Python Library Reference
Release 1.5.2

Guido van Rossum

April 30, 1999

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright (©) 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and that the
names of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

While CWT is the initial source for this software, a modified version is made available by the Corporation
for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range
of applications, from simple text processing scripts to interactive WWW browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does
not describe the standard library that is distributed with the language, and which greatly enhances its
immediate usability. This library contains built-in modules (written in C) that provide access to system
functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as
modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability
of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library
modules (which may or may not be available, depending on whether the underlying platform supports
them and on the configuration choices made at compile time). It also documents the standard types of the
language and its built-in functions and exceptions, many of which are not or incompletely documented
in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference Manual remains the highest authority on syntactic
and semantic questions. Finally, the manual entitled Ezxtending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other applications.

1 Introduction

2 Built-in Types, Exceptions and Functions

2.1
2.2
2.3

Built-in Types o
Built-in Exceptions oo L.
Built-in Functions L.

3 Python Services

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29

4.1
4.2
4.3
4.4

sys — System-specific parameters and functions
types — Names for all built-in types.
UserDict — Class wrapper for dictionary objects.
UserList — Class wrapper for list objects.
operator — Standard operators as functions.
traceback — Print or retrieve a stack traceback.
pickle — Python object serialization
cPickle — Alternate implementation of pickle
copy_reg — Register pickle support functions
shelve — Python object persistency
copy — Shallow and deep copy operations
marshal — Alternate Python object serialization
imp — Access the import internals
parser — Access parse trees for Python code
symbol — Constants used with Python parse trees.
token — Constants used with Python parse trees
keyword — Testing for Python keywords
tokenize — Tokenizer for Python source
pyclbr — Python class browser support
code — Code object services.
pprint — Data pretty printer.00
repr — Alternate repr () implementation.
py_compile — Compile Python source files.
compileall — Byte-compile Python libraries.
dis — Disassembler. L o L.
site — Site-specific configuration hook
user — User-specific configuration hook
__builtin__ — Built-in functions
__main__ — Top-level script environment.

String Services
string — Common string operations
re — Perl-style regular expression operations.

regex — Regular expression search and match operations.

regsub — String operations using regular expressions

CONTENTS

4.5
4.6
4.7

struct — Interpret strings as packed binary data. Lo,
StringI0 — Read and write strings as files oL
cStringI0 — Faster version of StringIO

Miscellaneous Services

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

math — Mathematical functions L
cmath — Mathematical functions for complex numbers
whrandom — Floating point pseudo-random number generator.
random — Generate pseudo-random numbers
bisect — Array bisection algorithm
array — BEfficient arrays of numeric values oo oL
ConfigParser — Configuration file parser
fileinput — Iteration over lines from multiple input streams.
calendar — Functions that emulate the UNIX cal program.
cmd — Build line-oriented command interpreters. oL,
shlex — Simple lexical analysis. L

Generic Operating System Services

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

os — Miscellaneous OS interfaces L o
os.path — Common pathname manipulations
stat — Interpreting stat() results Lo
time — Time access and conversions.o
getpass — Portable password inputo oL
getopt — Parser for command line options. oL oL
tempfile — Generate temporary file names oL
errno — Standard errno system symbols.o Lo
glob — UNIX style pathname pattern expansion
fnmatch — UNIX style filename pattern matching
shutil — High-level file operations
locale — Internationalization services L.

