91896.)

• email: Deprecated the isdst parameter in email.utils.localtime(). (Contributed by Alan Williams in
gh-72346.)

• importlib.abc: Deprecated the following classes, scheduled for removal in Python 3.14:
– importlib.abc.ResourceReader

– importlib.abc.Traversable

19

https://github.com/python/cpython/issues/84540
https://github.com/python/cpython/issues/90765
https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/67048
https://github.com/python/cpython/issues/86421
https://github.com/python/cpython/issues/89519
https://github.com/python/cpython/issues/92248
https://github.com/python/cpython/issues/90953
https://github.com/python/cpython/issues/90985
https://github.com/python/cpython/issues/91896
https://github.com/python/cpython/issues/72346

– importlib.abc.TraversableResources

Use importlib.resources.abc classes instead:
– importlib.resources.abc.Traversable

– importlib.resources.abc.TraversableResources

(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)
• itertools: The module had undocumented, inefficient, historically buggy, and inconsistent support for copy,
deepcopy, and pickle operations. This will be removed in 3.14 for a significant reduction in code volume and
maintenance burden. (Contributed by Raymond Hettinger in gh-101588.)

• multiprocessing: The default multiprocessing start method will change to a safer one on Linux,
BSDs, and other non-macOS POSIX platforms where 'fork' is currently the default (gh-84559). Adding a
runtime warning about this was deemed too disruptive as the majority of code is not expected to care. Use the
get_context() or set_start_method() APIs to explicitly specify when your code requires 'fork'.
See multiprocessing-start-methods.

• pkgutil: pkgutil.find_loader() and pkgutil.get_loader() now raise Deprecation-
Warning; use importlib.util.find_spec() instead. (Contributed by Nikita Sobolev in gh-97850.)

• pty: The module has two undocumented master_open() and slave_open() functions that have been
deprecated since Python 2 but only gained a proper DeprecationWarning in 3.12. Remove them in 3.14.

• shutil: The onerror argument of shutil.rmtree() is deprecated in 3.12, and will be removed in 3.14.
• typing: typing.ByteString, deprecated since Python 3.9, now causes a DeprecationWarning to be
emitted when it is used.

• xml.etree.ElementTree: Testing the truth value of an xml.etree.ElementTree.Element is dep-
recated and will raise an exception in Python 3.14.

• Creating immutable types (Py_TPFLAGS_IMMUTABLETYPE) with mutable bases using the C API (gh-95388).
• __package__ and __cached__ will cease to be set or taken into consideration by the import system (gh-
97879).

• Accessing co_lnotab was deprecated in PEP 626 since 3.10 and was planned to be removed in 3.12 but it only
got a proper DeprecationWarning in 3.12. May be removed in 3.14. (Contributed by Nikita Sobolev in
gh-101866.)

• Creating immutable types with mutable bases using the C API (gh-95388)

11.3 Pending Removal in Future Versions

The following APIs were deprecated in earlier Python versions and will be removed, although there is currently no date
scheduled for their removal.

• array’s 'u' format code (gh-57281)
• typing.Text (gh-92332)
• Currently Python accepts numeric literals immediately followed by keywords, for example 0in x, 1or x, 0if
1else 2. It allows confusing and ambiguous expressions like [0x1for x in y] (which can be interpreted
as [0x1 for x in y] or [0x1f or x in y]). A syntax warning is raised if the numeric literal is
immediately followed by one of keywords and, else, for, if, in, is and or. In a future release it will be
changed to a syntax error. (gh-87999)

20

https://github.com/python/cpython/issues/93963
https://github.com/python/cpython/issues/101588
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/95388
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/97879
https://peps.python.org/pep-0626/
https://github.com/python/cpython/issues/101866
https://github.com/python/cpython/issues/95388
https://github.com/python/cpython/issues/57281
https://github.com/python/cpython/issues/92332
https://github.com/python/cpython/issues/87999

12 Removed

• asynchat and asyncore: These two modules have been removed according to the schedule in PEP 594,
having been deprecated in Python 3.6. Use asyncio instead. (Contributed by Nikita Sobolev in gh-96580.)

• configparser: Several names deprecated in the configparser way back in 3.2 have been removed per
gh-89336:

– configparser.ParsingError no longer has a filename attribute or argument. Use the source
attribute and argument instead.

– configparser no longer has a SafeConfigParser class. Use the shorter ConfigParser name
instead.

– configparser.ConfigParser no longer has a readfp method. Use read_file() instead.
• distutils: Remove the distutils package. It was deprecated in Python 3.10 by PEP 632 “Deprecate dis-
tutils module”. For projects still using distutils and cannot be updated to something else, the setuptools
project can be installed: it still provides distutils. (Contributed by Victor Stinner in gh-92584.)

• ensurepip: Remove the bundled setuptools wheel from ensurepip, and stop installing setuptools in envi-
ronments created by venv.
pip (>= 22.1) does not require setuptools to be installed in the environment. setuptools-based (and
distutils-based) packages can still be used with pip install, since pip will provide setuptools in the
build environment it uses for building a package.
easy_install, pkg_resources, setuptools and distutils are no longer provided by default in
environments created with venv or bootstrapped with ensurepip, since they are part of the setuptools
package. For projects relying on these at runtime, the setuptools project should be declared as a dependency
and installed separately (typically, using pip).
(Contributed by Pradyun Gedam in gh-95299.)

