Python Library Reference
Release 2.0.1

Guido van Rossum
Fred L. Drake, Jr., editor

June 22, 2001

PythonLabs
E-mail: python-docs@python.org

Copyright(© 2001 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manudkscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in TYPES 3
2.2 BUIlt-INEXCEPLiONS o o e e e e 15
2.3 BUilt-in FUNCLONS L e e e 18

3 Python Runtime Services 27
3.1 sys — System-specific parameters and functions. o oL 27
3.2 gc — Garbage Collectorinterface. e 31
3.3 atexit —Exithandlers. 33
3.4 types —Namesforallbuilt-intypes. 33
3.5 UserDict — Class wrapper for dictionaryobjects 35
3.6 UserList —Classwrapperforlistobjects o 35
3.7 UserString — Class wrapper forstringobjects 36
3.8 operator — Standard operatorsasfunctions.. 37
3.9 traceback — Printorretrieve astacktraceback. o oL 39
3.10 linecache — Randomaccesstotextlines., 41
3.11 pickle — Python objectserialization 42
3.12 cPickle — Alternate implementation gfickle Lo 46
3.13 copy _reg — Registempickle supportfunctions. 46
3.14 shelve — Pythonobjectpersistence. 46
3.15 copy — Shallow and deep copy operations 48
3.16 marshal — Alternate Python object serialization. 49
3.17 imp — Accessthemport internals. 49
3.18 code —Interpreterbaseclasses 52
3.19 codeop — Compile Pythoncode e 54
3.20 pprint — Datapretty printer e 54
3.21 repr — Alternaterepr() implementation. L 56
3.22 new — Creation of runtime internal objects. L Lo 58
3.23 site — Site-specific configurationhook 58
3.24 user — User-specific configurationhook, 59
3.25 __builtin __ —Built-infunctions. 60
3.26 __main __ —Top-level scriptenvironment. 60

4 String Services 61
4.1 string —Commonstringoperations e e e 61
4.2 re —Regularexpressionoperations. 64

4.3 struct — Interpret strings as packed binarydata oL oL 72

4.4 fpformat — Floating pointconversions. i e 74
45 Stringl0 — Read and write stringsasfiles. 75
4.6 cStringlO — Faster version oBtringlO 75
4.7 codecs — Codecregistryandbaseclasses.o 75
4.8 unicodedata —Unicode Database. 80
Miscellaneous Services 81
5.1 math — Mathematical functions. 81
5.2 cmath — Mathematical functions for complexnumbers 83
5.3 random — Generate pseudo-randomnumbers. o 84
5.4 whrandom — Pseudo-random number generator. e 85
5.5 bisect — Array bisectionalgorithm 86
5.6 array — Efficientarraysofnumericvalues 87
5.7 ConfigParser = — Configurationfileparser. 89
5.8 fileinput — lterate over lines from multiple inputstreams 91
5.9 calendar — General calendar-related functions. 92
5.10 cmd— Support for line-oriented command interpretets. oL 93
5.11 shlex — Simplelexicalanalysis 95
Generic Operating System Services 99
6.1 o0s —Miscellaneous OSinterfaces e 99
6.2 os.path — Common pathname manipulations. 110
6.3 dircache — Cacheddirectorylistings. 112
6.4 stat — Interpretingstat() results. 113
6.5 statcache — Anoptimizationofos.stat() 115
6.6 statvfs — Constants used withs.statvfs() oo 115
6.7 fileecmp —File and Directory Comparisons i it 116
6.8 popen2 — Subprocesses with accessiblel/Ostreams. 117
6.9 time —Timeaccessand ConverSionNS v v v ittt e 118
6.10 sched —Eventscheduler. e 122
6.11 getpass — Portable passwordinput. 123
6.12 curses — Terminal handling for character-celldisplays. 123
6.13 curses.textpad — Text input widget for curses programs 137
6.14 curses.wrapper — Terminal handler for cursesprograms 138
6.15 curses.ascii — Utilities for ASCllcharacters 139
6.16 getopt — Parserforcommand lineoptions. o e 141
6.17 tempfile — Generate temporaryfilenames. oL 143
6.18 errno — Standard errnosystemsymbols. oL 143
6.19 glob — UNIx style pathname patternexpansion 149
6.20 fnmatch — UNix filename patternmatching 150
6.21 shutii —High-levelfile operations 150
6.22 locale — Internationalizationservices e 152
6.23 gettext — Multilingual internationalization services. 155
Optional Operating System Services 163
7.1 signal — Sethandlersforasynchronousevents. 163
7.2 socket — Low-level networkinginterface. L 165
7.3 select — Waiting for I/O completion. e 170
7.4 thread — Multiplethreadsofcontrol. 171
7.5 threading — Higher-level threadinginterface. 173
7.6 mutex — Mutual exclusion Support. e 179
7.7 Queue —Asynchronizedqueueclass. 179
7.8 mmap— Memory-mapped file support 180
7.9 anydbm — Generic access to DBM-styledatabases 182

10

11

7.10 dumbdbm— Portable DBM implementation 182
7.11 dbhash — DBM-style interface to the BSD database libraty. 183
7.12 whichdb — Guess which DBM module created adatabase. 184
7.13 bsddb — Interface to Berkeley DB library 184
7.14 zlib — Compression compatible witheip 186
7.15 gzip — Supportforgzipfiles e e 188
7.16 zipfile — Work with ZIP archives. 188
7.17 readline —GNUreadlineinterface. 191
7.18 rlcompleter — Completion function for GNU readline. 193
Unix Specific Services 195
8.1 posix — The mostcommon POSIXsystemcalls. 195
8.2 pwd—Thepassworddatabase. 196
8.3 grp —Thegroupdatabase 197
8.4 crypt —Functiontocheck Mix passwords. e 197
8.5 dl —CallCfunctionsinsharedobjects 198
8.6 dbm— Simple “database” interface. 199
8.7 gdbm— GNU'sreinterpretationofdbm. oL 200
8.8 termios — POSIXstylettycontrol. e 201
8.9 TERMIOS— Constants used with thermios module 202
8.10 tty — Terminalcontrolfunctions. e 202
8.11 pty — Pseudo-terminal utilities 203
8.12 fentl — Thefentl() andioctl() systemecalls. 203
8.13 pipes — Interface toshell pipelines L 204
8.14 posixfile — File-like objects with lockingsupport 205
8.15 resource — Resource usage information. e 207
8.16 nis — Interfaceto Sun's NIS (YellowPages) 210
8.17 syslog — UNix sysloglibraryroutines 210
8.18 commands— Utilities for runningcommands Lo 211
The Python Debugger 213
9.1 DebuggerCommands e 214
9.2 How ItWOrks. o e 216
The Python Profiler 219
10.1 Introductiontothe profiler L 219
10.2 How Is This Profiler Different From The Old Profiler?. 219
10.3 InstantUsers Manual. e 220
10.4 What Is Deterministic Profiling?. 222
10.5 Reference Manual 222
10.6 Limitations. o e 225
10.7 Calibration. e 225
10.8 Extensions — Deriving Better Profilers. 226
Internet Protocols and Support 231
11.1 webbrowser — Convenient Web-browsercontroller. 231
11.2 cgi — Common Gateway Interface support.. e 232
11.3 urlib —Open arbitraryresourcesby URL 239
11.4 httplib —HTTP protocolclient. e 242
115 ftplib —FTP protocolclient. 244
11.6 gopherlib — Gopher protocolclient 247
11.7 poplib —POP3protocolclient. e 248
11.8 imaplib — IMAP4 protocolclient e 249
11.9 nntplib —NNTP protocolclient. 252
11.10smtplib — SMTP protocolclient. 255

12

13

14

15

11.11telnetlib — Telnetclient e 258

11.12urlparse — Parse URLsintocomponents. i i 261
11.13SocketServer — A framework for network servers. Lo 262
11.14BaseHTTPServer —BasicHTTPserver i i i i e 264
11.15SimpleHTTPServer — Simple HTTP requesthandler 266
11.16 CGIHTTPServer — CGl-capable HTTPrequesthandler 267
11.17Cookie — HTTP state management. i i i i i e e e e 268
11.18asyncore — Asynchronous sockethandler. oL 272
Internet Data Handling 275
12.1 formatter — Genericoutputformatting 275
12.2 rfc822 —Parse RFC822mailheaders. 279
12.3 mimetools — Tools for parsing MIME messages i 282
12.4 MimeWriter — Generic MIME filewriter L o 283
12.5 muiltifile — Support for files containing distinctparts. 284
12.6 binhex — Encode and decode binhex4files 286
12.7 uu — Encode and decode uuencodefiles L L Lo 287
12.8 binascii — Convert between binary amdsCIl 287
12.9 xdrlib —Encode anddecode XDRdata. 289
12.10mailcap — Mailcap file handling.. e 291
12.11mimetypes — Map filenamesto MIME types. 292
12.12base64 — Encode and decode MIME base64 data. 293
12.13quopri — Encode and decode MIME quoted-printabledata 294
12.14mailbox — Read various mailboxformats o 294
12.15mhlib — Accessto MH mailboxes L 295
12.16 mimify — MIME processingof mailmessages. e 297
12.17netrc —netrcfile processing. L e 298
12.18robotparser — Parserforrobots.txt o 298
Structured Markup Processing Tools 301
13.1 sgmllib — Simple SGML parser. 0 e e e e 301
13.2 htmllib — AparserforHTMLdocuments i i it i 303
13.3 htmlentitydefs — Definitions of HTML general entities 305
13.4 xml.parsers.expat — Fast XML parsing using the Expatlibrary 305
13.5 xmlsax —Supportfor SAX2 ParserS. . . . v v v v v i e e e e 309
13.6 xml.sax.handler —BaseclassesforSAXhandlers oo 310
13.7 xml.sax.saxutils — SAXUtilities 314
13.8 xml.sax.xmlreader — Interface for XML parsers. 314
13.9 xmllib — A parserfor XMLdocuments. e 318
Multimedia Services 323
14.1 audioop — Manipulateraw audiodata 323
14.2 imageop — Manipulaterawimagedata. e 326
14.3 aifc — Read and write AIFF and AIFCfiles. o 327
14.4 sunau — Read and write Sun AUfiles 329
14.5 wave — Read and write WAV files. 331
14.6 chunk — Read IFFchunkeddata. 333
14.7 colorsys — Conversions betweencolorsystems. 335
14.8 rghimg — Read and write “SGIRGB”"files 335
14.9 imghdr — Determinethetypeofanimage 336
14.10sndhdr — Determine type of soundfile L 336
Cryptographic Services 339
15.1 md5— MD5 message digestalgorithm. o oL 339
15.2 sha — SHA message digestalgorithm. 340

