The Python Library Reference
Release 3.10.12

Guido van Rossum
and the Python development team

June 06, 2023

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Notesonavailability e 3
Built-in Functions 5
Built-in Constants 29
3.1 Constants added by the sitemodule e 30
Built-in Types 31
4.1 Truth Value Testing o i e e e e 31
4.2 Boolean Operations — and, O, NOT « v v v v v v v v v v e e e e e e e e e e e e e e e e 31
4.3 COMPATISONS & v v v v v e 32
44 Numeric Types — int, float,complex« o oot v ittt 32
4.4.1 Bitwise Operations on Integer Types L oL, 34
4.4.2 Additional Methods on Integer Types e 34
443 Additional Methodson Float 36
4.4.4 Hashing of nUMETIC tyPES« v v v v i e e e e e e e e e e e e e e e e e e 37
45 Tterator TYPES . . v o o v o e 39
45.1 Generator Types e 39
4.6 Sequence Types — list,tuple,range v it 39
4.6.1 Common Sequence Operations v v v v v v v vt e e e e e e e e e 40
4.6.2 Immutable Sequence Types o o v i i i i e e e e e e e e e 42
4.6.3 Mutable Sequence Types i i i e e e e e e e e 42
4.6.4 LiSts Lo e e e 43
4.6.5 Tuples e e 44
4.6.6 Ranges. e 44
477 TextSequence TYPe — STT . . . v v v v v i e 46
47.1 String Methods e e e e e 47
47.2 printf-style String Formatting o 55
4.8 Binary Sequence Types — bytes, bytearray, memoryview 57
4.8.1 BytesObJeCtso e e e 57
482 Bytearray Objects v v i e e e e e e e e e e e e e e e e e 58
4.8.3 Bytesand Bytearray Operations it e e e e e e e 59
484 printf-style Bytes Formatting 70
4.8.5 Memory VIEWS e e e e e 72
4.9 SetTypes — set, frozenset 79
4.10 Mapping Types — dict . . o v v v vt e e e e e e e e e e 81
4.10.1 Dictionary VIEW ODJECES . .« v v v v v e 85
4.11 Context Manager TYPES o v v v v v e 86
4.12 Type Annotation Types — Generic Alias, Union 87

4.12.1 Generic AlIas TYPE o o v i i e e e e e e e e e e 87

4122 Union TyPe . . . v v i i e e e e e e e e e e e e e e e e e 91
4.13 Other Built-in Types o o e e e e e e e 92
4.13.1 Modules e e e e e e e e e e e e e e e e e 93
4.13.2 Classesand Class Instances i v i it it ittt et e e e e 93
4.13.3 FUunctionsS v i v v i e e e e e e e e e e e e e e e e e 93
4134 Methods e e e e e e 93
4.13.5 Code ObJectS . . . v o v v i e e e e e e e e 94
4.13.6 Type ObJects o o v i i e e e e e e e e e e 94
41377 The NullObject e 94
4.13.8 The Ellipsis Object e e e e e 94
4.13.9 The NotImplemented Object i it i e i e 94
4.13.10 Boolean Values i i i e e e e e e e e e 95
4.13.11 Internal Objects o e e e e e 95
4.14 Special Attributes e e 95
4.15 Integer string conversion length limitation L 96
4.15.1 Affected APIS o e e e e e e 97
4.15.2 Configuring the limit L e e e e 97
4.15.3 Recommended configuration L e e e e e 98
Built-in Exceptions 99
5.1 EXCEPHON CONEXL . v v v v v v v i e 99
5.2 Inheriting from built-in exceptions Lo e e e e e e e 100
5.3 Baseclasses e e e e e e e e e e 100
54 Concrete eXCEePLiONS . . . v v v v v v e 101
541 OSexXCeptions . . . v v v v v i e 106
5.5 Warnings i e e e e e e e e e e e e e e e 107
5.6 Exception hierarchy L e e e e e e 108
Text Processing Services 111
6.1 string— Common String OPErations v v v v v v h e e e e e e e e e e e e e e e 111
6.1.1 String conStants e e e e e e e e e e e e e e 111
6.1.2 Custom String Formatting e e 112
6.1.3 Format String Syntax e e 113
6.1.4 Template strings oo e e e e e e e 120
6.1.5 Helperfunctions i i i e e e e e e e e e e e 122
6.2 re — Regular expression Operations v v v vttt e e e e e e e e e e e e e e 122
6.2.1 Regular Expression Syntaxo e e e e e e e e e e e 122
6.2.2 Module CoNtents i i i e e e e e e e e e e e e e e e e e e 127
6.2.3 Regular Expression Objects e 133
6.2.4 Match Objects o it e e e e e e e e e e e e e e 134
6.2.5 Regular Expression Examples e 137
6.3 difflib— Helpers for computingdeltas 142
6.3.1 SequenceMatcher Objects L L e e e e 147
6.3.2 SequenceMatcher Examples 149
6.3.3 Differ Objects o e e e e e e e e e e e e e 150
6.3.4 Differ Example e e e e e e 151
6.3.5 A command-line interface todifflib L o o o oo 152
6.4 textwrap—Textwrappingandfilling. Lo oL, 153
6.5 unicodedata—UnicodeDatabase i e 157
6.6 stringprep — Internet String Preparation Lo oo 159
6.7 readline —GNUreadlineinterface i i 160
6.7.1 Initfile e e e e e e e 161
6.7.2 Linebuffer. L e 161

6.7.3 Historyfile. e e e e e e e e e e e 161

6.7.4 History list o e e e e e e e e e e e e 162

6.7.5 Startup hooks L e e e e e 162

6.7.6 Completion L e e 163

6.7.7 Example e e 163

6.8 rlcompleter — Completion function for GNU readline 165
6.8.1 Completer ObJECtS o v v i i e e e e e e e e e e e e e e e 165

7 Binary Data Services 167
7.1 struct — Interpret bytes as packed binary data oo 167
7.1.1 Functions and Exceptions e e e e 168

7.1.2 Format Strings v v o o e e e e e e e e e e e e e e e 168

713 Applicationso e e e e e e e e e e e 172

T1A4 CIasSeS . . v v v v e e e e e e e e e e e e e 173

7.2 codecs — Codecregistryand base classes e 174
7.2.1 CodecBase Classes i i i i it e e e e e 177

7.2.2 Encodingsand Unicode i e e e e e 184

7.2.3 Standard Encodings e 185

7.2.4 Python Specific Encodings oL oo 188

7.2.5 encodings.idna — Internationalized Domain Names in Applications 190

7.2.6 encodings.mbcs — Windows ANSIcodepage 191

7277 encodings.utf_8_sig— UTF-8 codec with BOM signature 191

8 Data Types 193
8.1 datetime —Basicdateand timetypes e e e e e 193
8.1.1 Aware and Naive Objects o o v i e e e e e e e e e 193

8.1.2 Constants e e e e e 194

8.1.3 Available Types e 194

8.1.4 timedelta ObJects o v i i i i i e e e 195

8.1.5 date ODbJects v o v e e e e e e e e e e e e e 199

8.1.6 datetime Objects o v v i e e e e e e e e 203

8.1.7 time ObJeCts o i i e e e e e 214

8.1.8 tzinfo ObJeCcts o o i e e e e 218

8.1.9 timezone Objects o o i i e e e 224
8.1.10 strftime () and strptime () Behavior 225

82 zoneinfo—ITANA MEZONE SUPPOIt . . .+ v v v v v i e e e e e e e e e e e e e 229
82.1 Using ZoneInfo o o v i i v it it e e e e e e e e e e 229

8.2.2 DataSOUICeS v v v vt e 230

8.2.3 The ZoneInfoclass o o i i i e e e e e 231

824 FunCtionS i e e e 233

825 Globals e e 233

8.2.6 Exceptions and warningso i et e e e e e e e e e e e e 234

8.3 calendar — General calendar-related functions oL o . 234
84 collections — Containerdatatypes Lo 238
8.4.1 ChainMapobjects o o v i i i i i e e e e e 239

842 Counter ObJeCtS . . . v v v v i i e e e e e e e e e e e e e e e 241

843 deque obJeCtS e e e e e e e e e 245

844 defaultdict objects v v i i i i i e e e e e e e e e 248

8.4.5 namedtuple () Factory Function for Tuples with Named Fields 250

84.6 OrderedDict ObJECS v v i v v it i e e e e e e e 253

847 UserDict objects o o o i i e e e e 256

84.8 UserList obJECtS . . . v v v i v i e e e e e e e e e e e e e e e 256

8.4.9 UserStringobjectS v i i i i i e e e e e e e e e e 256

8.5 collections.abc — Abstract Base Classes for Containers 257

9

8.5.1 Collections Abstract Base Classes v i v i i v e e e e 258

8.5.2 Collections Abstract Base Classes — Detailed Descriptions 260
8.5.3 Examplesand Recipes L e e e e e 262
8.6 heapg—Heapqueuealgorithm 263
8.6.1 BasicExamples 264
8.6.2 Priority Queue Implementation Noteso 264
8.6.3 Theory. i i i e e e e e e e e e e 266
8.7 Dbisect — Array bisection algorithm L. e 267
8.7.1 Performance Notes e e e 268
8.7.2 Searching Sorted Lists L e 268
873 Examples e 269
8.8 array —Efficientarrays of numericvalues L. e 270
89 weakref —Weakreferences e 273
8.9.1 Weak Reference Objects e 277
892 Exampleo e 278
8.9.3 Finalizer Objects o o i i e e e 279
8.9.4 Comparing finalizers with __del__ () methods. 280
8.10 types — Dynamic type creation and names for built-in types 281
8.10.1 Dynamic Type Creation v i i v it et e e e e e e e e 281
8.10.2 Standard Interpreter Types e 282
8.10.3 Additional Utility Classes and Functions 286
8.10.4 Coroutine Utility Functions e 286
8.11 copy — Shallow and deep copy Operations v v v v v v vt e e e e e 287
8.12 pprint —Datapretty printer e e e e e e e e e e e e e 288
8.12.1 PrettyPrinter Objects e 290
8.12.2 Example 291
8.13 reprlib — Alternate repr () implementation 294
8.13.1 ReprODbJects i e e e e e e e 294
8.13.2 Subclassing Repr Objects o e e e e 295
8.14 enum— Support for enumerationso L.l e e e e e 296
8.14.1 Module Contents o v i e e e e e e e e e e e e 296
8.142 CreatinganEnum e 296
8.14.3 Programmatic access to enumeration members and their attributes L. 298
8.14.4 Duplicating enum members and values Lo 298
8.14.5 Ensuring unique enumeration values oL o e e 299
8.14.6 Usingautomatic values e 299
147 Tteration L i e e e e e e e e e e e e e 300
8.14.8 CompariSONs v . it e e e e e e e e e e e e e 301
8.14.9 Allowed members and attributes of enumerations 301
8.14.10 Restricted Enum subclassing L e 302
1411 Pickling L o e e e 303
8.14.12 Functional APT o e 303
8.14.13 Derived Enumerations oL e e e e e 304
8.14.14 Whentouse __new__ () VS. __init_ () . . v v v v v v i i e e e e e 308
8.14.15 Interesting eXamples v v v v it e e e e e e e e e e e e e e e e e 308
8.14.16 How are Enums different? L 312
8.15 graphlib — Functionality to operate with graph-like structures 315
8.15.1 EXCEptions o . e e e e e 318
Numeric and Mathematical Modules 319
9.1 numbers — Numeric abstract base classes L oo 319
9.1.1 The numeric tOWer i i ittt e e e e e e e e 319
9.1.2 Notes for type implementorso 320
9.2 math— Mathematical functions e 322

9.2.1 Number-theoretic and representation functions, 322

9.2.2 Power and logarithmic functions e e 326

9.2.3 Trigonometric functions L. L L e 327

9.2.4 Angular conversion oo i e e e e e e e 327

9.2.5 Hyperbolic functions 328

9.2.6 Special functions L. L e e e 328

9.2.7 CONSEANLS . . . v v e 329

9.3 cmath — Mathematical functions for complex numbers 330
9.3.1 Conversions to and from polar coordinates 0., 330

9.3.2 Power and logarithmic functions00 oo 331

9.3.3 Trigonometric functions Lo e e e 331

9.3.4 Hyperbolic functions e e e e e e e 331

9.3.5 Classification functions L e e 332

9.3.6 ConStants i e e e e e e e e e e e e 332

9.4 decimal — Decimal fixed point and floating point arithmetic 333
9.4.1 Quick-start Tutorial e e 334

9.4.2 Decimal objects e e e e 338

943 ConteXtObJECtS i e e e e e e e e e e e e e e e e e 345

9.4.4 Constantso i e e e e e e e e e e e e e e e e 351

945 Roundingmodes. e 351

9.4.6 Signals e e e 352

9.4.7 FloatingPoint Notes e e 353

9.4.8 Workingwiththreads e e 355

949 RECIPES '« . v v v v e i e e e e e e e e e e e 355
9.4.10 Decimal FAQ e e e e 358

9.5 fractions—Rationalnumbers L oL 361
9.6 random — Generate pseudo-random numbersl o e 363
9.6.1 Bookkeeping functions e e e e e e e 364

9.6.2 Functionsforbytes e e e e 365

9.6.3 Functions for inte@erst e e e e e e e 365

9.6.4 Functions for sequUences o e e e 365

9.6.5 Real-valued distributions 367

9.6.6 Alternative Generator o ittt e e e e e e e e e 368

9.6.7 Noteson Reproducibility e e 368

9.6.8 Examples e e e e 368

9.6.9 ReCIPES e 371

9.7 statistics — Mathematical statistics functions L. 371
9.7.1 Averages and measures of central location L. 372

9.7.2 Measuresof spread e e e e e e e e e e e 373

9.7.3 Statistics for relations between two Inputs oL ol e e e e e e 373

9.7.4 Functiondetails e 373

975 EXCEpHONS e e e e 380

9.7.6 NormalDist ObJeCtS i i i it e e e 380

10 Functional Programming Modules 385
10.1 itertools — Functions creating iterators for efficient looping 385
10.1.1 Ttertool functions L e e e e 387

10.1.2 Ttertools Recipes o o i i e e e e e e e e e e 396

10.2 functools — Higher-order functions and operations on callable objects 401
10.2.1 partial Objects i i i e e e e e 410

10.3 operator — Standard operators as functions Lol Lo 411
10.3.1 Mapping Operators to Functions e 415

10.3.2 In-place OPerators v v v v v v e 416

11 File and Directory Access 419

11.1 pathlib — Object-oriented filesystem paths, 419
IT.11 Basicuse i i e e e e e e e e 420
11.1.2 Purepaths L e 421
11.1.3 Concrete paths e 429
11.1.4 Correspondence totools inthe os module, 437

11.2 os.path — Common pathname manipulations o v i v v i v v v v v 438

11.3 fileinput — Iterate over lines from multiple input streams 443

11.4 stat —Interpreting stat () results L o 446

11.5 filecmp — File and Directory Comparisons 451
11.5.1 Thedircmpclass e e e e e 452

11.6 tempfile — Generate temporary files and directories 453
11.6.1 Examples o i e e e e e e e e e e e e e e e e 457
11.6.2 Deprecated functions and variables oL 0oL 457

11.7 glob — Unix style pathname pattern eXpansiono v v v 458

11.8 fnmatch — Unix filename pattern matching 459

119 linecache —Randomaccesstotextlines 460

11.10 shutil — High-level file operations e 461
11.10.1 Directory and files operations o v v i i e e e e e e e e e 461
11.10.2 Archiving operationst i e e e e 467
11.10.3 Querying the size of the output terminal, 470

12 Data Persistence 473

12.1 pickle — Python object serialization L . 473
12.1.1 Relationship to other Pythonmodules 473
12.1.2 Datastream format L e e e e 474
12.1.3 Module Interface 475
12.1.4 What can be pickled and unpickled? o 479
12.1.5 Pickling Class Instances e 479
12.1.6 Custom Reduction for Types, Functions, and Other Objects 485
12.1.7 Out-of-band Buffers L 486
12.1.8 Restricting Globals e e e e e e e e e 488
12.1.9 Performance e e e e e 489
12.1.10 Examples o e e e e e e e e e e e 489

12.2 copyreg—Register pickle supportfunctions oL 490
1221 Example oo e e e e e e 490

12.3 shelve — Python object persistence o o v vt i it i e 490
12.3.1 ReStriCtions o i i e e e e e e e e e e e e 492
1232 Example o o e e e e e e e e e e e e e e 492

12.4 marshal — Internal Python object serialization 493

12.5 dbm — Interfaces to Unix “databases” e 495
12.5.1 dbm.gnu— GNU’s reinterpretationof dbm L. 496
12.5.2 dbm.ndbm— Interface basedonndbm oL 497
12.5.3 dbm.dumb — Portable DBM implementation 498

12.6 sglite3 — DB-API 2.0 interface for SQLite databases 499
12.6.1 Tutorial o e e e e e e e e e 500
12.6.2 Reference e e 502
12.6.3 How-to guides v i i e e e e e e e e e e e e e e e e e e 516
12.6.4 Explanation i e e e e e e e e e e e e e e e e 523

13 Data Compression and Archiving 525

13.1 zlib — Compression compatible withgzip 525

13.2 gzip—Supportforgzipfiles 529
13.2.1 Examplesof usage L e 531

vi

13.2.2 Command Line Interface e 531

13.3 bz2 — Support for bZzip2 compression v i i e e e e e e e e e e e 532
13.3.1 (De)compressionof files. 532
13.3.2 Incremental (de)compression oL e e e e e e e e e e e 534
13.3.3 One-shot (de)compression o v v vttt e e e e e e e e 535
13.3.4 Examplesof usage o e 535

13.4 1zma — Compression using the LZMA algorithm 536
13.4.1 Reading and writing compressed files L Lo 536
13.4.2 Compressing and decompressing datainmemory 538
13.4.3 Miscellaneous oL e e e e e e e e e e e 540
13.4.4 Specifying custom filter chains oL o 540
13.4.5 Examples o e e e e e e e e e e e e e e e e e 541

13.5 zipfile— WorkwithZIP archives i e 542
13.5.1 ZipFile Objects o e e e e e e e e e e 543
13.52 PathObjects o e e e 547
13.5.3 PyZipFile Objects e e e e 548
13.5.4 ZipInfo Objects o o e e e e e e 549
13.5.5 Command-Line Interface 550
13.5.6 Decompression pitfalls L e e e e 551

13.6 tarfile — Readand write tar archive files L o 552
13.6.1 TarFile Objects e e e 555
13.6.2 TarlnfoObjects e e e 559
13.6.3 Extraction filters L. e e e e e e e e 561
13.6.4 Command-Line Interface 564
13.6.5 Examples e e e e e e e e e e 565
13.6.6 Supported tar formatso 566
13.6.7 UnicodeiSSueS o v vt e e e e e e e e 567

14 File Formats 569

14.1 csv—CSV File Readingand Writing 569
14.1.1 Module Contents v vttt e e e e e e e 569
14.1.2 Dialects and Formatting Parameters o ot v i i e e 573
14.1.3 Reader Objects o v v i e e e e e e e e e e e e 574
14.1.4 Writer Objects e e e e 574
14.1.5 Examples e 575

142 configparser — Configuration file parser Lo 576
142.1 Quick Start e 576
14.2.2 Supported Datatypes o .. e e e e e e e e e e e e 578
1423 Fallback Values e 578
14.2.4 Supported INI File Structure e 579
14.2.5 Interpolation of values L. e 580
14.2.6 Mapping Protocol ACCess i e e 581
14.2.7 Customizing Parser Behaviour e 582
14.2.8 Legacy APIExamples 0 i e e e e e 587
1429 ConfigParser Objects e 589
14.2.10 RawConfigParser Objects e 592
14.2.11 EXCEPLIONS v v v v i i e e e e e e e e e e e e e e e 593

143 netrc—netrcfile processing v v v it e e e e e e e e e e e e e 594
14.3.1 mnetrc ObJectS o o i e e e e e e e e e e e e e e 594

144 plistlib — Generate and parse Apple .plistfiles 595
1441 Examples e 596

15 Cryptographic Services 599

15.1 hashlib — Secure hashes and message digests e 599

vii

15.1.1 Hashalgorithms e e e e e e e e e 599

15.1.2 SHAKE variable length digests 0 i i e e 601

15.1.3 Keyderivation L e e e e e e e e 602
15.1.4 BLAKE2 e e e e 603

15.2 hmac — Keyed-Hashing for Message Authentication 610
15.3 secrets — Generate secure random numbers for managing secrets 611
15.3.1 Randomnumbers e e e e e e 612

15.3.2 Generating toKeNS v v v v v e 612

1533 Otherfunctions e e e 613
15.3.4 Recipesand best practices oL e 613

16 Generic Operating System Services 615
16.1 os — Miscellaneous operating system interfaceso oL 615
16.1.1 File Names, Command Line Arguments, and Environment Variables 616
16.1.2 Python UTF-8Mode e et 616
16.1.3 Process Parameters e e 617
16.1.4 File Object Creation v v v v i i e e e e e e e e e e e e e e e e 623

16.1.5 File Descriptor Operations vttt e e e e e 623
16.1.6 Files and Directories o o i e e e e e e e e e 633
16.1.7 Process Management i it e e e e e e e 655
16.1.8 Interface tothescheduler 667

16.1.9 Miscellaneous System Information e 668
16.1.10 Randomnumbers L e 670

16.2 io— Core tools for working with streams Lo oL 671
16.2.1 OVEIVIEW . . . v vt ottt it e e e e e e e e e e 671

1622 TextEncoding e 672

16.2.3 High-level Module Interface e 673
16.2.4 Classhierarchy o . e e e e e e e e 674
16.2.5 Performance e 684

16.3 time — Time access and CONVETSIONS v ¢ v v v v v v e v e e e e e e e e e e e e e e e e e 684
16.3.1 Functions i i e e e 686

1632 ClockID Constants v v v v ittt e e e e e e e e e e e e e 692
1633 Timezone Constants v v ittt e e e e e e e e e e e e e 694

16.4 argparse — Parser for command-line options, arguments and sub-commands 694
16.4.1 Exampleo 695

16.4.2 ArgumentParserobjects L. 696
16.4.3 The add_argument() method e e e 705
16.4.4 The parse_argsO)method e e e 716

16.4.5 Otherutilities e e e e e e 719
16.4.6 Upgradingoptparse code o e e 727

16.5 getopt — C-style parser for command line options 728
16.6 logging— Logging facility for Python L. 730
16.6.1 Logger Objects o v i v e e e e e e e e e e e e e e e 731

16.6.2 LoggingLevels e e e e e e e e 734
16.6.3 Handler Objects o o i i e e e e e e e e e e e e 735
16.6.4 Formatter Objects e 736
16.6.5 Filter Objects o o e e e e e e e e 738
16.6.6 LogRecord Objects v v i i v i i e e e e e e e e e e e e e e 739
16.6.7 LogRecord attributes L e e e e e e e e e e e e e 740
16.6.8 LoggerAdapter Objects e e e 742
16.6.9 Thread Safety e 742
16.6.10 Module-Level Functions e 742
16.6.11 Module-Level Attributes L e e 747
16.6.12 Integration with the warningsmodule 747

viii

16.7 logging.config—Loggingconfiguration it 747

16.7.1 Configuration functions o v v i e e e e e e e e e e e e e e 748

16.7.2 Security considerationsol e e e e e 750

16.7.3 Configuration dictionary schema Lo oL 750
16.7.4 Configuration file format L. 756

16.8 logging.handlers —Logginghandlers 759
16.8.1 StreamHandler e 759

16.8.2 FileHandler e 760

1683 NullHandler e 760
16.8.4 WatchedFileHandler 761

16.8.5 BaseRotatingHandler 761

16.8.6 RotatingFileHandler e e e e 762

16.8.7 TimedRotatingFileHandler e 763

16.8.8 SocketHandler L e 764
16.8.9 DatagramHandler oL 765
16.8.10 SysLogHandler e 766
16.8.11 NTEventLogHandler e 768
16.8.12 SMTPHandler e e 769
16.8.13 MemoryHandler e e e e e e 769
16.8.14 HTTPHandler e e e e e e e e e e 770
16.8.15 QueueHandler e e e e e e 771
16.8.16 QueucListener e e e e e e e e e e e 772

16.9 getpass — Portable password input e e e e 773
16.10 curses — Terminal handling for character-cell displays 774
16.10.1 Functions ot e e e e e e 774
16.10.2 Window Objects e 781
16.10.3 COonStants o v v v it e e e e e e e e e e e e e e 787

16.11 curses.textpad — Text input widget for curses programs v v v v vt 792
16.11.1 TextboX ObJECtS . . . v v v v o o e 792

16.12 curses.ascii — Utilities for ASCII characters, 793
16.13 curses.panel — A panel stack extension forcurses oo 796
16.13.1 Functionso i e e e e e 796
16.13.2 Panel Objects o o o e e e e e e 796

16.14 plat form — Access to underlying platform’s identifyingdata 797
16.14.1 Cross Platform e 797
16.14.2 Java Platform L e e 799
16.14.3 Windows Platform e 799
16.14.4 macOS Platform e 799
16.14.5 Unix Platforms L e 800
16.14.6 Linux Platforms e 800

16.15 errno — Standard errno system symbols00 oo 800
16.16 ctypes — A foreign function library for Python o000 806
16.16.1 ctypestutorial L. e e e e 807
16.16.2 ctypesreference o . i e e e e e e e e e e e e e e 825

17 Concurrent Execution 841
17.1 threading— Thread-based parallelism 841
17.1.1 Thread-Local Data e 844

17.1.2 Thread Objects o v v i e e e e e e e e e e e e e e 844

17.1.3 Lock Objects o i i e e e e e e e e e e e e 846
17.1.4 RLock Objects o o e e e e e 847
17.1.5 Condition Objects v i i e e e e e 848
17.1.6 Semaphore ObJects v . i i v it e e e e e e e e e e e e e e e 850

17.1.7 Event ObJects o o v i i e 852

17.1.8 Timer ObJects o o o o et e 852

17.1.9 Barrier Objects o v e e e e e e e e e e e e e e e 853
17.1.10 Using locks, conditions, and semaphores in the with statement 854
17.2 multiprocessing— Process-based parallelism 855
17.2.1 Introduction e e e 855
1722 Reference o e 862
17.2.3 Programming guidelines e e e e e 890
1724 Examples o o e e e e e e e e e e e e e e 893
17.3 multiprocessing.shared_memory — Shared memory for direct access across processes . . . 899
17.4 The concurrent package e 904
17.5 concurrent.futures — Launching parallel tasks 904
17.5.1 Executor ObJects v v v v i i e 904
17.5.2 ThreadPoolExecutor e e 905
17.5.3 ProcessPOOIEXeCUtor i i e e e e e e e e 907
1754 Future Objects o i e e 908
1755 Module Functions e 910
17.5.6 EXCeption Classes v v v i v i e e e e e e e e e e e e e e e e e e 910
17.6 subprocess — Subprocess management v v e v e e e e e e e e e e e e 911
17.6.1 Using the subprocessModule L 911
17.6.2 Security Considerations o e e e e 920
17.6.3 Popen Objects« o i e e e e e e e e e e 920
17.6.4 Windows Popen Helpers 922
17.6.5 Older high-level API e 924
17.6.6 Replacing Older Functions with the subprocessModule 926
17.6.7 Legacy Shell Invocation Functions 929
17.6.8 NOtES . . . o o o e e 930
177 sched—Eventscheduler 930
17.7.1 Scheduler Objects i i e e e e e e e e e e e e e e 931
17.8 queue — A synchronized queue class L e e 932
17.8.1 Queue ObJects v i i e e e e e e e e e e e e e 933
17.8.2 SimpleQueue Objects e 934
179 contextvars — Context Variables 935
17.9.1 Context Variables e e e 935
17.9.2 Manual Context Management v v v v v vt e e e e e e e e e e e e e e 936
17.9.3 asynClo SUPPOTt . . . o o v v i o e e i e e e e e e e e e e e e e e e e e e e 938
17.10 _thread — Low-level threading APT, 939
18 Networking and Interprocess Communication 943
18.1 asyncio—AsynchronousI/O e 943
18.1.1 Coroutines and Tasks o e 944
18.1.2 Streams o i e e e e e e e e e e e 959
18.1.3 Synchronization Primitives o 966
18.1.4 SubproCcesses v v v v i i e e e e e e e e e e e e e e e e e e e 970
I18.1.5 QUEUES i e e e e e e 975
18.1.6 EXCEpLions v v v i it e e e e e e e e e e e e e e e e e 977
18.1.7 EventLoop e 978
18.1.8 Futures e 1001
18.1.9 Transports and Protocols e e e e 1004
18.1.10 Policies e e e e e e 1018
18.1.11 Platform Support e e e 1022
18.1.12 High-level APTIndex ittt 1023
18.1.13 Low-level API Index e 1025
18.1.14 Developing with asyncio v v v v v i e e e e e e e e e e e e e e e e 1031
18.2 socket — Low-level networking interface 1035

18.2.1 Socket families e e e e 1035

1822 Module contents« v v vt e e e e e e e e e e e e e e 1038
18.2.3 Socket ObJects v o v v i o e e e e e e e e e e e e e 1049
18.2.4 Notesonsocket timeouts o v v it i e e e e e e e e e 1056
1825 Example e 1056
18.3 ss1 — TLS/SSL wrapper for socketobjects 1060
18.3.1 Functions, Constants, and Exceptions i i 1061
18.3.2 SSL Sockets e e e e 1073
1833 SSLContexts o o vttt e e e e e e 1078
18.3.4 Certificates o e e e e e e e e e e 1085
18.3.5 Examples o e 1087
18.3.6 Notes on non-blocking sockets e 1090
18.3.7 Memory BIO Support o o e e e e e e e e e e e 1091
18.3.8 SSLSession oo i it e e e e e e 1093
18.3.9 Security considerations Lo 1093
18.3.10 TLS 1.3 .« . o o e 1094
18.4 select — Waiting for /O completion 1095
18.4.1 /dev/poll Polling Objects o o v i i e et e e e e e e e 1097
18.4.2 Edge and Level Trigger Polling (epoll) Objects 1098
18.4.3 Polling Objects e 1099
18.4.4 Kqueue Objects o o i e e e e e e e e e 1100
18.4.5 Kevent Objects e e 1100
18.5 selectors — High-level I/O multiplexing it 1102
18.5.1 Introduction L e e e e e 1102
1852 Classes. . . . v v v v i it e e e e e 1103
1853 Examples e 1105
18.6 signal — Set handlers for asynchronousevents 1106
18.6.1 Generalrules e e e 1106
18.6.2 Module contents« o o vt e e e e e e e e e e e e e e 1107
18.6.3 Example L e e e e e e e e 1113
18.6.4 NoteonSIGPIPE e 1113
18.6.5 Note on Signal Handlers and Exceptions 1114
18.7 mmap — Memory-mapped file support e 1115
18.7.1 MADV_*Constants« v v v v v v vttt e e e e e e e e e e e e e 1118
1872 MAP_*Constants o o vt it e e e e e e e e e 1119
19 Internet Data Handling 1121
19.1 email — Anemail and MIME handling package 1121
19.1.1 email.message: Representing an email message 1122
19.1.2 email.parser: Parsing email messages oo oo 1130
19.1.3 email.generator: Generating MIME documents 1134
19.1.4 email.policy: Policy Objects i 1137
19.1.5 email.errors: Exception and Defectclasses 1143
19.1.6 email.headerregistry: Custom Header Objects 1145
19.1.7 email.contentmanager: Managing MIME Content 1150
19.1.8 email:Examples L e 1152
19.19 email.message.Message: Representing an email message using the compat32 API . 1159
19.1.10 email.mime: Creating email and MIME objects from scratch 1167
19.1.11 email.header: Internationalized headers 1170
19.1.12 email.charset: Representing charactersets 1172
19.1.13 email.encoders: Encoders. e 1175
19.1.14 email.utils: Miscellaneous utilities 1175
19.1.15 email.iterators: Iterators o i i it e e e e e e e 1178
19.2 json—JSONencoderanddecoder 1179

Xi

20

19.2.1 BasicUSage v o v v i e e e e e e e e e e e e e e e e e 1181

19.2.2 Encodersand Decoders L 1183
19.2.3 EXCEPUONS .« . v v v v v o e 1185
19.2.4 Standard Compliance and Interoperability 1186
19.2.5 Command Line Interface L 1187
19.3 mailbox — Manipulate mailboxes in various formats oL L. 1189
19.3.1 Mailbox ObJectS . . v v v v v v e 1189
1932 Message objectS o v i it e e e e e e e e e e e e e e e e e 1197
19.3.3 EXCEPLONS . . . ¢ v v v v i e 1205
1934 Examples e 1205
194 mimetypes — Map filenamesto MIME types o 1206
19.4.1 MimeTypes ObJects v v i i i e e e e e e e e e e e e e e e e 1208
19.5 base64 — Basel6, Base32, Base64, Base85 Data Encodings 1209
19.5.1 Security Considerations o v v it e e e e e e e e e e e e e 1212
19.6 binhex — Encode and decode binhex4 files L o oo 1212
19.6.1 NOteS o o o e 1213
19.7 binascii — Convert between binaryand ASCIT, 1213
19.8 quopri — Encode and decode MIME quoted-printabledata 1215
Structured Markup Processing Tools 1217
20.1 html — HyperText Markup Language support 1217
20.2 html.parser — Simple HTML and XHTML parser 1217
20.2.1 Example HTML Parser Application vttt 1218
20.2.2 HTMLParser Methods i e e 1219
20.2.3 Examples e e e e e e e 1220
20.3 html.entities — Definitions of HTML general entities 1222
20.4 XML Processing Modules e e e e e e e e e e e e e 1223
20.4.1 XML vulnerabilities e 1223
20.4.2 The defusedxml Package 1224
20.5 xml.etree.ElementTree — The ElementTree XML APl 1224
20.5.1 Tutorialo L e e e 1225
20.5.2 XPath Support o v v i e e e e e e e e e e e e e e e e e e 1230
20.53 Reference e e e 1232
20.5.4 XlInclude supportl e e e e e e 1235
20.5.5 Reference oL e e e e 1236
20.6 xml.dom— The Document Object Model APT. 1243
20.6.1 Module Contentst it e e e e e e e e e e e e 1244
20.6.2 Objectsinthe DOM e e 1245
20.6.3 Conformance e e e 1253
20.7 xml.dom.minidom— Minimal DOM implementation 1254
20.7.1 DOMODJECtS . . . o v v i e e e e e e e 1255
20.7.2 DOMExample o e e e e e e e e e e 1256
20.7.3 minidom and the DOM standard 1258
20.8 xml.dom.pulldom— Support for building partial DOM trees 1258
20.8.1 DOMEventStream Objects e 1260
20.9 xml.sax — Support for SAX2 parsers Lo e 1260
20.9.1 SAXException Objects it e e e e e e e 1262
20.10 xml.sax.handler — Base classes for SAX handlers 1262
20.10.1 ContentHandler Objects i e e e e e e e e 1264
20.10.2 DTDHandler Objects i e e e e 1266
20.10.3 EntityResolver Objects e 1266
20.10.4 ErrorHandler Objects o e e 1267
20.10.5 LexicalHandler Objects v v v i v i i e e e e e e e e e e e e e e e 1267
20.11 xml.sax.saxutils —SAXUtilities i e e 1268

xii

20.12 xml.sax.xmlreader — Interface for XML parsers o 1269
20.12.1 XMLReader Objects o v v it e e e e e e e e e e e e e e e 1270
20.12.2 IncrementalParser Objects o o i i e e e e e e e e e 1271
20.12.3 Locator ObJects o v o vt et e e e e e e e e e e e e e e 1271
20.12.4 InputSource ObJECtS o L v e e e e e e e 1271
20.12.5 The AttributesInterface L 1272
20.12.6 The AttributesNSInterface e 1272