• enum: Remove EnumMeta.__getattr__, which is no longer needed for enum attribute access. (Contributed
by Ethan Furman in gh-95083.)

• ftplib: Remove the FTP_TLS.ssl_version class attribute: use the context parameter instead. (Con-
tributed by Victor Stinner in gh-94172.)

• gzip: Remove the filename attribute of gzip.GzipFile, deprecated since Python 2.6, use the name
attribute instead. In write mode, the filename attribute added '.gz' file extension if it was not present. (Con-
tributed by Victor Stinner in gh-94196.)

• hashlib: Remove the pure Python implementation of hashlib.pbkdf2_hmac(), deprecated in Python
3.10. Python 3.10 and newer requires OpenSSL 1.1.1 (PEP 644): this OpenSSL version provides a C implemen-
tation of pbkdf2_hmac() which is faster. (Contributed by Victor Stinner in gh-94199.)

• importlib: Many previously deprecated cleanups in importlib have now been completed:
– References to, and support for module_repr() has been removed. (Contributed by Barry Warsaw in
gh-97850.)

– importlib.util.set_package, importlib.util.set_loader and importlib.util.
module_for_loader have all been removed. (Contributed by Brett Cannon and Nikita Sobolev in gh-
65961 and gh-97850.)

– Support for find_loader() and find_module() APIs have been removed. (Contributed by Barry
Warsaw in gh-98040.)

– importlib.abc.Finder, pkgutil.ImpImporter, and pkgutil.ImpLoader have been re-
moved. (Contributed by Barry Warsaw in gh-98040.)

21

https://peps.python.org/pep-0594/
https://github.com/python/cpython/issues/96580
https://github.com/python/cpython/issues/89336
https://peps.python.org/pep-0632/
https://github.com/python/cpython/issues/92584
https://github.com/python/cpython/issues/95299
https://github.com/python/cpython/issues/95083
https://github.com/python/cpython/issues/94172
https://github.com/python/cpython/issues/94196
https://peps.python.org/pep-0644/
https://github.com/python/cpython/issues/94199
https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/65961
https://github.com/python/cpython/issues/65961
https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/98040
https://github.com/python/cpython/issues/98040

– The imp module has been removed. (Contributed by Barry Warsaw in gh-98040.)
– Replace removed imp functions with importlib functions:

imp importlib
imp.
NullImporter

Insert None into sys.path_importer_cache

imp.
cache_from_source()

importlib.util.cache_from_source()

imp.
find_module()

importlib.util.find_spec()

imp.
get_magic()

importlib.util.MAGIC_NUMBER

imp.
get_suffixes()

importlib.machinery.SOURCE_SUFFIXES, importlib.
machinery.EXTENSION_SUFFIXES, and importlib.machinery.
BYTECODE_SUFFIXES

imp.
get_tag()

sys.implementation.cache_tag

imp.
load_module()

importlib.import_module()

imp.
new_module(name)

types.ModuleType(name)

imp.
reload()

importlib.reload()

imp.
source_from_cache()

importlib.util.source_from_cache()

– Replace imp.load_source() with:

import importlib.util
import importlib.machinery

def load_source(modname, filename):
loader = importlib.machinery.SourceFileLoader(modname, filename)
spec = importlib.util.spec_from_file_location(modname, filename,␣

↪→loader=loader)
module = importlib.util.module_from_spec(spec)
The module is always executed and not cached in sys.modules.
Uncomment the following line to cache the module.
sys.modules[module.__name__] = module
loader.exec_module(module)
return module

– Removed imp functions and attributes with no replacements:
∗ undocumented functions:

· imp.init_builtin()
· imp.load_compiled()
· imp.load_dynamic()
· imp.load_package()

∗ imp.lock_held(), imp.acquire_lock(), imp.release_lock(): the locking scheme
has changed in Python 3.3 to per-module locks.

22

https://github.com/python/cpython/issues/98040

∗ imp.find_module() constants: SEARCH_ERROR, PY_SOURCE, PY_COMPILED,
C_EXTENSION, PY_RESOURCE, PKG_DIRECTORY, C_BUILTIN, PY_FROZEN,
PY_CODERESOURCE, IMP_HOOK.

• io: Remove io.OpenWrapper and _pyio.OpenWrapper, deprecated in Python 3.10: just use open()
instead. The open() (io.open()) function is a built-in function. Since Python 3.10, _pyio.open() is also
a static method. (Contributed by Victor Stinner in gh-94169.)

• locale: Remove the locale.format() function, deprecated in Python 3.7: use locale.
format_string() instead. (Contributed by Victor Stinner in gh-94226.)

• smtpd: The module has been removed according to the schedule in PEP 594, having been deprecated in Python
3.4.7 and 3.5.4. Use aiosmtpd PyPI module or any other asyncio-based server instead. (Contributed by Oleg
Iarygin in gh-93243.)

• sqlite3: The following undocumented sqlite3 features, deprecated in Python 3.10, are now removed:
– sqlite3.enable_shared_cache()

– sqlite3.OptimizedUnicode

If a shared cache must be used, open the database in URI mode using the cache=shared query parameter.
The sqlite3.OptimizedUnicode text factory has been an alias for str since Python 3.3. Code that pre-
viously set the text factory to OptimizedUnicode can either use str explicitly, or rely on the default value
which is also str.
(Contributed by Erlend E. Aasland in gh-92548.)