16

17

18

19

20

15.3 mpz— GNU arbitrary magnitude integers 341

15.4 rotor — Enigma-like encryptionanddecryption. 342
Restricted Execution 345
16.1 rexec — Restricted executionframework o 346
16.2 Bastion — Restrictingaccesstoobjects L o 348
Python Language Services 349
17.1 parser — Access Pythonparsetrees. i i i e 349
17.2 symbol — Constants used with Python parsetrees 358
17.3 token — Constants used with Python parsetrees 359
17.4 keyword — Testing for Pythonkeywords 359
17.5 tokenize — Tokenizerfor Pythonsource. 359
17.6 tabnanny — Detection of ambiguousindentation 360
17.7 pyclbr — Python class browsersupport 360
17.8 py_compile — Compile Pythonsourcefiles. 361
17.9 compileall ~— Byte-compile Python libraries L. 361
17.10dis — Disassembler for Pythonbytecode. 362
SGI IRIX Specific Services 371
18.1 al — Audio functionsonthe SGI e 371
18.2 AL — Constants used withthed module 373
18.3 cd — CD-ROM access on SGISystems o 0 i i i e e e e e e e 373
18.4 fl — FORMS library interface for GUl applications. 377
18.5 FL — Constantsused withtife module 381
18.6 flp — Functions for loading stored FORMS designs. 382
18.7 fm — Font Managelinterface. e 382
18.8 gl — Graphics Libraryinterface e 383
18.9 DEVICE— Constantsused withthlgd module 385
18.10GL— Constants used with ttgd module o 385
18.11imgfile — Support for SGlimglibfiles 385
18.12jpeg — Read and write JPEGfiles. 386
SunOS Specific Services 389
19.1 sunaudiodev — AccesstoSunaudiohardware. oL 389
19.2 SUNAUDIODEW- Constants used wittunaudiodev 390
MS Windows Specific Services 391
20.1 msvert —Useful routines from the MS VC++runtime 391
20.2 _winreg —WINdowsS registry @CCeSS v v v v i i e e e e e 392
20.3 winsound — Sound-playing interface for Windows. 396
Undocumented Modules 399
Al Frameworks e e e 399
A.2 Miscellaneous useful utilities. L 399
A.3 Platform specificmodules 399
Ad Multimedia. e e 400
A5 Obsolete e e 400
A.6 SGl-specific Extension modules. e 401
Reporting Bugs 403
History and License 405
C.1 Historyofthesoftware 405
C.2 Terms and conditions for accessing or otherwise using Python 405

Module Index

Index

409

413

Y,

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World-Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use irfanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, for exampl,OL, 0.0 , 0] .

e any empty sequence, for examgle,, () ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns zerd.

All other values are considered true — so objects of many types are always true.
Operations and built-in functions that have a Boolean result always retimnfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.
2Additional information on these special methods may be found ifPtheon Reference Manual

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result | Notes
x or y | if xis false, thery, elsex (1)
x and vy | if xis false, therx, elsey (1)
not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsned a == bis interpreted agot (a == b), and
a == not bisasyntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampley <= zis equivalenttx < y and

y <= z, except thay is evaluated only once (but in both casds not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning | Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal (1)
<> not equal 8
is object identity
is not negated object identity
Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’t choose betwsseand C! :-) != isthe

preferred spellings> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example,
file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class definesrttpe _() method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

2.1.4 Numeric Types

There are four numeric typeglain integers long integers floating point humbersand complex numbers Plain
integers (also just calleititegers are implemented usinigng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendinjg ‘or ‘J’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the Same rule.
The functionsnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation | Result | Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y guotient ofx andy)
X %y remainderok / y
- X X hegated
+X X unchanged
abs(x) absolute value or magnitude f
int(x) x converted to integer (2)
long(x) x converted to long integer (2)
float(x) x converted to floating point
complex(re, im) | a complex number with real pa#, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(%, V) thepair(x / 'y, X %Y) 3
pow(X,) X to the powely
X ¥y x to the powely

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftian(s
andceil() inthemath module for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

3As a consequence, the Iigt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofi * has the same priority as the other unary numeric operatietigfid ‘-).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result | Notes

X|y bitwiseor of x andy
X"y bitwise exclusive oiof x andy
X &Yy bitwiseandof x andy

X << n | xshifted left byn bits 1), (2)
x >> n | xshifted right byn bits 1), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéadueError to be raised.
(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) Aright shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.1.5 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quoteyzzy’ |, "frobozz" . See chapter 2 of thHeython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceedingu’ character:u’abc’ , u"def" . Lists are constructed with square brackets, separating items with
commasia, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesespe.g., or() . A single item

tuple must have a trailing comma, e.(l,) . Buffers are not directly supported by Python syntax, but can be created
by calling the builtin functiorbuffer() . XRanges objects are similar to buffers in that there is no specific syntax to
create them, but they are created usingdtaange() function.

Sequence types support the following operations. Tié and ‘not in ' operations have the same priorities as the
comparison operations. The'and *’ operations have the same priority as the corresponding numeric operétions.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation | Result | Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
S * n, n* s| ncopies ofsconcatenated Q)
9] i'th item of s, origin O 2
g i] slice ofsfromi toj 2), (3)
len() length ofs
min(s) smallest item of
max(s) largest item of

4They must have since the parser can't tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions

Notes:

(1) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.as

(2) If i orj is negative, the index is relative to the end of the string,le@(s) + iorlen(s) + |is substituted.
But note thatO is still .

(3) The slice ofsfromi toj is defined as the sequence of items with inkexich that <= k < j. If i orj is greater
thanlen(s), uselen(9). If i is omitted, us®. If j is omitted, usden(). If i is greater than or equal {p
the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize 0
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthdth. Padding is done using spaces.

count (sut{, start[, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart andend
are interpreted as in slice notation.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string enardimg may
be given to set a different error handling scheme. The defau#irforsis 'strict’ , meaning that encoding
errors raise &alueError . Other possible values alignore’ and’replace’

endswith (suffi>{, start[, end]])
Return true if the string ends with the specifiadfix otherwise return false. With optionstlart, test beginning
at that position. With optionand stop comparing at that position.

expandtabs ([tabsizd)
Return a copy of the string where all tab characters are expanded using spéatesizés not given, a tab size
of 8 characters is assumed.

find (sut{, starl[, end]])
Return the lowest index in the string where substsabis found, such thadubis contained in the rangstart,
end. Optional argumentstartandendare interpreted as in slice notation. Retetnif subis not found.

index (sut{, starl[, end]])
Like find() , but raisevalueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdigit ()

Return true if there are only digit characters, false otherwise.
islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and the string is not empty, false otherwise.

2.1. Built-in Types 7

istitle

0

Return true if the string is a titlecased string, i.e. uppercase characters may only follow uncased characters and
lowercase characters only cased ones. Return false otherwise.

isupper ()

Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq
Return a string which is the concatenation of the strings in the seqseqcéhe separator between elements is
the string providing this method.

ljust (width)
Return the string left justified in a string of lengthdth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s) .

lower ()
Return a copy of the string converted to lowercase.

Istrip ()

Return a copy of the string with leading whitespace removed.

replace (old, nevx[, maxsplit])

rfind

Return a copy of the string with all occurrences of substoiyreplaced bynew If the optional argument
maxsplitis given, only the firsmaxsplitoccurrences are replaced.

(sub[,start [,end]])
Return the highest index in the string where substsinigis found, such thatubis contained within s[start,end].
Optional argumentstart andendare interpreted as in slice notation. Retetnon failure.

rindex (sul, starf, end]])

rjust

rstrip

split

Like rfind() but raises/alueError when the substringubis not found.

(width)
Return the string right justified in a string of lengtidth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s) .

0

Return a copy of the string with trailing whitespace removed.

([sep[,maxspii]])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mosmaxsplit

splits are done. Iepis not specified oNone, any whitespace string is a separator.

splitlines ([keepend]s)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith (prefix[, starl{, end]])

strip

Return true if string starts with therefix otherwise return false. With optionatart, test string beginning at
that position. With optionaénd stop comparing string at that position.

0

Return a copy of the string with leading and trailing whitespace removed.

swapcase ()

title

Return a copy of the string with uppercase characters converted to lowercase and vice versa.

0

Return a titlecased version of, i.e. words start with uppercase characters, all remaining cased characters are
lowercase.

translate (table[, deletechari)

Chapter 2. Built-in Types, Exceptions and Functions

Return a copy of the string where all characters occurring in the optional arguleletécharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

upper ()
Return a copy of the string converted to uppercase.

String Formatting Operations

String objects have one unique built-in operation: $heperator (modulo) with a string left argument interprets this
string as a Gprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple’dijedollowing format characters

are understood% c, s, i, d, u, 0, x, X, e, E, f, g, G Width and precision may be*ato specify that an integer
argument specifies the actual width or precision. The flag charactersblank,# and0 are understood. The size
specifiersh, | or L may be present but are ignored. T¥s conversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI featurédépand%nare not supported. Since Python strings have

an explicit length%sconversions don’t assume tH&l' is the end of the string.

For safety reasons, floating point precisions are clipped t&&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bygconversions. All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after tB&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> language = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard moduleg and in built-in modulee .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is
that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There
are no consistent performance advantages.

XRange objects behave like tuples, and offer a single method:

tolist ()
Return a list object which represents the same values as the xrange object.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable

5A tuple object in this case should be a singleton.
6These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 9

sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexds an arbitrary object):

Operation | Result | Notes
gi] = x itemi of sis replaced by
girj] = t slice ofsfromi to is replaced by
del di:j] sameas i:j] = []
s.append(x) same ag{len(s)ylen(9] = [X)
sextend(X) same asgllen(s)len(9] = X (2)
scount(X) return number of's for whichg[i] == x
sindex(X) return smallest such thaq i] == x 3)
sinsert(i, X) sameasi:i] = [x] ifi >= 0
s.pop([i]) sameax = di]; del di]; return X 4)
sremove(X) same aglel o sindex(X)])
sreverse() reverses the items afin place (5)
s.sort([cmpfund) sort the items o§in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(2) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable sequence types other than lists.

(3) RaisesvalueError whenxis not found ins.

(4) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so that
by default the last item is removed and returned.

(5) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don't return the sorted or reversed list to remind you of this side effect.

(6) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should returnl , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list
in reverse order it is much faster to use calls to the metBod$) andreverse() than to use the built-in
functionsort() with a comparison function that reverses the ordering of the elements.

2.1.6 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thetionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (A.@nd1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’> 4098, ’'sjoerd: 4127} or{4098: ‘’jack’, 4127: ’sjoerd?}

The following operations are defined on mappings (wlzeaadb are mappingsk is a key, andr andx are arbitrary
objects):

10 Chapter 2. Built-in Types, Exceptions and Functions

Operation | Result | Notes

len(a) the number of items ia

al K] the item ofa with key k Q)
akl = v seta[k] tov

del al kK] removeal K] froma 1)

a.clear() remove all items frona

a.copy() a (shallow) copy o&

a.has _key(k) 1 if ahas a ke, else0
a.items() a copy ofa’s list of (key, value pairs (2)
a.keys() a copy ofa’s list of keys (2)
a.update(b) for k in b.keys(): ak] = DblK] 3)
a.values() a copy ofa’s list of values 2)
a.get(k[, x) al k] if ahas _key(k), elsex 4)
a.setdefault(kK|, x]) | a K if ahas _key(k), elsex (also setting it)| (5)

Notes:

(1) Raises &eyError exception ifk is not in the map.

(2) Keys and values are listed in random orderkdf/s() andvalues() are called with no intervening modifi-
cations to the dictionary, the two lists will directly correspond. This allows the creatipnalfie key) pairs
usingmap() : ‘pairs = map(None, a.values(), akeys()) .