Optional Operating System Services

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

signal — Set handlers for asynchronous events.
socket — Low-level networking interface
select — Waiting for I/O completion. Lo
thread — Multiple threads of control L.
threading — Higher-level threading interface
Queue — A synchronized queue class. e
anydbm — Generic access to DBM-style databases
dumbdbm — Portable DBM implementation0 0oL
dbhash — DBM-style interface to the BSD database library
whichdb — Guess which DBM module created a database
bsddb — Interface to Berkeley DB library
z1ib — Compression compatible with gzip oL 0L
gzip — Support for gzip files Lo

Unix Specific Services

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

posix — The most common POSIX system calls
pwd — The password databaseo Lo
grp — The group database L
crypt — Function used to check UNIX passwords
dbm — Simple “database” interface L L oL
gdbm — GNU’s reinterpretation of dbm oo oL
termios — POSIX style tty control
TERMIOS — Constants used with the termios module
fcntl — The fentl () and ioctl() systemcalls. o .o Lo
posixfile — File-like objects with locking support
resource — Resource usage information oL
syslog — UNIX syslog library routines L.

83
83
84
85
86
87
88
89
91
92
92
94

97

97
105
106
108
111
111
112
113
118
118
119
120

125
125
127
131
132
133
139
140
141
141
142
142
144
145

8.13 popen2 — Subprocesses with accessible standard 1/O streams

8.14

commands — Utilities for running commands

9 The Python Debugger

9.1
9.2

Debugger Commands
How It Works

10 The Python Profiler

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Introduction to the profiler

Instant Users Manual
What Is Deterministic Profiling?
Reference Manual
Limitations,
Calibration
Extensions — Deriving Better Profilers

11 Internet Protocols and Support

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

cgi — Common Gateway Interface support.
urllib — Open an arbitrary object given by URL.
httplib — HTTP protocol client
ftplib — FTP protocol client
gopherlib — Gopher protocol client
poplib — POP3 protocol client
imaplib — IMAP4 protocol client
nntplib — NNTP protocol client
smtplib — SMTP protocol client
11.10 telnetlib — Telnet client
11.11 urlparse — Parse URLs into components
11.12 SocketServer — A framework for network servers.
11.13 BaseHTTPServer — Basic HTTP server.

12 Internet Data Handling

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

sgmllib — Simple SGML parser
htmllib — A parser for HTML documents
xmllib — A parser for XML documents
formatter — Generic output formatting
rfc822 — Parse RFC 822 mail headers
mimetools — Tools for parsing MIME messages . .
MimeWriter — Generic MIME file writer

multifile — Support for files containing distinct parts L.

binhex — Encode and decode binhex4 files
12.10 uu — Encode and decode uuencode files
12.11 binascii — Convert between binary and ASCII
12.12 xdrlib — Encode and decode XDR data
12.13 mailcap — Mailcap file handling.
12.14 mimetypes — Map filenames to MIME types

12.15 base64 — Encode and decode MIME base64 data
12.16 quopri — Encode and decode MIME quoted-printable data

12.17 mailbox — Read various mailbox formats
12.18 mhlib — Access to MH mailboxes
12.19 mimify — MIME processing of mail messages
12.20 netrc — netre file processing

13 Restricted Execution

13.1
13.2

rexec — Restricted execution framework
Bastion — Restricting access to objects

14 Multimedia Services

167
167
167
168
169
170
173
173
174

179
179
185
187
188
191
191
193
195
198
201
203
204
205

209
209
211
212
215
218
221
222
223
225
225
226
227
229
230
231
232
232
233
235
235

237
238
240

241

14.1 audioop — Manipulate raw audio datao Lo
14.2 imageop — Manipulate raw image data oo o000
14.3 aifc — Read and write AIFF and AIFC files.
14.4 colorsys — Conversions between color systems,
14.5 rgbimg — Read and write “SGI RGB” files
14.6 imghdr — Determine the type of an image. oL
14.7 sndhdr — Determine type of sound file. L oL oL

15 Cryptographic Services

15.1 md5 — MDS5 message digest algorithm oo
15.2 sha — SHA message digest algorithm oL,
15.3 mpz — GNU arbitrary magnitude integers L.
15.4 rotor — Enigma-like encryption and decryption.o oL