• ssl:
– Remove the ssl.RAND_pseudo_bytes() function, deprecated in Python 3.6: use os.urandom()
or ssl.RAND_bytes() instead. (Contributed by Victor Stinner in gh-94199.)

– Remove the ssl.match_hostname() function. It was deprecated in Python 3.7. OpenSSL performs
hostname matching since Python 3.7, Python no longer uses the ssl.match_hostname() function.
(Contributed by Victor Stinner in gh-94199.)

– Remove the ssl.wrap_socket() function, deprecated in Python 3.7: instead, create a ssl.
SSLContext object and call its ssl.SSLContext.wrap_socket method. Any package that still
uses ssl.wrap_socket() is broken and insecure. The function neither sends a SNI TLS extension nor
validates server hostname. Code is subject to CWE-295: Improper Certificate Validation. (Contributed by
Victor Stinner in gh-94199.)

• unittest: Removed many old deprecated unittest features:
– A number of TestCase method aliases:

23

https://github.com/python/cpython/issues/94169
https://github.com/python/cpython/issues/94226
https://peps.python.org/pep-0594/
https://pypi.org/project/aiosmtpd/
https://github.com/python/cpython/issues/93243
https://github.com/python/cpython/issues/92548
https://github.com/python/cpython/issues/94199
https://github.com/python/cpython/issues/94199
https://cwe.mitre.org/data/definitions/295.html
https://github.com/python/cpython/issues/94199

Deprecated alias Method Name Deprecated in
failUnless assertTrue() 3.1
failIf assertFalse() 3.1
failUnlessEqual assertEqual() 3.1
failIfEqual assertNotEqual() 3.1
failUnlessAlmostEqual assertAlmostEqual() 3.1
failIfAlmostEqual assertNotAlmostEqual() 3.1
failUnlessRaises assertRaises() 3.1
assert_ assertTrue() 3.2
assertEquals assertEqual() 3.2
assertNotEquals assertNotEqual() 3.2
assertAlmostEquals assertAlmostEqual() 3.2
assertNotAlmostEquals assertNotAlmostEqual() 3.2
assertRegexpMatches assertRegex() 3.2
assertRaisesRegexp assertRaisesRegex() 3.2
assertNotRegexpMatches assertNotRegex() 3.5

You can use https://github.com/isidentical/teyit to automatically modernise your unit tests.
– Undocumented and broken TestCasemethod assertDictContainsSubset (deprecated in Python
3.2).

– Undocumented TestLoader.loadTestsFromModule parameter use_load_tests (deprecated and ig-
nored since Python 3.2).

– An alias of the TextTestResult class: _TextTestResult (deprecated in Python 3.2).
(Contributed by Serhiy Storchaka in bpo-45162.)

• webbrowser: Remove support for obsolete browsers from webbrowser. Removed browsers include: Grail,
Mosaic, Netscape, Galeon, Skipstone, Iceape, Firebird, and Firefox versions 35 and below (gh-102871).

• xml.etree.ElementTree: Remove the ElementTree.Element.copy() method of the pure Python
implementation, deprecated in Python 3.10, use the copy.copy() function instead. The C implementation of
xml.etree.ElementTree has no copy() method, only a __copy__() method. (Contributed by Victor
Stinner in gh-94383.)

• zipimport: Remove find_loader() and find_module()methods, deprecated in Python 3.10: use the
find_spec() method instead. See PEP 451 for the rationale. (Contributed by Victor Stinner in gh-94379.)

• Removed the suspicious rule from the documentation Makefile, and removed Doc/tools/rstlint.py,
both in favor of sphinx-lint. (Contributed by Julien Palard in gh-98179.)

• Remove the keyfile and certfile parameters from the ftplib, imaplib, poplib and smtplib modules,
and the key_file, cert_file and check_hostname parameters from the http.client module, all deprecated since
Python 3.6. Use the context parameter (ssl_context in imaplib) instead. (Contributed by Victor Stinner in gh-
94172.)

24

https://github.com/isidentical/teyit
https://bugs.python.org/issue?@action=redirect&bpo=45162
https://github.com/python/cpython/issues/102871
https://github.com/python/cpython/issues/94383
https://peps.python.org/pep-0451/
https://github.com/python/cpython/issues/94379
https://github.com/sphinx-contrib/sphinx-lint
https://github.com/python/cpython/issues/98179
https://github.com/python/cpython/issues/94172
https://github.com/python/cpython/issues/94172

13 Porting to Python 3.12

This section lists previously described changes and other bugfixes that may require changes to your code.

13.1 Changes in the Python API

• More strict rules are now applied for numerical group references and group names in regular expressions. Only
sequence of ASCII digits is now accepted as a numerical reference. The group name in bytes patterns and replace-
ment strings can now only contain ASCII letters and digits and underscore. (Contributed by Serhiy Storchaka in
gh-91760.)

• Removed randrange() functionality deprecated since Python 3.10. Formerly, randrange(10.0) loss-
lessly converted to randrange(10). Now, it raises a TypeError. Also, the exception raised for non-integer
values such as randrange(10.5) or randrange('10') has been changed from ValueError to Type-
Error. This also prevents bugs where randrange(1e25) would silently select from a larger range than ran-
drange(10**25). (Originally suggested by Serhiy Storchaka gh-86388.)