(3) b must be of the same type as

(4) Never raises an exceptionkifis not in the map, instead it returrsx is optional; wherx is not provided and is
not in the mapNone is returned.

(5) setdefault() is like get() , except that ik is missing x is both returned and inserted into the dictionary as
the value ok.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anchameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatghert statement is not, strictly
speaking, an operation on a module objaniport foo does not require a module object nanfiedto exist, rather
it requires an (externafjefinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment ta thet __
attribute is not possible (i.e., you can write __dict __[a] = 1 , which definean.a to bel, but you can’t
writem. __dict __ = {} .

Modules built into the interpreter are written like thismodule 'sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ‘/usr/local/lib/python2.0/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manufdr these.

2.1. Built-in Types 11

Functions
Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attribufefsinc _code is a function'scode objecisee below)
andf.func _globals is the dictionary used as the function’s global namespace (this is the same aslict
wheremis the module in which the functidhwas defined).

Methods
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance meathimas:self is the object on
which the method operates, antdim _func is the function implementing the method. Calling arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don't contain a reference to their global execution envi-
ronment. Code objects are returned by the buikkémpile() function and can be extracted from function objects
through theifunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtechstatement or the
built-in eval() function.

See thePython Reference Manutdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhds defines names for all standard built-in types.

Types are written like thisstype ’int’>

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (sedPytbon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nantedipsis (a built-in name).

It is written asEllipsis

12 Chapter 2. Built-in Types, Exceptions and Functions

File Objects

File objects are implemented using G&lio package and can be created with the built-in functipen() de-
scribed in section 2.3, “Built-in Functions.” They are also returned by some other built-in functions and methods, e.g.,
os.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/0O-related reason, the excep@&nror is raised. This includes situations where
the operation is not defined for some reason, $ikek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that the file be
open will raise alOError after the file has been closed. Callidgse() = more than once is allowed.

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

isatty ()
Return true if the file is connected to a tty(-like) device, else faldate: If a file-like object is not associated

with a real file, this method shoulibtbe implemented.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl oros.read() and friendsNote: File-like objects which do not have a real file descriptor shawit
provide this method!

read ([size])
Read at mossizebytes from the file (less if the read hit®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned whesoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after aiEOFis hit.) Note that this method may call the underlying C funcfi@ad() = more than once
in an effort to acquire as close sizebytes as possible.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tmg may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returnec¢taihen
is hit immediately. Note: Unlikestdio ’s fgets() , the returned string contains null characteéY@’() if
they occurred in the input.

readlines ([sizehinﬂ)
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mhint
argument is present, instead of reading ugd®, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

seek (offse{, Whencd)
Set the file’s current position, liketdio 's fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to the
file’'s end). There is no return value.

tell ()
Return the file’s current position, likgdio s ftell()

truncate ([size])

"The advantage of leaving the newline on is that an empty string can be returned te araaithout being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 13

Truncate the file’s size. If the optionaizeargument present, the file is truncated to (at most) that size. The
size defaults to the current position. Availability of this function depends on the operating system version (for
example, not all Blix versions support this operation).

write (str)
Write a string to the file. There is no return value. Note: Due to buffering, the string may not actually show up
in the file until theflush() orclose() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to mestdlnes() ;
writelines() does not add line separators.)

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attributeldbe() method
changes the value. It may not be available on all file-like objects.

mode
The 1/0 mode for the file. If the file was created using tipen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirgpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the formx!..> . This is a read-only attribute and may not be present on all
file-like objects.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vadfidpace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control thgint statement, but to allow the
implementation oprint to keep track of its internal state.

Internal Objects

See thePython Reference Manu#dr this information. It describes stack frame objects, traceback objects, and slice
objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

__dict __
A dictionary of some sort used to store an object’s (writable) attributes.

__methods __
List of the methods of many built-in object types, e[f., —__methods __ yields['append’, 'count’,
'index’, ’insert’, 'pop’, 'remove’, 'reverse’, 'sort’]

__members__
Similar to__methods __, but lists data attributes.

__class __
The class to which a class instance belongs.

14 Chapter 2. Built-in Types, Exceptions and Functions

__bases __
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in past versions of
Python, in Python 1.5 and newer versions, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The exceptions are defined in the neadelgtions . This module never needs to be
imported explicitly: the exceptions are provided in the built-in namespace.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofdlkeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootEiasption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions.

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedstffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

StandardError
The base class for all built-in exceptions exc8gstemExit . StandardError itself is derived from the
root clas€Exception

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verflowError |
ZeroDivisionError , FloatingPointError

LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError

EnvironmentError
The base class for exceptions that can occur outside the Python syStermor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instaarces attribute (it is assumed
to be an error number), and the second item is available ostteeor attribute (it is usually the associated
error message). The tuple itself is also available oratige attribute. New in version 1.5.2.

2.2. Built-in Exceptions 15

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tfilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefifhe and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

AssertionError
Raised when aassert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

EOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiong0F)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hitEOF.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined in the
‘config.h’ file.

IOError
Raised when an I/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frorenvironmentError . See the discussion above for more information on exception
instance attributes.

ImportError
Raised when aimport statement fails to find the module definition or whefniam ... import fails to

find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

Keyboardinterrupt
Raised when the user hits the interrupt key (norm@lntrol-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipnt() orraw _input()) is waiting
for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@dloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

NotlmplementedError

16 Chapter 2. Built-in Types, Exceptions and Functions

This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

OSEtrror
This class is derived frofenvironmentError and is used primarily as thies module’'sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
1.5.2.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occurimpan statement, in amexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttfilutase , lineno , offset and

text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptionsir() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string

of the Python interpreteisys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemEXxit

This exception is raised by thsys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthayie).
Also, this exception derives directly froException and notStandardError |, since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handfervally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after dork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass NameError . New in version 2.0.

2.2. Built-in Exceptions 17

UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subcladsaiError . New in
version 2.0.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegkrror

WindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporatrteman

value. Theerrno andstrerror values are created from the return values of@etLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclas©O&Error . New in
version 2.0.

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghg statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_awmport __()

function.

For example, the statemenimport spam ' results in the following call: __import __('spam’,
globals(), locals(), [1) ; the statementfrom spam.ham import eggs results in
__import __('spam.ham’, globals(), locals(), ['eggs’) . Note that even thouglo-

cals() and[eggs’] are passed in as arguments, theémport __() function does not set the local
variable nameckggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitgls argument at all, and uses bfobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named bhyame However, when a non-empigpomlistargument is given, the
module named byameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfngm spam.ham import eggs ', the spam.ham
subpackage must be used to find #ggs variable. As a workaround for this behavior, wgetattr() to
extract the desired components. For example, you could define the following helper:

import string

def my_import(hame):
mod = __import__(name)
components = string.split(name, .")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)

18 Chapter 2. Built-in Types, Exceptions and Functions

Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg%, keywordg)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence (if it is not a tuple, the sequence is first converted to a tuple). The
functionis called withargsas the argument list; the number of arguments is the the length of the tuple. (This is
different from just callingund args) , since in that case there is always exactly one argument.) If the optional
keywordsargument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to
be added to the end of the the argument list.

buffer (objec{, oﬁse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdbgectargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by thaizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whaos&cii code is the integer e.g.,chr(97) returns the stringg’ . This
is the inverse obrd() . The argument must be in the range [0..255], inclusiedueError will be raised if
i is outside that range.

cmp(x, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X < vy, zeroifx == yand strictly positive iix > .

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, king
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pas&stgng>’
if it wasn’t read from a file. Th&ind argument specifies what kind of code must be compiled; it caexae’
if string consists of a sequence of statemet@sal’ if it consists of a single expression, @ingle’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else tharNone will printed).

complex (real[, imag])
Create a complex number with the vaheal + imagtj or convert a string or number to a complex number. Each
argument may be any numeric type (including compleximiéigis omitted, it defaults to zero and the function
serves as a humeric conversion function lik) , long() andfloat() ; in this case it also accepts a
string argument which should be a valid complex number.

delattr (object, namg
This is a relative obetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ' foobar) is equivalenttalel x. foobar.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attribute for that object. This information is gleaned from the objectfict __,
__methods __and__members__ attributes, if defined. The list is not necessarily complete; e.g., for classes,
attributes defined in base classes are not included, and for class instances, methods are not included. The

2.3. Built-in Functions 19

resulting list is sorted alphabetically. For example:

>>> import sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, 'exit’, 'modules’, 'path’, ’'stderr’, 'stdin’, 'stdout’]

divmod (a, b)

eval

Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same(as/ b, a % b). For floating point numbers the result(iig, a %

b) , whereq is usuallymath.floor(a / b) but may be 1 less than that. Inany casé¢ b + a % bis

very close ta, if a % bis non-zero it has the same signtagnd0 <= abs(a % b) < abs(b).

(expressio[u, globals[, Iocals]])

The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usingltitgalsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment winegie is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. createchpie()). In this case
pass a code object instead of a string. The code object must have been compiled’paabing to thekind
argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (file[, globals[, Iocals]])

filter

float

This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted, the
expression is executed in the environment wheerecfile() is called. The return value done.

(function, lis)
Construct a list from those elementslist for which functionreturns true. Hist is a string or a tuple, the result
also has that type; otherwise it is always a listfufctionis None, the identity function is assumed, i.e. all
elements ofist that are false (zero or empty) are removed.

(%)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensital goatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

8|t is used relatively rarely so does not warrant being made into a statement.

20

Chapter 2. Built-in Types, Exceptions and Functions

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, nam[a, default])
Return the value of the named attributedaject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examglattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namp
The arguments are an object and a string. The result is 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callingetattr(object nameg and seeing whether it raises an exception
or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit macHie&(-1) yields 'Oxffffffff’ . When

evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

id (objec)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have thégpme
value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically val®iraxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and history
features.

Consider using theaw _input() function for general input from users.

int (X[, radix])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi(x[, radix]) . Theradix parameter gives the base for the conversion and may be any integer
in the range [2, 36]. Ifadix is specified and is not a string,TypeError is raised. Otherwise, the argument
may be a plain or long integer or a floating point number. Conversion of floating point numbers to integers is
defined by the C semantics; normally the conversion truncates toward® zero.

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 21

instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

isinstance (object, clasy
Return true if theobjectargument is an instance of tlodassargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassis a type object andbjectis an object of that type. Ibbjectis not a class
instance or a object of the given type, the function always returns faletad$is neither a class object nor a
type object, aypeError exception is raised.

issubclass (classl, classp
Return true ifclasslis a subclass (direct or indirect) ofass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

len (9)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence
Return a list whose items are the same and in the same ordegasncs items. If sequencés already a list,
a copy is made and returned, similardequende] . For instancelist(’abc’) returns returng'a’,
b, 'c’] andlist((1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAllgning: The contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long (X)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves idergicagatol(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint()

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioni@t arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended witime items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Tis¢ arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumerd, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit macldog;1) vyields’037777777777 . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raisecarerflowError exception.

open (filename[, mode[, bufsizd])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 's fopen() : filenameis the file name to be openemhodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arild’ opens it for appending (which aomeUnix

22 Chapter 2. Built-in Types, Exceptions and Functions

systems means thall writes append to the end of the file, regardless of the current seek paosition).