20.13 xml.parsers.expat — Fast XML parsingusing Expat 1273
20.13.1 XMLParser Objects v v it e e e e e 1274
20.13.2 ExpatError Exceptions L e 1278
20133 Exampleo e e 1278
20.13.4 Content Model Descriptions o o vttt e e e 1279
20.13.5 EXpat error CONSLANLS . . . v v v v v v v et e 1280

21 Internet Protocols and Support 1283

21.1 webbrowser — Convenient web-browser controller, 1283
21.1.1 Browser Controller Objects i i i e e e e e e e e 1285

21.2 wsgiref — WSGI Utilities and Reference Implementation 1285
21.2.1 wsgiref.util — WSGI environment utilities 1286
21.2.2 wsgiref.headers — WSGIresponse headertools 1287
2123 wsgiref.simple_server —asimple WSGI HTTPserver 1288
21.24 wsgiref.validate — WSGI conformance checker 1290
21.2.5 wsgiref.handlers —server/gateway baseclasses 1291
21.2.6 Examples e 1294

21.3 urllib—URLhandlingmodules 1295

214 urllib.request — Extensible library foropening URLs 1296
21.4.1 Request ObJects v v i v e e e e e e e e e e e e e e e 1301
21.4.2 OpenerDirector Objects o o v i i e e e e e e e e e 1302
21.43 BaseHandler Objects e 1303
21.44 HTTPRedirectHandler Objects e 1304
21.4.5 HTTPCookieProcessor Objects o ot vt ittt e e e et e 1305
21.4.6 ProxyHandler Objects o i i e e e e e e e e e e e 1305
21.4.7 HTTPPasswordMgr Objects v v v v i e e e e e e e e e e e e e e e e 1305
21.4.8 HTTPPasswordMgrWithPriorAuth Objects 1306
21.49 AbstractBasicAuthHandler Objects o 1306
21.4.10 HTTPBasicAuthHandler Objects o ittt 1306
21.4.11 ProxyBasicAuthHandler Objects ittt 1306
21.4.12 AbstractDigestAuthHandler Objects o0 v it 1306
21.4.13 HTTPDigestAuthHandler Objects o 1307
21.4.14 ProxyDigestAuthHandler Objects 1307
21.4.15 HTTPHandler Objects o o v ittt e e e e e e e e e e e 1307
21.4.16 HTTPSHandler Objects o o it ittt e e e e e s e e 1307
21.4.17 FileHandler Objects o o v i e e e e e e e e e e e e e 1307
21.4.18 DataHandler Objects o e e e e e e e e 1307
21.4.19 FTPHandler Objects e e 1307
21.4.20 CacheFTPHandler Objects i i 1308
21.4.21 UnknownHandler Objects L i i 1308
21.4.22 HTTPErrorProcessor ObJects v v i v i e e e e e e e e e e e e e e e 1308
21.4.23 Examples e e e e e e e e e e e e e e 1308
21.4.24 Legacyinterface e 1311
21425 urllib.request Restrictions oL e 1313

21.5 urllib.response —Responseclassesusedbyurllib 0. 1314

21.6 urllib.parse —Parse URLsintocomponentso, 1314
21.6.1 URLParsing e e e e e e e e 1315

21.6.2 URL parsing SECUTILY . . . v v v v v v e 1319

21.6.3 Parsing ASCII Encoded Bytes o i e e 1320
21.6.4 Structured Parse Results oL 1320
21.6.5 URLQuOting e e e 1321
21.7 urllib.error — Exception classes raised by urllib.request 1323
21.8 urllib.robotparser — Parserforrobots.txt 1324
219 http—HTTPmodules e e e e 1325
21.9.1 HTTPstatus codes o o v i it i e e e e e e e e 1326
21.10 http.client — HTTP protocolclient 1327
21.10.1 HTTPConnection Objects ittt ettt e e 1330
21.10.2 HTTPResponse Objects v i i it e e e e e e e e e e e 1332
21.10.3 Examples o e e e e e e e e e e e e e e e 1333
21.10.4 HTTPMessage ODJECtS v v v v v o i e 1334
21.11 ftplib —FTPprotocolclient e 1334
21.11.1 FTPObjects o o o e e e e e e e e e e e e 1337
21.11.2 FTP_TLS Objects o o ottt e e e e e e e e e e e e e e e 1339
21.12 poplib —POP3 protocol client e e e e e e 1340
21.12.1 POP3 ODbJECES . . v v v v e e o e 1341
21.12.2 POP3 Example o e e e e e e e 1342
21.13 imaplib —IMAP4 protocolclient L 1343
21.13.1 IMAP4 Objects o o e e e e 1345
21.13.2 IMAP4 Exampleo e e e e e e 1349
21.14 smtplib — SMTP protocol client i e e 1350
21.14.1 SMTP ODbjects o o o e e e e e e 1352
21.142 SMTP Example L 1356
21.15 uuid — UUID objects accordingto RFC 4122 1356
21.15.1 Example oo 1359
21.16 socketserver — A framework for network servers oL Lo oL 1360
21.16.1 Server Creation NOtES o v v i ittt e e e e e e e e e e e 1360
21.16.2 Server ObJects« o o o i e e e e e e e e e e 1362
21.16.3 Request Handler Objects e 1364
21.16.4 Examples e e e e e 1364
21.17 http.server — HTTP servers 0 e e e e e e e 1368
21.17.1 Security Considerations v v v v v e e e e e e e e e e e e e e e e 1374
21.18 http.cookies — HTTP state management v v v v v i v v i v v e v 1374
21.18.1 Cookie Objects e e e e e e 1375
21.18.2 Morsel Objects 1375
21183 Example e e 1376
21.19 http.cookiejar — Cookie handling for HTTP clients 1377
21.19.1 CookielJar and FileCookieJar Objects oo v i e it 1379
21.19.2 FileCookieJar subclasses and co-operation with web browsers 1381
21.19.3 CookiePolicy Objects e 1381
21.19.4 DefaultCookiePolicy Objects o it 1382
21.19.5 Cookie ObJECtS . . . v v v v o o e e e e e e e e e e e e e e e e e e e 1384
21.19.6 Examples e e e e e e e e e e e e e e 1385
21.20 xmlrpc — XMLRPC server and client modules 1386
21.21 xmlrpc.client — XML-RPCclientaccess oo v i i i vt vt it 1386
21.21.1 ServerProxy Objects i e e e e e e 1388
21.21.2 DateTime ObJects o v v it et e e e e e e e e e e e e e e 1389
21.21.3 Binary ObJects o o v ot e e e e e e e e e e e e e e e e e 1390
21.21.4 Fault Objects o i it e e e e e e e e e 1390
21.21.5 ProtocolError Objects e 1391
21.21.6 MultiCall Objects o o e e e 1392
21.21.7 Convenience Functions e 1393

Xiv

22

23

24

25

21.22

21.23

21.21.8 Example of Client Usage o o ottt it e e e
21.21.9 Example of Client and Server Usage v i v i ittt e oo
xmlrpc.server — Basic XML-RPCservers.
21.22.1 SimpleXMLRPCServer Objects i e
21.22.2 CGIXMLRPCRequestHandler
21.22.3 Documenting XMLRPC server e
21.22.4 DocXMLRPCServer Objects v v v i i e e e e e e e e e e e e e
21.22.5 DocCGIXMLRPCRequestHandler i i e
ipaddress — IPv4/IPv6 manipulation library oL oL
21.23.1 Convenience factory functionso e e e e
21.232 TP AQAIesses v v i it e e e e e e e e e e e
21.23.3 TP Network definitions o o o e e e
21.23.4 Interface objects o e e e e e e e e e
21.23.5 Other Module Level Functions
21.23.6 Custom Exceptions L i e e e e e e e e e e

Multimedia Services

22.1

222

wave — Read and write WAV files e
22.1.1 Wave_read Objects o o i i e e e e e e e e e
22.1.2 Wave_write Objects e e e e
colorsys — Conversions between color Systemso e e e e e

Internationalization

23.1

23.2

gettext — Multilingual internationalization services oo
23.1.1 GNUgettext API e e e e
23.1.2 Class-based AP e
23.1.3 Internationalizing your programs and modules oL
23.1.4 Acknowledgementsl e e e e e e
locale — Internationalization SEIViCes« v v v v bt e e e e e e e
23.2.1 Background, details, hints, tips and caveatso o
23.2.2 For extension writers and programs that embed Python
23.2.3 Accesstomessage catalogs L e e e e e e e e e e e

Program Frameworks

24.1

242

243

turtle —Turtle graphics o o e e e e e e e e e
24.1.1 Introduction
24.1.2 Overview of available Turtle and Screenmethods
24.1.3 Methods of RawTurtle/Turtle and corresponding functions
24.1.4 Methods of TurtleScreen/Screen and corresponding functions
24.1.5 Publicclasses
24.1.6 Help and configuration e e e e
2417 turtledemo—Demoscripts
24.1.8 Changessince Python2.6
24.1.9 Changessince Python 3.0 L
cmd — Support for line-oriented command interpreterso oL e e e .
2421 CmdODbJects o i e e e e e e e e e e
2422 CmdExample e e e e e
shlex — Simple lexical analysis L o
24.3.1 shlex Objects o i it e e e e e
2432 ParsingRules e
24.3.3 Improved Compatibility with Shells

Graphical User Interfaces with Tk

25.1

tkinter — Pythoninterface to Tcl/Tk o o e
25.1.1 Architecture o v i e e e e e e e e e e e

XV

25.1.2 Tkinter Modules L e e e e e 1485

25.1.3 Tkinter Life Preserver e 1486
25.1.4 Threadingmodel L e 1489
25.1.5 HandyReference e 1490
25.1.6 FileHandlers e 1495
25.2 tkinter.colorchooser — Color choosingdialog 1496
25.3 tkinter.font — Tkinter font wrapper e e 1496
25.4 Tkinter Dialogs L L e e e e e e 1497
25.4.1 tkinter.simpledialog— Standard Tkinter input dialogs 1497
2542 tkinter.filedialog—Fileselectiondialogs 1498
2543 tkinter.commondialog— Dialog window templates 1500
25.5 tkinter.messagebox — Tkinter message prompts v v v v h e e e e 1500
25.6 tkinter.scrolledtext — Scrolled Text Widget 1501
257 tkinter.dnd—Draganddropsupport L e 1501
25.8 tkinter.ttk —Tkthemedwidgets 1502
25.8.1 Using Ttk L o o e e e 1503
25.82 Ttk WIdgets o o i e e e e e 1503
25.83 WIdget. o e e 1504
25.84 CombobOX e e e e e 1506
25.8.5 Spinbox L e e 1507
25.8.6 Notebook e 1508
25.8.7 Progressbar e e e 1511
25.8.8 Separator e e e e e e e e e e e e e e 1512
25.8.9 Sizegrip e e e e 1512
25.8.10 Treeview o oo e e e e e e e e e 1512
25.8.11 Ttk Styling e e e 1518
259 tkinter.tix—Extensionwidgetsfor Tk o, 1521
25.9.1 Using TiX . . . v v vt i e e e e e e e e e 1522
2592 Tix WIdgets e e e e e e 1522
2593 TixCommands e e e e e 1525
2510 IDLE e 1526
25.10.1 Menus v it e e 1526
25.10.2 Editing and Navigation it e e e e e e e 1530
25.10.3 Startup and Code Execution i it e e e e e e e e 1533
25.10.4 Help and Preferences e e e 1536
25.10.5 idlelib . . .o 1537
26 Development Tools 1539
26.1 typing—Supportfortypehints e 1539
26.1.1 Relevant PEPs e 1540
26.1.2 Typealiases o o i e e e e e e e e e 1540
26.1.3 NewType o o o e e 1541
26.1.4 Callable e e e 1542
20.1.5 GENeriCs v v v i e e e e e 1543
26.1.6 User-defined generic types i i e e e e e 1543
26.1.7 The Any type o o o i i e e e 1546
26.1.8 Nominal vs structural subtyping L L. L 1547
26.1.9 Module contents L L e e e e e e e e e e e e e e 1547
26.2 pydoc — Documentation generator and online helpsystem 1573
26.3 Python Development Mode L e 1574
26.4 Effects of the Python Development Mode 1574
26.5 ResourceWarning Example 1575
26.6 Bad file descriptor error example L e e e e e e e e e e e 1576
26.7 doctest — Testinteractive Python examples, 1577

xvi

26.7.1 Simple Usage: Checking Examples in Docstrings,
26.7.2 Simple Usage: Checking Examplesina TextFile
2673 HowlItWorks o o e
26.7.4 Basic APL
26.7.5 Unittest APT e
26.7.6 Advanced APL L
26.7.7 Debugging e e e e e e e e e e
26.7.8 S0apbOXo e e e e e e e e e
26.8 unittest — Unittesting framework Lo oL
26.8.1 Basicexample e e e e e e e e e
26.8.2 Command-Line Interface
26.8.3 TestDISCOVEIY . . . v v v v v o e
26.8.4 Organizingtest code o i e e e e e e e e e e e
26.8.5 Re-usingoldtestcode L. e e e e
26.8.6 Skipping tests and expected failures oL oL
26.8.7 Distinguishing test iterations using subtestso o e
26.8.8 Classesand functions oL e e e e e
26.8.9 Classand Module Fixtures e
26.8.10 Signal Handling o e e e e
26.9 unittest.mock —mockobjectlibrary oo oo
26.9.1 Quick Guide e e e e e e e e
26.9.2 TheMock Class o o o i e e e
26.9.3 Thepatchers o o e e e e e e e e e e e
26.9.4 MagicMock and magic method support e
26.9.5 Helpers e e e e e
26.10 unittest.mock —getting started oL
26.10.1 UsingMock o e e
26.10.2 Patch Decorators i e e e e e e
26.10.3 Further Examples o o e e e e e e e e e
26.11 2to3 — Automated Python 2 to 3 code translation
26.11.1 Using 2t03 oo e e e
20.11.2 FIXerS . . . o o v v i e e e e e
26.11.3 1ib2to3 —2to3’slibrary L
26.12 test — Regression tests package for Python o o oL
26.12.1 Writing Unit Tests for the test package,
26.12.2 Running tests using the command-line interface
26.13 test.support — Utilities for the Python testsuite
26.14 test .support.socket_helper — Utilities for socket tests
26.15 test.support.script_helper — Utilities for the Python execution tests
26.16 test.support.bytecode_helper — Support tools for testing correct bytecode generation
26.17 test.support.threading_helper — Utilities for threading tests
26.18 test.support.os_helper — Utilities forostests
26.19 test.support.import_helper — Utilities for importtests
26.20 test.support.warnings_helper — Utilities for warnings tests

27 Debugging and Profiling

27.1 Auditeventstable e e
27.2 bdb —Debugger framework oL e
27.3 faulthandler — Dump the Python traceback
27.3.1 Dumpingthe traceback e
27.3.2 Faulthandlerstate e e e e e e e e
27.3.3 Dumping the tracebacks afteratimeout oL
27.3.4 Dumping the traceback onausersignal oL
27.3.5 [Issue with file descriptors L L e e e e e e e

27.3.6 Example e e e e e e e e e e e e 1728

27.4 pdb —The Python Debugger e e 1729
27.4.1 Debugger Commands L 1731
27.5 The Python Profilers e 1735
27.5.1 Introduction to the profilers 1735
27.5.2 Instant User's Manual L e 1735
2753 profileand cProfile Module Reference 1738
2754 The Stats Class o o ot i e e e 1739
27.5.5 WhatIs Deterministic Profiling? o o 1741
27.5.6 LImIitations o L .ot e 1742
27577 Calibration. oL e e e e 1742
27.5.8 Usinga custom tMET v v v v v e v e e e e e e e e e e e e e e e e e 1743
27.6 timeit — Measure execution time of small code snippets 1744
27.6.1 Basic Examples e 1744
27.6.2 PythonlInterface oL e 1744
27.6.3 Command-Line Interface 1746
27.6.4 Examples e e e e e e e e e e e e e 1747
27.7 trace — Trace or track Python statement execution 1749
27.7.1 Command-Line Usage i i it 1749
27.7.2 Programmatic Interface L oL 1750
27.8 tracemalloc — Trace memory allocations 1751
27.8.1 Examples e e 1752
27.82 APL . . . e 1756
28 Software Packaging and Distribution 1763
28.1 distutils — Building and installing Python modules 1763
28.2 ensurepip — Bootstrapping the pipinstaller 1764
28.2.1 Command lineinterface L. e 1764
2822 Module APT e e 1765
28.3 wvenv — Creation of virtual environments oL e e e 1765
28.3.1 Creating virtual environments e e e e e e 1766
2832 Howvenvs wWork L e e e e 1767
2833 APL . . . e e 1768
28.3.4 Anexample of extending EnvBuilder L oL 1771
28.4 zipapp — Manage executable Python ziparchives00, 1775
28.4.1 BasicExample oL 1775
28.4.2 Command-Line Interface 1775
28.43 Python API e 1776
2844 Examples e e e e e e e e e e 1777
28.4.5 Specifying the Interpreter L oL e 1777
28.4.6 Creating Standalone Applications with zipapp 1778
28.4.7 The Python Zip Application Archive Format, 1780
29 Python Runtime Services 1781
29.1 sys — System-specific parameters and functions Lo 1781
29.2 sysconfig— Provide access to Python’s configuration information 1801
29.2.1 Configuration variables L e e e e e e 1801
29.2.2 Installationpaths L. e 1802
29.2.3 Other functions o e e e e e e e e e 1804
29.2.4 Using sysconfigasascript o .o it e 1805
293 builtins—Built-inobjects 1805
29.4 __main__ — Top-level code environment it e e 1806
2941 __name_ == "_main__ ' e 1806
2942 __main___.pyinPythonPackages 1808

xviii

30

2043 import _ MAIN_ . . i e e e e e e e e e e e e e e e e 1809
29.5 warnings — Warningcontrol L. e e e e e e e 1811
29.5.1 Warning Categories e e e e e e e e e e e e 1812
2952 The Warnings Filter L 1812
29.5.3 Temporarily Suppressing Warnings e 1815
29.5.4 Testing Warnings« o v v vt e e e e e e e e e e e e e e e e e e 1815
29.5.5 Updating Code For New Versions of Dependencies 1816
29.5.6 Available Functions L 1816
29.5.7 Available Context Managers o 1817
29.6 dataclasses—DataClasses. L e e e e e e 1817
29.6.1 Module CONtents o i e e e e e e e e e e e e e e e e e e e 1818
29.6.2 POSt-INIt PrOCESSING .« & v v v v v e v e 1824
29.6.3 Classvariables e e e e e 1824
29.6.4 Init-only variables L. e 1825
29.6.5 FrozeninStancCes o v v it i e e e e e e e e e e e e e e e e e e e 1825
29.6.6 Inheritance e e e e e e e e e e e e e 1825
29.6.7 Re-ordering of keyword-only parametersin __init__ () 1826
29.6.8 Default factory functions L L e e e e 1826
29.6.9 Mutable default values L e e e 1826
29.6.10 Descriptor-typed fields oL 1827
29.7 contextlib — Utilities for with-statement contexts oot 1828
20.7.1 UHHHHES v v v e e e e e e e e e e e e 1828
29.7.2 Examplesand Recipes L e e e e e 1837
29.7.3 Single use, reusable and reentrant context managerso e e e .. 1840
29.8 abc— Abstract Base Classes e 1843
299 atexit —Exithandlers 1848
299.1 atexit Example 1848
29.10 traceback — Print or retrieve a stack traceback oo o000 oL 1849
29.10.1 TracebackException Objects v v v i v v v i et e e e e 1851
29.10.2 StackSummary Objects L e e e e e e e e 1853
29.10.3 FrameSummary Objects e 1853
29.10.4 Traceback Examples L e 1854
29.11 _ future_ — Future statement definitions e e e 1856
29.12 gc — Garbage Collector interface i e e e e e e e 1857
29.13 inspect — Inspectlive objects L e e e e e 1861
29.13.1 Typesandmembers L e 1861
29.13.2 Retrievingsource code oL e 1865
29.13.3 Introspecting callables with the Signature object 1866
29.13.4 Classes and functions i ittt e e e e e e e 1870
29.13.5 The interpreter stack L L e e e e e 1874
29.13.6 Fetching attributes statically L 1875
29.13.7 Current State of Generators and Coroutines oo v v v vt 1876
29.13.8 Code Objects Bit Flags o e 1877
29.13.9 Command Line Interface 1877
29.14 site — Site-specific configurationhook L. L L L 1878
29.14.1 Readline configuration L.l e 1879
29.14.2 Module contents e e e e e e e e e e e e e e e e e 1879
29.14.3 Command Line Interface e e 1880
Custom Python Interpreters 1881
30.1 code —Interpreter base Classes Lo e e e e e e e e e 1881
30.1.1 Interactive Interpreter Objects e 1882
30.1.2 Interactive Console Objects v v i i e e e e e e e e e 1882
30.2 codeop — Compile Pythoncode e e 1883

Xix

31

32

Importing Modules 1885
31.1 zipimport — Import modules from Zip archives 1885
31.1.1 zipimporter Objects e e e e e e e 1886
31.1.2 Examples e e 1887
31.2 pkgutil — Package extension utility 1887
31.3 modulefinder —Find modulesused by ascript 1890
31.3.1 Example usage of MOAULEFIinder v v v v v v v v it e i e e e e e 1891
31.4 runpy — Locating and executing Pythonmodules 1892
31.5 importlib — The implementation of import e 1894
31.5.1 IntroduCtion o o v i e e e e e e e e e e e e e e e e 1894
31.52 Functions e e e e 1895
31.5.3 importlib.abc — Abstract base classes related toimport 1897
31.54 dimportlib.resources—Resources, 1904
3155 importlib.machinery —Importersand pathhooks 1906
31.5.6 importlib.util - Utility code for importers 1911
31577 Examples 1914
31.6 Using importlib.metadata e 1916
31.6.1 OVerVIEW e e 1917
31.6.2 Functional APT e 1917
31.6.3 Distributionso e e e e e e e 1920
31.6.4 Extending the search algorithm L 1920
Python Language Services 1923
32.1 ast — Abstract Syntax Trees e 1923
32.1.1 Abstract Grammar oo e e e e e e e e e e e e e e e e e 1923
3212 Nodeclasses v v it e e e e e e e e e e 1926
32.1.3 ast Helpers. o e e e e e e e 1953
32.1.4 Compiler Flags o e e 1956
32.1.5 Command-Line Usage e 1956
32.2 symtable — Access to the compiler’s symbol tables o000 0oL, 1957
32.2.1 Generating Symbol Tables 1957
32.2.2 Examining Symbol Tables e e e 1957
32.3 token — Constants used with Python parsetrees 1959
32.4 keyword— Testing for Pythonkeywords oo oL, 1963
32.5 tokenize — Tokenizer for Pythonsource oL oL, 1963
32.5.1 Tokenizing Input 1964
32.5.2 Command-Line Usage 0 i i i e e e e e e e e e 1965
3253 Examples . . . oL . e e e e e e e e e e e e 1965
32.6 tabnanny — Detection of ambiguous indentation oL oL 1967
3277 pyclbr — Python module browser support oo 1968
32.7.1 Function Objects i e e 1969
3272 Class ObJECtS . . . v v v v i it e e e e e e e e e e 1969
32.8 py_compile — Compile Pythonsourcefiles 1970
32.8.1 Command-Line Interface L 1971
32.9 compileall — Byte-compile Python libraries 1971
32.9.1 Command-lin€ USE v o v i i e e e e e e e e e e e e 1972
32.9.2 Publicfunctions e e e e e e 1973
32.10 dis — Disassembler for Python bytecode L e 1975
32.10.1 Bytecode analysis it e e e e e e e e e e e e e 1976
32.10.2 Analysis functions L. L e e 1977
32.10.3 Python Bytecode Instructions L e 1979
32.10.4 Opcode collections oo v it e e e e e 1989
32.11 pickletools — Tools for pickle developers, 1990
32.11.1 Command N USAZE v v v v v e i e e e e e e e e e e e e e e e e 1990

XX

35

32.11.2 Programmatic Interface e e e
33 MS Windows Specific Services
33.1 msvcrt — Useful routines from the MS VC++runtime
33.1.1 File Operations o v v i i e e e e e e e e e e e e e e e e e e
33.1.2 Console I/O e
33.1.3 Other Functions e e
33.2 winreg— Windows regiStry aCCess« v v v v v v bt e e e e e e e e e e e e e e e e
332.1 Functions e e e
3322 ConstantSo e e e e e e e e e e e e e e e e e
33.2.3 Registry Handle Objects i e e e e e e
33.3 winsound — Sound-playing interface for Windows oL oL L.
34 Unix Specific Services
34.1 posix — The most common POSIX systemcalls.
34.1.1 Large File Support e
34.1.2 Notable Module Contents ittt e e e e e e
342 pwd—The password database Lo e e e e
343 grp—Thegroupdatabase e
344 termios —POSIXstylettycontrol e e
3441 Example e e e e e e e e e e e e e e
345 tty—Terminal control functions L L oL e e
34.6 pty—Pseudo-terminal utilities L. e e e e e
34.6.1 Example e
3477 fcntl —The fentl and ioctlsystemcalls. o oo 0 00 oL
34.8 resource — Resource usage information oL Lo e
34.8.1 Resource Limits oL e e e e e e e
3482 Resource Usage o o i e e e e e e e e e
349 syslog—Unix sysloglibrary routines oo e
349.1 Examples e e e e e e e e e e e e
Superseded Modules
35.1 aifc—Readand write AIFFand AIFCfiles
35.2 asynchat — Asynchronous socket command/response handler
35.2.1 asynchat Example e e e e
35.3 asyncore — Asynchronous sockethandler 0oL,
35.3.1 asyncore Example basic HTTP client,
35.3.2 asyncore Example basicechoserver L oo
354 audiocop — Manipulate raw audiodata. L. e e e
35.5 cgi — Common Gateway Interface support o . e e
35.5.1 Introduction L e e e
3552 Usingthecgimodule e
35.5.3 Higher Level Interface
3554 Functions e e e
35.5.5 Caringabout SECUTILY v v v v v e e e e e e e e e e e e e e e e e e e
35.5.6 Installing your CGI scriptona Unix system oo v v v v v i v v v v oo e o
35.5.7 Testingyour CGIscript o e
35.5.8 Debugging CGIscripts« o o i i it i e e e e e e e e e e
35.5.9 Common problems and solutions
35.6 cgitb — Traceback manager for CGIscripts. i i i i i i i i e
35.7 chunk —Read IFFchunkeddata
35.8 crypt — Function to check Unix passwords oo i i

35.8.1 Hashing Methods
35.8.2 Module Attributes

1993
1993
1993
1994
1994
1995
1995
2000
2003
2004

2007
2007
2007
2008
2008
2009
2010
2011
2011
2011
2012
2013
2015
2016
2018
2020
2021

2023
2023
2025
2027
2028
2031
2032
2032
2035
2036
2036
2038
2039
2040
2040
2040
2041
2042
2042
2043
2044
2045
2045

xxi

35.8.3 Module Functions e e e e e 2045

35.8.4 Examples e e e e e e e e e e e e 2046
35.9 imghdr — Determine the type of animage Lo o, 2046
35.10 imp — Access the importinternals L. oL e 2047
35.10.1 Examples 2052
35.11 mailcap —Mailcap file handling 2052
35.12 msilib — Read and write Microsoft Installerfiles 2053
35.12.1 Database Objects o v v i e e e e e e e e e e e e e 2055
35.12.2 View Objects o o oo e e e e e 2055
35.12.3 Summary Information Objects L 2056
35.12.4 Record ObJects o o v v i e e e e 2056
35.12.5 EITOIS . o o o v o i e e e e e 2057
35.12.6 CABODbJECtS o o i e e e e e e 2057
35.12.7 Directory ObJects o L e e e e e e e e e 2057
35.12.8 Features v v v vt e 2058
35.12.9 GUICIASSES . . . o v v v i et e e e e e e 2058
35.12.10Precomputed tables L e e e e e e e e e e 2059
35.13 nis — Interface to Sun’s NIS (Yellow Pages) 2059
35.14 nntplib — NNTP protocol client o i e e 2060
35.14.1 NNTP Objects o o o ot e e e e e e e e e e e e e e e e 2062
35.14.2 Utility functions o o it e e e e e e e e e e 2066
35.15 optparse — Parser for command lineoptions oL 2067
35.15.1 Background e e e e e e e e e e 2068
35.15.2 Tutorial L. e e e e e e e 2070
35.15.3 Reference Guide L. e 2077
35.15.4 Option Callbacks e 2087
35.15.5 Extending optparse e e e e e e e e 2091
35.16 ossaudiodev — Access to OSS-compatible audio devices 2094
35.16.1 Audio Device ObJECts v v v v v i e e e e e e e e e e e e 2095
35.16.2 Mixer Device Objects e 2097
35.17 pipes — Interface toshell pipelines L o L 2098
35.17.1 Template Objects o i e 2099
35.18 smtpd — SMTP Server e e 2099
35.18.1 SMTPServer Objects v v v v et e e e e e e e e e e e e e e e e e 2100
35.18.2 DebuggingServer Objects v v i i e e e e e e e e e e 2101
35.18.3 PureProxy Objects e 2101
35.18.4 MailmanProxy Objects e 2101
35.18.5 SMTPChannel Objects o i e e 2101
35.19 sndhdr — Determine type of soundfile 2103
35.20 spwd — The shadow password database e 2103
35.21 sunau—Readand write Sun AUfiles e 2104
35.21.1 AU_read Objects o o i i e e e e e e e e e e e 2105
35212 AU_write Objects o v v i e e e e e e e e 2106
3522 telnetlib—Telnetclient e 2107
35.22.1 Telnet OBJects v v v v o e 2107
35222 Telnet Example L e 2109
35.23 uu — Encode and decode uuencode files oL oL 2110
35.24 xdrlib — Encode and decode XDR data 2110
35.24.1 Packer ObJects o o i i i e e e e e e 2111
35.24.2 Unpacker OBJects o v v i it e e e e e e e e e e e e e e e e 2112
35243 EXCEPLONS « . v v v v v i e 2113
36 Security Considerations 2115

xxii

A Glossary 2117
B About these documents 2131

B.1 Contributors to the Python Documentation 2131
C History and License 2133

C.1 Historyof thesoftware e 2133

C.2 Terms and conditions for accessing or otherwise using Python 2134

C.2.1 PSFLICENSE AGREEMENT FOR PYTHON 3.10.12 2134

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 2135

C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 2136

C.24 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 2137

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.12 DOCUMENTATION2137

C.3 Licenses and Acknowledgements for Incorporated Software 2138

C3.1 Mersenne TWISIEI o o v vt ittt e e e e e e e e e e e 2138

C3.2 Sockets e e 2139

C.3.3 Asynchronous socket Services e 2139

C34 Cookie managementt e e e e e e e e e 2140

C3.5 Execution traCing v v v v i e e e e e e e e e e e e e 2140

C.3.6 UUencode and UUdecode functions oo v v v v it iii e 2141

C3.7 XML Remote Procedure Calls 2141

C.3.8 test_epoll L e e e e e e 2142

C39 Selectkqueue e 2142

C3.10 SipHash24 e e 2143

C3.11 strtodanddtoa. o L e e e 2143

C.3.12 OpenSSL o e 2144

C3U3 expat. . . o v v e e e e e e e e e e e 2146

C3.14 Lbfli o e 2147

C3.05 zlib . . . e e 2147

C3.16 cfuhash e 2148

C3.17 Hbmpdec e e e e 2148

C3.18 W3C CIANESt SUILE . . v v v v o o e o e 2149

C3.19 Audioop e e e e 2150
D Copyright 2151
Bibliography 2153
Python Module Index 2155
Index 2159

xxiii

XXiv

The Python Library Reference, Release 3.10.12

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that are
commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents listed
below. The library contains built-in modules (written in C) that provide access to system functionality such as file I/O that
would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs by abstracting away platform-specifics into platform-neutral
APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so it
may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual programs
and modules to packages and entire application development frameworks), available from the Python Package Index.

CONTENTS 1

https://pypi.org

The Python Library Reference, Release 3.10.12

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists. For
these types, the Python language core defines the form of literals and places some constraints on their semantics, but does
not fully define the semantics. (On the other hand, the language core does define syntactic properties like the spelling and
priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection. Some
modules are written in C and built in to the Python interpreter; others are written in Python and imported in source form.
Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some provide interfaces
that are specific to particular operating systems, such as access to specific hardware; others provide interfaces that are
specific to a particular application domain, like the World Wide Web. Some modules are available in all versions and
ports of Python; others are only available when the underlying system supports or requires them; yet others are available
only when a particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you will
get a reasonable overview of the available modules and application areas that are supported by the Python library. Of
course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual), or
look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a section or two. Regardless of the order
in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the remainder of the
manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

¢ An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make any
claims about its existence on a specific operating system.

* If not separately noted, all functions that claim “Availability: Unix” are supported on macOS, which builds on a
Unix core.

The Python Library Reference, Release 3.10.12

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here in

alphabetical order.

Built-in Functions

A E L R
abs () enumerate () len() range ()
aiter/() eval () 1list () repr ()
all() exec () locals () reversed()
any () round ()
anext () F M
ascii() filter() map () S

float () max () set ()
B format () memoryview () setattr ()
bin{() frozenset () min () slice()
bool () sorted()
breakpoint () G N staticmethod ()
bytearray () getattr () next () str()
bytes () globals () sum ()

(0] super ()

C H object ()
callable () hasattr() oct () T
chr () hash () open () tuple ()
classmethod () help() ord () type ()
compile () hex ()
complex () P Vv

I pow () vars ()
D id() print ()
delattr () input () property () V/
dict () int () zip ()
dir() isinstance()
divmod () issubclass () _

iter () __import__ ()

abs (x)

The Python Library Reference, Release 3.10.12

Return the absolute value of a number. The argument may be an integer, a floating point number, or an object
implementing __abs___ (). If the argument is a complex number, its magnitude is returned.

aiter (async_iterable)
Return an asynchronous iterator for an asynchronous iterable. Equivalent to calling x.__aiter__ ().