• argparse.ArgumentParser changed encoding and error handler for reading arguments from
file (e.g. fromfile_prefix_chars option) from default text encoding (e.g. locale.
getpreferredencoding(False)) to filesystem encoding and error handler. Argument files should
be encoded in UTF-8 instead of ANSI Codepage on Windows.

• Removed the asyncore-based smtpd module deprecated in Python 3.4.7 and 3.5.4. A recommended replace-
ment is the asyncio-based aiosmtpd PyPI module.

• shlex.split(): Passing None for s argument now raises an exception, rather than reading sys.stdin. The
feature was deprecated in Python 3.9. (Contributed by Victor Stinner in gh-94352.)

• The os module no longer accepts bytes-like paths, like bytearray and memoryview types: only the exact
bytes type is accepted for bytes strings. (Contributed by Victor Stinner in gh-98393.)

• syslog.openlog() and syslog.closelog() now fail if used in subinterpreters. syslog.syslog()
may still be used in subinterpreters, but now only if syslog.openlog() has already been called in the main
interpreter. These new restrictions do not apply to the main interpreter, so only a very small set of users might be
affected. This change helps with interpreter isolation. Furthermore, syslog is a wrapper around process-global
resources, which are best managed from the main interpreter. (Contributed by Dong-hee Na in gh-99127.)

• The undocumented locking behavior of cached_property() is removed, because it locked across all instances
of the class, leading to high lock contention. This means that a cached property getter function could now run
more than once for a single instance, if two threads race. For most simple cached properties (e.g. those that are
idempotent and simply calculate a value based on other attributes of the instance) this will be fine. If synchronization
is needed, implement locking within the cached property getter function or around multi-threaded access points.

• sys._current_exceptions() now returns a mapping from thread-id to an exception instance, rather than
to a (typ, exc, tb) tuple. (Contributed by Irit Katriel in gh-103176.)

• When extracting tar files using tarfile or shutil.unpack_archive(), pass the filter argument to limit
features that may be surprising or dangerous. See tarfile-extraction-filter for details.

• The output of the tokenize.tokenize() and tokenize.generate_tokens() functions is now
changed due to the changes introduced in PEP 701. This means that STRING tokens are not emitted any more for
f-strings and the tokens described in PEP 701 are now produced instead: FSTRING_START, FSRING_MIDDLE
and FSTRING_END are now emitted for f-string “string” parts in addition to the appropriate tokens for the tok-
enization in the expression components. For example for the f-string f"start {1+1} end" the old version
of the tokenizer emitted:

25

https://github.com/python/cpython/issues/91760
https://github.com/python/cpython/issues/86388
https://pypi.org/project/aiosmtpd/
https://github.com/python/cpython/issues/94352
https://github.com/python/cpython/issues/98393
https://github.com/python/cpython/issues/99127
https://github.com/python/cpython/issues/103176
https://peps.python.org/pep-0701/
https://peps.python.org/pep-0701/

1,0-1,18: STRING 'f"start {1+1} end"'

while the new version emits:

1,0-1,2: FSTRING_START 'f"'
1,2-1,8: FSTRING_MIDDLE 'start '
1,8-1,9: OP '{'
1,9-1,10: NUMBER '1'
1,10-1,11: OP '+'
1,11-1,12: NUMBER '1'
1,12-1,13: OP '}'
1,13-1,17: FSTRING_MIDDLE ' end'
1,17-1,18: FSTRING_END '"'

Additionally, there may be some minor behavioral changes as a consequence of the changes required to support
PEP 701. Some of these changes include:

– The type attribute of the tokens emitted when tokenizing some invalid Python characters such as ! has
changed from ERRORTOKEN to OP.

– Incomplete single-line strings now also raise tokenize.TokenError as incomplete multiline strings do.
– Some incomplete or invalid Python code now raises tokenize.TokenError instead of returning arbi-
trary ERRORTOKEN tokens when tokenizing it.

– Mixing tabs and spaces as indentation in the same file is not supported anymore and will raise a TabError.

14 Build Changes

• Python no longer uses setup.py to build shared C extension modules. Build parameters like headers and libraries
are detected in configure script. Extensions are built by Makefile. Most extensions use pkg-config and
fall back to manual detection. (Contributed by Christian Heimes in gh-93939.)

• va_start() with two parameters, like va_start(args, format), is now required to build Python.
va_start() is no longer called with a single parameter. (Contributed by Kumar Aditya in gh-93207.)

• CPython now uses the ThinLTO option as the default link time optimization policy if the Clang compiler accepts
the flag. (Contributed by Dong-hee Na in gh-89536.)

• Add COMPILEALL_OPTS variable in Makefile to override compileall options (default: -j0) in make in-
stall. Also merged the 3 compileall commands into a single command to build .pyc files for all optimization
levels (0, 1, 2) at once. (Contributed by Victor Stinner in gh-99289.)

• Add platform triplets for 64-bit LoongArch:
– loongarch64-linux-gnusf
– loongarch64-linux-gnuf32
– loongarch64-linux-gnu

(Contributed by Zhang Na in gh-90656.)
• PYTHON_FOR_REGEN now require Python 3.10 or newer.
• Autoconf 2.71 and aclocal 1.16.4 is now required to regenerate !configure. (Contributed by Christian Heimes
in gh-89886.)