Modes’r+' ,’'w+ and’a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

If modeis omitted, it defaults t&r' . When opening a binary file, you should appélpd to themodevalue

for improved portability. (It's useful even on systems which don'’t treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is used.

ord (¢)
Return theascii value of a string of one character or a Unicode character. &dyf’a’) returns the integer
97, ord(u’
u2020’) returns8224 . This is the inverse ofhr() for strings and ofinichr() ~ for Unicode characters.

Returnx to the powery; if zis present, returx to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2. The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; eagw(2, -1) orpow(2, 35000) is not allowed.

range ([start,] stod, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmedlaops.
The arguments must be plain integers. If Htepargument is omitted, it defaults tbh. If the start argument
is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2
* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the largstrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4, 5,6, 7, 8 9]
>>> range(1, 11)

[1, 2, 3, 4,5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

I

>>> range(1, 0)

I

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then

reads a line from input, converts it to a string (stripping a trailing newline), and returns that. dirés read,
EOFError is raised. Example:

105pecifying a buffer size currently has no effect on systems that don'tseiveuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.3. Built-in Functions 23

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequem{einitializer])
Apply function of two arguments cumulatively to the items squencefrom left to right, so as to reduce
the sequence to a single value. For exampmeluce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateq(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload (modulg
Re-parse and re-initialize an already impornteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as theoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepysfor

__main __and__builtin ~ __. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module usiram ... import ..., callingreload() for the

other module does not redefine the objects imported from it — one way around this is to re-exefugmthe
statement, another is to ugeport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val()

round (x[, n])
Return the floating point valuerounded ton digits after the decimal point. H is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powen;nifinus
two multiples are equally close, rounding is done away from 0 (soregnd(0.5) is 1.0 andround(-
0.5) is-1.0).

setattr (object, name, valye
This is the counterpart gfetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

24 Chapter 2. Built-in Types, Exceptions and Functions

slice ([start,] stor{, step])
Return a slice object representing the set of indices specifiedrimye(start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attrittaies , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. fa[start:stop:step] " or ‘a[start:stop, i] .

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ; its goal is to return a printable string.

tuple (sequence
Return a tuple whose items are the same and in the same ordegasncs items. If sequenceés already
a tuple, it is returned unchanged. For instartagle('abc’) returns returng’a’, 'b’, 'c’) and
tuple([1, 2, 3]) returns(1, 2, 3)

type (objecd
Return the type of anbject The return value is a type object. The standard motjydes defines names for
all built-in types. For instance:

>>> import types
>>> jf type(X) == types.StringType: print "It's a string"

unichr (i)
Return the Unicode string of one character whose Unicode code is the integgrunichr(97) returns the
stringu’a’ . This is the inverse ofrd() for Unicode strings. The argument must be in the range [0..65535],
inclusive.ValueError is raised otherwise. New in version 2.0.

unicode (string[, encodin&, errors]])
Decodesstring using the codec foencoding Error handling is done according éorors. The default behavior
is to decode UTF-8 in strict mode, meaning that encoding errors YakeeError . See also theodecs
module. New in version 2.0.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefiriéd.

xrange ([start,] stor{, step])
This function is very similar t#ange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantagexfange() overrange() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

zip (seql,.)
This function returns a list of tuples, where each tuple contains-theslement from each of the argument
sequences. At least one sequence is required, otherWiggekrror is raised. The returned list is truncated
in length to the length of the shortest argument sequence. When there are multiple argument sequences which
are all of the same lengthip() is similar tomap() with an initial argument oNone. With a single sequence
argument, it returns a list of 1-tuples. New in version 2.0.

1n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 25

26

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
gc

atexit
types
UserDict
UserList
UserString
operator
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
imp
code
codeop
pprint
repr
new
site
user
__builtin
__main __

Access system-specific parameters and functions.
Interface to the cycle-detecting garbage collector.

Register and execute cleanup functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.

Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Access the implementation of tiaport statement.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr() implementation with size limits.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv

The list of command line arguments passed to a Python sauigiv[0]

is the script name (it is operating

system dependent whether this is a full pathname or not). If the command was executed usitgth@and

line option to the interpretegrgv[0]

is set to the string-c’ . If no script name was passed to the Python

interpreterargv has zero length.

27

byteorder
An indicator of the native byte order. This will have the valbig' on big-endian (most-signigicant byte first)
platforms, andiittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way wodules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dilhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drgype valueg tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class objac)ue gets the exception parameter (#ssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning théracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something likgpe, value = sys.exc _info()[:2] to extract only the exception

type and value. If you do need the traceback, make sure to delete it after use (best dontgywith finally

statement) or to caltxc _info() in a function that does not itself handle an exception.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Iseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being hand&d,_type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefixargument to the
configure script. Specifically, all configuration files (e.g. theohfig.h’ header file) are installed in the di-
rectoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses otry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal

28 Chapter 3. Python Runtime Services

termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasd€dne is equivalent to passing zero, and any other
object is printed t®ys.stderr and results in an exit code of 1. In particulays.exit("some error

message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use tlegexit module. Note: the exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or wken exit() is called.

getrefcount (objec)
Return the reference count of tleject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgsitréscount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit()

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ’ since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion _info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isrport pdb; pdb.pm() ' to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke faype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
modules

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

3.1. sys — System-specific parameters and functions 29

path
A list of strings that specifies the search path for modules. Initialized from the environment variable $PYTHON-
PATH, or an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python

interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard inpupath[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is inserteeforethe entries inserted as a result of SPYTHON-

PATH.

platform
This string contains a platform identifier, e.gunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the strinfusr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the diregboefix
+ 'llib/python versiori while the platform independent header files (all excephfig.h’) are stored in
prefix + ’'/include/python version , whereversionis equal toversion[:3]

psl

ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case &®> ' and'... . If a non-string object is
assigned to either variable, #() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQlt mseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuee= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace()), butitisn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just fgture.

setrecursionlimit (‘limit)
Set the maximum depth of the Python interpreter stackmd. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

stdin

stdout

stderr
File objects corresponding to the interpreter’'s standard input, output and error stretalims. is used for
all interpreter input except for scripts but including callsriput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the prompiemit() andraw _input()
The interpreter’s own prompts and (almost all of) its error messages gléor . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it head#tey) method that takes a

30 Chapter 3. Python Runtime Services

string argument. (Changing these objects doesn’t affect the standard 1/0 streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout

__stderr __
These objects contain the original valuesstafin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal®0B. When set to O or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-
ber and compiler used. It has a value of the farmersion (# build_number build_date build_time)
[compilef’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:
>>> jmport sys
>>> sys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]

version _info
A tuple containing the five components of the version numisegjor, minor, micro, releaselevelandserial. All
values excepteleaseleveare integers; the release levelatpha’ |, ’beta’ |, ’candidate’ , or’final’
Theversion _info value corresponding to the Python version 2.is 0, 0, ‘'final’, 0) . New
in version 2.0.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three charactekgeddion . Itis provided in thesys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, &mportError is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
calling gc.disable() . To debug a leaking program cagjt.set _debug(gc.DEBUG _LEAK).

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

3.2. gc — Garbage Collector interface 31

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writeyststderr . See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

set _threshold (threshold(i, thresholdi, thresholdﬂ])
Set the garbage collection thresholds (the collection frequency). S#itagholdo zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (gene@tidhan object survives a collection it is moved

into the next older generation. Since generafiois the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations
and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceedshresholdQ collection starts. Initially only generatidhis examined. If generatiobhas been examined

more thanthreshold1times since generatioh has been examined, then generatiois examined as well.
Similarly, threshold2controls the number of collections of generatibbefore collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ threshold]l threshold? .

The following variable is provided for read-only access:

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
Objects that have_del __() methods and create part of a reference cycle cause the entire reference cycle to
be uncollectable. IDEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than
freed.

The following constants are provided for use wstit _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to teebage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, print information about instance objects
found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLErDEBUGUNCOLLECTABLIE set, print information about objects other than
instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendegdtioagerather than being freed. This can be useful
for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES | DEBUGOBJECTS
| DEBUG_SAVEALL.

32 Chapter 3. Python Runtime Services

3.3 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bystymeexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thatsgstexitfunc . In partic-
ular, other core Python modules are free to asexit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usgexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounshymexitfunc

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be pdssed to
must be passed as argumentsetgister()

At normal program termination (for instance sijs.exit() is called or the main module’s execution com-
pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

Modulereadline (section 7.17):
Useful example oétexit to read and writeeadline history files.

3.3.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter”).read())
except IOError:

_count = O

def incrcounter(n):
global _count

_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

3.4 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freet types import * " — the module does not export

3.3. atexit — Exit handlers 33

any names besides the ones listed here. New names exported by future versions of this module will allygred in *

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType

The type ofNone.
TypeType

The type of type objects (such as returnedype()).
IntType

The type of integers (e.d.).
LongType

The type of long integers (e.gL).
FloatType

The type of floating point numbers (e..0).
ComplexType

The type of complex numbers (e .0j).
StringType

The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (eugSpam’).
TupleType

The type of tuples (e.d1, 2, 3, 'Spam’)).
ListType

The type of lists (e.g[0, 1, 2, 3]).
DictType

The type of dictionaries (e.g'Bacon’: 1, 'Ham’. 0}).
DictionaryType

An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType

34 Chapter 3. Python Runtime Services

The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType

The type of objects returned Isjice()
EllipsisType

The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

3.5 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to dictionaries.

TheUserDict module defines thElserDict class:

UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. Ifnitialdata is provided,data is initialized with its contents;
note that a reference toitialdata will not be kept, allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see section2sé)ict instances provide
the following attribute:

data
A real dictionary used to store the contents of theerDict class.

3.6 UserList — Class wrapper for list objects

3.5. UserDict — Class wrapper for dictionary objects 35

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thEserList class:

UserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblelaia the
attribute ofUserList instances. The instance’s contents are initially set to a copigtofdefaulting to the
empty list[] . list can be either a regular Python list, or an instancessdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiodsedlL &t instances
provide the following attribute:

data
A real Python list object used to store the contents oltberList class.

Subclassing requirements: Subclasses dffserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutabldata attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.7 UserString — Class wrapper for string objects

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case foMutableString

TheUserString module defines the following classes:

UserString ([sequenc}a)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via ttata attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode string,
an instance ofJserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr() function.

MutableString ([sequenc})
This class is derived from thdserString above and redefines strings to teitable Mutable strings can't
be used as dictionary keys, because dictionaries reguiraitableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (overridedshe ()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.1.5, “String Meth-
0ds”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content diseeString class.

36 Chapter 3. Python Runtime Services

3.8 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

Theoperator module defines the following functions:

add(a, b
__add__(a,b
Returna + b, for aandb numbers.

sub (a, b)
__sub__(a,b
Returna - b.

mul (a, b)
__mul__(a,b
Returna* b, for a andb numbers.

div (a, b
_div __(a,b
Returna/ b.

mod(a, b)
__mod__(a,b
Returna %b.

neg(o)
__neg__(0)
Returno negated.

pos (0)
__pos__(0)
Returno positive.

abs (0)
__abs__(0)
Return the absolute value of

inv (0)
__inv __(0)
__invert __(0)
Return the inverse ai. The namenvert() and__invert __() were added in Python 2.0.