Note: Unlike iter (), aiter () has no 2-argument variant.
New in version 3.10.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

awaitable anext (async_iterator[, default])
When awaited, return the next item from the given asynchronous iterator, or default if given and the iterator is
exhausted.

This is the async variant of the next () builtin, and behaves similarly.

This calls the __anext__ () method of async_iterator, returning an awaitable. Awaiting this returns the next
value of the iterator. If default is given, it is returned if the iterator is exhausted, otherwise StopAsyncIter—
ation is raised.

New in version 3.10.

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII characters
in the string returned by repzr () using \x, \u, or \U escapes. This generates a string similar to that returned by
repr () in Python 2.

bin (x)
Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x is not
a Python int object, it has to define an ___index__ () method that returns an integer. Some examples:

>>> bin(3)
'Obl11"

>>> bin(-10)
'-0b1010"'

If the prefix “Ob” is desired or not, you can use either of the following ways.

>>> format (14, '#b'), format (14, 'b')
('0Ob1110', '1110")

>>> f'{14:4b}', £'{14:b}"'

('Ob1110"', '1110")

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.10.12

See also format () for more information.

class bool ([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard rruth testing procedure. If
x is false or omitted, this returns False; otherwise, it returns True. The bool class is a subclass of int (see
Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and True
(see Boolean Values).

Changed in version 3.7: x is now a positional-only parameter.

breakpoint (*args, **kws)
This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.set_trace()
expecting no arguments. In this case, it is purely a convenience function so you don’t have to explicitly import pdb
or type as much code to enter the debugger. However, sys.breakpointhook () can be set to some other
function and breakpoint () will automatically call that, allowing you to drop into the debugger of choice. If
sys.breakpointhook () is not accessible, this function will raise Runt imeError.

Raises an auditing event builtins.breakpoint with argument breakpointhook.
New in version 3.7.

class bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as most
methods that the by tes type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

e If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

* If it is an integer, the array will have that size and will be initialized with null bytes.

« If it is an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

 If it is an iferable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size O is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes ([source[, encoding[, errors]]])
Return a new “bytes” object which is an immutable sequence of integers in the range 0 <= x < 256. bytesis
an immutable version of bytearray — it has the same non-mutating methods and the same indexing and slicing
behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.
See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Operations.

callable (object)
Return True if the object argument appears callable, F'a 1 se if not. If this returns True, it is still possible that a
call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a class returns
a new instance); instances are callable if their classhasa _ call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

The Python Library Reference, Release 3.10.12

chr (i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a ', while chr (8364) returns the string '€ '. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

@classmethod
Transform a method into a class method.

A class method receives the class as an implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2):

The @classmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object is
passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in this
section. For more information on class methods, see types.

Changed in version 3.9: Class methods can now wrap other descriptors such as property ().

Changed in version 3.10: Class methods now inherit the method attributes (__module_ , _ name__ ,
__qualname_ ,_ doc__and __annotations__)and have anew __ wrapped___ attribute.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=- 1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source can
either be a normal string, a byte string, or an AST object. Refer to the a st module documentation for information
on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it wasn’t
read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will be
printed).

The optional arguments flags and dont_inherit control which compiler options should be activated and which future
features should be allowed. If neither is present (or both are zero) the code is compiled with the same flags that
affect the code that is calling compile (). If the flags argument is given and dont_inherit is not (or is zero) then
the compiler options and the future statements specified by the flags argument are used in addition to those that
would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the flags (future features
and compiler options) in the surrounding code are ignored.

Compiler options and future statements are specified by bits which can be bitwise ORed together to specify multiple
options. The bitfield required to specify a given future feature can be found as the compiler_flag attribute on
the _Featureinstanceinthe future__ module. Compiler flags can be found in a st module, with PyCF__
prefix.

The argument optimize specifies the optimization level of the compiler; the default value of —1 selects the opti-
mization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is
true), 1 (asserts are removed, __debug___is false) or 2 (docstrings are removed too).

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.10.12

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source contains
null bytes.

If you want to parse Python code into its AST representation, see ast . parse ().

Raises an auditing event compi le with arguments source and £ilename. This event may also be raised by
implicit compilation.

Note: When compiling a string with multi-line code in ' single' or 'eval' mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in the code
module.

Warning: Itis possible to crash the Python interpreter with a sufficiently large/complex string when compiling
to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also, input in 'exec' mode does not have
to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

New in version 3.8: ast .PyCF_ALLOW_TOP_LEVEL_AWAIT can now be passed in flags to enable support for
top-level await, async for,and async with.

class complex ([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without a
second parameter. The second parameter can never be a string. Each argument may be any numeric type (including
complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion like int and
float. If both arguments are omitted, returns 0 J.

For a general Python object x, complex (x) delegates to x.___complex__ (). If __complex__ () is not
defined then it falls back to _ float__ (). If _ float__ () is not defined then it falls back to __ _in-
dex__ ().

Note: When converting from a string, the string must not contain whitespace around the central + or — operator.
For example, complex ('1+27j") is fine, but complex ('1 + 27j') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.8: Fallsbackto__index__ () if __complex__ () and__float__ () arenotdefined.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, 'foobar') isequivalent to del x.foobar. name need not be a Python identifier (see
setattr()).

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 11 st, set, and tuple classes, as well as the collect ions module.

The Python Library Reference, Release 3.10.12

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes. This
allows objects that implement a custom __getattr__ () or __getattribute__ () function to customize
the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict___ attribute, if defined, and from its type object. The resulting list is not necessarily complete and may
be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

 If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

¢ Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace

['"__builtins__ ', '_ _name_ ', 'struct']

>>> dir (struct) # show the names in the struct module

['Struct', '__all__'", '_ builtins__ ', '_ _cached__', '__doc__"', '_ file_ "',
' __initializing__', '__loader__', '__name__', '_ package_ ',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_from']
>>> class Shape:

def _ dir_ (self):

C return ['area', 'perimeter', 'location']
>>> s = Shape ()
>>> dir(s)
["area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when the
argument is a class.

divmod (a, b)
Take two (non-complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators apply.
For integers, the result is the same as (a // b, a % b). For floating point numbers the resultis (g, a %
b), where g is usually math.floor (a / b) but may be 1 less than that. Inanycaseg * b + a % bis
very close to a, if a % b is non-zero it has the same sign as b,and 0 <= abs(a % b) < abs(b).

enumerate (iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iferator, or some other object which supports iteration.
The __next__ () method of the iterator returned by enumerate () returns a tuple containing a count (from
start which defaults to 0) and the values obtained from iterating over iterable.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.10.12

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression[, globals[, locals]])
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and does
not contain a value for the key __builtins__, areference to the dictionary of the built-in module builtins
is inserted under that key before expression is parsed. That way you can control what builtins are available to the
executed code by inserting your own __builtins__ dictionary into globals before passing it to eval (). If the
locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are omitted, the expression is
executed with the globals and locals in the environment where eval () is called. Note, eval() does not have access
to the nested scopes (non-locals) in the enclosing environment.

The return value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In this
case, pass a code object instead of a string. If the code object has been compiled with 'exec' as the mode
argument, eval ()'s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and locals ()
functions return the current global and local dictionary, respectively, which may be useful to pass around for use
by eval () or exec ().

If the given source is a string, then leading and trailing spaces and tabs are stripped.

See ast.literal eval () for a function that can safely evaluate strings with expressions containing only
literals.

Raises an auditing event e xec with the code object as the argument. Code compilation events may also be raised.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If it is a
string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error occurs).' If
itis a code object, it is simply executed. In all cases, the code that’s executed is expected to be valid as file input (see
the section file-input in the Reference Manual). Be aware that the nonlocal, yield, and return statements
may not be used outside of function definitions even within the context of code passed to the exec () function.
The return value is None.

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline conversion
mode to convert Windows or Mac-style newlines.

11

The Python Library Reference, Release 3.10.12

filt

clas

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is provided,
it must be a dictionary (and not a subclass of dictionary), which will be used for both the global and the local
variables. If globals and locals are given, they are used for the global and local variables, respectively. If provided,
locals can be any mapping object. Remember that at the module level, globals and locals are the same dictionary.
If exec gets two separate objects as globals and locals, the code will be executed as if it were embedded in a class
definition.

If the globals dictionary does not contain a value for the key __builtins__, areference to the dictionary of the
built-in module builtins is inserted under that key. That way you can control what builtins are available to the
executed code by inserting your own ___builtins__ dictionary into globals before passing it to exec ().

Raises an auditing event exec with the code object as the argument. Code compilation events may also be raised.

Note: The built-in functions gZlobals () and 1ocals () return the current global and local dictionary, respec-
tively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function Z1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on locals
after function exec () returns.

er (function, iterable)

Construct an iterator from those elements of iterable for which function returns true. iterable may be either a
sequence, a container which supports iteration, or an iterator. If function is None, the identity function is assumed,
that is, all elements of iferable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for item
in iterable if function (item)) if functionis not None and (item for item in iterable
if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for which
function returns false.

s float ([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+' or '—"';a '+"' sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or positive or negative infinity. More
precisely, the input must conform to the f1oatvalue production rule in the following grammar, after leading
and trailing whitespace characters are removed:

sign RES ngmopom_w

infinity = "Infinity" | "inf"

nan = "nan"

digitpart = digit (["_"] digit)*

number = [digitpart] "." digitpart | digitpart ["."]
exponent = ("e"™ | "E") ["+" | "-"] digitpart
floatnumber = number [exponent]

floatvalue = [sign] (floatnumber | infinity | nan)

Here digit is a Unicode decimal digit (character in the Unicode general category Nd). Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY”, and “iNfINity” are all acceptable spellings for positive infinity.

12

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.10.12

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an
OverflowError will be raised.

For a general Python object x, float (x) delegates to x.___float__ (). If _ _float__ () is not defined
then it falls back to __index__ ().

If no argument is given, O . O is returned.

Examples:

>>> float ('+1.23")

1.23

>>> float (' -12345\n")
-12345.0

>>> float ('1e-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—-inf

The float type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.8: Falls back to __index__ () if __float__ () is not defined.

format (value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument; however, there is a standard formatting syntax that is used by most
built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value).

A call to format (value, format_spec) is translated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s __ format__ ()
method. A TypeError exception is raised if the method search reaches object and the format_spec is non-
empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec is
not an empty string.

class frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in class.
See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one of the ob-
ject’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar') isequivalentto
x . foobar. If the named attribute does not exist, default is returned if provided, otherwise At t ributeError
is raised. name need not be a Python identifier (see setattr ()).

Note: Since private name mangling happens at compilation time, one must manually mangle a private attribute’s
(attributes with two leading underscores) name in order to retrieve it with getattr ().

13

The Python Library Reference, Release 3.10.12

globals ()

Return the dictionary implementing the current module namespace. For code within functions, this is set when the
function is defined and remains the same regardless of where the function is called.

hasattr (object, name)

The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an At t ributeError or not.)

hash (object)

Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even if
they are of different types, as is the case for 1 and 1.0).

Note: For objects with custom ___hash__ () methods, note that hash () truncates the return value based on
the bit width of the host machine. See __hash__ () for details.

help ([object])

Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the inter-
active help system starts on the interpreter console. If the argument is a string, then the string is looked up as the
name of a module, function, class, method, keyword, or documentation topic, and a help page is printed on the
console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function when invoking heIp (), it means that the param-
eters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only parameters.

This function is added to the built-in namespace by the s it e module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are now
more comprehensive and consistent.

hex (x)

Convert an integer number to a lowercase hexadecimal string prefixed with “Ox”. If x is not a Python int object,
it has to define an __index__ () method that returns an integer. Some examples:

>>> hex (255)
'Oxff!

>>> hex (-42)
'-0x2a'

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you can
use either of the following ways:

>>> ! ''% 255, ''% 255, ! ''% 255

('Oxff', 'ff', 'FF'")

>>> format (255, '#x'), format (255, 'x'), format (255, 'X")
('Oxff', 'ff', '"FF')

>>> f£'{255:4#x}', £'{255:x}', f£'{255:X}"'

("Oxff', 'ff', 'FF')

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.10.12

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.
Raises an auditing event builtins . id with argument id.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = input ('-—> ")
—-—> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

Raises an auditing event builtins . input with argument prompt before reading input
Raises an auditing event builtins.input/result with the result after successfully reading input.

class int ([x])

class int (x, base=10)
Return an integer object constructed from a number or string x, or return 0 if no arguments are given. If x defines
dint (),int(x) returns x.__int_ (). If xdefines __ _index__ (),itreturns x.__index__ (). If
x defines ___trunc__ (),itreturns x.__trunc__ (). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer in radix base. Optionally, the string can be preceded by + or — (with no space in between), have leading
zeros, be surrounded by whitespace, and have single underscores interspersed between digits.

A base-n integer string contains digits, each representing a value from O to n-1. The values 0-9 can be represented
by any Unicode decimal digit. The values 10-35 can be represented by a to z (or A to Z). The default base is 10.
The allowed bases are 0 and 2-36. Base-2, -8, and -16 strings can be optionally prefixed with 0b/0B, 00/00, or
0x/0X, as with integer literals in code. For base 0, the string is interpreted in a similar way to an integer literal
in code, in that the actual base is 2, 8, 10, or 16 as determined by the prefix. Base 0 also disallows leading zeros:
int ('010', 0) isnotlegal, while int ('010') and int ('010', 8) are.

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.___index__ method,
that method is called to obtain an integer for the base. Previous versions used base.__int__ instead of base.
__index__.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.
Changed in version 3.8: Falls back to __index__ () if __int__ () is not defined.

Changed in version 3.10.7: int string inputs and string representations can be limited to help avoid denial of
service attacks. A ValueError is raised when the limit is exceeded while converting a string x to an int or
when converting an int into a string would exceed the limit. See the integer string conversion length limitation
documentation.

isinstance (object, classinfo)
Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect, or virfual)
subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo is a

15

The Python Library Reference, Release 3.10.12

tuple of type objects (or recursively, other such tuples) or a Union Type of multiple types, return True if object is
an instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError exception
is raised.

Changed in version 3.10: classinfo can be a Union Type.

issubclass (class, classinfo)
Return True if class is a subclass (direct, indirect, or virfual) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects (or recursively, other such tuples) or a Union Type, in which case return
True if class is a subclass of any entry in classinfo. In any other case, a TypeError exception is raised.

Changed in version 3.10: classinfo can be a Union Type.

iter (object[, sentinel])

Return an iferator object. The first argument is interpreted very differently depending on the presence of the sec-
ond argument. Without a second argument, object must be a collection object which supports the iterable protocol
(the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method with in-
teger arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If the
second argument, sentinel, is given, then object must be a callable object. The iterator created in this case will
call object with no arguments for each call toits ___next__ () method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-width
blocks from a binary database file until the end of file is reached:

from functools import partial
with open ('mydata.db', 'rb') as f:
for block in iter (partial(f.read, 64), b''"):
process_block (block)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

CPython implementation detail: 1en raises OverflowError on lengths larger than sys.maxsize, such
as range (2 ** 100).

class list([iterable])
Rather than being a function, 1 i st is actually a mutable sequence type, as documented in Lists and Sequence Types
— list, tuple, range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by 10—
cals () when it is called in function blocks, but not in class blocks. Note that at the module level, 1ocals ()
and globals () are the same dictionary.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and free
variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable arguments
are passed, function must take that many arguments and is applied to the items from all iterables in parallel. With
multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the function inputs are
already arranged into argument tuples, see itertools.starmap ().

max (iterable, *[, key, default])

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.10.12

max (argl, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If two
or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function like
that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable is empty.
If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0] and
heapg.nlargest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.
Changed in version 3.8: The key can be None.

class memoryview (object)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *[, key, default])
min (argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned. If two
or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function like
that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable is empty.
If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with other sort-
stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapg.nsmallest (1,
iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.
Changed in version 3.8: The key can be None.

next (iterator[, default])
Retrieve the next item from the iterator by calling its __next___ () method. If default is given, it is returned if
the iterator is exhausted, otherwise St opIteration is raised.

class object
Return a new featureless object. object is a base for all classes. It has methods that are common to all instances
of Python classes. This function does not accept any arguments.

Note: object doesnothavea__ dict__,soyou can't assign arbitrary attributes to an instance of the object
class.

oct (x)
Convert an integer number to an octal string prefixed with “00”. The result is a valid Python expression. If x is not
a Python int object, it has to define an __index__ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (-56)
'-0070"

17

The Python Library Reference, Release 3.10.12

If you want to convert an integer number to an octal string either with the prefix “0o” or not, you can use either of
the following ways.

>>> ! ''% 10, "% 10

('0o12', '12")

>>> format (10, '#o'), format (10, 'o')
('0o12', '12")

>>> f'{10:40}', £'{10:0}"

('0o12', '12")

See also format () for more information.

open (file, mode="r", buffering=- 1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised. See tut-files
for more examples of how to use this function.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file to be
opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when the
returned I/O object is closed unless closefd is setto False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r' which means
open for reading in text mode. Other common values are 'w' for writing (truncating the file if it already exists),
'x ' for exclusive creation, and 'a' for appending (which on some Unix systems, means that all writes append to
the end of the file regardless of the current seek position). In text mode, if encoding is not specified the encoding
used is platform-dependent: 1ocale.getpreferredencoding (False) is called to get the current locale
encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available
modes are:

Character | Meaning

‘¢! open for reading (default)

'w' open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a’ open for writing, appending to the end of file if it exists
'b’ binary mode

't text mode (default)

T4 open for updating (reading and writing)

The default mode is ' r ' (open for reading text, a synonym of 'rt '). Modes 'w+' and 'w+b ' open and truncate
the file. Modes 'r+' and 'r+b' open the file with no truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b"' in the mode argument) return contents as byt es objects without any decoding. In text mode (the
default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the bytes
having been first decoded using a platform-dependent encoding or using the specified encoding if given.

There is an additional mode character permitted, ' U', which no longer has any effect, and is considered deprecated.
It previously enabled universal newlines in text mode, which became the default behavior in Python 3.0. Refer to
the documentation of the newline parameter for further details.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is done
by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in binary
mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size in bytes of a fixed-

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.10.12

size chunk buffer. Note that specifying a buffer size this way applies for binary buffered I/O, but Text IOWrapper
(i.e., files opened with mode="r+") would have another buffering. To disable buffering in Text IOWrapper,
consider using the write_through flag for io. Text TOWrapper. reconfigure (). When no buffering
argument is given, the default buffering policy works as follows:

* Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT BUFFER_SIZE. On
many systems, the buffer will typically be 4096 or 8192 bytes long.

* “Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use the
policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever 1ocale.getpreferredencoding () returns), but
any text encoding supported by Python can be used. See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be used
in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though any error
handling name that has been registered with codecs. register_error () isalso valid. The standard names
include:

* 'strict' toraise a ValueError exception if there is an encoding error. The default value of None has
the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
e 'replace' causes a replacement marker (such as ' ? ') to be inserted where there is malformed data.

* 'surrogateescape' will represent any incorrect bytes as low surrogate code units ranging from
U+DC80 to U+DCFF. These surrogate code units will then be turned back into the same bytes when the
surrogateescape error handler is used when writing data. This is useful for processing files in an un-
known encoding.

e 'xmlcharrefreplace’ is only supported when writing to a file. Characters not supported by the en-
coding are replaced with the appropriate XML character reference & #nnn; .

e 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

* 'namereplace' (also only supported when writing) replaces unsupported characters with \N{ . . . } es-
cape sequences.

newline determines how to parse newline characters from the stream. It can be None, '', '\n"', '"\r', and
"\r\n"'. It works as follows:

* When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in the
inputcanendin '\n', "\r',or '"\r\n', and these are translated into ' \n"' before being returned to the
caller. If itis ' ', universal newlines mode is enabled, but line endings are returned to the caller untranslated.
If it has any of the other legal values, input lines are only terminated by the given string, and the line ending
is returned to the caller untranslated.

* When writing output to the stream, if newline is None, any ' \n' characters written are translated to the
system default line separator, os. I inesep. If newlineis ' ' or ' \n', no translation takes place. If newline
is any of the other legal values, any ' \n"' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be kept
open when the file is closed. If a filename is given closefd must be True (the default); otherwise, an error will be
raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open as
opener results in functionality similar to passing None).

19

The Python Library Reference, Release 3.10.12

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os. open () function to open a file relative to a given
directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open (path, flags, dir_fd=dir_f£fd)

>>> with open('spamspam.txt', 'w', opener=opener) as f:
print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used to open a
fileinatextmode ('w', 'r', 'wt', 'rt"', etc.), it returns a subclass of io. Text IOBase (specifically io.
Text IOWrapper). When used to open a file in a binary mode with buffering, the returned class is a subclass of
io.BufferedIOBase. The exact class varies: in read binary mode, it returns an i o . Buf feredReader;in
write binary and append binary modes, it returns an io.Bufferediriter, and in read/write mode, it returns
an io.BufferedRandom. When buffering is disabled, the raw stream, a subclass of io.RawIOBase, io0.
FileIO,is returned.

See also the file handling modules, such as £i Ieinput, io(where open () isdeclared), os, os.path, temp—
file,and shutil.

Raises an auditing event open with arguments £ile, mode, flags.
The mode and £1ags arguments may have been modified or inferred from the original call.
Changed in version 3.3:
¢ The opener parameter was added.
e The 'x' mode was added.
e TOError used to be raised, it is now an alias of OSError.
e FileExistsError is now raised if the file opened in exclusive creation mode (' x ') already
exists.
Changed in version 3.4:

¢ The file is now non-inheritable.

Deprecated since version 3.4, removed in version 3.10: The 'U' mode.
Changed in version 3.5:

* If the system call is interrupted and the signal handler does not raise an exception, the function now
retries the system call instead of raising an TnterruptedError exception (see PEP 475 for
the rationale).

e The 'namereplace"' error handler was added.

Changed in version 3.6:
 Support added to accept objects implementing os . PathLike.

¢ On Windows, opening a console buffer may return a subclass of i0. RawIOBase otherthan io.
FileIO.

20 Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.10.12

ord (c)
Given a string representing one Unicode character, return an integer representing the Unicode code point of that
character. For example, ord ('a') returns the integer 97 and ord ('€ ") (Euro sign) returns 8 364. This is the
inverse of chr ().

pow (base, exp[, mod])
Return base to the power exp; if mod is present, return base to the power exp, modulo mod (computed more

efficiently than pow (base, exp) % mod). The two-argument form pow (base, exp) is equivalent to
using the power operator: base* *exp.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the second
argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example,
pow (10, 2) returns 100, but pow (10, -2) returns 0.01. For a negative base of type int or f1oat and
a non-integral exponent, a complex result is delivered. For example, pow (-9, 0.5) returns a value close to 3.

For int operands base and exp, if mod is present, mod must also be of integer type and mod must be nonzero. If
mod is present and exp is negative, base must be relatively prime to mod. In that case, pow (inv_base, -exp,
mod) is returned, where inv_base is an inverse to base modulo mod.

Here’s an example of computing an inverse for 38 modulo 97:

>>> pow (38, -1, mod=97)
23

>>> 23 * 38 % 97 ==
True

Changed in version 3.8: For int operands, the three-argument form of pow now allows the second argument to
be negative, permitting computation of modular inverses.

Changed in version 3.8: Allow keyword arguments. Formerly, only positional arguments were supported.

print (*objects, sep="", end="\n', file=None, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file, and flush, if present, must
be given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by sep
and followed by end. Both sep and end must be strings; they can also be None, which means to use the default
values. If no objects are given, print () will just write end.

The file argument must be an object withawrite (string) method;if it is not present or None, sys. stdout
will be used. Since printed arguments are converted to text strings, print () cannot be used with binary mode
file objects. For these, use file.write (...) instead.

Output buffering is usually determined by file. However, if flush is true, the stream is forcibly flushed.
Changed in version 3.3: Added the flush keyword argument.

class property (fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function for
deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self._x = None

def getx(self):

(continues on next page)

21

The Python Library Reference, Release 3.10.12

(continued from previous page)

return self._x

def setx(self, wvalue):
self. _x = value

def delx(self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c.x will invoke the getter, c.x = wvalue will invoke the setter, and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s docstring (if it
exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def _ init_ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the same
name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C:
def @ init__ (self):
self._x = None

@property

def x(self):
"""I'm the 'x' property."""
return self._x

@x.setter
def x(self, value):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as the
original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

class range (stop)

22

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.10.12

class range (start, stop[, step])
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and Se-
quence Types — list, tuple, range.

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes an attempt to
return a string that would yield an object with the same value when passed to eval () ; otherwise, the representation
is a string enclosed in angle brackets that contains the name of the type of the object together with additional
information often including the name and address of the object. A class can control what this function returns for
its instances by defininga __repr__ () method. If sys.displayhook () isnot accessible, this function will
raise Runt imeError.

reversed (seq)
Return a reverse iterator. seq must be an object whichhasa ___reversed__ () method or supports the sequence
protocol (the __len__ () method and the __getitem__ () method with integer arguments starting at 0).

round (number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns the
nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power mi-
nus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round (0.5) and round (-0.5) are 0, and round (1.5) is 2). Any integer value is valid for ndigits (pos-
itive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise, the return value
has the same type as number.

For a general Python object number, round delegates to number.___round__.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives 2.
67 instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be
represented exactly as a float. See tut-fp-issues for more information.

class set ([iterable])
Return a new set object, optionally with elements taken from iferable. set is a built-in class. See set and Ser
Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, 1ist, tuple, and dict classes, as well as the col lec—
t ions module.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string, and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, 'foobar', 123) isequivalentto x.foobar = 123.

name need not be a Python identifier as defined in identifiers unless the object chooses to enforce that, for example
inacustom __getattribute_ () orvia__ slots__ . An attribute whose name is not an identifier will not
be accessible using the dot notation, but is accessible through getattr () etc..

Note: Since private name mangling happens at compilation time, one must manually mangle a private attribute’s
(attributes with two leading underscores) name in order to set it with setattr ().

class slice (stop)

class slice (start, stop[, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop, and step which
merely return the argument values (or their default). They have no other explicit functionality; however, they are

23

The Python Library Reference, Release 3.10.12

used by NumPy and other third-party packages. Slice objects are also generated when extended indexing syntax is
used. For example: a[start:stop:step] oral[start:stop, 1i]. See itertools.islice () for
an alternate version that returns an iterator.

sorted (iterable, /, *, key=None, reverse=False)
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable (for
example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

The sort algorithm uses only < comparisons between items. While definingan __1t___ () method will suffice for
sorting, PEP 8 recommends that all six rich comparisons be implemented. This will help avoid bugs when using
the same data with other ordering tools such as max () that rely on a different underlying method. Implementing
all six comparisons also helps avoid confusion for mixed type comparisons which can call reflected the __gt__ ()
method.

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod
Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f (argl, arg2, ...):

The @staticmethod form is a function decorator — see function for details.

A static method can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). Moreover,
they can be called as regular functions (such as £ ()).

Static methods in Python are similar to those found in Java or C++. Also, see c1assmethod () for a variant that
is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want to
avoid the automatic transformation to instance method. For these cases, use this idiom:

def regular_function():

class C:
method = staticmethod(regular_function)

For more information on static methods, see types.

Changed in version 3.10: Static methods now inherit the method attributes (__module_ , _ name__ ,
_ _qualname_ , _ doc__and _ annotations_), have a new __ wrapped___ attribute, and are now

callable as regular functions.

class str (object=")

24 Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0008

The Python Library Reference, Release 3.10.12

class str (object=b", encoding="utf-8', errors='strict’)
Return a st r version of object. See st r () for details.

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum (iterable, /, start=0)
Sums start and the items of an iterable from left to right and returns the total. The iterable’s items are normally
numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence of
strings is by calling ' ' . join (sequence). To add floating point values with extended precision, see math.
fsum (). To concatenate a series of iterables, consider using i tertools.chain ().

Changed in version 3.8: The start parameter can be specified as a keyword argument.

class super ([type[, object—or—type]])
Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class.

The object-or-type determines the method resolution order to be searched. The search starts from the class right
after the rype.

For example, if __mro___ of object-or-typeisD -> B -> C —-> A -> object and the value of type is B,
then super () searches C —> A —-> object.

The __mro___ attribute of the object-or-type lists the method resolution search order used by both getattr ()
and super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) mustbe true. If the second argument is a type, issubclass (type2, type)
must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer to
parent classes without naming them explicitly, thus making the code more maintainable. This use closely parallels
the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single
inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that such implementations have the same calling signature in every case
(because the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy,
and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, argqg):
super () .method (arqg) # This does the same thing as:
super (C, self).method(arg)

In addition to method lookups, super () also works for attribute lookups. One possible use case for this is calling
descriptors in a parent or sibling class.

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such as
super () .__getitem__ (name). It does so by implementing its own __getattribute__ () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly, super ()
is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form

25

The Python Library Reference, Release 3.10.12

only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class being
defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

class tuple ([itemble])

Rather than being a function, t up 1 e is actually an immutable sequence type, as documented in Tuples and Sequence
Types — list, tuple, range.

class type (object)
class type (name, bases, dict, **kwds)

With one argument, return the type of an object. The return value is a type object and generally the same object as
returned by object.___class__.

The i sinstance () built-in function is recommended for testing the type of an object, because it takes subclasses
into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement. The
name string is the class name and becomes the __name___ attribute. The bases tuple contains the base classes
and becomes the ___bases___ attribute; if empty, object, the ultimate base of all classes, is added. The dict
dictionary contains attribute and method definitions for the class body; it may be copied or wrapped before becoming
the dict___ attribute. The following two statements create identical t ype objects:

>>> class X:
a

1

>>> X = type('X', (), dict(a=1))

See also Type Objects.

Keyword arguments provided to the three argument form are passed to the appropriate metaclass machinery (usually
__init_subclass__ ()) in the same way that keywords in a class definition (besides metaclass) would.

See also class-customization.

Changed in version 3.6: Subclasses of type which don’t override type.__new___ may no longer use the one-
argument form to get the type of an object.

vars ([object])

Return the ___dict___ attribute for a module, class, instance, or any other object witha ___dict___ attribute.

Objects such as modules and instances have an updateable __dict___ attribute; however, other objects may have
write restrictions on their ___dict___ attributes (for example, classes use a t ypes.MappingProxyType to
prevent direct dictionary updates).

Without an argument, vars () acts like locals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

A TypeError exception is raised if an object is specified but it doesn’thavea _ dict___ attribute (for example,
if its class defines the __slots__ attribute).

zip (*iterables, strict=False)

Iterate over several iterables in parallel, producing tuples with an item from each one.

Example:

>>> for item in zip([1, 2, 3], ['sugar', 'spice', 'everything nice']):
print (item)

(1, 'sugar')
(2, 'spice')
(3, 'everything nice')

26

Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.10.12

More formally: zip () returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the
argument iterables.

Another way to think of zip () is that it turns rows into columns, and columns into rows. This is similar to
transposing a matrix.

zip () islazy: The elements won’t be processed until the iterable is iterated on, e.g. by a for loop or by wrapping
ina list.

One thing to consider is that the iterables passed to zip () could have different lengths; sometimes by design, and
sometimes because of a bug in the code that prepared these iterables. Python offers three different approaches to
dealing with this issue:

* By default, zip () stops when the shortest iterable is exhausted. It will ignore the remaining items in the
longer iterables, cutting off the result to the length of the shortest iterable:

>>> list(zip(range(3), ['fee', 'fi', 'fo', 'fum']))
[(0, "fee'), (1, 'fi'), (2, 'fo')]

e zip () is often used in cases where the iterables are assumed to be of equal length. In such cases, it’s
recommended to use the st rict=True option. Its output is the same as regular zip ():

>>> list(zip(('a', 'b', 'c"), (1, 2, 3), strict=True))
((ta', 1), ('b', 2), ('c', 3)]

Unlike the default behavior, it raises a ValueError if one iterable is exhausted before the others:

>>> for item in zip(range(3), ['fee', 'fi', 'fo', 'fum'], strict=True):
print (item)

(0, 'fee'")
(1, 'fi")
(2, '"fo'")
T

raceback (most recent call last):

ValueError: zip() argument 2 is longer than argument 1

Without the st ri ct=True argument, any bug that results in iterables of different lengths will be silenced,
possibly manifesting as a hard-to-find bug in another part of the program.

« Shorter iterables can be padded with a constant value to make all the iterables have the same length. This is
done by itertools.zip_longest ().

Edge cases: With a single iterable argument, zip () returns an iterator of 1-tuples. With no arguments, it returns
an empty iterator.

Tips and tricks:

 The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering
a data series into n-length groups using zip (* [iter (s)] *n, strict=True). This repeats the same
iterator n times so that each output tuple has the result of n calls to the iterator. This has the effect of dividing
the input into n-length chunks.

e zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> y = [4, 5, 6]

>>> list (zip(x, V))

[((1, 4), (2, 5), (3, 6)]
>>> x2, y2 = zip(*zip(x, Vy))

(continues on next page)

27

https://en.wikipedia.org/wiki/Transpose

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> x == list(x2) and y == list (y2)
True

Changed in version 3.10: Added the st rict argument.

__import___ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike importlib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui It ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but doing
so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same goals
and does not cause issues with code which assumes the default import implementation is in use. Direct use of
___import__ () is also discouraged in favor of importlib.import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to interpret
the name in a package context. The fromlist gives the names of objects or submodules that should be imported
from the module given by name. The standard implementation does not use its locals argument at all and uses its
globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the module
calling__import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up till the
first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is given, the
module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __ import__ ('spam', globals(), locals(), [1, 0)

The statement import spam.ham results in this call:

spam = __import__ ('spam.ham', globals (), locals(), [], 0)

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a name by
the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from __ import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value to
0).

Changed in version 3.9: When the command line options —E or —I are being used, the environment variable
PYTHONCASEOK is now ignored.

28

Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
An object frequently used to represent the absence of a value, as when default arguments are not passed to a function.
Assignments to None are illegal and raise a SyntaxError. None is the sole instance of the NoneType type.

NotImplemented
A special value which should be returned by the binary special methods (e.g. __eq_ (), 1t (),
__add__ (), rsub__ (), etc.) to indicate that the operation is not implemented with respect to the other

type; may be returned by the in-place binary special methods (e.g. __imul__ (),__iand__ (), etc.) for the
same purpose. It should not be evaluated in a boolean context. Not Implemented is the sole instance of the
types.NotImplementedType type.