• Windows builds and macOS installers from python.org now use OpenSSL 3.0.

26

https://peps.python.org/pep-0701/
https://github.com/python/cpython/issues/93939
https://github.com/python/cpython/issues/93207
https://github.com/python/cpython/issues/89536
https://github.com/python/cpython/issues/99289
https://github.com/python/cpython/issues/90656
https://github.com/python/cpython/issues/89886

15 C API Changes

15.1 New Features

• PEP 697: Introduced the Unstable C API tier, intended for low-level tools like debuggers and JIT compilers. This
API may change in each minor release of CPython without deprecation warnings. Its contents are marked by the
PyUnstable_ prefix in names.
Code object constructors:

– PyUnstable_Code_New() (renamed from PyCode_New)
– PyUnstable_Code_NewWithPosOnlyArgs() (renamed from Py-
Code_NewWithPosOnlyArgs)

Extra storage for code objects (PEP 523):
– PyUnstable_Eval_RequestCodeExtraIndex() (renamed from _PyE-
val_RequestCodeExtraIndex)

– PyUnstable_Code_GetExtra() (renamed from _PyCode_GetExtra)
– PyUnstable_Code_SetExtra() (renamed from _PyCode_SetExtra)

The original names will continue to be available until the respective API changes.
(Contributed by Petr Viktorin in gh-101101.)

• PEP 697: Added API for extending types whose instance memory layout is opaque:
– PyType_Spec.basicsize can be zero or negative to specify inheriting or extending the base class size.
– PyObject_GetTypeData() and PyType_GetTypeDataSize() added to allow access to
subclass-specific instance data.

– Py_TPFLAGS_ITEMS_AT_END and PyObject_GetItemData() added to allow safely extending
certain variable-sized types, including PyType_Type.

– Py_RELATIVE_OFFSET added to allow defining members in terms of a subclass-specific struct.
(Contributed by Petr Viktorin in gh-103509.)

• Added the new limited C API function PyType_FromMetaclass(), which generalizes the existing Py-
Type_FromModuleAndSpec() using an additional metaclass argument. (Contributed by Wenzel Jakob in
gh-93012.)

• API for creating objects that can be called using the vectorcall protocol was added to the Limited API:
– Py_TPFLAGS_HAVE_VECTORCALL

– PyVectorcall_NARGS()

– PyVectorcall_Call()

– vectorcallfunc

The Py_TPFLAGS_HAVE_VECTORCALL flag is now removed from a class when the class’s __call__()
method is reassigned. This makes vectorcall safe to use with mutable types (i.e. heap types without the im-
mutable flag, Py_TPFLAGS_IMMUTABLETYPE). Mutable types that do not override tp_call now inherit the
Py_TPFLAGS_HAVE_VECTORCALL flag. (Contributed by Petr Viktorin in gh-93274.)
The Py_TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_WEAKREF flags have been added. This
allows extensions classes to support object __dict__ and weakrefs with less bookkeeping, using less memory
and with faster access.

27

https://peps.python.org/pep-0697/
https://peps.python.org/pep-0523/
https://github.com/python/cpython/issues/101101
https://peps.python.org/pep-0697/
https://github.com/python/cpython/issues/103509
https://github.com/python/cpython/issues/93012
https://github.com/python/cpython/issues/93274

• API for performing calls using the vectorcall protocol was added to the Limited API:
– PyObject_Vectorcall()

– PyObject_VectorcallMethod()

– PY_VECTORCALL_ARGUMENTS_OFFSET

This means that both the incoming and outgoing ends of the vector call protocol are now available in the Limited
API. (Contributed by Wenzel Jakob in gh-98586.)

• Added two new public functions, PyEval_SetProfileAllThreads() and PyE-
val_SetTraceAllThreads(), that allow to set tracing and profiling functions in all running threads
in addition to the calling one. (Contributed by Pablo Galindo in gh-93503.)

• Added new function PyFunction_SetVectorcall() to the C API which sets the vectorcall field of a given
PyFunctionObject. (Contributed by Andrew Frost in gh-92257.)

• The C API now permits registering callbacks via PyDict_AddWatcher(), PyDict_Watch() and related
APIs to be called whenever a dictionary is modified. This is intended for use by optimizing interpreters, JIT
compilers, or debuggers. (Contributed by Carl Meyer in gh-91052.)

• Added PyType_AddWatcher() and PyType_Watch() API to register callbacks to receive notification on
changes to a type. (Contributed by Carl Meyer in gh-91051.)

• Added PyCode_AddWatcher() and PyCode_ClearWatcher() APIs to register callbacks to receive no-
tification on creation and destruction of code objects. (Contributed by Itamar Ostricher in gh-91054.)

• Add PyFrame_GetVar() and PyFrame_GetVarString() functions to get a frame variable by its name.
(Contributed by Victor Stinner in gh-91248.)

• Add PyErr_GetRaisedException() and PyErr_SetRaisedException() for saving and restoring
the current exception. These functions return and accept a single exception object, rather than the triple arguments
of the now-deprecated PyErr_Fetch() and PyErr_Restore(). This is less error prone and a bit more
efficient. (Contributed by Mark Shannon in gh-101578.)