Ishift (&, b)
__Ishift __(a, b
Returna shifted left byb.

rshift (a, b
__rshift __(a, b
Returna shifted right byb.

and _(a, b
__and__(a,b
Return the bitwise and af andb.

or _(a,h
_or__(ab
Return the bitwise or oh andb.

3.8. operator — Standard operators as functions. 37

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

not _(0)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the inter-
preter core defines this operation.)

truth (o)
Returnl if ois true, and O otherwise.

concat (a,b)
__concat __(a,b
Returna + b for a andb sequences.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence artis an integer.

contains (a,b)

__contains __(a,b
Return the outcome of the tdsin a. Note the reversed operands. The nameontains __() was added
in Python 2.0.

sequencelncludes (..)
Deprecated since release 2.Qsecontains() instead.

Alias for contains()

countOf (a,b)
Return the number of occurrencestah a.

indexOf (a, b)
Return the index of the first of occurrencelmih a.

getitem (a,b)
__getitem __(a, b
Return the value ad at indexb.

setitem (a,b,Q
__setitem __(a,b,q
Set the value oh at indexb to c.

delitem (a,b)
__delitem __(a,b)
Remove the value af at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o& from indexb to indexc-1 to the sequence

delslice (a, b, 9
__delslice __(a,b,9
Delete the slice o& from indexb to indexc-1 .

The operator also defines a few predicates to test the type of objddtste: Be careful not to misinterpret the
results of these functions; onigCallable() has any measure of reliability with instance objects. For example:

38 Chapter 3. Python Runtime Services

>>> class C:
pass

>>> jmport operator
>>> 0 = C()
>>> operator.isMappingType(0)

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objectcan be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which suppodahe __() method.

isMappingType (0)
Returns true if the objea supports the mapping interface. This is true for dictionaries and all instance objects.
Warning: There is no reliable way to test if an instance supports the complete mapping protocol since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (0)
Returns true if the objeat represents a number. This is true for all numeric types implemented in C, and for
all instance objectsWarning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeat supports the sequence protocol. This returns true for all objects which define se-
quence methods in C, and for all instance objestfarning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less useful
than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.9 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayasldes _traceback
andsys.last _traceback and returned as the third item frosys.exc _info()

The module defines the following functions:

print _tb (tracebacl{, Iimit[, fiIe]])
Print up tolimit stack trace entries fromaceback If limit is omitted orNone, all entries are printed. ffile
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

3.9. traceback — Print or retrieve a stack traceback 39

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up timit stack trace entries fronracebackto file. This differs from
print _tb() in the following ways: (1) itracebackis notNone, it prints a headerTraceback (inner-
most last): ’; (2) it prints the exceptiontypeandvalueafter the stack trace; (3) tfpeis SyntaxError
andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret indicating
the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file)’. (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, limit[, file]]])
This function prints a stack trace from its invocation point. The optidnafgument can be used to spec-
ify an alternate stack frame to start. The optiohalit and file arguments have the same meaning as for
print _exception()

extract _tb (tracebacl{, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback trajeeback
It is useful for alternate formatting of stack traces.liffiit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilename line number function nametexy representing the
information that is usually printed for a stack trace. Tletis a string with leading and trailing whitespace
stripped; if the source is not available ithlone.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same formatxas for
tract _tb() . The optionaf andlimit arguments have the same meaning apfort _stack()

format _list (list)
Given a list of tuples as returned lextract _tb() orextract _stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.last _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8mntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments t@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb (tb[, limit)

A shorthand foformat _list(extract _tb(th, limit)) .
format _stack ([f[,limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This is normally the same as the
tb.tb _lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;

40 Chapter 3. Python Runtime Services

this function calculates the correct value.

3.9.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectaléhenodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print '-*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.10 linecache — Random access to text lines

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢hack module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelineno from file namedfilename This function will never throw an exception — it will retuth on
errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search pays.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyesiing()

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> import linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\012’

3.10. linecache — Random access to text lines 41

3.11 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). This is a more primitive notion than persistence — althopgikle reads and writes file objects, it

does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thackle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to
write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as thePickle module. This has the same interface except®ieitler andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Although thepickle module can use the built-in modutearshal internally, it differs frommarshal in the way
it handles certain kinds of data:

e Recursive objects (objects containing references to themselpale keeps track of the objects it has
already serialized, so later references to the same object won't be serialized agairgiBhel module
breaks for this.)

e Object sharing (references to the same object in different places): This is similar to self-referencing objects;
pickle stores the object once, and ensures that all other references point to the master copy. Shared objects
remain shared, which can be very important for mutable objects.

e User-defined classes and their instancesirshal does not support these at all, kpitkle can save and
restore class instances transparently. The class definition must be importable and live in the same module as
when the object was stored.

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can't represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printablell (and of some other characteristicspékle s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value fointhe
argument to théickler constructor or thelump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, whichitmershal module does. | suppogeckle could, and
maybe it should, but there’s probably no great need for it right now (as lomgaashal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistence modules written ugiigle |, it supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of prsttable
characters. The resolution of such names is not defined bgitkke module — the persistent object module will
have to implement a methquersistent _load() . To write references to persistent objects, the persistent module
must define a methqggersistent _id() which returns eitheNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

42 Chapter 3. Python Runtime Services

When a pickled class instance is unpickled, itsinit __() method is normallynot invoked. Note: This is a
deviation from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the
change is that in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to
have to provide a _getinitargs _ () method.

If it is desirable that the__init __() method be called on unpickling, a class can define a method
__Qgetinitargs ——() , which should return &uple containing the arguments to be passed to the class construc-
tor (__init __()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

Classes can further influence how their instances are pickled — if the class defines the meybisthte __() ,

it is called and the return state is pickled as the contents for the instance, and if the class defines the method
__setstate __() , itis called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is nogetstate __() method, the instance’s_dict __ is pickled. If there
isno__setstate __() method, the pickled object must be a dictionary and its items are assigned to the new in-
stance’s dictionary. (If a class defines bathgetstate __() and__setstate __() , the state object needn't be

a dictionary — these methods can do what they want.) This protocol is also used by the shallow and deep copying
operations defined in theopy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class’s__setstate __() method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.
To pickle an objeck onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:
pickle.dump(x, f)

To unpickle an object from a filef , open for reading:

u pickle.Unpickler(f)

u.load()

A shorthand is:
x = pickle.load(f)

ThePickler class only calls the methddwrite() with a string argument. ThE&npickler calls the meth-
odsf.read() (with an integer argument) arfdeadline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for th€ickler class has an optional second argumeitt, If this is present and true, the binary
pickle format is used; if it is absent or false, the (less efficient, but backwards compatible) text pickle format is used.
The Unpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts

3.11. pickle — Python object serialization 43

either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

e normal and Unicode strings

e tuples, lists and dictionaries containing only picklable objects

¢ functions defined at the top level of a module (by name reference, not storage of the implementation)
e built-in functions

e classes that are defined at the top level in a module

e instances of such classes whasalict __ or __setstate __() is picklable

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

It is possible to make multiple calls to tltimp() method of the sam®ickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondindnpickler instance. If the same

object is pickled by multiplelump() calls, theload() will all yield references to the same objetarning this

is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify

an object and then pickle it again using the saekler instance, the object is not pickled again — a reference to

it is pickled and thdJnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. | have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the following functions, and an exception:

dump(object, fild, bin])
Write a pickled representation abjectto the open file objecfile. This is equivalent toPickler(file,
bin).dump(objec) . If the optionalbin argument is present and nonzero, the binary pickle format is used; if
it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file objéle. This is equivalent toUnpickler(file).load() .

dumps(objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the ofitional
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object is passakber.dump()

See Also:

Modulecopy _reg (section 3.13):
pickle interface constructor registration

Moduleshelve (section 3.14):
indexed databases of objects; upekle

44 Chapter 3. Python Runtime Services

Modulecopy (section 3.15):
shallow and deep object copying

Modulemarshal (section 3.16):
high-performance serialization of built-in types

3.11.1 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file, and
returns the line number and line contents each timeeislline() method is called. If &extReader instance

is pickled, all attributegxcepthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Theetstate __ () and__getstate __() methods are used to
implement this behavior.

illustrate _ setstate_ and __ getstate_ methods
used in pickling.

class TextReader:
"Print and number lines in a text file."
def __init__(self file):
self.file = file
self.th = open(file,’r)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:
return None
return "%d: %s" % (self.lineno,line[:-1])

return data representation for pickled object

def _ getstate_ (self):
odict = self.__dict__ # get attribute dictionary
del odict['fh’] # remove filehandle entry
return odict

restore object state from data representation generated
by _ getstate
def __ setstate__(self,dict):
fh = open(dict[file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored
fh.readline()
count = count - 1
dict['fh’] = fh # create filehandle entry
self.__dict__ = dict # make dict our attribute dictionary

A sample usage might be something like this:

3.11. pickle — Python object serialization 45

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,’'w’))

(start another Python session)

>>> jmport pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file.

3.12 cPickle — Alternate implementation of pickle

ThecPickle module provides a similar interface and identical functionality agpthele module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to noteRsctdat() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced usingttide module, so it is possible to ugéckle
andcPickle interchangeably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some freedoms in
the encodings of certain objects, it's possible that the two modules produce different pickled data for the same input
objects; however they will always be able to read each other’s pickles back in.)

3.13 copy _reg — Reqgister pickle support functions

Thecopy _reg module provides support for thigckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor. bbjectis not callable (and hence not valid as a constructor), raises
TypeError

pickle (type, functimﬁ, constructoﬂ)
Declares thatunctionshould be used as a “reduction” function for objects of tiyges typeshould not a class
object. functionshould return either a string or a tuple. The optiot@hstructorparameter, if provided, is a
callable object which can be used to reconstruct the object when called with the tuple of arguments returned by
functionat pickling time.TypeError will be raised ifobjectis a class oconstructoris not callable.

3.14 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)
in a shelf can be essentially arbitrary Python objects — anything thatithkee module can handle. This includes

46 Chapter 3. Python Runtime Services

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interfac&dy is a string,data is an arbitrary object):

import shelve
d = shelve.open(flename) # open, with (g)dbm filename -- no suffix

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

e The choice of which database package will be used (fagnor gdbm) depends on which interface is available.
Therefore it is not safe to open the database directly usiimy The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

e Theshelve module does not suppazbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. WX file locking can be used to solve this, but this differs acrossxUversions and
requires knowledge about the database implementation used.

See Also:

Moduleanydbm (section 7.9):
Generic interface tdbm-style databases.

Moduledbhash (section 7.11):
BSD db database interface.

Module dbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.10):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondbeninterface.

Modulepickle (section 3.11):
Object serialization used tshelve .

ModulecPickle (section 3.12):
High-performance version gfickle

3.14. shelve — Python object persistence a7

3.15 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ieferéncesnto it to
the objects found in the original.

e A deep copyonstructs a new compound object and then, recursively, insgptesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called
__getinitargs _ () ,__getstate __() and__setstate __() . See the description of modutéckle for
information on these methods. Thepy module does not use tlwepy _reg registration module.