Note: When a binary (or in-place) method returns Not Implemented the interpreter will try the reflected
operation on the other type (or some other fallback, depending on the operator). If all attempts return Not Im—
plemented, the interpreter will raise an appropriate exception. Incorrectly returning Not Implemented will
result in a misleading error message or the Not Implemented value being returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and NotImplemented are not interchangeable, even though they have
similar names and purposes. See Not ImplementedError for details on when to use it.

Changed in version 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.

Ellipsis
The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax for

user-defined container data types. E11ipsis is the sole instance of the t ypes.E11ipsisType type.

__debug__
This constant is true if Python was not started with an —O option. See also the assert statement.

29

The Python Library Reference, Release 3.10.12

Note: The names None, False, True and __debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given) adds
several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be used in
programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemEx1it with the specified exit code.

copyright
credits
Objects that when printed or called, print the text of copyright or credits, respectively.

license
Object that when printed, prints the message “Type license() to see the full license text”, and when called, displays
the full license text in a pager-like fashion (one screen at a time).

30 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared for equality,
tested for truth value, and converted to a string (with the repr () function or the slightly different st r () function).
The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or while condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a __bool__ () method that returns False or a
__len__ () method that returns zero, when called with the object.' Here are most of the built-in objects considered
false:

¢ constants defined to be false: None and False.
e zero of any numeric type: 0, 0.0, 0J, Decimal (0),Fraction (0, 1)
e empty sequences and collections: ' ', (), [], {}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for true,
unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X Or y if x is true, then x, else y €))]
x and y | if xis false, then x, else y 2)
not x if x is false, then True, else False | (3)

! Additional information on these special methods may be found in the Python Reference Manual (customization).

31

The Python Library Reference, Release 3.10.12

Notes:
(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.
(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == Db is interpreted as not (a == b),and
a == not b isa syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the Boolean
operations). Comparisons can be chained arbitrarily; for example, x < y <= zisequivalenttox < y and y <=
z, except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. The == operator is always defined but for
some object types (for example, class objects) is equivalent to is. The <, <=, > and >= operators are only defined where
they make sense; for example, they raise a TypeError exception when one of the arguments is a complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object, unless the
class defines enough of the methods __1t__ (), __le_ (), _gt__(),and __ge__ () (ingeneral, __ 1t__ ()
and __eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects and
never raise an exception.

Two more operations with the same syntactic priority, in and not 1in, are supported by types that are iterable or
implement the __contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition, Booleans are a
subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using double
in C; information about the precision and internal representation of floating point numbers for the machine on which your
program is running is available in sys. float_info. Complex numbers have a real and imaginary part, which are
each a floating point number. To extract these parts from a complex number z, use z . real and z . imag. (The standard
library includes the additional numeric types fractions.Fraction, for rationals, and decimal.Decimal, for
floating-point numbers with user-definable precision.)

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appending ' 5 ' or 'J"' to a numeric literal yields an imaginary number (a complex number
with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types, the
operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point, which is
narrower than complex. A comparison between numbers of different types behaves as though the exact values of those
numbers were being compared.’

The constructors int (), float (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-
summary):

Operation Result Notes| Full documenta-
tion
X +y sum of x and y
X -y difference of x and y
X *y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y (1
X %y remainder of x / y 2)
-X X negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)®6) | int ()
float (x) x converted to floating point @) 6) | float ()
complex (re, a complex number with real part re, imaginary part im. im de- | (6) complex ()
im) faults to zero.
C. conjugate of the complex number ¢
conjugate ()
divmod (x, V) the pair (x // vy, x % y) 2) divmod ()
pow (X, V) x to the power y (@) pow ()
X ** oy x to the power y)
Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily
int. The result is always rounded towards minus infinity: 1//2 is 0, (-1) //2is =1, 1// (-2) is -1, and
(=1)//(-2) is 0.

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

(3) Conversion from float to int truncates, discarding the fractional part. See functions math. floor () and
math.ceil () for alternative conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and positive
or negative infinity.

(5) Python defines pow (0, 0) and O ** 0 to be 1, as is common for programming languages.
(6) The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd property).

See https://www.unicode.org/Public/13.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

2 As a consequence, the list [1, 2] is considered equalto [1.0, 2.0],and similarly for tuples.

4.4. Numeric Types — int, float, complex 33

https://www.unicode.org/Public/13.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.10.12

All numbers.Real types (int and £1loat) also include the following operations:

Operation

Result

math.trunc (x)

x truncated to Tntegral

round(x[, n]J)

x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.

math.floor (x)

the greatest Tntegral <=x

math.ceil (x)

the least Tntegral >=x

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out in
two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the comparisons;
the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bitwise operations sorted in ascending priority:

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.

Operation | Result Notes
x |y bitwise or of x and y @)

x Ny bitwise exclusive or of x and y | (4)

X &y bitwise and of x and y @)

x << n x shifted left by n bits (D)
X >> n x shifted right by » bits (H@A3)
~X the bits of x inverted

(2) A left shift by n bits is equivalent to multiplication by pow (2, n).

(3) A right shift by » bits is equivalent to floor division by pow (2, n).

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representation
(a working bit-widthof 1 + max (x.bit_length(), y.bit_length ()) ormore) is sufficient to get the
same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length(()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37
>>> bin(n)
'-0b100101"

6

>>> n.bit_length ()

34

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

More precisely, if x is nonzero, then x .bit_length () is the unique positive integer k such that 2** (k-1)
<= abs (x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm, then
k = 1 + int(log(abs(x), 2)).If xiszero,then x.bit_length () returns 0.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len (s) # len('100101') ——> 6

New in version 3.1.

int.bit_count ()
Return the number of ones in the binary representation of the absolute value of the integer. This is also known as
the population count. Example:

>> n = 19

>>> bin(n)

'0b10011"

>>> n.bit_count ()

3

>>> (-n) .bit_count ()
3

Equivalent to:

def bit_count (self):
return bin(self) .count ("1")

New in version 3.10.

int.to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"'

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)

b \XfA\XEE\XEA\XEA\XEF\XEE\XEE\xEff\xfc\x00"

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"

The integer is represented using length bytes. An OverflowError is raised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byfeorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1itt1le", the most significant byte is at the
end of the byte array. To request the native byte order of the host system, use sys . byteorder as the byte order
value.

The signed argument determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

New in version 3.2.

classmethod int.from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

4.4. Numeric Types — int, float, complex 35

The Python Library Reference, Release 3.10.12

>>> int.from_bytes (b'\x00\x10', byteorder='big'")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little")

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big')

16711680

The argument byfes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byfeorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most significant byte is at the
end of the byte array. To request the native byte order of the host system, use sys . byteorder as the byte order
value.

The signed argument indicates whether two’s complement is used to represent the integer.
New in version 3.2.

int.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original integer and with a positive denominator. The
integer ratio of integers (whole numbers) is always the integer as the numerator and 1 as the denominator.

New in version 3.8.

4.4.3 Additional Methods on Float

The float type implements the numbers. Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).is_integer()
True

>>> (3.2) .1is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as binary
numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast, hexadecimal
strings allow exact representation and specification of floating-point numbers. This can be useful when debugging, and in
numerical work.

float .hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers, this
representation will always include a leading 0x and a trailing p and exponent.

classmethod float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace.

Note that f1oat . hex () is an instance method, while f1oat . fromhex () is a class method.

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and ex—
ponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2 of
the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of fl1oat.hex () is usable
as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format character
or Java’s Double.toHexString are accepted by f1loat . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to multiply
the coeflicient. For example, the hexadecimal string 0x3 . a7p1 0 represents the floating-point number (3 + 10./16
+ 7./16**2) * 2.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x ==
y (see the __hash__ () method documentation for more details). For ease of implementation and efficiency across a
variety of numeric types (including int, float, decimal.Decimaland fractions.Fraction)Python’s hash
for numeric types is based on a single mathematical function that’s defined for any rational number, and hence applies
to all instances of int and fractions.Fraction, and all finite instances of f1oat and decimal.Decimal.
Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P is made available to Python
as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedisP = 2**31 - 1 on machines with 32-bit C longs and
P = 2**61 — 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / nisanonnegative rational number and n is not divisible by P, define hash (x) asm * invmod (n,
P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / nisanonnegative rational number and n is divisible by P (but m is not) then n has no inverse modulo P
and the rule above doesn’t apply; in this case define hash (x) to be the constant value sys.hash_info.inf.

e If x = m / nisanegative rational number define hash (x) as —hash (-x) . If the resulting hash is -1, replace
it with —2.

¢ The particular values sys.hash_info.infand -sys.hash_info. inf are used as hash values for positive
infinity or negative infinity (respectively).

* For a complexnumber z, the hash values of the real and imaginary parts are combined by computing hash (z.
real) + sys.hash_info.imag * hash(z.imag),reduced modulo 2**sys.hash_info.width
so that it lies in range (-2** (sys.hash_info.width - 1), 2**(sys.hash_info.width -
1)). Again, if the result is —1, it’s replaced with 2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash of a
rational number, f1oat, or complex:

4.4. Numeric Types — int, float, complex 37

The Python Library Reference, Release 3.10.12

import sys, math

def hash_fraction(m, n):
""rn"Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

men

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
while m $ P == n % == 0:

m, n=m// P, n//P

if n % P == 0:
hash_value = sys.hash_info.inf
else:

Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:

hash_value = -hash_value
if hash_value == -1:

hash_value = -2

return hash_value

def hash_float (x):
"""Compute the hash of a float x."""

if math.isnan (x) :

return object.__hash__ (x)
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""

hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2

return hash_value

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are used
to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the iteration
methods.

One method needs to be defined for container objects to provide iterable support:

container.__iter__ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C APL

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__ ()
Return the iferator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in the
Python/C APL

iterator.__next__ ()
Return the next item from the iterator. If there are no further items, raise the St opIteration exception. This
method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries, and other
more specialized forms. The specific types are not important beyond their implementation of the iterator protocol.

Once an iterator’s ___next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__ ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter_ () and __next__ () methods. More information about generators can be found in the
documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for processing
of binary data and fext strings are described in dedicated sections.

4.5. Iterator Types 39

The Python Library Reference, Release 3.10.12

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABCis provided to make it easier to correctly implement these operations on custom
sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same type,
n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and *
(repetition) operations have the same priority as the corresponding numeric operations.’

Operation Result Notes
X in s True if an item of s is equal to x, else False @)
X not in s False if an item of s is equal to x, else True @))
s + t the concatenation of s and ¢ 6)(7)
s * norn * s equivalent to adding s to itself n times @)(7)
s[i] ith item of s, origin 0 3)
s[i:7] slice of s from i to j 3)4)
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s
min (s) smallest item of s
max (s) largest item of s
s.index (x[, 1[, 7J11) | index of the first occurrence of x in s (at or after index i and before index | (8)

)
s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically by
comparing corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full details see comparisons in the language reference.)

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to march
forward (or backward) even if the underlying sequence is mutated. The iterator terminates only when an TndexError
ora StopIteration is encountered (or when the index drops below zero).

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> nggu in "qus"

True

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that items
in the sequence s are not copied; they are referenced multiple times. This often haunts new Python programmers;
consider:

>>> lists =
>>> lists
(1, 1, [11

>>> lists[0].append(3)
>>> lists

[es1, 31,

(1 = 3

[31]

3 They must have since the parser can't tell the type of the operands.

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]] *
3 are references to this single empty list. Modifying any of the elements of 11ists modifies this single list. You
can create a list of different lists this way:

>>> lists = [[] for 1 in range(3)]
>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(31, s1, [711]

Further explanation is available in the FAQ entry fag-multidimensional-list.

(3) If i or j is negative, the index is relative to the end of sequence s: len(s) + iorlen(s) + j issubstituted.
But note that -0 is still 0.

(4) The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. If i orjis greater
than len (s),use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If i is greater
than or equal to j, the slice is empty.

(5) The slice of s from i to j with step k is defined as the sequence of items withindex x = i + n*ksuchthat0 <=
n < (j-1i) /k. In other words, the indices are i, i+k, i+2*k, 1+3*k and so on, stopping when j is reached
(but never including j). When £ is positive, i and j are reduced to 1en (s) if they are greater. When £ is negative,
iand jare reduced to len (s) - 1 if they are greater. If i or j are omitted or None, they become “end” values
(which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated like 1.

(6) Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime cost,
you must switch to one of the alternatives below:

* if concatenating st r objects, you can build a list and use str. join () at the end or else write toan io.
StringIO instance and retrieve its value when complete

« if concatenating byt es objects, you can similarly use bytes. join () or io.BytesIO, or you can do
in-place concatenation with a bytearray object. bytearray objects are mutable and have an efficient
overallocation mechanism

* if concatenating t uple objects, extend a 1 i st instead
« for other types, investigate the relevant class documentation

(7) Some sequence types (such as range) only support item sequences that follow specific patterns, and hence don’t
support sequence concatenation or repetition.

(8) index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra ar-
guments is roughly equivalent tousing s [1: j] . index (x) , only without copying any data and with the returned
index being relative to the start of the sequence rather than the start of the slice.

4.6. Sequence Types — list, tuple, range 41

The Python Library Reference, Release 3.10.12

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable sequence
types is support for the hash () built-in.

This support allows immutable sequences, such as tuple instances, to be used as dict keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABC is provided to make it easier to correctly implement these operations on custom sequence

types.
In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object that meets any

type and value restrictions imposed by s (for example, byt earray only accepts integers that meet the value restriction
0 <= x <= 255).

Operation Result Notes

s[i] = x item i of s is replaced by x

s[i:j] =t slice of s from i to j is replaced by the contents of the iterable ¢

del s[i:7j] sameas s[i:3] = []

s[i:j:k] =t the elements of s [1:j:k] are replaced by those of ¢ @))

del s[i:j:k] removes the elements of s [1:7:k] from the list

s.append (x) appends x to the end of the sequence (same as s [len (s) :len(s)] = [x])

s.clear () removes all items from s (same as del s[:]) (®))

s.copy () creates a shallow copy of s (same as s[:]) 5

s.extend(t) or s | extends s with the contents of ¢ (for the most part the same as

+= t s[len(s):len(s)] = t)

S *=n updates s with its contents repeated n times 6)

s.insert (i, x) inserts x into s at the index given by i (same as s[1:1] = [x])

s.pop () or s. | retrieves the item at i and also removes it from s 2)

pop (1)

s.remove (X) remove the first item from s where s [1] is equal to x 3)

s.reverse () reverses the items of s in place @)
Notes:

(1) r must have the same length as the slice it is replacing.
(2) The optional argument i defaults to -1, so that by default the last item is removed and returned.
(3) remove () raises ValueError when x is not found in s.

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large sequence.
To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear () and copy () are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set). copy () is not part of the collections.abc.
MutableSequence ABC, but most concrete mutable sequence classes provide it.

New in version 3.3: clear () and copy () methods.

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

(6) The value n is an integer, or an object implementing __index__ (). Zero and negative values of n clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n under
Common Sequence Operations.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of sim-
ilarity will vary by application).

class list ([iterable])
Lists may be constructed in several ways:

» Using a pair of square brackets to denote the empty list: []

¢ Using square brackets, separating items with commas: [a], [a, b, c]
* Using a list comprehension: [x for x in iterable]

» Using the type constructor: 1ist () or 1ist (iterable)

The constructor builds a list whose items are the same and in the same order as iferable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similarto iterable [:]. For example, 1ist ('abc') returns ['a', 'b', 'c'] and
list((1, 2, 3)) returns [1, 2, 3].If noargument is given, the constructor creates a new empty list,

[l
Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (* key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items. Exceptions are not suppressed -
if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a partially
modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element (for
example, key=str.lower). The key corresponding to each item in the list is calculated once and then used
for the entire sorting process. The default value of None means that list items are sorted directly without
calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To remind
users that it operates by side effect, it does not return the sorted sequence (use sorted () to explicitly request
a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration,
and raises ValueError if it can detect that the list has been mutated during a sort.

4.6. Sequence Types — list, tuple, range 43

The Python Library Reference, Release 3.10.12

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples produced
by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous data is
needed (such as allowing storage in a set or dict instance).

class tuple ([itemble])
Tuples may be constructed in a number of ways:

» Using a pair of parentheses to denote the empty tuple: ()

 Using a trailing comma for a singleton tuple: a, or (a,)

» Separating items with commas: a, b, cor (a, b, c)

e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iferable is already a tuple, it is returned
unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') andtuple([1, 2, 3]) returns
(1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional, except
in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, £ (a, b, c) isa
function call with three arguments, while f ((a, b, c¢)) is a function call with a 3-tuple as the sole argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number of
times in for loops.

class range (stop)

class range (start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that implements the
__index__ () special method). If the step argument is omitted, it defaults to 1. If the start argument is omitted,
it defaults to 0. If step is zero, Va lueError is raised.

For a positive step, the contents of a range r are determined by the formular[i] = start + step*i where
i >= 0andr[i] < stop.

For a negative step, the contents of the range are still determined by the formula r [i] = start + step*i,
but the constraintsare 1 >= Oandr[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices, but
these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sy s.maxsize are permitted but some features (such as 1en ())
may raise OverflowError.

Range examples:

>>> list (range (10))

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

[+, 2, 3, 4, 5, 6, 7, 8, 9, 10]

(continues on next page)

44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact that
range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually
violate that pattern).

start
The value of the start parameter (or 0 if the parameter was not supplied)

stop
The value of the stop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over a regular 1ist or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step
values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment tests,
element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and ! = compares them as sequences. That is, two range objects are considered
equal if they represent the same sequence of values. (Note that two range objects that compare equal might have different
start, stop and step attributes, for example range (0) == range (2, 1, 3) orrange(0, 3, 2) ==
range (0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘!="to compare range objects based on the sequence of values they define (instead
of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.

4.6. Sequence Types — list, tuple, range 45

The Python Library Reference, Release 3.10.12

See also:

 The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code points.
String literals are written in a variety of ways:

 Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes"
e Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted to
a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty string
s,s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct strings
from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted on
string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object=")

class str (object=b", encoding="utf-8', errors='strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior of
str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, st r (object) returns type (object) .__str__ (object), which
is the “informal” or nicely printable string representation of object. For string objects, this is the string itself. If
object does nothave a __str__ () method, then st () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or bytearray).
In this case, if object is a bytes (or bytearray) object, then str (bytes, encoding, errors) is
equivalent to bytes.decode (encoding, errors). Otherwise, the bytes object underlying the buffer
object is obtained before calling bytes. decode (). See Binary Sequence Types
and bufferobjects for information on buffer objects.

bytes, bytearray, memoryview

Passing a bytes object to st r () without the encoding or errors arguments falls under the first case of returning
the informal string representation (see also the —b command-line option to Python). For example:

>>> str(b'Zoot!")
"b'Zoot!""

For more information on the str class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition, see the
Text Processing Services section.

46 Chapter 4. Built-in Types

https://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.10.12

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see st .
format (), Format String Syntax and Custom String Formatting) and the other based on C print £ style formatting that
handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle
(printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various text

related utilities (including regular expression support in the re module).

str.capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.

Changed in version 3.8: The first character is now put into titlecase rather than uppercase. This means that char-
acters like digraphs will only have their first letter capitalized, instead of the full character.

str.casefold()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in
a string. For example, the German lowercase letter ' ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to 'R '; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

str.center (width[, fillchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII space).
The original string is returned if width is less than or equal to 1en (s).

str.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

If sub is empty, returns the number of empty strings between characters which is the length of the string plus one.

str.encode (encoding="utf-8', errors='strict’)
Return the string encoded to by tes.

encoding defaults to 'ut £-8"; see Standard Encodings for possible values.

errors controls how encoding errors are handled. If 'strict' (the default), a UnicodeError exception is
raised. Other possible values are ' ignore', 'replace’', 'xmlcharrefreplace’, 'backslashre-
place' and any other name registered via codecs.register_error (). See Error Handlers for details.

For performance reasons, the value of errors is not checked for validity unless an encoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

str.endswith (su]ﬁx[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that
position.

str.expandtabs (tabsize=38)
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current

4.7. Text Sequence Type — str 47

The Python Library Reference, Release 3.10.12

column and the given tab size. Tab positions occur every fabsize characters (default is 8, giving tab positions at
columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string is examined
character by character. If the character is a tab (\ t), one or more space characters are inserted in the result until the
current column is equal to the next tab position. (The tab character itself is not copied.) If the character is a newline
(\n) or return (\r), it is copied and the current column is reset to zero. Any other character is copied unchanged
and the current column is incremented by one regardless of how the character is represented when printed.

>>> '01\t012\t0123\t01234"' .expandtabs ()

'01 012 0123 01234"
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

str.find (sub[, start[, end]])

Return the lowest index in the string where substring sub is found within the slice s [start:end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text or re-
placement fields delimited by braces { }. Each replacement field contains either the numeric index of a positional
argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced
with the string value of the corresponding argument.

>>> "The sum of 1 + 2 1is ".format (1+2)
'The sum of 1 + 2 is 3!

See Format String Syntax for a description of the various formatting options that can be specified in format strings.

Note: When formatting a number (int, fl1oat, complex, decimal.Decimal and subclasses) with the n
type (ex: '{:n}"'.format (1234)), the function temporarily sets the LC_CTYPE locale to the LC_NUMERIC
locale to decode decimal_point and thousands_sep fields of localeconv () if they are non-ASCII or
longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE locale. This temporary change
affects other threads.

Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the LC_CTYPE
locale to the .C_NUMERIC locale in some cases.

str.format_map (mapping)

Similar to str. format (**mapping), except that mapping is used directly and not copied to a dict. This
is useful if for example mapping is a dict subclass:

>>> class Default (dict):
def _ missing__ (self, key):
return key

>>> ! was born in '.format_map (Default (name="'Guido"))
'Guido was born in country'

New in version 3.2.

48

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

str.

str.

str

str.

str.

str

str.

str.

str.

str.

index (sub[, start[, end]])
Like find (), but raise ValueError when the substring is not found.

isalnum ()

Return True if all characters in the string are alphanumeric and there is at least one character, False otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha(), c.isdecimal (), c.
isdigit (),orc.isnumeric ().

.isalpha ()

Return True if all characters in the string are alphabetic and there is at least one character, False otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those with
general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different from the “Al-
phabetic” property defined in the Unicode Standard.

isascii ()

Return True if the string is empty or all characters in the string are ASCII, False otherwise. ASCII characters
have code points in the range U+0000-U+007F.

New in version 3.7.

isdecimal ()

Return True if all characters in the string are decimal characters and there is at least one character, False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.

.isdigit ()

Return True if all characters in the string are digits and there is at least one character, False otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits. This
covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a
character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()
Return True if the string is a valid identifier according to the language definition, section identifiers.

Call keyword. iskeyword () to test whether string s is a reserved identifier, such as def and class.

Example:

>>> from keyword import iskeyword

>>> 'hello'.isidentifier (), iskeyword('hello'")
(True, False)

>>> 'def'.isidentifier (), iskeyword('def')
(True, True)

islower ()
Return True if all cased characters® in the string are lowercase and there is at least one cased character, False
otherwise.

isnumeric ()

Return True if all characters in the string are numeric characters, and there is at least one character, False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()

Return True if all characters in the string are printable or the string is empty, False otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting the
ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those which

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter, titlecase).

4.7. Text Sequence Type — str 49

The Python Library Reference, Release 3.10.12

str.

str.

str.

str.

str

str.

str.

should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings written to
sys.stdout or sys.stderr.)

isspace ()
Return True if there are only whitespace characters in the string and there is at least one character, False
otherwise.

A character is whitespace if in the Unicode character database (see unicodedat a), either its general category is
Zs (“Separator, space”), or its bidirectional class is one of WS, B, or S.

istitle()
Return True if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return False otherwise.

isupper ()
Return True if all cased characters* in the string are uppercase and there is at least one cased character, False
otherwise.

>>> 'BANANA'.isupper ()
True

>>> 'banana'.isupper ()
False

>>> 'baNana'.isupper ()
False

>>> ' ' isupper ()
False

join (iterable)

Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if there are any
non-string values in iterable, including byt e s objects. The separator between elements is the string providing this
method.

.1ljust (width[,ﬁllchar])

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is an
ASCII space). The original string is returned if width is less than or equal to 1len (s).

lower ()
Return a copy of the string with all the cased characters* converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

1strip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious " 1lstrip()
'spacious !

>>> 'www.example.com'.lstrip('cmowz.")
'example.com'

See str.removeprefix () for a method that will remove a single prefix string rather than all of a set of
characters. For example:

>>> 'Arthur: three!'.lstrip('Arthur: ')

'eel!
>>> 'Arthur: three!'.removeprefix ('Arthur: ")
'three!'

50

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

static str.maketrans (x[, y[, z]])
This static method returns a translation table usable for st r. translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted to
ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in
x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose
characters will be mapped to None in the result.

str.partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string
itself, followed by two empty strings.

str.removeprefix (prefix, /)
If the string starts with the prefix string, return string[len (prefix) :]. Otherwise, return a copy of the
original string:

>>> 'TestHook'.removeprefix('Test')
'Hook'

>>> 'BaseTestCase'.removeprefix ('Test')
'BaseTestCase'

New in version 3.9.

str.removesuffix (suffix, /)
If the string ends with the suffix string and that suffix is not empty, return string[:-len (suffix)]. Oth-
erwise, return a copy of the original string:

>>> 'MiscTests'.removesuffix('Tests')
'Misc'

>>> "TmpDirMixin'.removesuffix ('Tests')
'TmpDirMixin'

New in version 3.9.

str.replace (old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

str.rfind (sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start :end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

str.rindex (sub[, start[, end]])
Like rfind () but raises ValueError when the substring sub is not found.

str.rjust (width[, ﬁllchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default is
an ASCII space). The original string is returned if width is less than or equal to 1len (s).

str.rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

str.rsplit (sep=None, maxsplit=- 1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit

4.7. Text Sequence Type — str 51

The Python Library Reference, Release 3.10.12

splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except for
splitting from the right, rsplit () behaves like split () which is described in detail below.

str.rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.rstrip()

! spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ'

See str.removesuffix () for a method that will remove a single suffix string rather than all of a set of
characters. For example:

>>> 'Monty Python'.rstrip(' Python')

lMl
>>> 'Monty Python'.removesuffix (' Python')
'Monty'

str.split (sep=None, maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits
are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or —1, then there is
no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for exam-
ple,'1,,2".split (', ")returns ['1"', '', '2']). The sep argument may consist of multiple characters
(for example, '1<>2<>3".split ('<>") returns ['1', '2', '3']). Splitting an empty string with a
specified separator returns [''].

For example:

>>> '1,2,3".split ("', ")

rrav, '2', '3']

>>> '1,2,3".split (', "', maxsplit=1)
[v1', '2,3']

>>> '1,2,,3,".split (', ")

[rar, 2y, v, '3, ']

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with
a None separator returns [].

For example:

>>> '1 2 3'.split ()

rrav, '2', '3']

>>> '1 2 3'.split (maxsplit=1)
[v12', '2 3']

>>> ! 1 2 3 '.split ()

['1', l2l’ '3'}

str.splitlines (keepends=False)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list
unless keepends is given and true.

52

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal new-

lines.
Representation | Description
\n Line Feed
\r Carriage Return
\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation
\f or \x0c Form Feed
\xlc File Separator
\x1d Group Separator
\xle Record Separator
\x85 Next Line (C1 Control Code)
\u2028 Line Separator
\u2029 Paragraph Separator

Changed in version 3.2: \v and \ £ added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab c', '', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike sp1it () when a delimiter string sep is given, this method returns an empty list for the empty string, and
a terminal line break does not result in an extra line:

>>> "" splitlines()

[]

>>> "One line\n".splitlines/()
['One line']

For comparison, split ('\n') gives:

>>> "' . split ('\n")

['"]

>>> 'Two lines\n'.split('\n")
["Two lines', '']

str.startswith (preﬁx[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to look
for. With optional start, test string beginning at that position. With optional end, stop comparing string at that
position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’

>>> 'www.example.com'.strip ('cmowz.")
'example'

4.7. Text Sequence Type — str 53

The Python Library Reference, Release 3.10.12

str.

str.

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

>>> comment_string = "#....... Section 3.2.1 Issue #32 !
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32'

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not
necessarily true that s. swapcase () . swapcase () == s.

title ()
Return a titlecased version of the string where words start with an uppercase character and the remaining characters
are lowercase.

For example:

>>> 'Hello world'.title ()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The defi-
nition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries,
which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

The string. capwords () function does not have this problem, as it splits words on spaces only.

Alternatively, a workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za—-z]+)?2",
lambda mo: mo.group(0) .capitalize(),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (table)

Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via ___getitem__ (), typically a mapping or sequence. When
indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode ordinal or
a string, to map the character to one or more other characters; return None, to delete the character from the return
string; or raise a LookupError exception, to map the character to itself.

You can use st r.maketrans () to create a translation map from character-to-character mappings in different
formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()

Return a copy of the string with all the cased characters* converted to uppercase. Note that s .upper () .
isupper () might be False if s contains uncased characters or if the Unicode category of the resulting char-
acter(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

54

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

str.zfill (width)
Return a copy of the string left filled with ASCII ' 0 ' digits to make a string of length width. A leading sign prefix
("+'/'-") is handled by inserting the padding after the sign character rather than before. The original string is
returned if width is less than or equal to 1len (s).

For example:

>>> "42" z£i11(5)
'00042"

>>> "—42" zfill (5)
'-0042"

4.7.2 printf-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such
as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st r. format ()
interface, or femplate strings may help avoid these errors. Each of these alternatives provides their own trade-offs and
benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting or
interpolation operator. Given format % values (where format is a string), $ conversion specifications in format are
replaced with zero or more elements of values. The effect is similar to using the sprintf () in the C language.

If format requires a single argument, values may be a single non-tuple object.” Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this order:
1. The '% "' character, which marks the start of the specifier.
2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' * ' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a parenthesised
mapping key into that dictionary inserted immediately after the ' $ ' character. The mapping key selects the value to be
formatted from the mapping. For example:

>>> print (' has quote types.' %
R {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 55

The Python Library Reference, Release 3.10.12

Flag | Meaning
"#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.

"+' | Asign character ('+"' or '—") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. %$1d is identical

to %d.

The conversion types are:

Conver- | Meaning Notesg

sion

'd! Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. @))]

'u' Obsolete type — it is identical to 'd'. 6)

'x! Signed hexadecimal (lowercase). 2)

X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E’ Floating point exponential format (uppercase). 3)

'f£! Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

¢! Single character (accepts integer or single character string).

'r! String (converts any Python object using repr ()). &)

's' String (converts any Python object using st ()). 5)

'a' String (converts any Python object using ascii ()). (&)

Tyt No argument is converted, results ina ' %' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 0o ') to be inserted before the first digit.

(2) The alternate form causes a leading ' 0x "' or '0X' (depending on whether the 'x"' or 'X' format was used) to
be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they
would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

(6) See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that '\ 0" is the end of the string.

56

Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.10.12

Changed in version 3.1: % £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g
conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are byt es and byt earray. They are supported by memoryview
which uses the buffer protocol to access the memory of other binary objects without needing to make a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII text
encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and are closely
related to string objects in a variety of other ways.

class bytes ([source[, encoding[, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:

* Single quotes: b'still allows embedded "double" quotes'
* Double quotes: b"still allows embedded 'single' quotes"
e Triple quoted: b' ' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any binary
values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See strings
for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger Va lueError). This is done deliberately to emphasise that while many binary formats
include ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not
generally the case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that
are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
* A zero-filled bytes object of a specified length: bytes (10)
* From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (ob7j)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format
for describing binary data. Accordingly, the bytes type has an additional class method to read data in that format:

classmethod fromhex (string)
This bytes class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1£f2 ")
b' A\xfO\xf1\xf2"

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.10.12

Changed in version 3.7: bytes. fromhex () now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex ([sep[, bytes _per_sep]])

Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\x£f0\x£f1\x£f2' .hex ()
'fOf1f2"

If you want to make the hex string easier to read, you can specify a single character separator sep parameter
to include in the output. By default, this separator will be included between each byte. A second optional
bytes_per_sep parameter controls the spacing. Positive values calculate the separator position from the right,
negative values from the left.

>>> value = b'\xf0\xfl\x£f2'
>>> value.hex ('-")

'fO0-f1-£f2"

>>> value.hex('_', 2)
'fO_f1f2"

>>> b'UUDDLRLRAB' .hex (' ', -4)

'55554444 4c524c52 4142"

New in version 3.5.

Changed in version 3.8: bytes. hex () now supports optional sep and bytes_per_sep parameters to insert
separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while b [0 : 1]
will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string

of length 1)

The representation of bytes objects uses the literal format (b ' . . . ') since it is often more useful thane.g. bytes ([46,

46,

461). You can always convert a bytes object into a list of integers using 1ist (b).

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to byt es objects.

class bytearray ([source[, encoding[, errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor:
» Creating an empty instance: bytearray ()
* Creating a zero-filled instance with a given length: bytearray (10)
¢ From an iterable of integers: bytearray (range (20))
» Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common bytes
and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format

for describing binary data. Accordingly, the bytearray type has an additional class method to read data in that
format:

58

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

classmethod fromhex (string)
This bytearray class method returns bytearray object, decoding the given string object. The string must
contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex ('2Ef0 F1£2 ")
bytearray (b' . \xf0\xf1\xf2")

Changed in version 3.7: bytearray. fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\x£f1\x£f2') .hex ()
'fOf1£2"

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), bytearray.hex () now supports optional sep and
bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer, while
b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (bytearray (b'...")) since it is often more
useful than e.g. bytearray ([46, 46, 46]). Youcan always convert a bytearray object into a list of integers using
list (b).

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands of
the same type, but with any byfes-like object. Due to this flexibility, they can be freely mixed in operations without causing
errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings
don’t accept bytes as their arguments. For example, you have to write:

"

a = "abc
b = a.replace("a", "f")

a = b"abc"
b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be avoided
when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may
lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

The Python Library Reference, Release 3.10.12

bytes.count (sub[, start[, end]])
bytearray.count (sub[, start[, end]])

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object plus
one.