• Add _PyErr_ChainExceptions1, which takes an exception instance, to replace the legacy-API _Py-
Err_ChainExceptions, which is now deprecated. (Contributed by Mark Shannon in gh-101578.)

• Add PyException_GetArgs() and PyException_SetArgs() as convenience functions for retrieving
and modifying the args passed to the exception’s constructor. (Contributed by Mark Shannon in gh-101578.)

• Add PyErr_DisplayException(), which takes an exception instance, to replace the legacy-api Py-
Err_Display(). (Contributed by Irit Katriel in gh-102755).

• PEP 683: Introduced Immortal Objects to Python which allows objects to bypass reference counts and introduced
changes to the C-API:

– _Py_IMMORTAL_REFCNT: The reference count that defines an object as immortal.
– _Py_IsImmortal Checks if an object has the immortal reference count.
– PyObject_HEAD_INIT This will now initialize reference count to _Py_IMMORTAL_REFCNT

when used with Py_BUILD_CORE.
– SSTATE_INTERNED_IMMORTAL An identifier for interned unicode objects that are immortal.
– SSTATE_INTERNED_IMMORTAL_STATIC An identifier for interned unicode objects that are im-

mortal and static
– sys.getunicodeinternedsize This returns the total number of unicode objects that have been

interned. This is now needed for refleak.py to correctly track reference counts and allocated blocks
(Contributed by Eddie Elizondo in gh-84436.)

28

https://github.com/python/cpython/issues/98586
https://github.com/python/cpython/issues/93503
https://github.com/python/cpython/issues/92257
https://github.com/python/cpython/issues/91052
https://github.com/python/cpython/issues/91051
https://github.com/python/cpython/issues/91054
https://github.com/python/cpython/issues/91248
https://github.com/python/cpython/issues/101578
https://github.com/python/cpython/issues/101578
https://github.com/python/cpython/issues/101578
https://github.com/python/cpython/issues/102755
https://peps.python.org/pep-0683/
https://github.com/python/cpython/issues/84436

• PEP 684: Added the new Py_NewInterpreterFromConfig() function and PyInterpreterConfig,
which may be used to create sub-interpreters with their own GILs. (See PEP 684: A Per-Interpreter GIL for more
info.) (Contributed by Eric Snow in gh-104110.)

• In the limited CAPI version 3.12, Py_INCREF() and Py_DECREF() functions are now implemented as opaque
function calls to hide implementation details. (Contributed by Victor Stinner in gh-105387.)

15.2 Porting to Python 3.12

• Legacy Unicode APIs based on Py_UNICODE* representation has been removed. Please migrate to APIs based
on UTF-8 or wchar_t*.

• Argument parsing functions like PyArg_ParseTuple() doesn’t support Py_UNICODE* based format (e.g.
u, Z) anymore. Please migrate to other formats for Unicode like s, z, es, and U.

• tp_weaklist for all static builtin types is always NULL. This is an internal-only field on PyTypeObject
but we’re pointing out the change in case someone happens to be accessing the field directly anyway. To
avoid breakage, consider using the existing public C-API instead, or, if necessary, the (internal-only) _PyOb-
ject_GET_WEAKREFS_LISTPTR() macro.

• This internal-only PyTypeObject.tp_subclasses may now not be a valid object pointer. Its type was
changed to void* to reflect this. We mention this in case someone happens to be accessing the internal-only field
directly.
To get a list of subclasses, call the Python method __subclasses__() (using PyObject_CallMethod(),
for example).

• Add support of more formatting options (left aligning, octals, uppercase hexadecimals, intmax_t,
ptrdiff_t, wchar_t C strings, variable width and precision) in PyUnicode_FromFormat() and PyU-
nicode_FromFormatV(). (Contributed by Serhiy Storchaka in gh-98836.)

• An unrecognized format character in PyUnicode_FromFormat() and PyUnicode_FromFormatV()
now sets a SystemError. In previous versions it caused all the rest of the format string to be copied as-is to the
result string, and any extra arguments discarded. (Contributed by Serhiy Storchaka in gh-95781.)

• Fixed wrong sign placement in PyUnicode_FromFormat() and PyUnicode_FromFormatV(). (Con-
tributed by Philip Georgi in gh-95504.)

• Extension classes wanting to add a __dict__ or weak reference slot should use
Py_TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_WEAKREF instead of tp_dictoffset
and tp_weaklistoffset, respectively. The use of tp_dictoffset and tp_weaklistoffset is
still supported, but does not fully support multiple inheritance (gh-95589), and performance may be worse.
Classes declaring Py_TPFLAGS_MANAGED_DICT should call _PyObject_VisitManagedDict() and
_PyObject_ClearManagedDict() to traverse and clear their instance’s dictionaries. To clear weakrefs,
call PyObject_ClearWeakRefs(), as before.

• The PyUnicode_FSDecoder() function no longer accepts bytes-like paths, like bytearray and mem-
oryview types: only the exact bytes type is accepted for bytes strings. (Contributed by Victor Stinner in
gh-98393.)

• ThePy_CLEAR,Py_SETREF andPy_XSETREFmacros now only evaluate their arguments once. If an argument
has side effects, these side effects are no longer duplicated. (Contributed by Victor Stinner in gh-98724.)