In order for a class to define its own copy implementation, it can define special methedpy () and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the__deepcopy __() implementation needs to make a deep copy of a component, it should cadlepeopy ()

function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.11):
Discussion of the special methods used to support object state retrieval and restoration.

48 Chapter 3. Python Runtime Services

3.16 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC calls,
see the modulepickle andshelve . Themarshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules giy/c’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppsdee; integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the coraesttal module uses 32 bits to transfer

plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from thepyc’ instead?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen() . It must be opened in binary modevp’ or
‘Wb’).
If the value has (or contains an object that has) an unsupported tyjfady@Error exception is raised — but
garbage data will also be written to the file. The object will not be properly read baldady)

load (file)
Read one value from the open file and return it. If no valid value is read, E&)$&Error , ValueError or
TypeError . The file must be an open file object opened in binary maté (or’r+b’”).

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

dumps(value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, raig@FError , ValueError or TypeError
Extra characters in the string are ignored.

3.17 imp — Access the import internals

This module provides an interface to the mechanisms used to implememigbe statement. It defines the follow-
ing constants and functions:

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would bernatshtie
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

3.16. marshal — Alternate Python object serialization 49

get _magic ()
Return the magic string value used to recognize byte-compiled code fipgs' files). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has th¢ $offirx mode
type , wheresuffixis a string to be appended to the module name to form the filename to searafofte,
is the mode string to pass to the built@pen() function to open the file (this can Be for text files or
rb’ for binary files), andypeis the file type, which has one of the value¥_SOURCEPY_COMPILED or
C_EXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedyey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_BUILTIN), then a frozen moduldPY_FROZEN, and on some systems some other places are
looked in as well (on the Mac, it looks for a resour€/(RESOURCEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triplde, pathname descriptior) wherefile is an open file

object positioned at the beginningathnameis the pathname of the file found, adéscriptionis a triple as
contained in the list returned lget _suffixes() describing the kind of module found. If the module does

not live in a file, the returnetile is None, filenameis the empty string, and thaescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses above. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In ordeRd/fine.,
submoduleM of packageP, usefind _module() andload _module() to find and load package, and
then usdind _module() with the pathargument set t®. __path __. WhenP itself has a dotted name,
apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfoyd _module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to aeload() ! The nameargument indicates the full module name (including the package
name, if this is a submodule of a package). Tileargument is an open file, afitenameis the corresponding
file name; these can kdone and” , respectively, when the module is not being loaded from a file. The
descriptionargument is a tuple, as would be returnedgley _suffixes() , describing what kind of module
must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (uspatrror)
is raised.

Important: the caller is responsible for closing tfike argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module (nam§
Return a new empty module object callegime This object isnotinserted insys.modules

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

50 Chapter 3. Python Runtime Services

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG.DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (e _frozen()).

The following constant and functions are obsolete; their functionality is available thingjh _module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it
will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise animportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callesthme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python’greezeutility. See Tools/freeze/’ for now.)

is _builtin (nam@
Returnl if there is a built-in module calledamewhich can be initialized again. Retusth if there is a built-in
module callechamewhich cannot be initialized again (sest _builtin()). Return0 if there is no built-in
module callechame

is _frozen (nam@
Returnl if there is a frozen module (séa@t _frozen()) calledname or 0 if there is no such module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeagain The nameargument is used to create or access a
module object. Thgpathnameargument points to the byte-compiled code file. Tileargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (name, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializeayjain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. Tieeneargument is used to construct
the name of the initialization function: an external C function calied * namd) ' in the shared library is
called. The optiondiile argument is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffigy/c’ or *.pyo’) exists, it will be used instead of
parsing the given source file.

3.17. imp — Access the import internals 51

3.17.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical mod-
ule names). (Thismplementatiorwouldn’t work in that version, sincénd _module() has been extended and
load _module() hasbeenaddedin1.4.)

import imp import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incltelead() function can be
found in the standard modulmee (which is intended as an example only — don't rely on any part of it being a
standard interface).

3.18 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

Interactivelnterpreter ([Iocals])
This class deals with parsing and interpreter state (the user's namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optimees argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key
" __name__’ setto’ __console __' andkey __doc__' settoNone.

InteractiveConsole ([Iocals[, filename]])
Closely emulate the behavior of the interactive Python interpreter. This class buildteoactiveln-
terpreter and adds prompting using the familsys.ps1 andsys.ps2 , and input buffering.

interact ([bannel[, readfun({, Iocal]]])
Convenience function to run a read-eval-print loop. This creates a new instahterattiveConsole
and setgeadfuncto be used as theaw _input() = method, if provided. [flocal is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact() method of the instance is then run witAnnerpassed as the banner to use, if provided. The
console object is discarded after use.

compile _command source[, filenam{, symboﬂ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-

52 Chapter 3. Python Runtime Services

print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This &limcisin
always makes the same decision as the real interpreter main loop.

sourceis the source strindjlenameis the optional filename from which source was read, defaultirigite
put>" ; andsymbolis the optional grammar start symbol, which should be eitsiagle’ (the default) or
‘eval’

Returns a code object (the samecampile(source filename symbo)) if the command is complete and
valid; None if the command is incomplete; rais8yntaxError if the command is complete and contains a
syntax error, or raise@verflowError if the command includes a numeric constant which exceeds the range
of the appropriate numeric type.

3.18.1 Interactive Interpreter Objects

runsource (source[, filenamé, symbo]|])
Compile and run some source in the interpreter. Arguments are the samecasifuite _command() ; the
default forfilenameis '<input>' , and forsymbolis 'single’ . One several things can happen:

eThe input is incorrectcompile _command() raised an exceptiorSyntaxError or Overflow-
Error). A syntax traceback will be printed by calling tlsowsyntaxerror() method. run-
source() returnsO.

eThe input is incomplete, and more input is requiredmpile _command() returnedNone. run-
source() returnsl.

eThe input is completecompile _command() returned a code object. The code is executed by calling
theruncode() (which also handles run-time exceptions, exceptSgstemExit). runsource()
returnso.

The return value can be used to decide whether tesysg@sl orsys.ps2 to prompt the next line.

runcode (code
Execute a code object. When an exception ocahewtraceback() is called to display a traceback. All
exceptions are caught excepistemExit , which is allowed to propagate.

A note aboutKeyboardInterrupt : this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filenamé)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. Iffilenameis given, it is stuffed into the exception instead of the default filename provided by Python’s
parser, because it always usestring>’ when reading from a string. The output is written by write()
method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by thaite() method.

write (data)
Write a string to the standard error streasyg.stderr). Derived classes should override this to provide the
appropriate output handling as needed.

3.18.2 Interactive Console Objects

The InteractiveConsole class is a subclass titeractivelnterpreter , and so offers all the methods
of the interpreter objects as well as the following additions.

3.18. code — Interpreter base classes 53

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
— since it's so closel).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpretensource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return valuelisf more input is required) if the line was dealt with in some way (this is the
same asunsource()).

resetbuffer ()
Remove any unhandled source text from the input buffer.

raw _input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequenceEOFError is raised. The base implementation uses the built-in functen_input() ;
a subclass may replace this with a different implementation.

3.19 codeop — Compile Python code

The codeop module provides a function to compile Python code with hints on whether it is certainly complete,
possibly complete or definitely incomplete. This is used bydhée module and should not normally be used
directly.

Thecodeop module defines the following function:

compile _command source[, filenamé, symboﬂ])
Tries to compilesource which should be a string of Python code and return a code objscdluifceis valid
Python code. In that case, the filename attribute of the code object wilehame which defaults td<in-
put>" . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem witlsource an exception will be raise@®yntaxError is raised if there is invalid Python
syntax, andDverflowError if there is an invalid numeric constant.

The symbolargument determines whetha&urceis compiled as a statemensifigle’ , the default) or as an
expression’éval’). Any other value will caus®¥alueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

3.20 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. ConstrudrettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint module defines one class:

54 Chapter 3. Python Runtime Services

PrettyPrinter (..)
Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using tereamkeyword; the only method used on the stream object is the file protocol's
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywordiscemet depth andwidth. The amount
of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘... ". By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> jmport pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint(stuff)

[[
'fusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’],

"lusr/local/lib/pythonl.5’,

"lusr/local/lib/pythonl.5/test’,

"lusr/local/lib/python1.5/sunos5’,

"lusr/local/lib/pythonl.5/sharedmodules’,

"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

parser.suite(open(’pprint.py’).read()))[1][1][1]

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (..)))))

ThePrettyPrinter class supports several derivative functions:

pformat (objec)
Return the formatted representatiorbifectas a string. The default parameters for formatting are used.

pprint (objec{, stream])
Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteadpdhts statement for in-
specting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

3.20. pprint — Data pretty printer 55

isreadable (objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation object protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representelexifsion on typename
with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", ’'/usr/local/lib/pythonl.5’, 'fusr/loca
Illib/pythonl.5/test’, ’'/usr/local/lib/pythonl.5/sunos5’, 'lusr/local/lib/python
1.5/sharedmodules’, ’/ust/local/lib/pythonl.5/tkinter’]"

3.20.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation aifject This takes into Account the options passed to Fhet-
tyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don't need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th@rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

3.21 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

Repr ()
Class which provides formatting services useful in implementing functions similar to the brélpif) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

56 Chapter 3. Python Runtime Services

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits useddepr() and the Python debugger.

repr (obj)
Thisis therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.21.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defafilt is

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The defaulxdict is 4, for the
others6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The defadt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner amxstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used tgpr() . This uses the type ahbjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should a&prl() to perform recursive formatting,
with level - 1 for the value ofevelin the recursive call.

repr _typg obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method nameypeis replaced bystring.join(string.split(type(obj). __name__, ') .
Dispatch to these methods is handledrégrl() . Type-specific methods which need to recursively format a
value should callself.repri(subobj level - 1) .

3.21.2 Subclassing Repr Objects

The use of dynamic dispatching Repr.repri() allows subclasses &tepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

3.21. repr — Alternate repr() implementation 57

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in ['<stdin>’, '<stdout>’, '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.22 new — Creation of runtime internal objects

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module.

Thenew module defines the following functions:

instance (class, dic}
This function creates an instance @ésswith dictionarydict without calling the__init __() constructor.
Note that there are no guarantees that the object will be in a consistent state.

instancemethod (function, instance, clays
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust be
callable, andnstancemust be an instance objectipbne.

function (code, gIobaIE, name{, argdefs]])
Returns a (Python) function with the given code and globalsaifieis given, it must be a string d&fone. Ifitis
a string, the function will have the given name, otherwise the function name will be takedieeno _name.
If argdefsis given, it must be a tuple and will be used to determine the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Inotab
This function is an interface to tHeyCode _New() C function.

module (namg
This function returns a new module object with nanane namemust be a string.

classobj (name, baseclasses, gict
This function returns a new class object, with namaeng derived frombaseclasse@vhich should be a tuple of
classes) and with namespatiet.