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.removeprefix (prefix, /)
bytearray.removeprefix (prefix, /)

If the binary data starts with the prefix string, return bytes [len (prefix) :]. Otherwise, return a copy of the
original binary data:

>>> p'TestHook'.removeprefix (b'Test')
b'Hook'

>>> p'BaseTestCase'.removeprefix (b'Test")
b'BaseTestCase'

The prefix may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

New in version 3.9.

bytes.removesuffix (suffix, /)
bytearray.removesuffix (suffix, /)

If the binary data ends with the suffix string and that suffix is not empty, return bytes[:-len (suffix)].
Otherwise, return a copy of the original binary data:

>>> b'MiscTests'.removesuffix(b'Tests")
b'Misc'

>>> pb'TmpDirMixin'.removesuffix (b'Tests")
b'TmpDirMixin'

The suffix may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

New in version 3.9.

bytes.decode (encoding="utf-8', errors='strict’)
bytearray.decode (encoding='utf-8', errors='strict")

Return the bytes decoded to a st r.
encoding defaults to 'ut £-8"'; see Standard Encodings for possible values.

errors controls how decoding errors are handled. If 'strict' (the default), a UnicodeError exception
is raised. Other possible values are 'ignore', 'replace’', and any other name registered via codecs.
register_error (). See Error Handlers for details.

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

60

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

Note: Passing the encoding argument to st r allows decoding any bytes-like object directly, without needing to
make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

bytes.endswith (suﬁix[, start[, end]])

bytearray.endswith (suﬁix[, start[, end]])
Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

The suffix(es) to search for may be any bytes-like object.

bytes.find (sub[, start[, end]])

bytearray.find (sub[, start[, end]])
Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.

Note: The f£ind () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> pb'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.index (sub[, start[, end]])
bytearray.index (sub[, start[, end]])
Like find (), butraise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes. join (iterable)

bytearray.join (iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A Type—
Error will be raised if there are any values in iterable that are not bytes-like objects, including st r objects. The
separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans (from, to)

static bytearray.maketrans (from, t0)
This static method returns a translation table usable for bytes. translate () that will map each character in
from into the character at the same position in to; from and fo must both be bytes-like objects and have the same
length.

New in version 3.1.

bytes.partition (sep)
bytearray.partition (sep)
Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.10.12

separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple
containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace (old, new[, count])

bytearray.replace (old, new[, count])
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rfind (sub[, start[, end]])

bytearray.rfind (sub[, start[, end]])
Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.rindex (sub[, start[, end]])
bytearray.rindex (sub[, start[, end]])
Like rfind () but raises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.rpartition (sep)

bytearray.rpartition (sep)
Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple
containing two empty bytes or bytearray objects, followed by a copy of the original sequence.

The separator to search for may be any bytes-like object.

bytes.startswith (preﬁx[, start[, end]])

bytearray.startswith (preﬁx[, start[, end]])
Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be a tuple
of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate (table, /, delete=b")

bytearray.translate (table, /, delete=b")
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are removed,
and the remaining bytes have been mapped through the given translation table, which must be a bytes object of
length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the fable argument to None for translations that only delete characters:

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

62 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compatible
binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that all of the
bytearray methods in this section do nor operate in place, and instead produce new objects.

bytes.center (width[, ﬁllbyte])

bytearray.center (width[, ﬁllbyte])
Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For by tes objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.1ljust (widih|, fillbyte])

bytearray.ljust (width[, ﬁllbyte])
Return a copy of the object left justified in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For byt es objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.lstrip([chars])

bytearray.lstrip([chars])
Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII
characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars argument
is not a prefix; rather, all combinations of its values are stripped:

>>> b' spacious " lstrip()
b'spacious !

>>> b'www.example.com'.lstrip(b'cmowz.")
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object. See removeprefix () for a method
that will remove a single prefix string rather than all of a set of characters. For example:

>>> pb'Arthur: three!'.lstrip(b'Arthur: ")
b'ee!!

>>> pb'Arthur: three!'.removeprefix(b'Arthur: ")
b'three!'

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rjust (width[, ﬁllbyte])

bytearray.rjust (width[, ﬁllbyte])
Return a copy of the object right justified in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For byt es objects, the original sequence is returned if width is less than or equal to
len(s).

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.10.12

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rsplit (sep=None, maxsplit=- 1)
bytearray.rsplit (sep=None, maxsplit=- 1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given,
at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence consisting
solely of ASCII whitespace is a separator. Except for splitting from the right, rsplit () behaves like split ()
which is described in detail below.

bytes.rstrip([chars])
bytearray.rstrip([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII
characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars argument
is not a suffix; rather, all combinations of its values are stripped:

>>> b spacious '.rstrip()

b' spacious'

>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any byfes-like object. See removesuffix () for a method
that will remove a single suffix string rather than all of a set of characters. For example:

>>> b'Monty Python'.rstrip(b' Python')

b'M'

>>> p'Monty Python'.removesuffix(b' Python')
b'Monty'

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.split (sep=None, maxsplit=- 1)
bytearray.split (sep=None, maxsplit=- 1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given
and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1 elements). If
maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example, b'1,,2"'.split (b', ') returns [b'1l', b'', Db'2']). The sep argument may consist
of a multibyte sequence (for example, b'1<>2<>3"'.split (b'<>") returns [b'1l', b'2', b'3']).
Splitting an empty sequence with a specified separator returns [b' '] or [bytearray (b'')] depending on
the type of object being split. The sep argument may be any bytes-like object.

For example:

>>> b'1,2,3".split(b', ")

[b'1', b'2', b'3"]

>>> p'1,2,3".split(b', ', maxsplit=1)
[b'1', b'2,3"]

>>> p'1,2,,3,".split(b', ")

[b'1', b'2', b'', b'3", b'"]

64

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence has
leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely of ASCII
whitespace without a specified separator returns [].

For example:

>>> pb'l 2 3'.split ()

[b'1', b'2', b'3"]

>>> p'l 2 3'.split (maxsplit=1)
[b'1', b'2 3']

>>> b' 1 2 3 '.split ()
[b'1', b'2', b'3"]

bytes.strip([chars])

bytearray.strip ([chars])
Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used
with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b spacious '.strip()
b'spacious'

>>> b'www.example.com'.strip(b'cmowz.")
b'example'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place, and
instead produce new objects.

bytes.capitalize()

bytearray.capitalize ()
Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized and
the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.expandtabs (fabsize=8)

bytearray.expandtabs (tabsize=8)
Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces, depending
on the current column and the given tab size. Tab positions occur every tabsize bytes (default is 8, giving tab positions
at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to zero and the sequence is
examined byte by byte. If the byte is an ASCII tab character (b '\t '), one or more space characters are inserted
in the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the current byte is an ASCII newline (b ' \n") or carriage return (b ' \r '), it is copied and the current column is
reset to zero. Any other byte value is copied unchanged and the current column is incremented by one regardless
of how the byte value is represented when printed:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.10.12

>>> b'01\t012\t0123\t01234" .expandtabs ()

b'01 012 0123 01234"
>>> b'01\t012\t0123\t01234"'.expandtabs (4)
b'01 012 0123 01234"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.isalnum ()

bytearray.isalnum/()
Return True if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, False otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ '. ASCII decimal dig-
its are those byte values in the sequence b' 0123456789"'.

For example:

>>> p'ABCabcl'.isalnum()
True
>>> Pb'ABC abcl'.isalnum/()
False

bytes.isalpha ()

bytearray.isalpha ()
Return True if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.

For example:

>>> pb'ABCabc'.isalpha()
True
>>> b'ABCabcl'.isalpha()
False

bytes.isascii ()

bytearray.isascii ()
Return True if the sequence is empty or all bytes in the sequence are ASCII, False otherwise. ASCII bytes are
in the range 0-Ox7F.

New in version 3.7.

bytes.isdigit ()

bytearray.isdigit ()
Return True if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, Fa 1l se otherwise.
ASCII decimal digits are those byte values in the sequence b'0123456789"'.

For example:

>>> p'1234"' .isdigit ()
True
>>> pb'1.23"'.isdigit ()
False

bytes.islower ()

66 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

bytearray.islower ()
Return True if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters,
False otherwise.

For example:

>>> b'hello world'.islower ()
True

>>> p'Hello world'.islower ()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.isspace ()

bytearray.isspace ()
Return True if all bytes in the sequence are ASCII whitespace and the sequence is not empty, False otherwise.
ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f"' (space, tab, newline,
carriage return, vertical tab, form feed).

bytes.istitle()

bytearray.istitle()
Return True if the sequence is ASCII titlecase and the sequence is not empty, False otherwise. See bytes.
title () for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle ()
True

>>> pb'Hello world'.istitle()
False

bytes.isupper ()

bytearray.isupper ()
Return True if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase ASCII
characters, False otherwise.

For example:

>>> Pp'HELLO WORLD'.isupper ()
True

>>> p'Hello world'.isupper ()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.lower ()

bytearray.lower ()
Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lowercase
counterpart.

For example:

>>> b'Hello World'.lower ()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 67

The Python Library Reference, Release 3.10.12

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.splitlines (keepends=False)

bytearray.splitlines (keepends=False)
Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the universal
newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and
true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines()

[b'ab ¢', b''", b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string, and
a terminal line break does not result in an extra line:

>>> b"" . split(b'\n'), b"Two lines\n".split(b'\n")
([""], [b'Two lines', b''])

>>> b"" . splitlines(), b"One line\n".splitlines ()
([]1, [b'One line'])

bytes.swapcase ()

bytearray.swapcase ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase
counterpart and vice-versa.

For example:

>>> b'Hello World'.swapcase ()
b'hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ .

Unlike str.swapcase (), it is always the case that bin.swapcase () . swapcase () == bin for the
binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary
Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.title()

bytearray.title()
Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the
remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

68 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The defi-
nition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries,
which may not be the desired result:

>>> pb"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(rb" [A-Za-z]+ (' [A-Za-z]+)2",
lambda mo: mo.group(0) [0:1] .upper () +
mo.group (0) [1:].lower (),
s)

>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.upper ()

bytearray.upper ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase
counterpart.

For example:

>>> b'Hello World'.upper ()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.z£ill (width)

bytearray.z£fill (width)
Return a copy of the sequence left filled with ASCII b ' 0 ' digits to make a sequence of length width. A leading sign
prefix (b'+'/b'-") is handled by inserting the padding after the sign character rather than before. For bytes
objects, the original sequence is returned if width is less than or equal to 1en (seq).

For example:

>>> p"42" . z£fi11 (5)
b'00042"
>>> p"-42" . z£fi11(5)
b'-0042"

4.8. Binary Sequence Types — bytes, bytearray, memoryview 69

The Python Library Reference, Release 3.10.12

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

4.8.4 printf-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such
as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary, wrap it in a
tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also known as
the bytes formatting or interpolation operator. Given format % values (Where format is a bytes object), $ conversion
specifications in format are replaced with zero or more elements of values. The effect is similar to using the sprint £ ()
in the C language.

If format requires a single argument, values may be a single non-tuple object.> Otherwise, values must be a tuple with
exactly the number of items specified by the format bytes object, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this order:
1. The '%"' character, which marks the start of the specifier.
2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' * ' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include a
parenthesised mapping key into that dictionary inserted immediately after the ' %' character. The mapping key selects
the value to be formatted from the mapping. For example:

o)

>>> print (b’ has quote types.' %
C. . {b'language': b"Python", b"number": 2})
b'Python has 002 gquote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
'#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).
' ' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
'+' | Asign character ('+"' or '-") will precede the conversion (overrides a “space” flag).

70 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to sd.

The conversion types are:

Conver- | Meaning Notes

sion

'd! Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. (D)

'u' Obsolete type — it is identical to 'd"'. ®)

'x! Signed hexadecimal (lowercase). 2)

X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

'F! Floating point decimal format. 3)

'g' Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G! Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'c! Single byte (accepts integer or single byte objects).

'b! Bytes (any object that follows the buffer protocol or has __bytes__ ()). (®)]

's! 's' is an alias for 'b ' and should only be used for Python2/3 code bases. 6)

'a' Bytes (converts any Python object using repr (obj) .encode ('ascii', "back- | (5)
slashreplace')).

'r! 'r' isan alias for 'a' and should only be used for Python2/3 code bases. @)

'y No argument is converted, results in a ' %' character in the result.

Notes:
(1) The alternate form causes a leading octal specifier (' 00 ") to be inserted before the first digit.

(2) The alternate form causes a leading ' 0x "' or '0X' (depending on whether the 'x"' or 'X' format was used) to
be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they
would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
(5) If precision is N, the output is truncated to N characters.
(6) b'%s" is deprecated, but will not be removed during the 3.x series.
(7) b'%xr" is deprecated, but will not be removed during the 3.x series.

(8) See PEP 237.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if no
changes were made.

See also:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 71

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.10.12

PEP 461 - Adding % formatting to bytes and bytearray

New in version 3.5.

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol without
copying.

class memoryview (object)

Create a memoryview that references object. object must support the buffer protocol. Built-in objects that support
the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating object.
For many simple types such as bytes and bytearray, an element is a single byte, but other types such as
array.array may have bigger elements.

len (view) isequal to thelengthof tolist. If view.ndim = O, thelengthis . If view.ndim = 1, the
length is equal to the number of elements in the view. For higher dimensions, the length is equal to the length of
the nested list representation of the view. The itemsize attribute will give you the number of bytes in a single
element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a subview:

>>> v = memoryview (b'abcefg')
>>> v[1]

98

>>> v[-1]

103

>>> v[1:4]

<memory at 0x7£3ddc9f4350>
>>> bytes(v[1:4])

b'bce’

If format is one of the native format specifiers from the st ruct module, indexing with an integer or a tuple of
integers is also supported and returns a single element with the correct type. One-dimensional memoryviews can
be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with tuples of
exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can be indexed
with the empty tuple.

Here is an example with a non-byte format:

>>> import array

>>> a = array.array('l', [-11111111, 22222222, —-33333333, 444444447)
>>> m = memoryview (a)

>>> m[0]

-11111111

>>> m[-1]

44444444

>>> m[::2].tolist ()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is not
allowed:

>>> data = bytearray(b'abcefg')
>>> v = memoryview (data)

(continues on next page)

72

Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0461

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

>>> v[l1:4] = b'123"

>>> data

bytearray (b'z123fg"')

>>> v[2:3] = b'spamn'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview assignment: lvalue and rvalue have different structures

>>> v[2:6] = b'spam'

>>> data

bytearray (b'zlspam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The hash

is defined as hash (m) == hash (m.tobytes()):
>>> v = memoryview (b'abcefg')

>>> hash(v) == hash(b'abcefg'")

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews with
formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc. Sequence
Changed in version 3.5: memoryviews can now be indexed with tuple of integers.
memoryview has several methods:

__eq __ (exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of struct format strings currently supported by tolist (), v and w are equal if v.

tolist () == w.tolist():

>>> import array

>>> a = array.array('1', [1, 2, 3, 4, 5])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> ¢ = array.array('b', [5, 3, 11)

>>> x = memoryview(a)

>>> y = memoryview (b)

>>> x == a == y ==

True

>>> x.tolist () == a.tolist() == y.tolist () == b.tolist ()
True

>>> 7z = y[::-2]

>>> z == C

True

>>> z.tolist () == c.tolist ()

True

4.8. Binary Sequence Types — bytes, bytearray, memoryview 73

https://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.10.12

If either format string is not supported by the st ruct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :
fields = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)

>>> b = memoryview (point)

>>> a == point

False

>>> a == D

False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and the
logical array structure.

tobytes (order=None)

Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted to
bytes. tobytes () supports all format strings, including those that are not in st ruct module syntax.

New in version 3.8: order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is
converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory. In
particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to C first.
order=None is the same as order="C".

hex ([sep[, bytes _per_sep]])

Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview (b"abc")
>>> m.hex ()
'616263"

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), memoryview. hex () now supports optional sep and
bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist ()

Return the data in the buffer as a list of elements.

>>> memoryview(b'abc') .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.31)
>>> m = memoryview(a)

>>> m.tolist ()

(1.1, 2.2, 3.3]

74

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

toreadonly ()
Return a readonly version of the memoryview object. The original memoryview object is unchanged.

>>> m = memoryview (bytearray (b'abc'))

>>> mm = m.toreadonly ()

>>> mm.tolist ()

[89, 98, 99]

>>> mm[0] = 42

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot modify read-only memory

>>> m[0] = 43

>>> mm.tolist ()

[43, 98, 99]

New in version 3.8.

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
a view is held on them (for example, a bytearray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except re—
lease () itself which can be called multiple times):

>>> m = memoryview (b'abc')
>>> m.release ()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview (b'abc') as m:
m[0]

97

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast (format[, shape])
Cast a memoryview to a new format or shape. shape defaults to [byte_length//new_itemsizel],
which means that the result view will be one-dimensional. The return value is a new memoryview, but the
buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in st ruct syntax. One of the formats
must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the original length.

Cast 1D/long to 1D/unsigned bytes:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 75

The Python Library Reference, Release 3.10.12

>>> import array

>>> a = array.array('l', [1,2,3])
>>> x = memoryview(a)

>>> x.format

R

>>> x.itemsize

>>> len (X)

>>> x.nbytes
24
>>> = x.cast('B")
>>> y.format

B

>>> y.itemsize

=

>>> len(y)
24

>>> y.nbytes
24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz")
>>> x = memoryview (b)
>>> x[0] = b'a'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format "B"

>>> y = x.cast('c')
>>> y[0] = Db'a'
>>> Db

bytearray(b'ayz')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

>>> buf = struct.pack("i"*12, *1list (range(12)))
>>> x = memoryview (buf)

>>> y = x.cast('i', shape=[2,2,3])

>>> y.tolist ()

(reo, 1, 21, I3, 4, 511, I[[e6, 7, 81, [9, 10, 1111]]
>>> y.format

lil

>>> y.itemsize

>>> len(y)

>>> y.nbytes

48

>>> z = y.cast('b")
>>> z.format

lbl

>>> z.itemsize

>>> len(z)
48

(continues on next page)

76

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> z.nbytes
48

Cast 1D/unsigned long to 2D/unsigned long:

>>> buf = struct.pack("L"*6,
>>> x = memoryview (buf)

>>> y = x.cast('L', shape=[2,
>>> len(y)

2

>>> y.nbytes

48

>>> y.tolist ()

[ro, 1, 21, [3, 4, 511

*list (range (6)))

31)

New in version 3.3.

Changed in version 3.5: The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available:

obj

The underlying object of the memoryview:

>>> b = bytearray(b'xyz"')
>>> m memoryview (b)
>>> m.obj is b

True

New in version 3.3.

nbytes
nbytes == product (shape)

* itemsize

len (m.tobytes ()). This is the amount of

space in bytes that the array would use in a contiguous representation. It is not necessarily equal to len (m) :

>>> import array
a array.array('i',

m memoryview (a)

>>>

>>> =
>>>
5
>>>
20

>>>

len (m)

m.nbytes

y = m[::2]
>>> len(y)
3
>>>
12
>>>

12

y.nbytes

len(y.tobytes())

(1,2,3,4,51)

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack("d"*12,
>>> x = memoryview (buf)

>>> y = x.cast('d', shape=[3,
>>> y.tolist ()

[([0.0, 1.5, 3.0, 4.5], [6.0,

*[1.5%x for x in range(12)])

41)

7.5, 9.0, 10.51, [12.0, 13.5, 15.0, 16.5]]

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview

77

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> len(y)

3

>>> y.nbytes
96

New in version 3.3.

readonly
A bool indicating whether the memory is read only.

format
A string containing the format (in st ruct module style) for each element in the view. A memoryview can
be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are restricted
to native single element formats.

Changed in version 3.3: format 'B' is now handled according to the struct module syntax. This means that
memoryview (b'abc') [0] == b'abc'[0] == 97.

itemsize
The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview (array.array ('H', [32000, 32001, 320021))
>>> m.itemsize

2

>>> m[0]

32000

>>> struct.calcsize('H') == m.itemsize

True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension of
the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.

New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous.

New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.

New in version 3.3.

78 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, removing
duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric
difference. (For other containers see the built-in dict, 1ist, and tuple classes, and the collect ions module.)

Like other collections, sets support x in set, len(set),and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used as
either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its contents
cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for example:
{'"jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable][)
class frozenset (iterable])
Return a new set or frozenset object whose elements are taken from iferable. The elements of a set must be hashable.
To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a new empty set
is returned.

Sets can be created by several means:
* Use a comma-separated list of elements within braces: { ' jack', 'sjoerd'}
» Use a set comprehension: {c¢ for c in 'abracadabra' if c¢ not in 'abc'}
» Use the type constructor: set (), set (' foobar'),set(['a', 'b', 'foo'l])
Instances of set and frozenset provide the following operations:

len (s)
Return the number of elements in set s (cardinality of s).

x in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersection
is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, thatis, set >= other and set != other.

4.9. Set Types — set, frozenset 79

The Python Library Reference, Release 3.10.12

union (*others)
set | other |
Return a new set with elements from the set and all others.

intersection (*others)
set & other &
Return a new set with elements common to the set and all others.

difference (*others)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set ~ other
Return a new set with elements in either the set or other but not both.

copy ()
Return a shallow copy of the set.

Note, the non-operator versions of union(), intersection(), difference(), symmet-—
ric_difference (), issubset (), and issuperset () methods will accept any iterable as an
argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes
error-prone constructions like set ('abc') & 'cbs' in favor of the more readable set ('abc') .
intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first
set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if
the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For example, set ('abc!')
== frozenset ('abc') returns True and so does set ('abc') in set ([frozenset ('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two nonempty
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==Db, or
a>b.

Since sets only define partial ordering (subset relationships), the output of the 11 st . sort () method is undefined
for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ('ab') | set ('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (*others)
set |= other |
Update the set, adding elements from all others.

intersection_update (*others)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (*others)
set —-= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set #= other
Update the set, keeping only elements found in either set, but not in both.

80

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update(), differ—
ence_update (), and symmetric difference_ update () methods will accept any iterable as
an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set. To
support searching for an equivalent frozenset, a temporary one is created from elem.

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only one
standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple classes, and the
collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictionaries
or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Values that
compare equal (such as 1, 1.0, and True) can be used interchangeably to index the same dictionary entry.

class dict (**kwargs)

class dict (mapping, **kwargs)

class dict (iterable, **kwargs)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

Dictionaries can be created by several means:

» Use a comma-separated list of key: value pairs within braces: {'jack': 4098, 'sjoerd':
4127} or {4098: 'Jack', 4127: 'sjoerd'}

e Use a dict comprehension: { }, {x: x ** 2 for x in range (10)}

¢ Use the type constructor: dict (),dict ([('foo', 100), ('bar', 200)]),dict (foo=100,
bar=200)

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the
positional argument must be an iterable object. Each item in the iterable must itself be an iterable with exactly two
objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding
value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new
dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from
the positional argument. If a key being added is already present, the value from the keyword argument replaces the
value from the positional argument.

4.10. Mapping Types — dict 81

The Python Library Reference, Release 3.10.12

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2, "three":
3}

>>> a = dict (one=1, two=2, three=3)

>>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 31))

>>> d = dict ([('two', 2), ('one', 1), ('three', 3)1)

>>> e = dict ({'three': 3, 'one': 1, 'two': 2})

>>> f = dict({'one': 1, 'three': 3}, two=2)

>>> g == b == c == == e ==

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers. Otherwise,
any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

list (d)
Return a list of all the keys used in the dictionary d.

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__ () and key is not present, the d [key] operation calls
that method with the key key as argument. The d [key] operation then returns or raises whatever is returned
or raised by the __missing__ (key) call. No other operations or methods invoke __missing__ ().
If __missing__ () isnotdefined, KeyErrorisraised. __missing__ () must be a method; it cannot
be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):

.. return 0
>>> ¢ Counter ()
>>> c['red']

0

>>> c['red'] += 1
>>> c['red']

The example above shows part of the implementation of collections.Counter. Adifferent __miss—
ing__ methodisused by collections.defaultdict.

d[key] = value
Set d[key] to value.

del dlkey]
Remove d [key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter (d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

82

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (iterable[, value])
Create a new dictionary with keys from iferable and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None. All of the values
refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as an
empty list. To get distinct values, use a dict comprehension instead.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None, so
that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view objects.

keys ()
Return a new view of the dictionary’s keys. See the documentation of view objects.

pop (key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and key is
not in the dictionary, a KeyError is raised.

popitem ()
Remove andreturna (key, wvalue) pair from the dictionary. Pairs are returned in LIFO (last-in, first-out)
order.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictio-
nary is empty, calling popitem () raises a KeyError.

Changed in version 3.7: LIFO order is now guaranteed. In prior versions, popitem () would return an
arbitrary key/value pair.

reversed (d)
Return a reverse iterator over the keys of the dictionary. This is a shortcut for reversed (d.keys ()).

New in version 3.8.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default. default
defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other iter-
ables of length two). If keyword arguments are specified, the dictionary is then updated with those key/value
pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

An equality comparison between one dict .values () view and another will always return False. This
also applies when comparing dict .values () to itself:

>>> d = {'a': 1}
>>> d.values () == d.values|{()
False

4.10. Mapping Types — dict 83

The Python Library Reference, Release 3.10.12

d | other
Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries.
The values of other take priority when d and other share keys.

New in version 3.9.

d |= other
Update the dictionary d with keys and values from other, which may be either a mapping or an iterable of
key/value pairs. The values of other take priority when d and other share keys.

New in version 3.9.

Dictionaries compare equal if and only if they have the same (key, wvalue) pairs (regardless of ordering).
Order comparisons (‘<’, ‘<=’, >=’, >’) raise TypeError.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after deletion
are inserted at the end.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (d)

['one', '"two', 'three', 'four']

>>> list (d.values())

(1, 2, 3, 4]
>>> d["one"] = 42
>>> d

{'one': 42, 'two': 2, 'three': 3, 'four': 4}
>>> del d["two"]

>>> d["two"] = None
>>> d
{'one': 42, 'three': 3, 'four': 4, 'two': None}

Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implementation
detail of CPython from 3.6.

Dictionaries and dictionary views are reversible.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (reversed(d))
['four', 'three', 'two', 'one']
>>> list (reversed(d.values()))

(4, 3, 2, 1]
>>> list (reversed(d.items()))
[("four', 4), ('three', 3), ('two', 2), ('one', 1)]

Changed in version 3.8: Dictionaries are now reversible.
See also:

types.MappingProxyType can be used to create a read-only view of a dict.

84 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

4.10.1 Dictionary view objects

The objects returned by dict.keys (), dict.values () and dict.items () are view objects. They provide a
dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes.
Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictionary.

Keys and values are iterated over in insertion order. This allows the creation of (value, key) pairs using
zip(): pairs = zip(d.values(), d.keys()). Another way to create the same list is pairs =
[(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a RuntimeError or fail to iterate
over all entries.

Changed in version 3.7: Dictionary order is guaranteed to be insertion order.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

reversed (dictview)
Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse order
of the insertion.

Changed in version 3.8: Dictionary views are now reversible.

dictview.mapping
Return a t ypes. MappingProxyType that wraps the original dictionary to which the view refers.

New in version 3.10.

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since the entries
are generally not unique.) For set-like views, all of the operations defined for the abstract base class collections.
abc. Set are available (for example, ==, <, or).

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys ()
>>> values = dishes.values|()

>>> # iteration

>>n = 0

>>> for val in values:
. n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order (insertion order)
>>> list (keys)

['eggs', 'sausage', 'bacon', 'spam']

>>> list (values)

(2, 1, 1, 500]

(continues on next page)

4.10. Mapping Types — dict 85

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> # view objects are dynamic and reflect dict changes
>>> del dishes|['eggs']

>>> del dishes|['sausage']

>>> list (keys)

['"bacon', 'spam']

>>> # set operations

>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}

>>> keys ©~ {'sausage', 'Jjuice'}
{'juice', 'sausage', 'bacon', 'spam'}

>>> # get back a read-only proxy for the original dictionary
>>> values.mapping

mappingproxy ({ 'bacon': 1, 'spam': 500})

>>> values.mapping['spam']

500

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is implemented
using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement
body is executed and exited when the statement ends:

contextmanager.__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The value
returned by this method is bound to the identifier in the as clause of with statements using this context manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __enter__()
to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the with
statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body of the with statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues prop-
agating after this method has finished executing. Exceptions that occur during execution of this method will replace
any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code to easily detect whether ornotan ___exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other objects,
and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially beyond
their implementation of the context management protocol. See the context 11ib module for some examples.

Python’s generators and the context1ib. contextmanager decorator provide a convenient way to implement these
protocols. If a generator function is decorated with the context1ib.contextmanager decorator, it will return

86 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

a context manager implementing the necessary __enter_ () and __exit__ () methods, rather than the iterator
produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C APL
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

4.12 Type Annotation Types — Generic Alias, Union

The core built-in types for type annotations are Generic Alias and Union.

4.12.1 Generic Alias Type

GenericAlias objects are generally created by subscripting a class. They are most often used with container classes,
suchas 1istordict. Forexample, list [int] isa GenericAlias object created by subscripting the 1i st class
with the argument int. GenericAlias objects are intended primarily for use with rype annotations.

Note: It is generally only possible to subscript a class if the class implements the special method
__class_getitem__ ().

A GenericAlias object acts as a proxy for a generic type, implementing parameterized generics.

For a container class, the argument(s) supplied to a subscription of the class may indicate the type(s) of the elements an
object contains. For example, set [bytes] can be used in type annotations to signify a set in which all the elements
are of type bytes.

For a class which defines __class_getitem__ () butis not a container, the argument(s) supplied to a subscription
of the class will often indicate the return type(s) of one or more methods defined on an object. For example, reqgular
expressions can be used on both the st r data type and the bytes data type:

e Ifx = re.search('foo', 'foo'), x will be a re.Match object where the return values of x .group (0)
and x [0] will both be of type st r. We can represent this kind of object in type annotations with the Generi-
cAlias re.Match[str].

e Ify = re.search(b'bar', b'bar'), (note the b for bytes), y will also be an instance of re .Match,
but the return values of yv.group (0) and y [0] will both be of type bytes. In type annotations, we would
represent this variety of re.Match objects with re .Match [bytes].

GenericAlias objects are instances of the class types.GenericAlias, which can also be used to create
GenericAlias objects directly.

TIX, Y, ...]
Creates a GenericAlias representing a type T parameterized by types X, Y, and more depending on the T used.
For example, a function expecting a 1 i st containing f1oat elements:

def average(values: list[float]) -> float:
return sum(values) / len(values)

Another example for mapping objects, using a dict, which is a generic type expecting two type parameters rep-
resenting the key type and the value type. In this example, the function expects a dict with keys of type st r and
values of type int:

def send_post_request (url: str, body: dict[str, int]) -> None:

4.12. Type Annotation Types — Generic Alias, Union 87

The Python Library Reference, Release 3.10.12

The builtin functions i sinstance () and issubclass () do not accept GenericAlias types for their second
argument:

>>> isinstance([1, 2], list[str])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance () argument 2 cannot be a parameterized generic

The Python runtime does not enforce 7ype annotations. This extends to generic types and their type parameters. When
creating a container object from a GenericAlias, the elements in the container are not checked against their type.
For example, the following code is discouraged, but will run without errors:

>>> t = list[str]
>>> t([1, 2, 31)
[1, 2, 3]

Furthermore, parameterized generics erase type parameters during object creation:

>>> t = list([str]
>>> type (t)
<class 'types.GenericAlias'>

>>> 1 = t()
>>> type (1)
<class 'list'>

Calling repr () or str () on a generic shows the parameterized type:

>>> repr(list[int])
'list[int]"'

>>> str(list[int])
'list[int]"'

The _ _getitem__ () method of generic containers will raise an exception to disallow mistakes like
dict[str] [str]:

>>> dict[str] [str]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: There are no type variables left in dict[str]

However, such expressions are valid when type variables are used. The index must have as many elements as there are
type variable items in the GenericAlias object’s ___args__ .

>>> from typing import TypeVar
>>> Y = TypeVar ('Y")

>>> dict[str, Y][int]
dict[str, int]

88 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

Standard Generic Classes

The following standard library classes support parameterized generics. This list is non-exhaustive.

* tuple
e]list
e dict
* set

e frozenset

* type

e collections.
e collections.
* collections.
e collections.
e collections.
* collections.
* collections.
e collections.
e collections.
* collections.
e collections.
e collections.
e collections.
* collections.
e collections.
e collections.
* collections.
e collections.
e collections.
e collections.
* collections.
e collections.
e collections.
* collections.
e collections.
e collections.
e collections.

e collections.

deque

defaultdict
OrderedDict
Counter

ChainMap
abc.Awaitable
abc.Coroutine
abc.AsyncIterable
abc.AsyncIterator
abc.AsyncGenerator
abc.Iterable
abc.Iterator
abc.Generator
abc.Reversible
abc.Container
abc.Collection
abc.Callable

abc. Set
abc.MutableSet
abc.Mapping
abc.MutableMapping
abc.Sequence
abc.MutableSequence
abc.ByteString
abc.MappingView
abc.KeysView
abc.ItemsView

abc.ValuesView

4.12. Type Annotation Types — Generic Alias, Union

89

The Python Library Reference, Release 3.10.12

contextlib.AbstractContextManager
contextlib.AbstractAsyncContextManager
dataclasses.Field
functools.cached_property
functools.partialmethod
os.PathLike

queue.LifoQueue

queue.Queue

queue.PriorityQueue
queue.SimpleQueue

re.Pattern

re.Match

shelve.BsdDbShelf
shelve.DbfilenameShelf
shelve.Shelf
types.MappingProxyType
weakref.WeakKeyDictionary
weakref.WeakMethod
weakref.WeakSet

weakref.WeakValueDictionary

Special Attributes of GenericAlias objects

All parameterized generics implement special read-only attributes.

genericalias.__origin

This attribute points at the non-parameterized generic class:

>>> list[int].__origin___
<class 'list'>

genericalias.__args

This attribute is a t up 1 e (possibly of length 1) of generic types passed to the original __class_getitem__ ()
of the generic class:

>>> dict[str, list[int]].__args__
(<class 'str'>, list[int])

genericalias.__parameters___

This attribute is a lazily computed tuple (possibly empty) of unique type variables found in __args__:

>>> from typing import TypeVar

>>> T = TypeVar ('T")

(continues on next page)

90

Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> 1ist[T].__parameters___
(NT/)

Note: A GenericAlias object with t yping.ParamSpec parameters may not have correct __parame-—
ters___ after substitution because t yping.ParamSpec is intended primarily for static type checking.

See also:
PEP 484 - Type Hints Introducing Python’s framework for type annotations.

PEP 585 - Type Hinting Generics In Standard Collections Introducing the ability to natively parameterize standard-
library classes, provided they implement the special class method __class_getitem__ ().

Generics, user-defined generics and typing.Generic Documentation on how to implement generic classes that can
be parameterized at runtime and understood by static type-checkers.

New in version 3.9.