• The interpreter’s error indicator is now always normalized. This means that PyErr_SetObject(), Py-
Err_SetString() and the other functions that set the error indicator now normalize the exception before
storing it. (Contributed by Mark Shannon in gh-101578.)

29

https://peps.python.org/pep-0684/
https://github.com/python/cpython/issues/104110
https://github.com/python/cpython/issues/105387
https://github.com/python/cpython/issues/98836
https://github.com/python/cpython/issues/95781
https://github.com/python/cpython/issues/95504
https://github.com/python/cpython/issues/95589
https://github.com/python/cpython/issues/98393
https://github.com/python/cpython/issues/98724
https://github.com/python/cpython/issues/101578

• _Py_RefTotal is no longer authoritative and only kept around for ABI compatibility. Note that it is an in-
ternal global and only available on debug builds. If you happen to be using it then you’ll need to start using
_Py_GetGlobalRefTotal().

• The following functions now select an appropriate metaclass for the newly created type:
– PyType_FromSpec()

– PyType_FromSpecWithBases()

– PyType_FromModuleAndSpec()

Creating classes whose metaclass overrides tp_new is deprecated, and in Python 3.14+ it will be disallowed. Note
that these functions ignore tp_new of the metaclass, possibly allowing incomplete initialization.
Note that PyType_FromMetaclass() (added in Python 3.12) already disallows creating classes whose meta-
class overrides tp_new (__new__() in Python).
Since tp_new overrides almost everything PyType_From* functions do, the two are incompatible with each
other. The existing behavior – ignoring the metaclass for several steps of type creation – is unsafe in general, since
(meta)classes assume that tp_new was called. There is no simple general workaround. One of the following may
work for you:

– If you control the metaclass, avoid using tp_new in it:
∗ If initialization can be skipped, it can be done in tp_init instead.
∗ If the metaclass doesn’t need to be instantiated from Python, set its tp_new to NULL using the
Py_TPFLAGS_DISALLOW_INSTANTIATION flag. This makes it acceptable for PyType_From*
functions.

– Avoid PyType_From* functions: if you don’t need C-specific features (slots or setting the instance size),
create types by calling the metaclass.

– If you know the tp_new can be skipped safely, filter the deprecation warning out using warnings.
catch_warnings() from Python.

• PyOS_InputHook and PyOS_ReadlineFunctionPointer are no longer called in subinterpreters. This
is because clients generally rely on process-wide global state (since these callbacks have no way of recovering
extension module state).
This also avoids situations where extensions may find themselves running in a subinterpreter that they don’t support
(or haven’t yet been loaded in). See gh-104668 for more info.

• PyLongObject has had its internals changed for better performance. Although the internals of PyLongOb-
ject are private, they are used by some extension modules. The internal fields should no longer be accessed
directly, instead the API functions beginning PyLong_... should be used instead. Two new unstable API func-
tions are provided for efficient access to the value of PyLongObjects which fit into a single machine word:

– PyUnstable_Long_IsCompact()

– PyUnstable_Long_CompactValue()

• Custom allocators, set via PyMem_SetAllocator(), are now required to be thread-safe, regardless of memory
domain. Allocators that don’t have their own state, including “hooks”, are not affected. If your custom allocator is
not already thread-safe and you need guidance then please create a new GitHub issue and CC @ericsnowcur-
rently.

30

https://github.com/python/cpython/issues/104668

15.3 Deprecated

• Deprecate global configuration variable:
– Py_DebugFlag: use PyConfig.parser_debug
– Py_VerboseFlag: use PyConfig.verbose
– Py_QuietFlag: use PyConfig.quiet
– Py_InteractiveFlag: use PyConfig.interactive
– Py_InspectFlag: use PyConfig.inspect
– Py_OptimizeFlag: use PyConfig.optimization_level
– Py_NoSiteFlag: use PyConfig.site_import
– Py_BytesWarningFlag: use PyConfig.bytes_warning
– Py_FrozenFlag: use PyConfig.pathconfig_warnings
– Py_IgnoreEnvironmentFlag: use PyConfig.use_environment
– Py_DontWriteBytecodeFlag: use PyConfig.write_bytecode
– Py_NoUserSiteDirectory: use PyConfig.user_site_directory
– Py_UnbufferedStdioFlag: use PyConfig.buffered_stdio
– Py_HashRandomizationFlag: use PyConfig.use_hash_seed and PyConfig.hash_seed
– Py_IsolatedFlag: use PyConfig.isolated
– Py_LegacyWindowsFSEncodingFlag: usePyPreConfig.legacy_windows_fs_encoding
– Py_LegacyWindowsStdioFlag: use PyConfig.legacy_windows_stdio
– Py_FileSystemDefaultEncoding: use PyConfig.filesystem_encoding
– Py_HasFileSystemDefaultEncoding: use PyConfig.filesystem_encoding
– Py_FileSystemDefaultEncodeErrors: use PyConfig.filesystem_errors
– Py_UTF8Mode: use PyPreConfig.utf8_mode (see Py_PreInitialize())

The Py_InitializeFromConfig() API should be used with PyConfig instead. (Contributed by Victor
Stinner in gh-77782.)

• Creating immutable types (Py_TPFLAGS_IMMUTABLETYPE) with mutable bases is deprecated and will be
disabled in Python 3.14.