3.23 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place import site ' somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsjsipesfix and

58 Chapter 3. Python Runtime Services

sys.exec _prefix ;empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses first lib/python2.0/site-packages’ and then lib/site-python’ (on UNIx). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addgs@ath , and also inspects the path for
configuration files.

A path configuration file is a file whose name has the fopackagepth’; its contents are additional items (one per
line) to be added tgys.path . Non-existing items are never addedstgs.path , but no check is made that the
item refers to a directory (rather than a file). No item is addesytopath more than once. Blank lines and lines
beginning with# are skipped.

For example, suppossys.prefix andsys.exec _prefix are setto/usr/local’. The Python 2.0.1 library is
then installed in/usr/local/lib/python2.0’ (where only the first three characterssyfs.version are used to form the
installation path name). Suppose this has a subdirectasylbcal/lib/python2.0/site-packages’ with three subsubdi-
rectories, foo’, ‘ bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains
the following:

foo package configuration

foo
bar
bletch

and ar.pth’ contains:

bar package configuration

bar

Then the following directories are addedsys.path , in this order:

lusr/local/lib/pythonl.5/site-packages/bar
/usr/localllib/python1.5/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; theat’ directory precedes thddo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module rateedstomize , which can perform
arbitrary site-specific customizations. If this import fails withlarportError ~ exception, it is silently ignored.

Note that for some non-MWix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importsifecustomize is still attempted.

3.24 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the $PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

3.24. user — User-specific configuration hook 59

import user

Theuser module looks for a file.pythonrc.py’ in the user’s home directory and if it can be opened, executes it (using
execfile()) in its own (i.e. the moduleser ’s) global namespace. Errors during this phase are not caught; that's
up to the program that imports thuser module, if it wishes. The home directory is assumed to be named by the
$HOME environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabter.spam _verbose , as follows:

import user
try:

verbose = user.spam_verbose # user's verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoubdtimport this module; it may interfere with the operation of the importing program.
See Also:

Modulesite (section 3.23):
site-wide customization mechanism

3.25 __ Dbuiltin ___ — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.chuiltin -~ __.open is the full name
for the built-in functionopen() . See section 2.3, “Built-in Functions.”

3.26 __main __ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. It is this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if _name__ == "__main__"
main()

60 Chapter 3. Python Runtime Services

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.
re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.
fpformat General floating point formatting functions.
StringlO Read and write strings as if they were files.
cStringlO Faster version aBtringlO , but not subclassable.
codecs Encode and decode data and streams.
unicodedata Access the Unicode Database.
4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are are:
digits
The string0123456789’

hexdigits
The string'0123456789abcdefABCDEF

letters
The concatenation of the stringavercase anduppercase described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijkimnopqgrstuvwxyz’ . Do not change its definition — the effect on the routinpper()
andswapcase() is undefined.

octdigits
The string01234567’

punctuation

String of Ascii characters which are considered punctuation characters i€tlusale.

printable
String of characters which are considered printable. This is a combinatiigits , letters , punctua-
tion , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string

61

"ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routifmser()
andswapcase() is undefined.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects; see “String
Methods” (section 2.1.5) for more information on those. The functions defined in this module are:

atof (s)
Deprecated since release 2.Qse thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'('or ‘-). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s[, basd)
Deprecated since release 2.Qse theint() built-in function.

Convert strings to an integer in the givebbase The string must consist of one or more digits, optionally
preceded by a sign{' or ‘-). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sig@x’ ‘or ‘0X' means 16, 0’ means 8, anything else
means 10. Ibaseis 16, a leading0x’ or ‘ 0X’ is always accepted, though not required. This behaves identically
to the built-in functionint() when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in functioaval() .)

atol (s[, basé)
Deprecated since release 2.Q@se thelong() built-in function.

Convert strings to a long integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘-). The baseargument has the same meaning asatoi() . A trailing ‘I "or ‘L’

is not allowed, except if the base is 0. Note that when invoked withaséor with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize ('word)
Capitalize the first character of the argument.

capwords (9
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the
capitalized words usin@in() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s[, tabsize])
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sut[, starl{,end]])
Return the lowest index iswhere the substringubis found such thasubis wholly contained irg start end .
Return-1 on failure. Defaults fostartandendand interpretation of negative values is the same as for slices.

rfind (s, suk{, starl{, end]])
Like find() but find the highest index.

index (s, suki, starl[, end]])
Like find() but raiseValueError ~ when the substring is not found.

62 Chapter 4. String Services

rindex (s, suk{, starl[, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, suk[, starl{, end]])
Return the number of (non-overlapping) occurrences of substtib@ string g start end . Defaults forstart
andendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy o§, but with upper case letters converted to lower case.

maketrans (from, to
Return a translation table suitable for passingramslate() or regex.compile() , that will map each
character irfrominto the character at the same positiotanfrom andto must have the same length.

Warning: don't use strings derived frohowercase anduppercase as arguments; in some locales, these
don’t have the same length. For case conversions, alwayswee() andupper()

split (s[, se;{, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and nadtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumemaxsplitdefaults to O. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahenxcstit-1

elements).

splitfields (s[, se;{, maxspliﬂ])
This function behaves identically split() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (word{, sep])
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single
space character. It is always true thatting.join(string.split(s, sep, sep’equalss.

joinfields (words[, sep])
This function behaves identical foin() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.)

Istrip (9
Return a copy of but without leading whitespace characters.

rstrip (9
Return a copy o8 but without trailing whitespace characters.

strip (9
Return a copy of without leading or trailing whitespace.

swapcase (9)
Return a copy o§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters frommthat are indeletechargif present), and then translate the characters usihip
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper ()
Return a copy o§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastidth characters wide, created by padding the stemgth spaces until the given width on

4.1. string — Common string operations 63

the right, left or both sides. The string is never truncated.

zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, nev[, maxsplit])
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxsplitis given, the firstmaxsplitoccurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in module
strop . However, you shouldeverimport the latter module directly. Whestring discovers thastrop exists, it
transparently replaces parts of itself with the implementation fstnop . After initialization, there isno overhead

in usingstring instead ofstrop

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte usifgitirebemotation. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit stringse Thedule is always available.

Regular expressions use the backslash charas&tgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have td\Write as the pattern

string, because the regular expression musi\be, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ™. So r"\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

Implementation note: There module has two distinct implementationsre is the default implementation and
includes Unicode support, but may run into stack limitations for some patterns. Though this will be fixed for a future
release of Python, the older implementation (without Unicode support) is still available m®thraodule.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidasidiB are both regular expressions,
thenABis also an regular expression. If a stripgnatches A and another striggnatches B, the stringqwill match

AB. Thus, complex expressions can easily be constructed from simpler primitive expressions like the ones described
here. For details of the theory and implementation of regular expressions, consult the Friedl book referenced below,
or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapyv/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characteés,‘ Bkedr

‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last ; matches the strindast’ . (In the rest of this section, we’'ll write RE’s itthis special style b

usually without quotes, and strings to be matchedsingle quotes’)

Some characters, lik¢ *or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or affect

64 Chapter 4. String Services

how the regular expressions around them are interpreted.

The special characters are:

*?,+?,7??

{m, n}

{m, n}?

(Dot.) In the default mode, this matches any character except a newline. D@IALLflag has been
specified, this matches any character including a newline.

(Caret.) Matches the start of the string, andMULTILINE mode also matches immediately after each
newline.

Matches the end of the string, and MUULTILINE mode also matches before a newliffeo ; matches
both 'foo’ and 'foobar’, while the regular expressiioo$; matches only 'foo’.

Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.lab* y will match 'a’, 'ab’, or 'a’ followed by any number of 'b’s.

Causes the resulting RE to match 1 or more repetitions of the precedingREwill match 'a’ followed
by any non-zero number of 'b’s; it will not match just 'a’.

Causes the resulting RE to match 0 or 1 repetitions of the precedindaBRE.will match either 'a’ or
‘ab’.

The *’, *+', and *?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn't desired; if the RE.*> | is matched againsgH1>title</H1>’ , it will match the
entire string, and not juskH1>' . Adding ‘?’ after the qualifier makes it perform the matchrion-
greedyor minimal fashion; affew characters as possible will be matched. Usiig | in the previous
expression will match ongH1>" .

Causes the resulting RE to match fremto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For examfd€3,5} will match from 3 to 5 &’ characters. Omitting
specifies an infinite upper bound; you can’t omit

Causes the resulting RE to match framto n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character strintpaaaaa’ , a{3,5} ;will match 5 ‘a’ characters, whiléa{3,5}? ;will only match

3 characters.

Either escapes special characters (permitting you to match charactefs Jike'; and so forth), or signals
a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn't recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it's highly recommended that you use raw strings for all but the simplest expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by.aSpecial characters are not active
inside sets. For exampléakm$] ; will match any of the charactera® ‘k’, ‘m, or ‘$’; Ta-z] | will

match any lowercase letter, afadzA-Z0-9] matches any letter or digit. Character classes sutl as

or\S (defined below) are also acceptable inside a range. If you want to inclideoaa ‘- ' inside a

set, precede it with a backslash, or place it as the first character. The galterwill match’]" , for
example.

You can match the characters not within a range@yplementinghe set. This is indicated by including
a "’ as the first character of the sef;’‘elsewhere will simply match the ° character. For example,
T'5] ;will match any character excef@"

4.2. re — Regular expression operations 65

(..)

..)

(?iLmsux)

(?:...)

A|B, where A and B can be arbitrary RESs, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by fhén' this way. This can be used inside groups (see
below) as well. REs separated Ry are tried from left to right, and the first one that allows the complete
pattern to match is considered the accepted branch. This meansAlmtithesB will never be tested,

even if it would produce a longer overall match. In other words, tHeoperator is never greedy. To
match a literal [’, use\| ;, or enclose it inside a character class, af{jin ..

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the\ numberspecial sequence, described below. To match the litefatsr“) ’, use\(; or

\) , or enclose them inside a character cld¢k:[)] .

This is an extension notation (2 *following a ‘(' is not meaningful otherwise). The first character after

the 2’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group(?P< name-...) is the only exception to this rule. Following are the currently
supported extensions.

(One or more letters from the set’; ‘L', ‘m, ‘s’, ‘u’, ‘x’.) The group matches the empty string;
the letters set the corresponding flagsl(,re.L ,re.M ,re.S ,re.U ,re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing dlag argument to theompile() function.

Note that thé(?x) | flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the gramotbe retrieved after performing a match or referenced
later in the pattern.

(?P<name-...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-

bolic group namename Group names must be valid Python identifiers. A symbolic group is also a
numbered group, just as if the group were not named. So the group named 'id’ in the example above can
also be referenced as the numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z _]\w*) |, the group can be referenced by its name
in arguments to methods of match objects, sucmagoup(’id’) or m.end(’id") , and also by
name in pattern text (e.d?P=id)) and replacement text (e.@g<id>).

(?P=namg Matches whatever text was matched by the earlier group naaed

(?#...)
(?=..)
(?1...)
(?<:)
(?<!..)

A comment; the contents of the parentheses are simply ignored.