4.12.2 Union Type

A union object holds the value of the | (bitwise or) operation on multiple type objects. These types are intended primarily
for type annotations. The union type expression enables cleaner type hinting syntax compared to t yping. Union.

X | Y|
Defines a union object which holds types X, Y, and so forth. X | Y means either X or Y. It is equivalent to
typing.Union[X, Y].Forexample, the following function expects an argument of type int or float:

def square (number: int | float) —-> int | float:
return number ** 2

union_object == other
Union objects can be tested for equality with other union objects. Details:

¢ Unions of unions are flattened:

’(int | str) | float == int | str | float

¢ Redundant types are removed:

int | str | int == int | str

* When comparing unions, the order is ignored:

int | str == str | int

e It is compatible with t yping. Union:

int | str == typing.Union[int, str]

* Optional types can be spelled as a union with None:

str | None == typing.Optional[str]

isinstance (obj, union_object)

4.12. Type Annotation Types — Generic Alias, Union 91

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

The Python Library Reference, Release 3.10.12

issubclass (obj, union_object)
Callsto isinstance () and issubclass () are also supported with a union object:

>>> isinstance("", int | str)
True

However, union objects containing parameterized generics cannot be used:

>>> isinstance (1, int | list[int])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance () argument 2 cannot contain a parameterized generic

The user-exposed type for the union object can be accessed from ¢t ypes. UnionType and used for isinstance ()
checks. An object cannot be instantiated from the type:

>>> import types
>>> isinstance (int | str, types.UnionType)
True
>>> types.UnionType ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot create 'types.UnionType' instances

Note: The __or__ () method for type objects was added to support the syntax X | Y. If a metaclass implements
__or__ (), the Union may override it:

>>> class M(type):
def _ or_ (self, other):
return "Hello"

>>> class C(metaclass=M) :
pass

>>> C | int

'Hello'

>>> int | C
int | __main__ .C

See also:
PEP 604 — PEP proposing the X | Y syntax and the Union type.

New in version 3.10.

4.13 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

92 Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0604

The Python Library Reference, Release 3.10.12

4.13.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather it
requires an (external) definition for a module named foo somewhere.)

A special attribute of every moduleis ___dict__ . Thisis the dictionary containing the module’s symbol table. Modifying
this dictionary will actually change the module’s symbol table, but direct assignment to the ___dict___ attribute is not
possible (you can writem.__dict__['a'] = 1, whichdefinesm.a tobe 1, butyoucan’t writem.__dict__ =
{}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file, they
are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.13.2 Classes and Class Instances

See objects and class for these.

4.13.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.13.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a bound
method (also called instance method) object. When called, it will add the se1f argument to the argument list. Bound
methods have two special read-only attributes: m.___self_ _ is the object on which the method operates, and m.
__ func__is the function implementing the method. Callingm(arg-1, arg-2, ..., arg-n) is completely
equivalent to callingm.__ func__ (m.__self_, arg-1, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__func__), setting method attributes on bound methods is
disallowed. Attempting to set an attribute on a method results in an At t ributeError being raised. In order to set a
method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self):
pass
>>> ¢ = C{()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'

(continues on next page)

4.13. Other Built-in Types 93

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> c.method. func_ .whoami = 'my name is method'
>>> c.method.whoami
'my name is method'

See types for more information.

4.13.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a function
body. They differ from function objects because they don’t contain a reference to their global execution environment.
Code objects are returned by the built-in compi e () function and can be extracted from function objects through their
___code___ attribute. See also the code module.

Accessing ___code___raises an auditing event object .__getattr___ with arguments obj and "__code__".

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval () built-in
functions.

See types for more information.

4.13.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There are
no special operations on types. The standard module ¢ ypes defines names for all standard built-in types.

Types are written like this: <class 'int'>.

4.13.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is exactly
one null object, named None (a built-in name). t ype (None) () produces the same singleton.

It is written as None.

4.13.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named £E11ipsis (abuilt-in name). type (E11lipsis) () producesthe £111ipsis singleton.

Itis writtenas El11lipsisor.. ..

4.13.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types they
don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

94 Chapter 4. Built-in Types

The Python Library Reference, Release 3.10.12

4.13.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although other
values can also be considered false or true). In numeric contexts (for example when used as the argument to an arithmetic
operator), they behave like the integers O and 1, respectively. The built-in function bool () can be used to convert any
value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written as False and True, respectively.

4.13.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.14 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of these
are not reported by the dir () built-in function.

object.__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class__
The class to which a class instance belongs.

class.__bases__
The tuple of base classes of a class object.

definition._ _name_
The name of the class, function, method, descriptor, or generator instance.

definition.__qualname_
The qualified name of the class, function, method, descriptor, or generator instance.

New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is called
at class instantiation, and its result is stored in __mro

class.__subclasses__ ()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. The list is in definition order. Example:

>>> int._ subclasses__ ()
[<class 'bool'>]

4.14. Special Attributes 95

The Python Library Reference, Release 3.10.12

4.15 Integer string conversion length limitation

CPython has a global limit for converting between int and st r to mitigate denial of service attacks. This limit only
applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are unlimited.
The limit can be configured.

The int type in CPython is an arbitrary length number stored in binary form (commonly known as a “bignum”). There
exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless the base
is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a large value
suchasint ("1' * 500_000) can take over a second on a fast CPU.

Limiting conversion size offers a practical way to avoid CVE-2020-10735.

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion algorithm
would be involved. Underscores and the sign are not counted towards the limit.

When an operation would exceed the limit, a ValueError is raised:

>>> import sys
>>> sys.set_int_max_str_digits (4300) # Illustrative, this 1is the default.
>>> = int ('2' * 5432)

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 5432.
—digits; use sys.set_int_max_str_digits() to increase the limit.

>>> 1 = int('2' * 4300)

>>> len(str(i))

4300

>>> 1 _squared = 1i*i

>>> len(str (i_squared))

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 8599.
—digits; use sys.set_int_max_str_digits() to increase the limit.

>>> len (hex (i_squared))

7144

>>> assert int (hex (i_squared), base=16) == 1*i1 # Hexadecimal is unlimited.

The default limit is 4300 digits as provided in sys.int_info.default_max_str_digits. The lowest limit
that can be configured is 640 digits as provided in sys. int_info.str_digits_check_threshold.

Verification:

>>> import sys

>>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info

>>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info

>>> msg = int ('578966293710682886880994035146873798396722250538762761564"
'9252925514383915483333812743580549779436104706260696366600"
'571186405732") .to_bytes (53, 'big'")

New in version 3.10.7.

96 Chapter 4. Built-in Types

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735

The Python Library Reference, Release 3.10.12

4.15.1 Affected APIs

The limitation only applies to potentially slow conversions between int and str or bytes:
e int (string) with default base 10.
e int (string, base) for all bases that are not a power of 2.
* str (integer).
* repr (integer).

* any other string conversion to base 10, for example £" {integer}", "{}".format (integer),orb"%d"

[o)

% integer.
The limitations do not apply to functions with a linear algorithm:
e int (string, base) with base 2,4, 8, 16, or 32.
e int.from bytes () and int.to_bytes ().
e hex(),oct(),bin().
» Format Specification Mini-Language for hex, octal, and binary numbers.
e strto float.

e strtodecimal.Decimal.

4.15.2 Configuring the limit

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the limit:

e PYTHONINTMAXSTRDIGITS, e.g. PYTHONINTMAXSTRDIGITS=640 python3 to set the limit to 640 or
PYTHONINTMAXSTRDIGITS=0 python3 to disable the limitation.

* —X int_max_str_digits,e.g python3 -X int_max_str_digits=640

e sys.flags.int_max_str_digits contains the value of PYTHONINTMAXSTRDIGITS or -X
int_max_str_digits. If both the env var and the —X option are set, the —X option takes precedence. A
value of -/ indicates that both were unset, thus a value of sys.int_info.default_max_str_digits
was used during initialization.

From code, you can inspect the current limit and set a new one using these sy s APIs:

e sys.get_int_max_str_digits() and sys.set_int_max_str_digits () are a getter and setter
for the interpreter-wide limit. Subinterpreters have their own limit.

Information about the default and minimum can be found in sys. int_info:
* sys.int_info.default_max_str_digits isthe compiled-in default limit.

e sys.int_info.str _digits_check_threshold isthe lowestaccepted value for the limit (other than O
which disables it).

New in version 3.10.7.

Caution: Setting a low limit can lead to problems. While rare, code exists that contains integer constants in decimal
in their source that exceed the minimum threshold. A consequence of setting the limit is that Python source code
containing decimal integer literals longer than the limit will encounter an error during parsing, usually at startup time
or import time or even at installation time - anytime an up to date .pyc does not already exist for the code. A
workaround for source that contains such large constants is to convert them to 0x hexadecimal form as it has no limit.

4.15. Integer string conversion length limitation 97

The Python Library Reference, Release 3.10.12

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the environment
or flag so that it applies during startup and even during any installation step that may invoke Python to precompile
. py sources to . pyc files.

4.15.3 Recommended configuration

The default sys.int_info.default_max_str_digits is expected to be reasonable for most applications. If
your application requires a different limit, set it from your main entry point using Python version agnostic code as these
APIs were added in security patch releases in versions before 3.11.

Example:

>>> import sys
>>> if hasattr(sys, "set_int_max_str_digits"):
upper_bound = 68000
lower_bound = 4004
current_limit = sys.get_int_max_str_digits()
if current_limit == 0 or current_limit > upper_bound:
sys.set_int_max_str_digits (upper_bound)
elif current_limit < lower_bound:
sys.set_int_max_str_digits (lower_bound)

If you need to disable it entirely, set it to O.

98 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that class
(but not exception classes from which i is derived). Two exception classes that are not related via subclassing are never
equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several items
of information (e.g., an error code and a string explaining the code). The associated value is usually passed as arguments
to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition “just
like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent user code
from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Except ion class or one of its subclasses, and not from BaseExcept i on. More information on
defining exceptions is available in the Python Tutorial under tut-userexceptions.

5.1 Exception context

When raising a new exception while another exception is already being handled, the new exception’s ___context___
attribute is automatically set to the handled exception. An exception may be handled when an except or finally
clause, or a with statement, is used.

This implicit exception context can be supplemented with an explicit cause by using £ rom with raise:

raise new_exc from original_exc

The expression following from must be an exception or None. It will be set as __cause___ on the raised exception.
Setting ___cause___ also implicitly sets the __suppress_context___ attribute to True, so that using raise
new_exc from None effectively replaces the old exception with the new one for display purposes (e.g. converting
KeyError to AttributeError), while leaving the old exception available in __context___ for introspection
when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception itself.
An explicitly chained exception in ___cause___ is always shown when present. An implicitly chained exception in
__context__isshownonlyif _ cause__is Noneand __suppress_context__ is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the traceback
always shows the last exception that was raised.

99

The Python Library Reference, Release 3.10.12

5.2 Inheriting from built-in exceptions

User code can create subclasses that inherit from an exception type. It’s recommended to only subclass one exception
type at a time to avoid any possible conflicts between how the bases handle the args attribute, as well as due to possible
memory layout incompatibilities.

CPython implementation detail: Most built-in exceptions are implemented in C for efficiency, see: Ob-
jects/exceptions.c. Some have custom memory layouts which makes it impossible to create a subclass that inherits from
multiple exception types. The memory layout of a type is an implementation detail and might change between Python
versions, leading to new conflicts in the future. Therefore, it’s recommended to avoid subclassing multiple exception types
altogether.

5.3 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for that,
use Exception). If str() is called on an instance of this class, the representation of the argument(s) to the
instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError) expect
a certain number of arguments and assign a special meaning to the elements of this tuple, while others are
usually called only with a single string giving an error message.

with_traceback (1)
This method sets tb as the new traceback for the exception and returns the exception object. It was more com-
monly used before the exception chaining features of PEP 3134 became available. The following example
shows how we can convert an instance of SomeExcept ion into an instance of OtherException while
preserving the traceback. Once raised, the current frame is pushed onto the traceback of the OtherEx—
ception, as would have happened to the traceback of the original SomeExcept ion had we allowed it to
propagate to the caller.

try:

except SomeException:
tb = sys.exc_info() [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also be
derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError, Ze—
roDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. Iookup ().

100 Chapter 5. Built-in Exceptions

https://github.com/python/cpython/tree/3.10/Objects/exceptions.c
https://github.com/python/cpython/tree/3.10/Objects/exceptions.c
https://www.python.org/dev/peps/pep-3134

The Python Library Reference, Release 3.10.12

5.4 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not support
attribute references or attribute assignments at all, TypeError is raised.)

The name and ob7j attributes can be set using keyword-only arguments to the constructor. When set they represent
the name of the attribute that was attempted to be accessed and the object that was accessed for said attribute,
respectively.

Changed in version 3.10: Added the name and ob 7 attributes.

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.: the
io.IOBase.read () and io.IOBase.readline () methods return an empty string when they hit EOF.)

exception FloatingPointError
Not currently used.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close () and coroutine.close (). It
directly inherits from BaseExcept ion instead of Except ion since it is technically not an error.

exception ImportError
Raised when the import statement has troubles trying to load a module. Also raised when the “from list” in £rom
import has a name that cannot be found.

The name and path attributes can be set using keyword-only arguments to the constructor. When set they rep-
resent the name of the module that was attempted to be imported and the path to any file which triggered the
exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError
A subclass of TmportError which is raised by import when a module could not be located. It is also raised
when None is found in sys.modules.

New in version 3.6.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed range;
if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check for
interrupts is made regularly. The exception inherits from BaseException so as to not be accidentally caught
by code that catches Except ion and thus prevent the interpreter from exiting.

Note: Catching a KeyboardInterrupt requires special consideration. Because it can be raised at unpre-
dictable points, it may, in some circumstances, leave the running program in an inconsistent state. It is generally

5.4. Concrete exceptions 101

The Python Library Reference, Release 3.10.12

best to allow KeyboardInterrupt to end the program as quickly as possible or avoid raising it entirely. (See
Note on Signal Handlers and Exceptions.)

exception MemoryError

Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’s malloc () function), the interpreter may not always be
able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback can be
printed, in case a run-away program was the cause.

exception NameError

Raised when a local or global name is not found. This applies only to unqualified names. The associated value is
an error message that includes the name that could not be found.

The name attribute can be set using a keyword-only argument to the constructor. When set it represent the name
of the variable that was attempted to be accessed.

Changed in version 3.10: Added the name attribute.

exception NotImplementedError

This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise this
exception when they require derived classes to override the method, or while the class is being developed to indicate
that the real implementation still needs to be added.

Note: It should not be used to indicate that an operator or method is not meant to be supported at all — in that case
either leave the operator / method undefined or, if a subclass, set it to None.

Note: NotImplementedError and NotImplemented are not interchangeable, even though they have
similar names and purposes. See Not Implemented for details on when to use it.

exception OSError ([arg])
exception OSError (errno, strerror[, ﬁlename[, winerror[, ﬁlenameZ]]])

This exception is raised when a system function returns a system-related error, including I/O failures such as “file
not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default to
None if not specified. For backwards compatibility, if three arguments are passed, the a rgs attribute contains
only a 2-tuple of the first two constructor arguments.

The constructor often actually returns a subclass of OSErrozr, as described in OS exceptions below. The particular
subclass depends on the final errno value. This behaviour only occurs when constructing OSError directly or
via an alias, and is not inherited when subclassing.

errno
A numeric error code from the C variable errno.

winerror
Under Windows, this gives you the native Windows error code. The e rrno attribute is then an approximate
translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the e rrno attribute is determined from
the Windows error code, and the errno argument is ignored. On other platforms, the winerror argument is
ignored, and the winerror attribute does not exist.

102

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.10.12

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror () under POSIX, and FormatMessage () under Windows.

filename

filename2
For exceptions that involve a file system path (such as open () or os.unlink ()), filename is the file
name passed to the function. For functions that involve two file system paths (such as os. rename ()),
filenameZ2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error, select.
error and mmap . error have been merged into OSError, and the constructor may return a subclass.

Changed in version 3.4: The i 1ename attribute is now the original file name passed to the function, instead of
the name encoded to or decoded from the filesystem encoding and error handler. Also, the filename2 constructor
argument and attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is some-
times raised for integers that are outside a required range. Because of the lack of standardization of floating point
exception handling in C, most floating point operations are not checked.

exception RecursionError
This exception is derived from RuntimeError. It is raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit ()) is exceeded.

New in version 3.5: Previously, a plain Runt imeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StoplIteration
Raised by built-in function next () and an iterator's __next__ () method to signal that there are no further
items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the exception,
and defaults to None.

When a generator or coroutine function returns, anew St opIterat ion instance is raised, and the value returned
by the function is used as the value parameter to the constructor of the exception.

If a generator code directly or indirectly raises StopIteration, itis converted into a RuntimeError (re-
taining the StopIteration as the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a value.

Changed in version 3.5: Introduced the RuntimeError transformation via from __future_ import gen-
erator_stop, see PEP 479.

Changed in version 3.7: Enable PEP 479 for all code by default: a StopTteration error raised in a generator
is transformed into a RuntimeError.

exception StopAsyncIteration
Must be raised by ___anext___ () method of an asynchronous iterator object to stop the iteration.

5.4. Concrete exceptions 103

https://www.python.org/dev/peps/pep-0479
https://www.python.org/dev/peps/pep-0479

The Python Library Reference, Release 3.10.12

New in version 3.5.

exception SyntaxError (message, details)

Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions compile (), exec (), or eval (), or when reading the initial script or standard input (also
interactively).

The str () of the exception instance returns only the error message. Details is a tuple whose members are also
available as separate attributes.

filename
The name of the file the syntax error occurred in.

lineno
Which line number in the file the error occurred in. This is 1-indexed: the first line in the file has a 1ineno
of 1.

offset
The column in the line where the error occurred. This is 1-indexed: the first character in the line has an
offset of 1.

text
The source code text involved in the error.

end_lineno
Which line number in the file the error occurred ends in. This is 1-indexed: the first line in the file has a
lineno of 1.

end_offset
The column in the end line where the error occurred finishes. This is 1-indexed: the first character in the line
has an of fset of 1.

For errors in f-string fields, the message is prefixed by “f-string: ” and the offsets are offsets in a text constructed
from the replacement expression. For example, compiling f"Bad {a b} field’ results in this args attribute: (‘f-string:
5012, (@b, 1, 5)).

Changed in version 3.10: Added the end_1inenoand end_offset attributes.

exception IndentationError

Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError

Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of Tndentation-—
Error.

exception SystemError

Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to abandon
all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of the
Python interpreter (sys . version;itis also printed at the start of an interactive Python session), the exact error
message (the exception’s associated value) and if possible the source of the program that triggered the error.

exception SystemExit

This exception is raised by the sys.exit () function. It inherits from BaseException instead of Excep—
t ion so that it is not accidentally caught by code that catches Except i on. This allows the exception to properly
propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits; no stack trace-
back is printed. The constructor accepts the same optional argument passed to sys.exit (). If the value is an
integer, it specifies the system exit status (passed to C’s exit () function); if it is None, the exit status is zero; if
it has another type (such as a string), the object’s value is printed and the exit status is one.

104

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.10.12

Acallto sys.exit () is translated into an exception so that clean-up handlers (finally clauses of t ry state-
ments) can be executed, and so that a debugger can execute a script without running the risk of losing control. The
os._exit () function can be used if it is absolutely positively necessary to exit immediately (for example, in the
child process after a call to os. fork ()).

code
The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError

Raised when an operation or function is applied to an object of inappropriate type. The associated value is a string
giving details about the type mismatch.

This exception may be raised by user code to indicate that an attempted operation on an object is not supported, and
is not meant to be. If an object is meant to support a given operation but has not yet provided an implementation,
NotImplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passing a 1 ist when an int is expected) should resultina TypeEr—
ror, but passing arguments with the wrong value (e.g. a number outside expected boundaries) should result in a
ValueError.

exception UnboundlLocalError

Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError hasattributes that describe the encoding or decoding error. For example, err.object [err.
start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in object.

end
The index after the last invalid data in ob ject.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when an operation or function receives an argument that has the right type but an inappropriate value, and
the situation is not described by a more precise exception such as TndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

5.4. Concrete exceptions 105

The Python Library Reference, Release 3.10.12

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases of
OSError.

exception EnvironmentError
exception IOError

exception WindowsError
Only available on Windows.

5.4.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds to
errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the i o module.

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError and
ConnectionResetError

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been closed, or
trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE and ESHUTDOWN.

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds to
errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds to
errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXTST.

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError
Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal, except if the
signal handler raises an exception (see PEP 475 for the rationale), instead of raising TnterruptedError.

106 Chapter 5. Built-in Exceptions

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.10.12

exception IsADirectoryError
Raised when a file operation (such as os. remove ()) is requested on a directory. Corresponds to errno EIS—
DIR.

exception NotADirectoryError
Raised when a directory operation (such as os. 1istdir ()) is requested on something which is not a directory.
On most POSIX platforms, it may also be raised if an operation attempts to open or traverse a non-directory file
as if it were a directory. Corresponds to errno ENOTDIR.

exception PermissionError
Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES and EPERM.

exception ProcessLookupError
Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError
Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

New in version 3.3: All the above OSError subclasses were added.
See also:

PEP 3151 - Reworking the OS and 10 exception hierarchy

5.5 Warnings

The following exceptions are used as warning categories; see the Warning Categories documentation for more details.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features when those warnings are intended for other Python developers.

Ignored by the default warning filters, except in the __main__ module (PEP 565). Enabling the Python Devel-
opment Mode shows this warning.

The deprecation policy is described in PEP 387.

exception PendingDeprecationWarning
Base class for warnings about features which are obsolete and expected to be deprecated in the future, but are not
deprecated at the moment.

This class is rarely used as emitting a warning about a possible upcoming deprecation is unusual, and Depreca—
tionWarning is preferred for already active deprecations.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.
The deprecation policy is described in PEP 387.

exception SyntaxWarning
Base class for warnings about dubious syntax.

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

5.5. Warnings 107

https://www.python.org/dev/peps/pep-3151
https://www.python.org/dev/peps/pep-0565
https://www.python.org/dev/peps/pep-0387
https://www.python.org/dev/peps/pep-0387

The Python Library Reference, Release 3.10.12

exception FutureWarning

Base class for warnings about deprecated features when those warnings are intended for end users of applications

that are written in Python.

exception ImportWarning

Base class for warnings about probable mistakes in module imports.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

exception UnicodeWarning

Base class for warnings related to Unicode.

exception EncodingWarning

Base class for warnings related to encodings.

See Opt-in Encoding Warning for details.
New in version 3.10.

exception BytesWarning

Base class for warnings related to bytes and bytearray.

exception ResourceWarning

Base class for warnings related to resource usage.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

New in version 3.2.

5.6 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-— SystemExit
+—— KeyboardInterrupt
+-— GeneratorExit
+-— Exception
+-— Stoplteration
+-— StopAsyncIteration

+-— ArithmeticError

| +-— FloatingPointError
| +-— OverflowError

| +—— ZeroDivisionError
+-— AssertionError

+-— AttributeError

+-— BufferError

+—— EOFError

+—-— ImportError

| +—— ModuleNotFoundError
+—-— LookupError

| +—— IndexError

| +—— KeyError

+—— MemoryError

+—— NameError

| +—— UnboundLocalError

+—— OSError
| +-- BlockingIOError
\ +-— ChildProcessError

(continues on next page)

108

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.10.12

(continued from previous page)

+-— ConnectionError

| +-— BrokenPipeError

| +-— ConnectionAbortedError
| +—— ConnectionRefusedError
| +-— ConnectionResetError

+-— FileExistsError
+-— FileNotFoundError

+—— InterruptedError
+-— IsADirectoryError
+-— NotADirectoryError
+-- PermissionError
+—— ProcessLookupError
+-— TimeoutError

\
\
\
\
\
\
\
\
\
\
\
\
\
+—-— ReferenceError
+-— RuntimeError
| +—— NotImplementedError
| +-— RecursionError
+—— SyntaxError
| +—— IndentationError
| +-—— TabError
+—— SystemError
+-—— TypeError
+-— ValueError
\ +-— UnicodeError
| +—— UnicodeDecodeError
| +—— UnicodeEncodeError
\ +-— UnicodeTranslateError
+-— Warning
+-— DeprecationWarning
+-— PendingDeprecationWarning
+-— RuntimeWarning
+-— SyntaxWarning
+-— UserWarning
+-— FutureWarning
+-— ImportWarning
+-— UnicodeWarning
+-— BytesWarning
+-— EncodingWarning
+-— ResourceWarning

5.6. Exception hierarchy 109

The Python Library Reference, Release 3.10.12

110 Chapter 5. Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text processing
services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition, see the
documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:
Text Sequence Type — str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercaseand ascii_uppercase constants described below. This value
is not locale-dependent.

string.ascii_lowercase
The lowercase letters 'abcdefghijklmnopgrstuvwxyz'. This value is not locale-dependent and will not
change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. This value is not locale-dependent and will not
change.

string.digits
The string '0123456789".

string.hexdigits
The string ' 0123456789abcdefABCDEF'.

string.octdigits
The string '01234567".

111

https://github.com/python/cpython/tree/3.10/Lib/string.py

The Python Library Reference, Release 3.10.12

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale: ! "#$%&"' () *+,—./:;
<=>2@[\1"_"A{Il}~

string.printable
String of ASCII characters which are considered printable. This is a combinationof digits, ascii_letters,
punctuation,and whitespace.

string.whitespace
A string containing all ASCII characters that are considered whitespace. This includes the characters space, tab,
linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the format ()
method described in PEP 3101. The Formatter class in the st ring module allows you to create and customize
your own string formatting behaviors using the same implementation as the built-in format () method.

class string.Formatter
The Formatter class has the following public methods:

format (format_string, /, *args, **kwargs)
The primary API method. It takes a format string and an arbitrary set of positional and keyword arguments.
It is just a wrapper that calls vformat ().

Changed in version 3.7: A format string argument is now positional-only.

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using the *args and * *kwargs syntax. viormat () does the work of breaking up
the format string into character data and replacement fields. It calls the various methods described below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, conversion).
This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec and
conversion will be None.

get_field (field_name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns a
tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as “O[name]”
or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key has the same
meaning as the key parameter to get_value ().

get_value (key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer, it
represents the index of the positional argument in args; if it is a string, then it represents a named argument
in kwargs.

The args parameter is set to the list of positional arguments to viormat (), and the kwargs parameter is set
to the dictionary of keyword arguments.

112 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.10.12

For compound field names, these functions are only called for the first component of the field name; subsequent
components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value () to be called with a key argument
of 0. The name attribute will be looked up after get_value () returns by calling the built-in getattr ()
function.

If the index or keyword refers to an item that does not exist, then an TndexError or KeyError should
be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all argument
keys that were actually referred to in the format string (integers for positional arguments, and strings for named
arguments), and a reference to the args and kwargs that was passed to vformat. The set of unused args can be
calculated from these parameters. check_unused_args () is assumed to raise an exception if the check
fails.

format_f£field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that subclasses
can override it.

convert_field (value, conversion)
Converts the value (returned by get_field()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), ‘r’ (repr) and ‘a’ (ascii) conversion types.

6.1.3 Format String Syntax

The str. format () method and the Format ter class share the same syntax for format strings (although in the case
of Formatter, subclasses can define their own format string syntax). The syntax is related to that of formatted string
literals, but it is less sophisticated and, in particular, does not support arbitrary expressions.

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doubling: {{ and } }.

The grammar for a replacement field is as follows:

replacement_field = "{" [field name] ["!" conversion] [":" format_spec] "}"
field_name = arg_name ("." attribute_name | "[" element_index "]")*
arg_name = [identifier | digit+]

attribute_name = identifier

element_index = digit+ | index_string

index_string = <any source character except "]"> +

conversion = "r" | "s" | "a"

format_spec = <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ' ! ', and a format_spec, which is preceded by a colon ' : '.
These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to a
positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names in a format
string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ... will be automatically

6.1. string — Common string operations 113

The Python Library Reference, Release 3.10.12

inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify arbitrary dictionary keys
(e.g., the strings '10"' or ':—] ') within a format string. The arg_name can be followed by any number of index or
attribute expressions. An expression of the form ' .name' selects the named attribute using getattr (), while an
expression of the form ' [index] ' does an index lookup using __getitem__ ().

Changed in version 3.1: The positional argument specifiers can be omitted for str. format (), so '{} {}'.
format (a, b) isequivalentto '{0} {1}'.format (a, b).

Changed in version 3.4: The positional argument specifiers can be omitted for Formatter.

Some simple format string examples:

"First, thou shalt count to " # References first positional argument
"Bring me a "

e

Implicitly references the first positional.
—argument

"From to "

"My quest is "

"Weight in tons "
"Units destroyed: "

Same as "From {0} to {1}"
References keyword argument 'name'
'weight' attribute of first positional arg

HH FH W W

First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format__ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling __ format__ (),
the normal formatting logic is bypassed.

Three conversion flags are currently supported: ' ! s' which calls st () on the value, ' ! r' which calls repr () and
'1a' whichcalls ascii().

Some examples:

"Harold's a clever " # Calls str() on the argument first
"Bring out the holy " # Calls repr() on the argument first
"More " # Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field width,
alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-language” or
interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields may contain
a field name, conversion flag and format specification, but deeper nesting is not allowed. The replacement fields within
the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to be
dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (see Format String Syntax and f-strings). They can also be passed directly to the built-in format ()
function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format specification produces the same result as if you had called st = () on the
value. A non-empty format specification typically modifies the result.

The general form of a standard format specifier is:

114 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

format_spec

fill = <any character>

allgn = "<" | ">" I nwm_mn | nAmn

Slgn = "+" | n_mn I " "

width = digit+

grouping_option = e

precision = digit+

type = "b" | "C" I "d" | "e" ‘ "E" | "f" ‘ "F" | "g" | "G" I "n"

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a space if
omitted. It is not possible to use a literal curly brace (”{” or “}”) as the fill character in a formatted string literal or when
using the st r. format () method. However, it is possible to insert a curly brace with a nested replacement field. This
limitation doesn’t affect the format () function.

The meaning of the various alignment options is as follows:

Op- | Meaning
tion
'<' | Forces the field to be left-aligned within the available space (this is the default for most objects).
'>" | Forces the field to be right-aligned within the available space (this is the default for numbers).
'=" | Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing
fields in the form ‘+000000120°. This alignment option is only valid for numeric types. It becomes
the default for numbers when ‘0’ immediately precedes the field width.

'~ | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so that
the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning
tion
T4 indicates that a sign should be used for both positive as well as negative numbers.

- indicates that a sign should be used only for negative numbers (this is the default behavior).
space | indicates that a leading space should be used on positive numbers, and a minus sign on negative
numbers.

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float and complex types. For integers, when binary, octal, or
hexadecimal output is used, this option adds the respective prefix '0b"', '0o', '0x "', or '0X"' to the output value. For
float and complex the alternate form causes the result of the conversion to always contain a decimal-point character, even
if no digits follow it. Normally, a decimal-point character appears in the result of these conversions only if a digit follows
it. In addition, for 'g"' and 'G' conversions, trailing zeros are not removed from the result.

The ', ' option signals the use of a comma for a thousands separator. For a locale aware separator, use the 'n' integer
presentation type instead.

Changed in version 3.1: Added the ', ' option (see also PEP 378).

The '_"' option signals the use of an underscore for a thousands separator for floating point presentation types and for
integer presentation type 'd'. For integer presentation types 'b', 'o', 'x', and 'X"', underscores will be inserted
every 4 digits. For other presentation types, specifying this option is an error.

6.1. string — Common string operations 115

[[filllalign][sign] [#]1[0] [width] [grouping _option][.precision] [type]l

https://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 3.10.12

Changed in version 3.6: Added the '_' option (see also PEP 515).

width is a decimal integer defining the minimum total field width, including any prefixes, separators, and other formatting
characters. If not specified, then the field width will be determined by the content.

When no explicit alignment is given, preceding the width field by a zero (' 0 ') character enables sign-aware zero-padding
for numeric types. This is equivalent to a fill character of 'O ' with an alignment type of '=".

Changed in version 3.10: Preceding the width field by ' 0 ' no longer affects the default alignment for strings.

The precision is a decimal integer indicating how many digits should be displayed after the decimal point for presentation
types '£' and 'F', or before and after the decimal point for presentation types 'g' or 'G'. For string presentation
types the field indicates the maximum field size - in other words, how many characters will be used from the field content.
The precision is not allowed for integer presentation types.

Finally, the fype determines how the data should be presented.

The available string presentation types are:

Type | Meaning
's! String format. This is the default type for strings and may be omitted.
None | Thesameas 's'.

The available integer presentation types are:

Type Meaning

'b' | Binary format. Outputs the number in base 2.

'c' | Character. Converts the integer to the corresponding unicode character before printing.

'd"' | Decimal Integer. Outputs the number in base 10.

'o"' | Octal format. Outputs the number in base 8.

x ' | Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.

'X" | Hex format. Outputs the number in base 16, using upper-case letters for the digits above 9. In
case '# ' is specified, the prefix ' Ox ' will be upper-cased to ' 0X ' as well.

'n' | Number. This is the same as 'd', except that it uses the current locale setting to insert the
appropriate number separator characters.

None| The same as 'd"'.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed
below (except 'n' and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for f1oat and Decimal values are:

116 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-0515

The Python Library Reference, Release 3.10.12

Type

Meaning

'e'

Scientific notation. For a given precision p, formats the number in scientific notation with the
letter ‘e’ separating the coefficient from the exponent. The coefficient has one digit before and p
digits after the decimal point, for a total of p + 1 significant digits. With no precision given,
uses a precision of 6 digits after the decimal point for £ 1oat, and shows all coefficient digits for
Decimal. If no digits follow the decimal point, the decimal point is also removed unless the #
option is used.

|El

Scientific notation. Same as 'e' except it uses an upper case ‘E’ as the separator character.

'f'

Fixed-point notation. For a given precision p, formats the number as a decimal number with
exactly p digits following the decimal point. With no precision given, uses a precision of 6 digits
after the decimal point for £1o0at, and uses a precision large enough to show all coefficient digits
for Decimal. If no digits follow the decimal point, the decimal point is also removed unless the
option is used.

|Fl

Fixed-point notation. Same as ' £ ', but converts nan to NAN and inf to INF.

lgl

General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on its
magnitude. A precision of O is treated as equivalent to a precision of 1.

The precise rules are as follows: suppose that the result formatted with presentation type 'e ' and
precision p—1 would have exponent exp. Then, if m <= exp < p, where m is -4 for floats and
-6 for Decimals, the number is formatted with presentation type ' £ ' and precision p—1-exp.
Otherwise, the number is formatted with presentation type 'e ' and precision p-1. In both cases
insignificant trailing zeros are removed from the significand, and the decimal point is also removed
if there are no remaining digits following it, unless the ' # ' option is used.