• The structmember.h header is deprecated, though it continues to be available and there are no plans to remove
it.
Its contents are now available just by including Python.h, with a Py prefix added if it was missing:

– PyMemberDef, PyMember_GetOne() and PyMember_SetOne()
– Type macros like Py_T_INT, Py_T_DOUBLE, etc. (previously T_INT, T_DOUBLE, etc.)
– The flags Py_READONLY (previously READONLY) and Py_AUDIT_READ (previously all uppercase)

Several items are not exposed from Python.h:
– T_OBJECT (use Py_T_OBJECT_EX)
– T_NONE (previously undocumented, and pretty quirky)
– The macro WRITE_RESTRICTED which does nothing.

31

https://github.com/python/cpython/issues/77782

– The macros RESTRICTED and READ_RESTRICTED, equivalents of Py_AUDIT_READ.
– In some configurations, <stddef.h> is not included from Python.h. It should be included manually
when using offsetof().

The deprecated header continues to provide its original contents under the original names. Your old code can stay
unchanged, unless the extra include and non-namespaced macros bother you greatly.
(Contributed in gh-47146 by Petr Viktorin, based on earlier work by Alexander Belopolsky and Matthias Braun.)

• PyErr_Fetch() and PyErr_Restore() are deprecated. Use PyErr_GetRaisedException() and
PyErr_SetRaisedException() instead. (Contributed by Mark Shannon in gh-101578.)

• PyErr_Display() is deprecated. Use PyErr_DisplayException() instead. (Contributed by Irit Ka-
triel in gh-102755).

• _PyErr_ChainExceptions is deprecated. Use _PyErr_ChainExceptions1 instead. (Contributed by
Irit Katriel in gh-102192.)

• Using PyType_FromSpec(), PyType_FromSpecWithBases() or Py-
Type_FromModuleAndSpec() to create a class whose metaclass overrides tp_new is deprecated.
Call the metaclass instead.

15.4 Removed

• Remove the token.h header file. There was never any public tokenizer C API. The token.h header file was
only designed to be used by Python internals. (Contributed by Victor Stinner in gh-92651.)

• Legacy Unicode APIs have been removed. See PEP 623 for detail.
– PyUnicode_WCHAR_KIND

– PyUnicode_AS_UNICODE()

– PyUnicode_AsUnicode()

– PyUnicode_AsUnicodeAndSize()

– PyUnicode_AS_DATA()

– PyUnicode_FromUnicode()

– PyUnicode_GET_SIZE()

– PyUnicode_GetSize()

– PyUnicode_GET_DATA_SIZE()

• Remove the PyUnicode_InternImmortal() function macro. (Contributed by Victor Stinner in gh-85858.)
• Remove Jython compatibility hacks from several stdlib modules and tests. (Contributed by Nikita Sobolev in
gh-99482.)

• Remove _use_broken_old_ctypes_structure_semantics_ flag from ctypes module. (Con-
tributed by Nikita Sobolev in gh-99285.)

32

https://github.com/python/cpython/issues/47146
https://github.com/python/cpython/issues/101578
https://github.com/python/cpython/issues/102755
https://github.com/python/cpython/issues/102192
https://github.com/python/cpython/issues/92651
https://peps.python.org/pep-0623/
https://github.com/python/cpython/issues/85858
https://github.com/python/cpython/issues/99482
https://github.com/python/cpython/issues/99285

Index
E
environment variable

PYTHONPERFSUPPORT, 9

P
Python Enhancement Proposals

PEP 249, 13
PEP 451, 24
PEP 484, 7, 8
PEP 523, 27
PEP 554, 6
PEP 572, 9
PEP 594, 18, 21, 23
PEP 617, 5
PEP 623, 3, 16, 32
PEP 626, 20
PEP 632, 3, 21
PEP 644, 21
PEP 678, 9
PEP 683, 28
PEP 684, 29
PEP 688, 6
PEP 692, 7
PEP 695, 8, 17
PEP 697, 27
PEP 699, 18
PEP 701, 4, 5, 14, 16, 25, 26
PEP 706, 9
PEP 709, 6, 17

PYTHONPERFSUPPORT, 9

33

	Summary – Release highlights
	Improved Error Messages
	New Features
	PEP 701: Syntactic formalization of f-strings
	PEP 709: Comprehension inlining
	PEP 688: Making the buffer protocol accessible in Python
	PEP 684: A Per-Interpreter GIL
	PEP 669: Low impact monitoring for CPython

	New Features Related to Type Hints
	PEP 692: Using TypedDict for more precise **kwargs typing
	PEP 698: Override Decorator for Static Typing
	PEP 695: Type Parameter Syntax

	Other Language Changes
	New Modules
	Improved Modules
	array
	asyncio
	calendar
	csv
	dis
	fractions
	inspect
	itertools
	math
	os
	os.path
	pathlib
	pdb
	random
	shutil
	sqlite3
	statistics
	sys
	tempfile
	threading
	tkinter
	tokenize
	types
	typing
	unicodedata
	unittest
	uuid

	Optimizations
	CPython bytecode changes
	Demos and Tools
	Deprecated
	Pending Removal in Python 3.13
	Pending Removal in Python 3.14
	Pending Removal in Future Versions

	Removed
	Porting to Python 3.12
	Changes in the Python API

	Build Changes
	C API Changes
	New Features
	Porting to Python 3.12
	Deprecated
	Removed

	Index