Matchesifl... ;matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For examplellsaac (?=Asimov) ;will match’lsaac ' only if it's followed by 'AsimoVv’

Matches if'... | doesn’t match next. This is a negative lookahead assertion. For exaisphg
(?'Asimov) jwill match’lsaac ' only if it's notfollowed by’Asimov’

Matches if the current position in the string is preceded by a match.for, that ends at the current
position. This is called a positive lookbehind asserti@Px=abc)def ;will match ‘abcdef ’, since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern
must only match strings of some fixed length, meaning iat, or 'ab | are allowed, buia* | isn't.

Matches if the current position in the string is not preceded by a matdh.for. This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match
strings of some fixed length.

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exarfplenatches the characte’

66

Chapter 4. String Services

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For

\b

\B
\d
\D
\s
\S

\w

\W

\Z
\

example,(.+) \1 ;matchesthe the’ or’55 55 ,butnot'the end’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit
of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valueumber Inside the [’ and ‘]’ of a character class, all numeric escapes are
treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
Inside a character rang&h | represents the backspace character, for compatibility with Python'’s string
literals.

Matches the empty string, but only when ifist at the beginning or end of a word.
Matches any decimal digit; this is equivalent to the 8] .

Matches any non-digit character; this is equivalent to th €8] .

Matches any whitespace character; this is equivalent to the s&t\r\fiv] X
Matches any non-whitespace character; this is equivalent to ti{e $8n\r\fiv] X

When theLOCALEand UNICODEflags are not specified, matches any alphanumeric character; this is
equivalent to the sefa-zA-Z0-9 _],. With LOCALE it will match the set[0-9 _], plus whatever
characters are defined as letters for the current localdNICODEs set, this will match the characters
T0-9 _],plus whatever is classified as alphanumeric in the Unicode character properties database.

When theLOCALEandUNICODHflags are not specified, matches any non-alphanumeric character; this
is equivalent to the s€f'a-zA-Z0-9 _],. With LOCALE it will match any character not in the set

T0-9 _],, and not defined as a letter for the current localdJNICODEis set, this will match anything

other than[0-9 _],and characters marked at alphanumeric in the Unicode character properties database.

Matches only at the end of the string.

Matches a literal backslash.

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl's semantics, the search operation is what you're looking for. Sexe#iieh() function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning withi * matches only at the start

of the string, or iNMULTILINE mode also immediately following a newline. The “match” operation succeeds only
if the pattern matches at the start of the string regardless of mode, or at the starting position given by thepmational
argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile(""a", re.M).search(\na", 1) # succeeds
re.compile("a", re.M).search("ba", 1) # fails; no preceding \n

4.2. re — Regular expression operations 67

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a single
program.

|

IGNORECASE
Perform case-insensitive matching; expressions ikeZ] ; will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE
Make \w, \W, \b ;, and\B, dependent on the current locale.
M
MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara®ematches at the end of the string and at
the end of each line (immediately preceding each newline). By defauthatches only at the beginning of the
string, and $’ only at the end of the string and immediately before the newline (if any) at the end of the string.
S
DOTALL
Make the ! ’ special character match any character at all, including a newline; without this.flagilt match
anythingexcepta newline.
U
UNICODE
Make \w, "W, \b ;, and\B, dependent on the Unicode character properties database. New in version 2.0.
X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line gniaitisea *

in a character class or preceded by an unescaped backslash, all characters from the leftm&5sttsocigh

the end of the line are ignored.

search (pattern, string{, flags])
Scan througlstring looking for a location where the regular expresgiatternproduces a match, and return a
correspondinglatchObject instance. Returione if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

68 Chapter 4. String Services

match (pattern, string[, flags])
If zero or more characters at the beginningting match the regular expressipattern return a corresponding
MatchObject instance. ReturiNone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywheregtring, usesearch() instead.

split (pattern, string{, maxsplit = 0])
Split string by the occurrences gattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishalfsplitis nonzero, at moshaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 releasepaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(\W+', 'Words, words, words.")
[Words', 'words’, 'words’, "]

>>> re.splitC(\W+)", 'Words, words, words.")
[Words', ’, ', 'words’, ’, ’, 'words’, ", "]
>>> re.split(\W+', 'Words, words, words.’, 1)
[Words’, 'words, words.]

This function combines and extends the functionality of theefgub.split() andregsub.splitx()

findall (pattern, string
Return a list of all non-overlapping matchespatternin string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result. New in version 1.5.2.

sub (pattern, repl, strinﬁ, count = 0])
Return the string obtained by replacing the leftmost non-overlapping occurrenpasteiin string by the
replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a function; if a
function, it is called for every non-overlapping occurrencgattern The function takes a single match object
argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == ’-": return
else: return '~
>>> re.sub(’-{1,2}, dashrepl, 'pro----gram-files’)
‘pro--gram files’

[

The pattern may be a string or a regex object; if you need to specify regular expression flags, you must use
a regex object, or use embedded modifiers in a pattern; suh(“(?i)b+", "x", "bbbb BBBB") '
returns’x x’

The optional argumerdountis the maximum number of pattern occurrences to be replameitmust be a
non-negative integer, and the default value of 0 means to replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous matab('sd’; -,

‘abc’) ' returns’-a-b-c-’

If replis a string, any backslash escapes in it are processed. That'iss tonverted to a single newline charac-
ter, \r 'is converted to a linefeed, and so forth. Unknown escapes sudh aare left alone. Backreferences,
such as\6 ', are replaced with the substring matched by group 6 in the pattern.

In addition to character escapes and backreferences as described &pavame> ' will use the substring
matched by the group namedame’, as defined by th§?P<name>...) | syntax. \g<number> ’ uses the
corresponding group numbeig<2> ' is therefore equivalent to\2 ’, but isn’t ambiguous in a replacement
such as\g<2>0 . ‘\20 " would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal charactei0".

subn (pattern, repl, strini, count = O])
Perform the same operationsigh() , but return a tuplé new_string, number of_subs madg .

4.2. re — Regular expression operations 69

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. It is never an error if a
string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search (string[, pos[, endpoﬁ])
Scan througtstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. Returbone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionaposandendpogarameters have the same meaning as fomateh() method.
match (string[, pos[, endpog])
If zero or more characters at the beginningstifing match this regular expression, return a corresponding

MatchObject instance. Returbone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

The optional second paramefesgives an index in the string where the search is to start; it defaults This
is not completely equivalent to slicing the string; thie pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parametendpodimits how far the string will be searched; it will be as if the stringeisdpos
characters long, so only the characters figmsto endposwill be searched for a match.

split (string[, maxsplit = O])
Identical to thesplit() function, using the compiled pattern.

findall ~ ('string)
Identical to thefindall() function, using the compiled pattern.

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the regex object was compil@df oo flags were provided.

groupindex
A dictionary mapping any symbolic group names defined(®l< id>) | to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the regex object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

70 Chapter 4. String Services

expand (templatg
Return the string obtained by doing backslash substitution on the templatetsiriptate as done by theub()
method. Escapes such as ‘ are converted to the appropriate characters, and numeric backreferéices (*
‘\2 ') and named backreference$g&l> ’, ‘\g<name>) are replaced by the contents of the corresponding

group.

group ([groupl,])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there

are multiple arguments, the result is a tuple with one item per argument. Without argugrenfsl defaults

to zero (i.e. the whole match is returned). IfgjeoupN argument is zero, the corresponding return value is

the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anindexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result il . If a group is contained in a part of the pattern that matched multiple times, the last
match is returned.

If the regular expression uses tffgP< name»...) | syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattetex&rror
exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchm.group(1) is’'3’ , asism.group(’int’) , andm.group(2) is’'14’

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The defaultargument is used for groups that did not participate in the match; it defauMsrte. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all teamedsubgroups of the match, keyed by the subgroup namedéfailt
argument is used for groups that did not participate in the match; it defalisrte.

start ([group])

end ([group])
Return the indices of the start and end of the substring matchedooys group defaults to zero (meaning the
whole matched substring). Retwh if groupexists but did not contribute to the match. For a match olject
and a group that did contribute to the match, the substring matched by ggdeguivalent tan.group(g))
is

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, after=
re.search(’b(c?)’, 'cba’) , m.start(0) is 1, mend(0) is 2, m.start(1) andm.end(1)
are both 2, andn.start(2) raises arindexError exception.

span ([group])
ForMatchObject m, return the 2-tuplé m.start(group, m.end(group) . Note that ifgroupdid not

contribute to the match, this(sl, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to tleearch() ormatch() function. This is the index into the string at
which the regex engine started looking for a match.

endpos

The value ofendposwhich was passed to tteearch() or match() function. This is the index into the

4.2. re — Regular expression operations 71

string beyond which the regex engine will not go.

re
The regular expression object whasatch() orsearch() method produced thiglatchObject instance.
string
The string passed tmatch() or search()
See Also:

Jeffrey Friedl,Mastering Regular Expression®’Reilly. The Python material in this book dates from beforerhe
module, but it covers writing good regular expression patterns in great detail.

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python stringsrnitises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other
sources.

The module defines the following exception and functions:

error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2,..)
Return a string containing the valuey v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packed fgck(fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (i.e.len(string) must equatalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format | C Type | Python | Notes
‘X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
i int integer
1 unsigned int long QD
1 long integer
‘L unsigned long long
“fr float float
d’ double float
‘s’ charl] string
‘P’ char[] string
‘P void * integer

Notes:

72 Chapter 4. String Services

(1) The 'l ' conversion code will convert to a Python long if thar@ is the same size as al@nhg , which is typical
on most modern systems. If ai@@ is smaller than a ®ng , an Python integer will be created instead.

A format character may be preceded by an integral repeat count; e.g. the formatstringneans exactly the same
as’hhhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 5’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; e.g10s’ means a single 10-byte string, whilDc’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special &&se, means a single, empty string (whilg&c’ means

0 characters).

The ‘p’ format character can be used to encode a Pascal string. The first byte is the length of the stored string, with the
bytes of the string following. If count is given, it is used as the total number of bytes used, including the length byte.
If the string passed in tpack() is too long, the stored representation is truncated. If the string is too short, padding

is used to ensure that exactly enough bytes are used to satisfy the count.

For the 1 " and ‘L’ format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer typeNUAL pointer will always be returned as the Python inte@er

When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order | Size and alignment
‘@ native native
= native standard
‘< little-endian standard
> big-endian standard

i network (= big-endian) standard

If the first character is not one of thes@ls assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun are big-endian;
Intel and DEC are little-endian).

Native size and alignment are determined using the C compdiménf expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes;int andlong are 4 bytes.float anddouble are 32-bit and 64-bit IEEE floating point
numbers, respectively.

Note the difference betwee@ and ‘=": both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form 1’ is available for those poor souls who claim they can’t remember whether network byte order is big-endian
or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate chdioe ‘of".

The ‘P’ format character is only available for the native byte ordering (selected as the default or withhlyee' order

4.3. struct — Interpret strings as packed binary data 73

character). The byte order character thooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, sdXHermat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(hhl’, 1, 2, 3)
’\000\0011000\002\000\000\000\003’

>>> unpack(’hhl’, \000\001\000\002\000\000\000\003’)

1, 2, 3)
>>> calcsize('hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero, e.g. the foriiadl’ specifies two pad bytes at the end, assuming longs

are aligned on 4-byte boundarie