With no precision given, uses a precision of 6 significant digits for f1oat. For Decimal, the
coeficient of the result is formed from the coefficient digits of the value; scientific notation is
used for values smaller than 1e-6 in absolute value and values where the place value of the least
significant digit is larger than 1, and fixed-point notation is used otherwise.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf, —inf,
0, —0 and nan respectively, regardless of the precision.

General format. Same as 'g' except switches to 'E"' if the number gets too large. The repre-
sentations of infinity and NaN are uppercased, too.

Number. This is the same as 'g', except that it uses the current locale setting to insert the
appropriate number separator characters.

Percentage. Multiplies the number by 100 and displays in fixed (' £') format, followed by a
percent sign.

For float this is the same as 'g', except that when fixed-point notation is used to format the
result, it always includes at least one digit past the decimal point. The precision used is as large as
needed to represent the given value faithfully.

For Decimal, this is the same as either 'g' or 'G' depending on the value of context.
capitals for the current decimal context.

The overall effect is to match the output of st r () as altered by the other format modifiers.

Format examples

This section contains examples of the st r. format () syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %$-formatting, with the addition of the { } and with : used instead of

%. For example, '$03.2f" can be translated to ' { : 03.2f}"'.
The new format syntax also supports new and different options, shown in the following examples.

Accessing arguments by position:

6.1. string — Common string operations

117

The Python Library Reference, Release 3.10.12

>>> '"/0}), {1}, {Z2}" . format('a', 'b', 'c")

'a, b, c'

>>> '/}, ()}, {}".format('a', 'b', 'c') # 3.1+ only

'a, b, ¢’

>>> '"/2}, {1}, {0}".format('a', 'b', 'c')

'c, b, a'

>>> '"/2}, {1}, {0}".format (*'abc') # unpacking argument sequence

'c, b, a'

>>> '"/(0}{1}{0}"'.format ('abra', 'cad') # arguments' indices can be repeated
'abracadabra'

Accessing arguments by name:

>>> 'Coordinates: {latitude}, {longitude}'.format (latitude='37.24N"', longitude='-115.
—81W")

'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: {latitude}, {longitude}'.format (**coord)
'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
'and the imaginary part {0.imag}.').format (c)

'The complex number (3-53j) is formed from the real part 3.0 and the imaginary part -5.
;)0 . '
>>> class Point:
def _ _init__ (self, x, y):
self.x, self.y = x, vy
def _ str_ (self):
return 'Point ({self.x}, {self.y})'.format (self=self)

>>> str(Point (4, 2))
'Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {0[1]}".format (coord)
'X: 3; Y: 5

Replacing $s and $r:

>>> "repr () shows quotes: {/r}; str() doesn't: {!/s}".format ('testl', 'test2')
"repr () shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> ' {:<30}" . format ('left aligned')
'left aligned !

>>> '"/:>30}"' . format ('right aligned')
! right aligned'

>>> '"/[:730}" . format ('centered")

! centered !

>>> ' /[:4730}" format ('centered') # use '"*' as a fill char
'***********Centered***********'

118 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

Replacing $+£, $—f, and $ £ and specifying a sign:

>>> "/:4f); {:+f}" format (3.14, -3.14) # show it always

'+3.140000; -3.140000"

>>> "/ f}; {: £} . format(3.14, -3.14) # show a space for positive numbers

' 3.140000; -3.140000"

>>> "/[:—f); {:-f}" . format (3.14, —-3.14) # show only the minus -- same as '{:f}; {:f}'

'3.140000; -3.140000"

Replacing $x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format (42)
'int: 42; hex: 2a; oct: 52; bin: 101010"

>>> # with 0x, 0o, or Ob as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0}; bin: {0:#b}".format (42)
'int: 42; hex: 0x2a; oct: 0052; Dbin: 0b101010"

Using the comma as a thousands separator:

>>> '/,)" format (1234567890)
'1,234,567,890"

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> 'Correct answers: {:.2%}'.format (points/total)

'Correct answers: 86.36%"'

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> '{:%Y-%m-%d $H:%M:%S}'.format (d)

'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<">', ['left', 'center', 'right']):

"{O0:{fill}{align}l6}'.format (text, fill=align, align=align)
'left<<<<<<!
'ANAANcenter AT
'>>>>>>>>>>>right’
>>>
>>> octets = [192, 168, 0, 1]
>>> "/ 02X 02X 02X) {02X]) " . format (*octets)
'COAB80001"
>>> int(_, 16)
3232235521
>>>

>>> width = 5
>>> for num in range(5,12):
for base in 'dXob':
print ('{0:{width}{base}}"'.format (num, base=base, width=width), end=' ")
print ()

(continues on next page)

6.1. string — Common string operations 119

The Python Library Reference, Release 3.10.12

(continued from previous page)

5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

6.1.4 Template strings

Template strings provide simpler string substitutions as described in PEP 292. A primary use case for template strings is
for internationalization (i18n) since in that context, the simpler syntax and functionality makes it easier to translate than
other built-in string formatting facilities in Python. As an example of a library built on template strings for i18n, see the
flufl.i18n package.

Template strings support $-based substitutions, using the following rules:
* $$ is an escape; it is replaced with a single $.

e Sidentifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier"isrestricted to any case-insensitive ASCII alphanumeric string (including underscores) that starts
with an underscore or ASCII letter. The first non-identifier character after the $ character terminates this place-
holder specification.

e ${identifier} is equivalent to $identifier. It is required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "${noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.
The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (template)
The constructor takes a single argument which is the template string.

substitute (mapping={}, /, **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where the
keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the place-
holders from kwds take precedence.

safe_substitute (mapping={}, /, **kwds)
Like substitute (), except that if placeholders are missing from mapping and kwds, instead of raising
a KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because it always tries to return a usable
string instead of raising an exception. In another sense, safe_substitute () may be anything other than
safe, since it will silently ignore malformed templates containing dangling delimiters, unmatched braces, or
placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

120 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-0292
https://flufli18n.readthedocs.io/en/latest/

The Python Library Reference, Release 3.10.12

>>> from string import Template

>>> s = Template ('Swho likes Swhat')

>>> s.substitute (who="'tim', what='kung pao')
'tim likes kung pao'

>>> d = dict (who="tim')

>>> Template ('Give $who $100') .substitute(d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template ('Swho likes Swhat') .substitute (d)
Traceback (most recent call last):

KeyError: 'what'
>>> Template ('Swho likes Swhat') .safe_substitute (d)
'tim likes S$what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character, or
the entire regular expression used to parse template strings. To do this, you can override these class attributes:

* delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $. Note that
this should not be a regular expression, as the implementation will call re.escape () on this string as needed.
Note further that you cannot change the delimiter after class creation (i.e. a different delimiter must be set in the
subclass’s class namespace).

* idpattern — This is the regular expression describing the pattern for non-braced placeholders. The default value is
the regular expression (?a: [_a—-z] [_a—-z0-9]~*). If this is given and braceidpattern is None this pattern will
also apply to braced placeholders.

Note: Since default flags is re . IGNORECASE, pattern [a—z] can match with some non-ASCII characters.
That’s why we use the local a flag here.

Changed in version 3.7: braceidpattern can be used to define separate patterns used inside and outside the braces.

* braceidpattern — This is like idpattern but describes the pattern for braced placeholders. Defaults to None which
means to fall back to idpattern (i.e. the same pattern is used both inside and outside braces). If given, this allows
you to define different patterns for braced and unbraced placeholders.

New in version 3.7.

* flags — The regular expression flags that will be applied when compiling the regular expression used for recognizing
substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added to the flags,
so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.
* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

e invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

6.1. string — Common string operations 121

The Python Library Reference, Release 3.10.12

6.1.5 Helper functions

string.capwords (s, sep=None)
Split the argument into words using str.split (), capitalize each word using str.capitalize (), and
join the capitalized words using str. join (). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

6.2 re — Regular expression operations

Source code: Lib/re.py

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings (st r) as well as 8-bit strings (by t e s). However, Unicode
strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string with a byte pattern or vice-versa;
similarly, when asking for a substitution, the replacement string must be of the same type as both the pattern and the
search string.

Regular expressions use the backslash character (' \ ') to indicate special forms or to allow special characters to be used
without invoking their special meaning. This collides with Python’s usage of the same character for the same purpose in
string literals; for example, to match a literal backslash, one might have to write ' \\\\ ' as the pattern string, because
the regular expression must be \\, and each backslash must be expressed as \\ inside a regular Python string literal.
Also, please note that any invalid escape sequences in Python’s usage of the backslash in string literals now generate a
DeprecationWarning and in the future this will become a SyntaxError. This behaviour will happen even if it
is a valid escape sequence for a regular expression.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing '\ ' and 'n', while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and methods on
compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but miss
some fine-tuning parameters.

See also:

The third-party regex module, which has an API compatible with the standard library re module, but offers additional
functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions, then
AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string pg will
match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and B; or have
numbered group references. Thus, complex expressions can easily be constructed from simpler primitive expressions like
the ones described here. For details of the theory and implementation of regular expressions, consult the Friedl book
[Frie09], or almost any textbook about compiler construction.

122 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.10/Lib/re.py
https://pypi.org/project/regex/

The Python Library Reference, Release 3.10.12

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A', 'a',or '0',
are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so last
matches the string ' last '. (In the rest of this section, we’ll write RE’s in this special style, usually without
quotes, and strings to be matched 'in single quotes'.)

Some characters, like ' | ' or ' (', are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

Repetition qualifiers (*, +, ?, {m, n}, etc) cannot be directly nested. This avoids ambiguity with the non-greedy modifier
suffix 2, and with other modifiers in other implementations. To apply a second repetition to an inner repetition, parentheses
may be used. For example, the expression (?:a{6}) * matches any multiple of six 'a' characters.

The special characters are:

. (Dot.) In the default mode, this matches any character except a newline. If the DOTALT flag has been specified, this
matches any character including a newline.

~ (Caret.) Matches the start of the string, and in MUL T L TNE mode also matches immediately after each newline.

$ Matches the end of the string or just before the newline at the end of the string, and in MUL T'T L I NE mode also matches
before a newline. oo matches both ‘foo’ and ‘foobar’, while the regular expression £oo$ matches only ‘foo’. More
interestingly, searching for foo.$ in 'fool\nfoo2\n' matches ‘002’ normally, but ‘fool’ in MULTILINE
mode; searching for a single $ in ' foo\n"' will find two (empty) matches: one just before the newline, and one
at the end of the string.

* Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible. ab*

will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

? Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

2,4+2,2? The '', "'+', and '?"' qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. *> is matched against '<a> b <c>"', it will match the entire string, and
not just '<a>"'. Adding ? after the qualifier makes it perform the match in non-greedy or minimal fashion; as few
characters as possible will be matched. Using the RE <. * 2> will match only '<a>".

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For example, a{ 6} will match exactly six 'a' characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a {3, 5} will match from3to5 'a' characters. Omitting m specifies a lower
bound of zero, and omitting n specifies an infinite upper bound. As an example, a{ 4, }b will match 'aaaab"' or
athousand 'a"' characters followed by a 'b', but not 'aaab'. The comma may not be omitted or the modifier
would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string 'aaaaaa',a{3,5} willmatch 5 'a' characters, while a{ 3, 5} ? will only match 3 characters.

\ Either escapes special characters (permitting you to match characters like ' * ', ' 2 ', and so forth), or signals a special
sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an escape
sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and subsequent
character are included in the resulting string. However, if Python would recognize the resulting sequence, the
backslash should be repeated twice. This is complicated and hard to understand, so it’s highly recommended that
you use raw strings for all but the simplest expressions.

6.2. re — Regular expression operations 123

The Python Library Reference, Release 3.10.12

[1 Used to indicate a set of characters. In a set:
e Characters can be listed individually, e.g. [amk] will match 'a"', 'm',or 'k'.

* Ranges of characters can be indicated by giving two characters and separating them by a ' —', for example
[a—z] will match any lowercase ASCII letter, [0-5] [0-9] will match all the two-digits numbers from
00 to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If — is escaped (e.g. [a\-z]) or if it’s
placed as the first or last character (e.g. [—a] or [a—]), it will match a literal '—'.

* Special characters lose their special meaning inside sets. For example, [(+*)] will match any of the literal
characters ' (', '+', "*",or ") ".

* Character classes such as \w or \ S (defined below) are also accepted inside a set, although the characters
they match depends on whether ASCT T or LOCALE mode is in force.

¢ Characters that are not within a range can be matched by complementing the set. If the first character of the
set is '~ ', all the characters that are not in the set will be matched. For example, [~5] will match any
character except '5"', and [~~] will match any character except '~ '. ~ has no special meaning if it’s not
the first character in the set.

e To match a literal '] ' inside a set, precede it with a backslash, or place it at the beginning of the set. For
example, both [() [\1{}] and [] () [{}] will match a right bracket, as well as left bracket, braces, and
parentheses.

 Support of nested sets and set operations as in Unicode Technical Standard #18 might be added in the future.
This would change the syntax, so to facilitate this change a FutureWarning will be raised in ambiguous
cases for the time being. That includes sets starting with a literal ' [' or containing literal character sequences
'——','ss", '~~",and ' | | '. To avoid a warning escape them with a backslash.

Changed in version 3.7: FutureWarning is raised if a character set contains constructs that will change seman-
tically in the future.

| A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary

number of REs can be separated by the ' | ' in this way. This can be used inside groups (see below) as well. As the
target string is scanned, REs separated by ' | ' are tried from left to right. When one pattern completely matches,
that branch is accepted. This means that once A matches, B will not be tested further, even if it would produce a
longer overall match. In other words, the ' | ' operator is never greedy. To match a literal ' | ', use \ |, or enclose

it inside a character class, asin [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string with
the \number special sequence, described below. To match the literals ' (' or ') ', use \ (or \), or enclose
them inside a character class: [(1, [)].

(?...) This is an extension notation (a ' ? ' following a ' (' is not meaningful otherwise). The first character after
the ' 2 ' determines what the meaning and further syntax of the construct is. Extensions usually do not create a
new group; (?P<name>. . .) is the only exception to this rule. Following are the currently supported extensions.

(?ailmsux) (One or more letters fromtheset 'a', 'i', 'L', 'm', 's"', 'u', 'x"'.) The group matches the empty
string; the letters set the corresponding flags: re. A (ASCII-only matching), re. I (ignore case), re. L (locale
dependent), re. M (multi-line), re. S (dot matches all), re . U (Unicode matching), and re . X (verbose), for the
entire regular expression. (The flags are described in Module Contents.) This is useful if you wish to include the
flags as part of the regular expression, instead of passing a flag argument to the re. compile () function. Flags
should be used first in the expression string.

(?:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the parenthe-
ses, but the substring matched by the group cannot be retrieved after performing a match or referenced later in the
pattern.

(?ailmsux—-imsx:...) (Zero or more letters from the set 'a', 'i', 'L', 'm", 's', 'u', 'x', optionally
followed by '—' followed by one or more letters from the 'i', 'm', 's"', 'x'.) The letters set or remove the

124 Chapter 6. Text Processing Services

https://unicode.org/reports/tr18/

The Python Library Reference, Release 3.10.12

corresponding flags: re. A (ASCII-only matching), re. T (ignore case), re . L (locale dependent), re . M (multi-
line), re. S (dot matches all), re .U (Unicode matching), and re. X (verbose), for the part of the expression.
(The flags are described in Module Contents.)

The letters 'a', 'L"' and "u' are mutually exclusive when used as inline flags, so they can’t be combined or follow

' —'. Instead, when one of them appears in an inline group, it overrides the matching mode in the enclosing group.
In Unicode patterns (?a: .. .) switches to ASCII-only matching, and (?u: .. .) switches to Unicode matching
(default). In byte pattern (?L: .. .) switches to locale depending matching, and (?a:...) switches to ASCII-
only matching (default). This override is only in effect for the narrow inline group, and the original matching mode
is restored outside of the group.

New in version 3.6.
Changed in version 3.7: The letters 'a', 'L' and 'u' also can be used in a group.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible via the symbolic
group name name. Group names must be valid Python identifiers, and each group name must be defined only once
within a regular expression. A symbolic group is also a numbered group, just as if the group were not named.

Named groups can be referenced in three contexts. If the pattern is (?P<quote>['"]) .*? (?P=quote)
(i.e. matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it
in the same pattern itself

e (?P=quote) (as shown)
. \]_

when processing match object m
* m.group ('quote"')

* m.end ('quote"') (etc.)

in a string passed to the repl argument of re . sub ()

\g<quote>
\g<1>
0\1

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group named

name.
(?#...) A comment; the contents of the parentheses are simply ignored.
(?=...) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.

For example, ITsaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov"'.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!
Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...) Matches if the current position in the string is preceded by a match for . . . that ends at the current po-
sition. This is called a positive lookbehind assertion. (?<=abc) def will find a match in 'abcdef ', since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must only
match strings of some fixed length, meaning that abc or a |b are allowed, but a* and a{3, 4} are not. Note
that patterns which start with positive lookbehind assertions will not match at the beginning of the string being
searched; you will most likely want to use the search () function rather than the match () function:

>>> import re

>>> m = re.search (' (?<=abc)def', 'abcdef')
>>> m.group (0)
'def!

6.2. re — Regular expression operations 125

The Python Library Reference, Release 3.10.12

This example looks for a word following a hyphen:

>>> m = re.search(r' (?<=-)\w+', 'spam-egg')
>>> m.group (0)
legql

Changed in version 3.5: Added support for group references of fixed length.

(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings of
some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of the
string being searched.

(? (id/name) yes—pattern|no—-pattern) Will try to match with yes-pattern if the group with given
id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted. For
example, (<) ? (\w+@\w+ (?:\.\w+)+) (?(1)>|$) is a poor email matching pattern, which will match
with '<userQhost.com>' as well as "user@host.com', but not with '<user@host.com' nor
'user@host.com>".

The special sequences consist of '\ ' and a character from the list below. If the ordinary character is not an ASCII digit
or an ASCII letter, then the resulting RE will match the second character. For example, \ $ matches the character '$'.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1matches 'the the'or'55 55',butnot 'thethe"' (note the space after the group). This special
sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number is 3 octal
digits long, it will not be interpreted as a group match, but as the character with octal value number. Inside the ' [
and '] ' of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of word
characters. Note that formally, \b is defined as the boundary between a \w and a \W character (or vice versa),
or between \w and the beginning/end of the string. This means that r ' \bfoo\b"' matches ' foo', 'foo."',
'(foo) ', '"bar foo baz' butnot 'foobar' or 'foo3'.

By default Unicode alphanumerics are the ones used in Unicode patterns, but this can be changed by using the
ASCII flag. Word boundaries are determined by the current locale if the LOCALE flag is used. Inside a character
range, \b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that r ' py\B'
matches 'python', 'py3"', 'py2',butnot 'py', "py."',or 'py!"'. \Bis just the opposite of \b, so word
characters in Unicode patterns are Unicode alphanumerics or the underscore, although this can be changed by using
the ASCTIT flag. Word boundaries are determined by the current locale if the LOCALE flag is used.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode character cat-
egory [Nd]). This includes [0-9], and also many other digit characters. If the ASCIT flag is used only
[0-9] is matched.

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a decimal digit. This is the opposite of \ d. If the ASC T T flag is used this becomes
the equivalent of [~0-9].

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v], and
also many other characters, for example the non-breaking spaces mandated by typography rules in many
languages). If the ASCIT flagis used, only [\t\n\r\£f\v] is matched.

126 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is equiva-
lentto [\t\n\r\f\v].

\S Matches any character which is not a whitespace character. This is the opposite of \s. If the ASCT T flag is used
this becomes the equivalent of [~ \t\n\r\f\v].

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes alphanumeric characters (as defined
by str.isalnum()) as well as the underscore (_). If the ASCTT flag is used, only [a—zA-Z0-9_] is
matched.

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is equiv-
alentto [a-zA-Z0-9_1]. If the LOCALE flag is used, matches characters considered alphanumeric in the
current locale and the underscore.

\W Matches any character which is not a word character. This is the opposite of \w. If the ASCTT flag is used this
becomes the equivalent of [~a-zA-Z0-9_]. If the LOCALE flag is used, matches characters which are neither
alphanumeric in the current locale nor the underscore.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\N \r \t \u
\U \v \x AR

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u', "\U', and '\N"' escape sequences are only recognized in Unicode patterns. In bytes patterns they are errors.
Unknown escapes of ASCII letters are reserved for future use and treated as errors.

Octal escapes are included in a limited form. If the first digit is a O, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

Changed in version 3.3: The '\u' and '\U"' escape sequences have been added.
Changed in version 3.6: Unknown escapes consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.8: The '\N{name} ' escape sequence has been added. As in string literals, it expands to the
named Unicode character (e.g. ' \N{EM DASH}").

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of the
full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled form.

6.2. re — Regular expression operations 127

The Python Library Reference, Release 3.10.12

Flags

Changed in version 3.6: Flag constants are now instances of RegexF lag, which is a subclass of enum. IntFlag.

re
re

re

re
re

re
re

re.

re

re.

re

re
re

A
.ASCII

Make \w, \W, \b, \B, \d, \D, \'s and \ S perform ASCII-only matching instead of full Unicode matching. This
is only meaningful for Unicode patterns, and is ignored for byte patterns. Corresponds to the inline flag (?a).

Note that for backward compatibility, the re .U flag still exists (as well as its synonym re .UNICODE and its
embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode by default for strings
(and Unicode matching isn’t allowed for bytes).

.DEBUG

Display debug information about compiled expression. No corresponding inline flag.

I
. IGNORECASE

Perform case-insensitive matching; expressions like [A-Z] will also match lowercase letters. Full Unicode match-
ing (such as U matching 1) also works unless the re.ASCTIT flag is used to disable non-ASCII matches. The
current locale does not change the effect of this flag unless the re. LOCALE flag is also used. Corresponds to the
inline flag (?1).

Note that when the Unicode patterns [a—z] or [A-Z] are used in combination with the TGNORECASE flag,
they will match the 52 ASCII letters and 4 additional non-ASCII letters: ‘I" (U+0130, Latin capital letter I with dot
above), 1’ (U+0131, Latin small letter dotless 1), T° (U+017F, Latin small letter long s) and ‘K’ (U+212A, Kelvin
sign). If the ASCTT flag is used, only letters ‘a’ to ‘z’ and ‘A’ to “Z’ are matched.

.L
.LOCALE

Make \w, \W, \b, \B and case-insensitive matching dependent on the current locale. This flag can be used only
with bytes patterns. The use of this flag is discouraged as the locale mechanism is very unreliable, it only handles
one “culture” at a time, and it only works with 8-bit locales. Unicode matching is already enabled by default in
Python 3 for Unicode (str) patterns, and it is able to handle different locales/languages. Corresponds to the inline
flag (?L1).

Changed in version 3.6: re. LOCALE can be used only with bytes patterns and is not compatible with re . ASCTT.

Changed in version 3.7: Compiled regular expression objects with the re . LOCALE flag no longer depend on the
locale at compile time. Only the locale at matching time affects the result of matching.

M

MULTILINE
When specified, the pattern character '~ ' matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ' $' matches at the end of the string and at
the end of each line (immediately preceding each newline). By default, ' ~ ' matches only at the beginning of the
string, and ' $ ' only at the end of the string and immediately before the newline (if any) at the end of the string.
Corresponds to the inline flag (?m) .

S

DOTALL
Make the ' . ' special character match any character at all, including a newline; without this flag, ' . ' will match
anything except a newline. Corresponds to the inline flag (?s).

X

VERBOSE
This flag allows you to write regular expressions that look nicer and are more readable by allowing you to visually
separate logical sections of the pattern and add comments. Whitespace within the pattern is ignored, except when
in a character class, or when preceded by an unescaped backslash, or within tokens like *?, (?: or (?P<...>.

128

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

For example, (? : and * 2 are not allowed. When a line contains a # that is not in a character class and is
not preceded by an unescaped backslash, all characters from the leftmost such # through the end of the line are
ignored.

This means that the two following regular expression objects that match a decimal number are functionally equal:

a = re.compile(r"""\d + # the integral part

\. # the decimal point

\d * # some fractional digits""", re.X)
b = re.compile (r"\d+\.\d*")

Corresponds to the inline flag (?x) .

Functions

re.compile (pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match (), search () and other methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following variables,
combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re. compile () and saving the resulting regular expression object for reuse is more efficient when the
expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.compile () and the module-level
matching functions are cached, so programs that use only a few regular expressions at a time needn’t worry about
compiling regular expressions.

re.search (pattern, string, flags=0)
Scan through string looking for the first location where the regular expression pattern produces a match, and return a
corresponding match object. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

re .match (pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not at the
beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re . fullmatch (pattern, string, flags=0)
If the whole sfring matches the regular expression pattern, return a corresponding match object. Return None if
the string does not match the pattern; note that this is different from a zero-length match.

6.2. re — Regular expression operations 129

The Python Library Reference, Release 3.10.12

New in version 3.4.

re.split (pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all groups in
the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits occur, and
the remainder of the string is returned as the final element of the list.

>>> re.split(r'\W+', 'Words, words, words.')
['"Words', 'words', 'words', '']

>>> re.split(r' (\W+)', 'Words, words, words.')
['"Words', ', ', 'words', ', ', 'words', '.', '']

>>> re.split (r'\W+', 'Words, words, words.', 1)
['"Words', 'words, words.']

>>> re.split('[a-f]+"', '0a3B9', flags=re.IGNORECASE)
[ro', 's', '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will start with an
empty string. The same holds for the end of the string:

>>> re.split(r' (\W+)', '...words, words...")

' v

(v, '...', 'words', ', ', 'words', caat,]

That way, separator components are always found at the same relative indices within the result list.

Empty matches for the pattern split the string only when not adjacent to a previous empty match.

>>> re.split(r'\b', 'Words, words, words.')
(', 'Wwords', ', ', 'words', ', ', 'words', '.']

>>> re.split(r'\wW*', '...words...")

['l’ l', ’W', lOV, lr’, ldl, lsl’ l', ll}

>>> re.split(r' (\W*)', '...words...")

['l’ l‘.-|, |', ll, 'W', 'l’ lol’ |', 'r', l|, 'd', 'l, 'S', '---', ||, l', '|:|

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.7: Added support of splitting on a pattern that could match an empty string.

re.findall (pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings or tuples. The string is scanned left-to-
right, and matches are returned in the order found. Empty matches are included in the result.

The result depends on the number of capturing groups in the pattern. If there are no groups, return a list of strings
matching the whole pattern. If there is exactly one group, return a list of strings matching that group. If multiple
groups are present, return a list of tuples of strings matching the groups. Non-capturing groups do not affect the
form of the result.

>>> re.findall (r'\bf[a-z]*', 'which foot or hand fell fastest')
["foot', 'fell', 'fastest']

>>> re.findall (r' (\w+)=(\d+) "', 'set width=20 and height=10")

[("width', '20'), ('height', '10')]

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.finditer (pattern, string, flags=0)
Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The string
is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the result.

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

130 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

re. sub (pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the replace-
ment repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if it is a string,
any backslash escapes in it are processed. That is, \n is converted to a single newline character, \ r is converted to
a carriage return, and so forth. Unknown escapes of ASCII letters are reserved for future use and treated as errors.
Other unknown escapes such as \ & are left alone. Backreferences, such as \ 6, are replaced with the substring
matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+([a-zA-Z_][a-zA-Z_0-9]1*)\s*\ (\s*\):"',
r'static PyObject*\npy_\1 (void)\n{"',

Ce 'def myfunc():")

'static PyObject*\npy_myfunc (void) \n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single match
object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == '-': return ' '
. else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro-—-——-gram-files')

'pro-—gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or a pattern object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a non-
negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are replaced
only when not adjacent to a previous empty match, so sub ('x*', '-', 'abxd') returns '-a-b--d-"'.

In string-type repl arguments, in addition to the character escapes and backreferences described above, \g<name>
will use the substring matched by the group named name, as defined by the (?P<name>...) syntax. \
g<number> uses the corresponding group number; \g<2> is therefore equivalent to \2, but isn’t ambiguous
in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference to group
2 followed by the literal character ' 0 '. The backreference \ g<0> substitutes in the entire substring matched by
the RE.

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Changed in version 3.6: Unknown escapes in pattern consisting of '\ ' and an ASCII letter now are errors.
Changed in version 3.7: Unknown escapes in repl consisting of '\ ' and an ASCII letter now are errors.
Changed in version 3.7: Empty matches for the pattern are replaced when adjacent to a previous non-empty match.

re . subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

re.escape (pattern)
Escape special characters in pattern. This is useful if you want to match an arbitrary literal string that may have
regular expression metacharacters in it. For example:

>>> print (re.escape ('https://www.python.org'))
https://www\.python\.org

(continues on next page)

6.2. re — Regular expression operations 131

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> legal_chars = string.ascii_lowercase + string.digits + "!#3S%&'*+—."_"|~:
>>> print ('[2s]+'" % re.escape(legal_chars))
[abcdefghijklmnopgrstuvwxyz0123456789 I \#\SS\& '\ *\+\=\ . \"_"\[\~:]+

>>> operators = ['+', '="', "'"*x', /v, rtxsn]
>>> print ('|'.join(map (re.escape, sorted(operators, reverse=True))))

ZIN=INHNFNF A

This function must not be used for the replacement string in sub () and subn (), only backslashes should be
escaped. For example:

>>> digits_re = r'\d+'

>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'

>>> print (re.sub(digits_re, digits_re.replace('\\', r'\\'), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings

Changed in version 3.3: The '_"' character is no longer escaped.

Changed in version 3.7: Only characters that can have special meaning in a regular expression are escaped. As a
result’ A\l ! l, '"l’ '%'7 ll‘", l, 17 |/l’ |l . 17 l,. l’ '<l, l:l’ '>" l@l’and nmsn arenolongerescaped.

re.purge ()

Clear the regular expression cache.

Exceptions

exception re.error (msg, pattern=None, pos=None)

Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern. The error instance has the following additional attributes:

msg
The unformatted error message.

pattern
The regular expression pattern.

pos
The index in pattern where compilation failed (may be None).

lineno
The line corresponding to pos (may be None).

colno
The column corresponding to pos (may be None).

Changed in version 3.5: Added additional attributes.

132

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

Pattern.search (string[, pos[, endpos]])
Scan through string looking for the first location where this regular expression produces a match, and return a
corresponding match object. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0. This is
not completely equivalent to slicing the string; the ' ~ ' pattern character matches at the real beginning of the string
and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos
characters long, so only the characters from pos to endpos — 1 will be searched for a match. If endpos is less
than pos, no match will be found; otherwise, if rx is a compiled regular expression object, rx . search (string,
0, 50) isequivalentto rx.search (string[:50], 0).

>>> pattern = re.compile("d")

>>> pattern.search ("dog") # Match at index 0

<re.Match object; span=(0, 1), match='d'>

>>> pattern.search ("dog", 1) # No match; search doesn't include the "d"

Pattern.match (string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding match
object. Return None if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".

<re.Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

Pattern.fullmatch (string[, pos[, endpos]])
If the whole string matches this regular expression, return a corresponding match object. Return None if the string
does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.fullmatch("ogre") # No match as not the full string matches.

>>> pattern.fullmatch ("doggie", 1, 3) # Matches within given limits.

<re.Match object; span=(1, 3), match='og'>

New in version 3.4.

Pattern.split (string, maxsplit=0)
Identical to the split () function, using the compiled pattern.

Pattern.findall (string[, pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos param-
eters that limit the search region like for search ().

Pattern.finditer (string[, pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos pa-
rameters that limit the search region like for search ().

6.2. re — Regular expression operations 133

The Python Library Reference, Release 3.10.12

Pattern. sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

Pattern.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

Pattern.flags
The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline flags in
the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

Pattern.groups
The number of capturing groups in the pattern.

Pattern.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

Pattern.pattern
The pattern string from which the pattern object was compiled.

Changed in version 3.7: Added support of copy.copy () and copy.deepcopy (). Compiled regular expression
objects are considered atomic.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match () and search () return None when there is no
match, you can test whether there was a match with a simple i f statement:

match = re.search(pattern, string)
if match:
process (match)

Match objects support the following methods and attributes:

Match .expand (femplate)
Return the string obtained by doing backslash substitution on the template string template, as done by the sub ()
method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences (\1, \2)
and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding group.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Match.group ([group],])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there are
multiple arguments, the result is a tuple with one item per argument. Without arguments, group! defaults to zero
(the whole match is returned). If a groupN argument is zero, the corresponding return value is the entire matching
string; if it is in the inclusive range [1..99], it is the string matching the corresponding parenthesized group. If a
group number is negative or larger than the number of groups defined in the pattern, an TndexError exception
is raised. If a group is contained in a part of the pattern that did not match, the corresponding result is None. If a
group is contained in a part of the pattern that matched multiple times, the last match is returned.

>>> m = re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

'Isaac Newton'

>>> m.group (1) # The first parenthesized subgroup.
'Isaac’

>>> m.group (2) # The second parenthesized subgroup.
'Newton'

(continues on next page)

134 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> m.group (1, 2) # Multiple arguments give us a tuple.
('"Isaac', 'Newton')

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings identifying
groups by their group name. If a string argument is not used as a group name in the pattern, an TndexError
exception is raised.

A moderately complicated example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group ('first_name')
'Malcolm'

>>> m.group ('last_name')
'Reynolds’

Named groups can also be referred to by their index:

>>> m.group (1)
'Malcolm'
>>> m.group (2)
'Reynolds'

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
IC3|

Match.__getitem__ (g)
This is identical to m. group (g) . This allows easier access to an individual group from a match:

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0] # The entire match

'Isaac Newton'

>>> m[1] # The first parenthesized subgroup.

'Isaac’

>>> m[2] # The second parenthesized subgroup.
'Newton'

New in version 3.6.

Match.groups (default=None)
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m = re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()
('24', '1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match. These
groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.? (\d+) 2", "24™")
>>> m.groups () # Second group defaults to None.
('24', None)

(continues on next page)

6.2. re — Regular expression operations 135

The Python Library Reference, Release 3.10.12

(continued from previous page)

>>> m.groups('0") # Now, the second group defaults to '0'.
('24V, lOV)

Match.groupdict (default=None)
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

Match.start ([group])

Match.end ([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return —1 if group exists but did not contribute to the match. For a match object m,
and a group g that did contribute to the match, the substring matched by group g (equivalent to m.group (g)) is

’m. string[m.start (g) :m.end(qg)]

Note that m. start (group) will equal m.end (group) if group matched a null string. For example, after m
= re.search('b(c?)', 'cba'),m.start(0)isl,m.end(0) is2, m.start (1) andm.end (1)
are both 2, and m. start (2) raises an TndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]

'tony@tiger.net'

Match.span ([group])
For a match m, return the 2-tuple (m.start (group), m.end (group)). Note thatif group did not con-
tribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

Match.pos

The value of pos which was passed to the search () or match () method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

Match.endpos
The value of endpos which was passed to the search () or match () method of a regex object. This is the index
into the string beyond which the RE engine will not go.

Match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example, the
expressions (a)b, ((a) (b)),and ((ab)) willhave lastindex == 1 if applied to the string 'ab ', while
the expression (a) (b) will have lastindex == 2, if applied to the same string.

Match.lastgroup

The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was matched
at all.

Match.re
The regular expression object whose match () or search () method produced this match instance.

Match.string
The string passed to match () or search ().

136 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

Changed in version 3.7: Added support of copy.copy () and copy.deepcopy (). Match objects are considered
atomic.

6.2.5 Regular Expression Examples
Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return '<Match: , groups=¢r>" % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each character

representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2” through “9” representing the
card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r""[a2-9tjgk] S™M)

>>> displaymatch (valid.match ("aktb5g")) # Valid.
"<Match: 'aktb5qg', groups=()>"

>>> displaymatch (valid.match ("aktbe")) # Invalid.
>>> displaymatch (valid.match("akt")) # Invalid.
>>> displaymatch(valid.match ("727ak")) # Valid.
"<Match: '727ak', groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> palr = re.compile (r".*(.).*\1")

>>> displaymatch (pair.match ("717ak")) # Pair of 7s.
"<Match: '717', groups=('7',)>"

>>> displaymatch (pair.match ("718ak")) # No pairs.

>>> displaymatch (pair.match ("354aa")) # Pair of aces.
"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the group () method of the match object in the following
manner:

>>> pair = re.compile(r".*(.).*\1")

>>> pair.match("717ak") .group (1)

|7|

Error because re.match() returns None, which doesn't have a group() method:

>>> pair.match("718ak") .group (1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".*(.).*\1", "718ak") .group (1)
AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa") .group (1)
lal

6.2. re — Regular expression operations 137

The Python Library Reference, Release 3.10.12

Simulating scanf()

Python does not currently have an equivalent to scanf () . Regular expressions are generally more powerful, though also
more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings between
scanf () format tokens and regular expressions.

scanf () Token | Regular Expression
%C .
%5¢ .{5}
sd [—+]°?
%e, $E, %f, 39 [—+]7?
[—+]
+]

(\d+ (\.\d*) 2 [\ \d+) ([eE] [-+]2\d+) ?
(0[xX] [\dA-Fa-£]+|0[0-7]*|\d+)
[

o
sl

%0 [-
$s \S+
$u \d+
$x, $X [-+]1?2(0[xX])?[\dAa-Fa-f]+

To extract the filename and numbers from a string like

’/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

%$s — %d errors, %d warnings

The equivalent regular expression would be

’(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers different primitive operations based on regular expressions:
* re.match () checks for a match only at the beginning of the string
e re.search () checks for a match anywhere in the string (this is what Perl does by default)
e re.fullmatch () checks for entire string to be a match

For example:

>>> re.match("c", "abcdef™) # No match

>>> re.search("c", "abcdef") # Match
<re.Match object; span=(2, 3), match='c'>

>>> re.fullmatch("p.*n", "python") # Match
<re.Match object; span=(0, 6), match='python'>
>>> re.fullmatch("r.*n", "python") # No match

Regular expressions beginning with ' ~ ' can be used with search () to restrict the match at the beginning of the string:

>>> re.match("c", "abcdef™) # No match
>>> re.search(""c", "abcdef") # No match
>>> re.search(""a", "abcdef") # Match

<re.Match object; span=(0, 1), match='a'>

138 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with '~ ' will match at the beginning of each line.

>>> re.match("X", "A\nB\nX", re.MULTILINE) # No match
>>> re.search (""X", "A\nB\nX", re.MULTILINE) # Match
<re.Match object; span=(4, 5), match='X"'>

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual data
into data structures that can be easily read and modified by Python as demonstrated in the following example that creates
a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line having
its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

The : 2 pattern matches the colon after the last name, so that it does not occur in the result list. With a maxsplit of
4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['"Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

6.2. re — Regular expression operations 139

The Python Library Reference, Release 3.10.12

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates using
sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence except
for the first and last characters:

>>> def repl (m):
inner_word = list (m.group(2))
random.shuffle (inner_word)
.. return m.group (1) + "".join (inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if a writer
wanted to find all of the adverbs in some text, they might use findall () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly\b", text)
['carefully', 'quickly']

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it provides
match objects instead of strings. Continuing with the previous example, if a writer wanted to find all of the adverbs and
their positions in some text, they would use finditer () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly\b", text):
print (' - : ' % (m.start (), m.end(), m.group(0)))

07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r "t ext ") keeps regular expressions sane. Without it, every backslash (' \ ') in a regular expression
would have to be prefixed with another one to escape it. For example, the two following lines of code are functionally
identical:

>>> re.match (r"\wW(.)\1\w", "™ £f£f ™)

<re.Match object; span=(0, 4), match=' ff '>
>>> re.match ("\\W (.)\\Z\\w", " ££ ™)
<re.Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string notation, this
means r"\\". Without raw string notation, one must use "\\\\", making the following lines of code functionally
identical:

140 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

>>> re.match (r"\\", r"\\")

<re.Match object; span=(0, 1), match='\\'>
>>> re.match ("\\\\", r"\\")

<re.Match object; span=(0, 1), match="\\"'>

Writing a Tokenizer

A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a compiler

or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master regular

expression and to loop over successive matches:

from typing import NamedTuple
import re

class Token (NamedTuple) :
type: str
value: str
line: int
column: int

def tokenize (code) :

keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}

token_specification = [

('"NUMBER', r'\d+(\.\d*)?"), # Integer or decimal number
('"ASSIGN', r':="), # Assignment operator
('END', r';"), # Statement terminator
('"ID"', r'[A-Za-z]+"), # Identifiers
('op"', r'[+\-*/1"), # Arithmetic operators
("NEWLINE', r'\n'"), # Line endings
('SKIP', r'[\t]+"), # Skip over spaces and tabs
("MISMATCH', r'."), # Any other character

]

tok_regex = '|'.join (' (?P<%s5>%s)' % pair for pair in token_specification)

line_num = 1

line_start = 0

for mo in re.finditer (tok_regex, code):
kind = mo.lastgroup
value = mo.group ()

column = mo.start () - line_start
if kind == 'NUMBER':
value = float (value) if '.' in value else int (value)
elif kind == 'ID' and value in keywords:
kind = value
elif kind == 'NEWLINE':

line_start = mo.end()
line_num += 1

continue
elif kind == 'SKIP':
continue
elif kind == 'MISMATCH':
raise RuntimeError (f'{value!/r} unexpected on line {line_num}/

yield Token (kind, value, line_num, column)

statements = '"'

")

(continues on next page)

6.2. re — Regular expression operations

14

https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.10.12

(continued from previous page)

IF quantity THEN

total := total + price * quantity;
tax := price * 0.05;
ENDIF;

for token in tokenize (statements):
print (token)

The tokenizer produces the following output:

Token (type="IF', value='IF', line=2, column=4)

Token (type="'ID', value='quantity', line=2, column=7)
Token (type="'THEN', value='THEN', line=2, column=16)
Token (type="'ID', value='total', line=3, column=38)
Token (type="ASSIGN', wvalue=':=', line=3, column=14)
Token (type="'ID', value='total', line=3, column=17)
Token (type='0OP', value='+', line=3, column=23)

Token (type="'ID', value='price', line=3, column=25)
Token (type='0OP', value='*', line=3, column=31)

Token (type="'ID', value='quantity', line=3, column=33)
Token (type="END', value=';', line=3, column=41)
Token (type="'ID', value='tax', line=4, column=8)
Token (type="ASSIGN', wvalue=':=', line=4, column=12)
Token (type="'ID', value='price', line=4, column=15)
Token (type="'0OP', value='*', line=4, column=21)

Token (type="'NUMBER', wvalue=0.05, line=4, column=23)
Token (type="END', value=';', line=4, column=27)
Token (type="ENDIF', wvalue='ENDIF', line=5, column=4)
Token (type="END', value=';', line=5, column=9)

6.3 difflib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for comparing files,
and can produce information about file differences in various formats, including HTML and context and unified diffs. For

comparing directories and files, see also, the i Iecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are rashable.
The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by Ratcliff
and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest contiguous
matching subsequence that contains no “junk” elements; these “junk” elements are ones that are uninteresting
in some sense, such as blank lines or whitespace. (Handling junk is an extension to the Ratcliff and Obershelp
algorithm.) The same idea is then applied recursively to the pieces of the sequences to the left and to the right of
the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that “look

right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the expected
case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior dependent in a
complicated way on how many elements the sequences have in common; best case time is linear.

142

Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.10/Lib/difflib.py

The Python Library Reference, Release 3.10.12

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain sequence
items as junk. The heuristic counts how many times each individual item appears in the sequence. If an item’s
duplicates (after the first one) account for more than 1% of the sequence and the sequence is at least 200 items
long, this item is marked as “popular” and is treated as junk for the purpose of sequence matching. This heuristic
can be turned off by setting the aut o junk argument to False when creating the SequenceMatcher.

New in version 3.2: The autojunk parameter.

class difflib.Differ
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas. Differ
uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters within
similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code | Meaning
'— ' | line unique to sequence 1

'+ ' | line unique to sequence 2
v line common to both sequences
'? ' | line not present in either input sequence

Lines beginning with ‘2’ attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a side by
side, line by line comparison of text with inter-line and intra-line change highlights. The table can be generated in
either full or contextual difference mode.

The constructor for this class is:

__init__ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of HtmIlDiff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped, defaults
to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndi ' () (used by Htm1Diff to gen-
erate the side by side HTML differences). See ndiff () documentation for argument default values and
descriptions.

The following methods are public:

make_file (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5, *, charset="utf-8")
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file containing
a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual differences
are to be shown, else the default is False to show the full files. numlines defaults to 5. When context is
True numlines controls the number of context lines which surround the difference highlights. When context
is False numlines controls the number of lines which are shown before a difference highlight when using
the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next difference highlight
at the top of the browser without any leading context).

6.3. difflib — Helpers for computing deltas 143

The Python Library Reference, Release 3.10.12

Note: fromdesc and fodesc are interpreted as unescaped HTML and should be properly escaped while
receiving input from untrusted sources.

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML document
changed from 'IS0O-8859-1"to 'utf-8"'.

make_table (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table showing
line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its use.

difflib.context_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The changes
are shown in a before/after style. The number of context lines is set by #n which defaults to three.

By default, the diff control lines (those with * ** or ——-) are created with a trailing newline. This is helpful so
that inputs created from i 0. TOBase. readlines () resultin diffs that are suitable for use with i 0. TOBase.
writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may be

specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally expressed
in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines (context_diff(sl, s2, fromfile='before.py', tofile=
—'after.py'))

*** before.py

-—— after.py

R R b b b I b b b 2 b b4
* * k 1,4 * Kk kK
! bacon
! eggs
! ham
guido
-— 1,4 ————
! python
! eggy
! hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired (typically
a string), and possibilities is a list of sequences against which to match word (typically a list of strings).

Optional argument 7 (default 3) is the maximum number of close matches to return; n must be greater than 0.

Optional argument cutoff (default O . 6) is a float in the range [0, 1]. Possibilities that don’t score at least that similar
to word are ignored.

144

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get_close_matches ('appel', ['ape', 'apple', 'peach', 'puppy'l])
['apple', 'ape'l

>>> import keyword

>>> get_close_matches ('wheel', keyword.kwlist)

['while']

>>> get_close_matches ('pineapple’', keyword.kwlist)

[]

>>> get_close_matches ('accept', keyword.kwlist)

['except']

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Compare a and b (lists of strings); return a D1 £ fe r-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if not. The
default is None. There is also a module-level function 7S ILINE JUNK (), which filters out lines without visible
characters, except for at most one pound character (' # ') — however the underlying SequenceMatcher class
does a dynamic analysis of which lines are so frequent as to constitute noise, and this usually works better than
using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level function 7.S_CHARACTER_JUNK (), which filters out whitespace characters (a
blank or tab; it’s a bad idea to include newline in this!).

Tools/scripts/ndiff.py isacommand-line front-end to this function.

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
.. 'ore\ntree\nemu\n'.splitlines (keepends=True))

>>> print (''.join(diff), end="")

- one

2 A

ore

- two
- three

)
|

+

tree
emu

+

difflib.restore (sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),

C. 'ore\ntree\nemu\n'.splitlines (keepends=True))

>>> diff = list(diff) # materialize the generated delta into a 1list
>>> print (''.join(restore(diff, 1)), end="")

one

two

three

>>> print (''.join(restore(diff, 2)), end="")

(continues on next page)

6.3. difflib — Helpers for computing deltas 145

The Python Library Reference, Release 3.10.12

(continued from previous page)

ore
tree

emu

difflib.unified_diff (a, b, fromfile=", tofile=", fromfiledate="", tofiledate=", n=3, lineterm="\n'")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The changes
are shown in an inline style (instead of separate before/after blocks). The number of context lines is set by n which
defaults to three.

By default, the diff control lines (those with ———, +++, or @@) are created with a trailing newline. This is helpful so
that inputs created from i 0. TOBase. readlines () resultin diffs that are suitable for use with 0. TOBase.
writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may be
specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally expressed
in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> sys.stdout.writelines (unified_diff(sl, s2, fromfile='before.py', tofile=
—'after.py"'))

—-—— before.py

+++ after.py

@R -1,4 +1,4 Q@

—-bacon

-eggs

—ham

+python

teggy
+hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.diff_bytes (dfunc, a, b, fromfile=b", tofile=b", fromfiledate=b", tofiledate=b", n=3,
lineterm=b"\n")
Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the format

returned by dfunc. dfunc must be a callable, typically either unified diff () or context_diff ().

Allows you to compare data with unknown or inconsistent encoding. All inputs except n must be bytes objects,
not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc (a, b, fromfile,
tofile, fromfiledate, tofiledate, n, lineterm). The outputof dfunc is then converted back
to bytes, so the delta lines that you receive have the same unknown/inconsistent encodings as a and b.

New in version 3.5.

difflib.IS_LINE_JUNK (line)
Return True for ignorable lines. The line /ine is ignorable if /ine is blank or contains a single ' # ', otherwise it is
not ignorable. Used as a default for parameter linejunk in ndi £ £ () in older versions.

difflib.IS_CHARACTER_JUNK (ch)
Return True for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See also:

146 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener.
This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMat cher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a=", b=", autojunk="True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: False;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of both
sequences must be hashable.

The optional argument aufojunk can be used to disable the automatic junk heuristic.
New in version 3.2: The autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is True;
bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled); b2; is a dict
mapping the remaining elements of b to a list of positions where they occur. All three are reset whenever b is reset
with set_seqgs () or set_seq2 ().

New in version 3.2: The bjunk and bpopular attributes.
SequenceMat cher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_seqg2 () to set the commonly used sequence once and
call set_seqgl () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo=0, ahi=None, blo=0, bhi=None)
Find longest matching block in a[alo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, j, k) suchthata[i:i+k]is
equaltob[j:j+k],wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. Forall
(1', J', k') meeting those conditions, the additional conditions k >= k', i1 <= i',andif i ==
i',3j <= 7' arealsomet. In other words, of all maximal matching blocks, return one that starts earliest in
a, and of all those maximal matching blocks that start earliest in a, return the one that starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd™)
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional restric-
tion that no junk element appears in the block. Then that block is extended as far as possible by matching

6.3. difflib — Helpers for computing deltas 147

https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
https://www.drdobbs.com/

The Python Library Reference, Release 3.10.12

(only) junk elements on both sides. So the resulting block never matches on junk except as identical junk
happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd' from matching
the ' abcd' at the tail end of the second sequence directly. Instead only the 'abcd' can match, and
matches the leftmost 'abcd' in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd",
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=1, b=0,

"abcd abcd")

size=4)

If no blocks match, this returns (alo, blo, 0).

This method returns a named tuple Match (a, b, size).

Changed in version 3.9: Added default arguments.

get_matching_blocks ()

Return list of triples describing non-overlapping matching subsequences. Each triple is of the form (i, j,
n),and means thata [1i:1+n] == b[Jj:J+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (1en (a), len (b), 0). Itistheonly triple withn ==

If (1, j, n)and (1i', J', n') are adjacent triples in the list, and the second is not the last triple in
the list, then i+n < i'or j+n < j';in other words, adjacent triples always describe non-adjacent equal
blocks.

>>> s = SequenceMatcher (None,
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2,

"abxcd", "abcd")

size=2), Match(a=5, b=4, size=0)]

get_opcodes ()

Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, 12, 3j1,
j2). The first tuple has i1 == j1 == 0, and remaining tuples have i/ equal to the i2 from the preceding
tuple, and, likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning
'replace' | a[i1:12] should bereplacedbyb[j1:32].
'delete' a[i1:12] should be deleted. Note that j1 == 72 in this case.
'insert' b[j1:732] should be insertedat a[11:11]. Note that i1 == 1i2 in this case.
'equal' a[il:12] == b[jl:7j2] (the sub-sequences are equal).
For example:
>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes|():
print (' al : 1 ——> Db :] -——> '.format (
tag, i1, 12, 31, 32, alil:i2], bl[j1:321))
delete al0:1] ——> b[0:0] 'q' > !
equal af[l:3] ——> b[0:2] 'ab' ——> 'ab'
replace al[3:4] ——> b[2:3] x> Ty
equal afd:6] ——> b[3:5] 'cd' —=> 'cd'
insert a[6:6] ——> b[5:6] Yo——> T f!

get_grouped_opcodes (n=3)

Return a generator of groups with up to z lines of context.

148

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio()

Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M /
T. Note that this is 1. 0 if the sequences are identical, and 0 . O if they have nothing in common.

This is expensive to compute if get_matching_blocks () or get_opcodes () hasn’t already been
called, in which case you may want to try quick_ratio () or real_quick_ratio () first to get an
upper bound.

Note: Caution: The result of a ratio () call may depend on the order of the arguments. For instance:

>>> SequenceMatcher (None, 'tide', 'diet').ratio()
0.25
>>> SequenceMatcher (None, 'diet', 'tide').ratio()
0.5

quick_ratio ()

Return an upper bound on ratio () relatively quickly.

real_quick_ratio()

Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, although quick_ratio () and real_quick_ratio () are always at least as large as ratio ():

>>> s
>>> 5.
0.75
>>> 5.
0.75
>>> s,
1.0

SequenceMatcher (None, "abcd", "bcde")

ratio ()

quick_ratio()

real_quick_ratio()

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s

SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value over
0.6 means the sequences are close matches:

>>> print (round(s.ratio(), 3))

0.866

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

6.3. difflib — Helpers for computing deltas 149

The Python Library Reference, Release 3.10.12

>>> for block in s.get_matching blocks():
.. print ("al] and bl] match for elements" % block)
al0] and b[0] match for 8 elements
al[8] and b[17] match for 21 elements
[29] and b[38] match for 0 elements

o))

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b), 0),
and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes():

Ce. print (" al : 1 bl : 1" % opcode)
equal af[0:8] b[0:8]

insert a[8:8] b[8:17]

equal al8:29] b[17:38]

See also:

e The get_close_matches () function in this module which shows how simple code building on Sequence-
Mat cher can be used to do useful work.

» Simple version control recipe for a small application built with SequenceMatcher.

6.3.3 Differ Objects

Note that D1 f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often counter-
intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restricting synch
points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer diff.

The Di ffer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the character
is junk. The default is None, meaning that no character is considered junk.

These junk-filtering functions speed up matching to find differences and do not cause any differing lines or char-
acters to be ignored. Read the description of the find longest_match () method’s isjunk parameter for an
explanation.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can be ob-
tained from the readlines () method of file-like objects. The delta generated also consists of newline-
terminated strings, ready to be printed as-is via the writelines () method of a file-like object.

150 Chapter 6. Text Processing Services

https://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.10.12

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with newlines
(such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = """ 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
. """ .splitlines (keepends=True)
>>> len (textl)
4
>>> textl1[0][-1]
l\nl
>>> text2 = ''' 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
""" .splitlines (keepends=True)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a D1 fer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:

>>> result = list (d.compare (textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint

>>> pprint (result)

[1. Beautiful is better than ugly.\n',

! 2. Explicit is better than implicit.\n',

' 3. Simple is better than complex.\n',
3

'+ Simple is better than complex.\n',

' ++\n"',

' 4. Complex is better than complicated.\n',
V? A PR /\\nl,

'+ 4. Complicated is better than complex.\n',
1o +H++ A “\n',

'+ 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys

>>> sys.stdout.writelines (result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.
3. Simple is better than complex.

3 Simple is better than complex.

? ++
- 4. Complex is better than complicated.
+ 4. Complicated is better than complex.

(continues on next page)

6.3. difflib — Helpers for computing deltas 151

The Python Library Reference, Release 3.10.12

(continued from previous page)

? +4+4++ ~
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a di £ £-like utility. It is also contained in the Python source distribution,
as Tools/scripts/diff.py.

#!/usr/bin/env python3
""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

min

import sys, os, difflib, argparse
from datetime import datetime, timezone

def file_mtime (path) :
t = datetime.fromtimestamp (os.stat (path) .st_mtime,
timezone.utc)
return t.astimezone () .isoformat ()

def main() :

parser = argparse.ArgumentParser ()
parser.add_argument ('-c', action='store_true', default=False,
help='Produce a context format diff (default)"')
parser.add_argument ('-u', action='store_true', default=False,
help='Produce a unified format diff')
parser.add_argument ('-m', action='store_true', default=False,
help='Produce HTML side by side diff '
'(can use -c and -1 in conjunction) ')
parser.add_argument ('-n', action='store_true', default=False,
help='Produce a ndiff format diff'")
parser.add_argument ('-1', '—--lines', type=int, default=3,
help='Set number of context lines (default 3)"')
parser.add_argument ('fromfile')
parser.add_argument ('tofile’)
options = parser.parse_args()

n = options.lines

fromfile = options.fromfile
tofile = options.tofile
fromdate = file_mtime (fromfile)

todate = file_mtime (tofile)

with open (fromfile) as ff:
fromlines = ff.readlines|()

with open(tofile) as tf:
tolines = tf.readlines|()

(continues on next page)

152 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

(continued from previous page)

if options.u:
diff = difflib.unified_diff (fromlines, tolines, fromfile, tofile, fromdate, .
—~todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file (fromlines,tolines, fromfile,tofile,
—context=options.c,numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile, fromdate, .
—~todate, n=n)

sys.stdout.writelines (diff)

if _ name_ == " main '

main ()

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The t extwrap module provides some convenience functions, as well as Text Wrappe r, the class that does all the work.
If you're just wrapping or filling one or two text strings, the convenience functions should be good enough; otherwise, you
should use an instance of TextWrapper for efficiency.

textwrap.wrap (fext, width=70, *, initial_indent=", subsequent_indent=", expand_tabs=True, re-
place_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, place-
holder="[...]")

Wraps the single paragraph in fext (a string) so every line is at most width characters long. Returns a list of output
lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.

See the TextWrapper.wrap () method for additional details on how wrap () behaves.

textwrap.£fill (fext, width=70, *, initial_indent=", subsequent_indent=", expand_tabs=True, re-
place_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, place-
holder="][...]")
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. fil1 () is
shorthand for

"\n".Jjoin (wrap (text, ...))

In particular, £111 () accepts exactly the same keyword arguments as wrap ().

textwrap.shorten (fext, width, * fix_sentence_endings=False, break_long_words=True,

break_on_hyphens="True, placeholder="]...]")
Collapse and truncate the given fext to fit in the given width.

First the whitespace in fext is collapsed (all whitespace is replaced by single spaces). If the result fits in the width, it is
returned. Otherwise, enough words are dropped from the end so that the remaining words plus the placeholder
fit within width:

6.4. textwrap — Text wrapping and filling 153

https://github.com/python/cpython/tree/3.10/Lib/textwrap.py

The Python Library Reference, Release 3.10.12

>>> textwrap.shorten("Hello world!", width=12)

'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)

'Hello [...]"

>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. Note
that the whitespace is collapsed before the text is passed to the TextWrapper £i11 () function, so changing the
value of tabsize, expand tabs,drop _whitespace,and replace whitespace will have no effect.

New in version 3.4.

textwrap.dedent (fext)

Remove any common leading whitespace from every line in zext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting them
in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and "\
thello" are considered to have no common leading whitespace.

Lines containing only whitespace are ignored in the input and normalized to a single newline character in the output.

For example:

def test():
end first line with \ to avoid the empty line!
s = lvv\
hello
world
L B |
print (repr(s)) # prints ' hello\n world\n !
print (repr (dedent (s))) # prints 'hello\n world\n'

textwrap.indent (fext, prefix, predicate=None)

Add prefix to the beginning of selected lines in zext.
Lines are separated by calling text .splitlines (True).
By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).

For example:

>>> s = 'hello\n\n \nworld'
>>> indent (s, ' ")
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to add
prefix to even empty and whitespace-only lines:

>>> print (indent (s, '+ ', lambda line: True))
+ hello

+
+
+ world

New in version 3.3.

154

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

wrap (), £i11 () and shorten () work by creating a TextWrapper instance and calling a single method on it.
That instance is not reused, so for applications that process many text strings using wrap () and/or £i11 (), it may be
more efficient to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words be
broken if necessary, unless TextWrapper.break_long_words is set to false.

class textwrap.TextWrapper (**kwargs)

The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument cor-
responds to an instance attribute, so for example

wrapper = TextWrapper (initial_indent="* ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "*

You can re-use the same TextWrapper object many times, and you can change any of its options through direct
assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the input text
longer than width, TextWrapper guarantees that no output line will be longer than widt h characters.

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the expandtabs ()
method of fext.

tabsize
(default: 8) If expand_tabs is true, then all tab characters in text will be expanded to zero or more spaces,
depending on the current column and the given tab size.

New in version 3.3.

replace_whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return (' \t\n\v\f\r").

Note: If expand_tabsisfalseand replace_whitespaceistrue, each tab character will be replaced
by a single space, which is not the same as tab expansion.

Note: If replace whitespace is false, newlines may appear in the middle of a line and cause strange
output. For this reason, text should be split into paragraphs (using st r. splitlines () or similar) which
are wrapped separately.

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before in-
denting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-whitespace
follows it. If whitespace being dropped takes up an entire line, the whole line is dropped.

initial_indent
(default: ' ') String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line. The empty string is not indented.

6.4. textwrap — Text wrapping and filling 155

The Python Library Reference, Release 3.10.12

subsequent_indent
(default: ' ') String that will be prepended to all lines of wrapped output except the first. Counts towards the
length of each line except the first.

fix_sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase letter
followed by one of '. ', "! ' or '?"', possibly followed by one of '" ' or "' ", followed by a space. One
problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

’[...] Dr. Frankenstein's monster [...]

and “Spot.” in

’[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter”, and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long_words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines are
longer than width. If it is false, long words will not be broken, and some lines may be longer than width.
(Long words will be put on a line by themselves, in order to minimize the amount by which width is ex-
ceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in compound
words, as it is customary in English. If false, only whitespaces will be considered as potentially good places
for line breaks, but youneed to set break_1ong_woxrds to false if you want truly insecable words. Default
behaviour in previous versions was to always allow breaking hyphenated words.

max_lines
(default: None) If not None, then the output will contain at most max_lines lines, with placeholder appearing
at the end of the output.

New in version 3.4.

placeholder
(default: ' [...]") String that will appear at the end of the output text if it has been truncated.

New in version 3.4.
TextWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

£il1 (rext)
Wraps the single paragraph in zext, and returns a single string containing the wrapped paragraph.

156 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all Unicode
characters. The data contained in this database is compiled from the UCD version 13.0.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character Database”.
It defines the following functions:

unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding character. If not
found, KeyError is raised.

Changed in version 3.3: Support for name aliases' and named sequences” has been added.

unicodedata.name (chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned, or,
if not given, ValueError is raised.

unicodedata.numeric (chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned, or,
if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty string
is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining class is
defined.

unicodedata.east_asian_width (chr)
Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been identified
as a “mirrored” character in bidirectional text, O otherwise.

unicodedata.decomposition (chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is returned
in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’, and
‘NFKD’.

1 https://www.unicode.org/Public/13.0.0/ucd/NameAliases. txt
2 https://www.unicode.org/Public/13.0.0/ucd/NamedSequences. txt

6.5. unicodedata — Unicode Database 157

https://www.unicode.org/Public/13.0.0/ucd
https://www.unicode.org/reports/tr44/
https://www.unicode.org/Public/13.0.0/ucd/NameAliases.txt
https://www.unicode.org/Public/13.0.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.10.12

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canonical
equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way. For
example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as the
sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form C
(NFCO) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I). How-
ever, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility characters
with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed by the
canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining characters
and the other doesn’t, they may not compare equal.

unicodedata.is_normalized (form, unistr)

Return whether the Unicode string unistr is in the normal form form. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

New in version 3.8.

In addition, the module exposes the following constant:

unicodedata.unidata_version

The version of the Unicode database used in this module.

unicodedata.ued_3_2_0

This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2 instead,
for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>>

import unicodedata

>>> unicodedata.lookup ('LEFT CURLY BRACKET'")
l{l

>>> unicodedata.name('/")

'SOLIDUS'

>>> unicodedata.decimal ('9")

9

>>> unicodedata.decimal ('a'")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: not a decimal

>>> unicodedata.category ('A") # 'L'etter, 'u'ppercase

L} Lu Al

>>> unicodedata.bidirectional ('\u0660') # 'A'rabic, 'N'umber

IAN'

158 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.10.12

6.6 stringprep — Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the wire,
they are processed with the preparation procedure, after which they have a certain normalized form. The RFC defines a
set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what other optional
parts of the stringprep procedure are part of the profile. One example of a stringprep profile is nameprep,
which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns True if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated value.
Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

stringprep.in_table_cl1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_c12 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cll_c12 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

6.6. stringprep — Internet String Preparation 159

https://github.com/python/cpython/tree/3.10/Lib/stringprep.py
https://datatracker.ietf.org/doc/html/rfc3454.html
https://datatracker.ietf.org/doc/html/rfc3454.html

The Python Library Reference, Release 3.10.12

stringprep.in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1 (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readl i ne module defines a number of functions to facilitate completion and reading/writing of history files from the
Python interpreter. This module can be used directly, or via the 1 completer module, which supports completion of
Python identifiers at the interactive prompt. Settings made using this module affect the behaviour of both the interpreter’s
interactive prompt and the prompts offered by the built-in i nput () function.

Readline keybindings may be configured via an initialization file, typically . inputrc in your home directory. See
Readline Init File in the GNU Readline manual for information about the format and allowable constructs of that file, and
the capabilities of the Readline library in general.

Note: The underlying Readline library API may be implemented by the 1ibedit library instead of GNU readline.
On macOS the readline module detects which library is being used at run time.

The configuration file for 1ibedit is different from that of GNU readline. If you programmatically load configuration
strings you can check for the text “libedit” in readline.__doc___ to differentiate between GNU readline and libedit.

If you use editline/1 ibedit readline emulation on macOS, the initialization file located in your home directory is named
.editrc. For example, the following content in ~/ . edit rc will turn ON vi keybindings and TAB completion:

python:bind -v
python:bind "I rl_complete

160 Chapter 6. Text Processing Services

https://tiswww.cwru.edu/php/chet/readline/rluserman.html#SEC9

The Python Library Reference, Release 3.10.12

6.7.1 Init file

The following functions relate to the init file and user configuration:

readline.parse_and_bind (string)
Execute the init line provided in the string argument. This calls r1_parse_and_bind () in the underlying
library.

readline.read_init_file([ﬁlename])
Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file () in the underlying library.

6.7.2 Line buffer

The following functions operate on the line buffer:

readline.get_line_buffer ()
Return the current contents of the line buffer (r1_1line_buffer in the underlying library).

readline.insert_text (string)
Insert text into the line buffer at the cursor position. This calls r1_insert_text () in the underlying library,
but ignores the return value.

readline.redisplay ()
Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay () in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history file([ﬁlename])
Load a readline history file, and append it to the history list. The default filename is ~/ .history. This calls
read_history () in the underlying library.

readline.write_history_file([ﬁlename])
Save the history list to a readline history file, overwriting any existing file. The default filename is ~/ . history.
This calls write_history () in the underlying library.

readline.append_history_ file (nelements[, filename])
Append the last nelements items of history to a file. The default filename is ~/ . history. The file must already
exist. This calls append_history () inthe underlying library. This function only exists if Python was compiled
for a version of the library that supports it.

New in version 3.5.

readline.get_history_length ()

readline.set_history_length (length)
Set or return the desired number of lines to save in the history file. The write history file () function
uses this value to truncate the history file, by calling history_truncate_file () in the underlying library.
Negative values imply unlimited history file size.

6.7. readline — GNU readline interface 161

The Python Library Reference, Release 3.10.12

6.7.4 History list

The following functions operate on a global history list:

readline.clear_history ()
Clear the current history. This calls clear_history () in the underlying library. The Python function only
exists if Python was compiled for a version of the library that supports it.

readline.get_current_history_length ()
Return the number of items currently in the history. (This is different from get_history_ length (), which
returns the maximum number of lines that will be written to a history file.)

readline.get_history_item (index)
Return the current contents of history item at index. The item index is one-based. This calls history_get ()
in the underlying library.

readline.remove_history_item (pos)
Remove history item specified by its position from the history. The position is zero-based. This calls re-
move_history () in the underlying library.

readline.replace_history_item (pos, line)
Replace history item specified by its position with line. The position is zero-based. This calls re-
place_history_entry () in the underlying library.

readline.add_history (line)
Append line to the history buffer, as if it was the last line typed. This calls add_history () in the underlying
library.

readline.set_auto_history (enabled)
Enable or disable automatic calls to add_history () when reading input via readline. The enabled argument
should be a Boolean value that when true, enables auto history, and that when false, disables auto history.

New in version 3.6.

CPython implementation detail: Auto history is enabled by default, and changes to this do not persist across
multiple sessions.

6.7.5 Startup hooks

readline.set_startup_hook ([function])
Set or remove the function invoked by the r1_startup_hook callback of the underlying library. If function is
specified, it will be used as the new hook function; if omitted or None, any function already installed is removed.
The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook ([function])
Set or remove the function invoked by the r1_pre_input_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is removed.
The hook is called with no arguments after the first prompt has been printed and just before readline starts reading
input characters. This function only