16 SGI TRIX Specific Services

16.1 al — Audio functions on the SGI
16.2 AL — Constants used with the al module
16.3 cd — CD-ROM access on SGI systems
16.4 f1 — FORMS library interface for GUI applications
16.5 FL — Constants used with the f1 module
16.6 £flp — Functions for loading stored FORMS designs
16.7 fm — Font Manager interface L o
16.8 gl — Graphics Library interface Lo
16.9 DEVICE — Constants used with the gl module
16.10 GL — Constants used with the gl module
16.11 imgfile — Support for SGI imglib files oo oL
16.12 jpeg — Read and write JPEG files L o oo o

17 SunOS Specific Services

17.1 sunaudiodev — Access to Sun audio hardware

18 MS Windows Specific Services

18.1 msvert — Useful routines from the MS VC++ runtime
18.2 winsound — Sound-playing interface for Windows 0L

19 Undocumented Modules

19.1 FrameworKks e e e e e e e e e e e e
19.2 Miscellaneous useful utilities e
19.3 Platform specific modules oL
19.4 Multimedia L e e
19.5 Oddities. e e e e
19.6 Obsolete e
19.7 Extension modules

Module Index

Index

251
251
252
252
253

255
255
257
257
260
265
265
265
266
268
268
268
269

271
271

273
273
274

275
275
275
276
276
276
276
277

279

281

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as
numbers and lists. For these types, the Python language core defines the form of literals and places some
constraints on their semantics, but does not fully define the semantics. (On the other hand, the language
core does define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python
code without the need of an import statement. Some of these are defined by the core language, but
many are not essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect
this collection. Some modules are written in C and built in to the Python interpreter; others are written
in Python and imported in source form. Some modules provide interfaces that are highly specific to
Python, like printing a stack trace; some provide interfaces that are specific to particular operating
systems, like socket I/O; others provide interfaces that are specific to a particular application domain,
like the World-Wide Web. Some modules are avaiable in all versions and ports of Python; others are
only available when the underlying system supports or requires them; yet others are available only when
a particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out”: it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering
of the chapters as well as the ordering of the modules within each chapter is roughly from most relevant
to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when
you get bored, you will get a reasonable overview of the available modules and application areas that
are supported by the Python library. Of course, you don’t have to read it like a novel — you can also
browse the table of contents (in front of the manual), or look for a specific function, module or term in
the index (in the back). And finally, if you enjoy learning about random subjects, you choose a random
page number (see module random) and read a section or two. Regardless of the order in which you read
the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions and Functions,”
as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched
last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.!

The tables in this chapter document the priorities of operators by listing them in order of ascending
priority (within a table) and grouping operators that have the same priority in the same box. Binary
operators of the same priority group from left to right. (Unary operators group from right to left, but
there you have no real choice.) See Chapter 5 of the Python Reference Manual for the complete picture
on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the
numeric types, sequence types, and several others, including types themselves. There is no explicit
Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested
for truth value, and converted to a string (with the ‘... ¢ notation). The latter conversion is implicitly
used when an object is written by the print statement.

Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e zero of any numeric type, e.g., 0, OL, 0.0.

e any empty sequence, e.g., >,), [].

e any empty mapping, e.g., {}.

e instances of user-defined classes, if the class defines a __nonzero__() or __len__ () method,

when that method returns zero.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 for false and 1 for true,
unless otherwise stated. (Important exception: the Boolean operations ‘or’ and ‘and’ always return one
of their operands.)

1 Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version
of this manual.

Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
T or y if z is false, then y, else = (1)
z and y | if z is false, then z, else y (1)

not z if z is false, then 1, else 0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not’ has a lower priority than non-Boolean operators, so e.g. not a == b is interpreted as not (a
== b), and a == not b is a syntax error.

Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than
that of the Boolean operations). Comparisons can be chained arbitrarily, e.g. x < y <= z is equivalent
tox < y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at all
when x < y is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
<> not equal (1)
1= not equal (1)
is object identity

is not negated object identity

Notes:
(1) <> and != are alternate spellings for the same operator. (I couldn’t choose between ABC and C! :-)

Objects of different types, except different numeric types, never compare equal; such objects are ordered
consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Further-
more, some types (e.g., windows) support only a degenerate notion of comparison where any two objects
of that type are unequal. Again, such objects are ordered arbitrarily but consistently.

(Implementation note: objects of different types except numbers are ordered by their type names; objects
of the same types that don’t support proper comparison are ordered by their address.)

Two more operations with the same syntactic priority, ‘in’ and ‘not in’, are supported only by sequence
types (below).

Numeric Types

There are four numeric types: plain integers, long integers, floating point numbers, and complex numbers.
Plain integers (also just called integers) are implemented using long in C, which gives them at least 32
bits of precision. Long integers have unlimited precision. Floating point numbers are implemented using

4 Chapter 2. Built-in Types, Exceptions and Functions

double in C. All bets on their precision are off unless you happen to know the machine you are working
with.

Complex numbers have a real and imaginary part, which are both implemented using double in C. To
extract these parts from a complex number z, use z.real and z.imag.

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including hex and octal numbers) yield plain integers. Integer literals with an ‘L’ or
‘1’ suffix yield long integers (‘L’ is preferred because ‘11’ looks too much like eleven!). Numeric literals
containing a decimal point or an exponent sign yield floating point numbers. Appending ‘j’ or ‘J’ to a
numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different
numeric types, the operand with the “smaller” type is converted to that of the other, where plain integer
is smaller than long integer is smaller than floating point is smaller than complex. Comparisons between
numbers of mixed type use the same rule.? The functions int (), long(), float(), and complex() can
be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same
box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
T+ y sum of z and y
T -y difference of = and y
T o* Yy product of z and y
z/y quotient of z and y (1)
T h vy remainder of z / y
-z z negated
+T 2z unchanged
abs(z) absolute value or magnitude of z
int (z) x converted to integer (2)
long(z) x converted to long integer (2)
float(x) z converted to floating point
complex(re,im) | a complex number with real part re, imaginary part ém. im defaults to zero.
c.conjugate() | conjugate of the complex number c
divmod(z, y) | thepair (z / vy, = % y) (3)
pow(z, y) z to the power y
T k¥ gy z to the power y
Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards
minus infinity: 1/2is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() and ceil() in module math for well-defined conversions.

(3) See the section on built-in functions for an exact definition.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative
numbers are treated as their 2’s complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than
the comparisons; the unary operation ‘~’ has the same priority as the other unary numeric operations
(A+7 and L_’).

2As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similar for tuples.

2.1. Built-in Types 5

This table lists the bit-string operations sorted in ascending priority (operations in the same box have
the same priority):

Operation | Result Notes
z |y bitwise or of z and y
x "y bitwise exclusive or of x and y
z &y bitwise and of z and y
T << n z shifted left by n bits (1), (2)
T >> n z shifted right by n bits (1), (3)
"z the bits of z inverted

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

Sequence Types

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quotes: ’xyzzy’, "frobozz". See Chapter 2 of the
Python Reference Manual for more about string literals. Lists are constructed with square brackets,
separating items with commas: [a, b, c]. Tuples are constructed by the comma operator (not within
square brackets), with or without enclosing parentheses, but an empty tuple must have the enclosing
parentheses, e.g., a, b, cor (). A single item tuple must have a trailing comma, e.g., (d,).

Sequence types support the following operations. The ‘in’ and ‘not in’ operations have the same priori-
ties as the comparison operations. The ‘+’ and ‘*’ operations have the same priority as the corresponding

numeric operations.?

This table lists the sequence operations sorted in ascending priority (operations in the same box have
the same priority). In the table, s and t are sequences of the same type; n, i and j are integers:

Operation Result Notes
z in s 1 if an item of s is equal to z, else 0O
z not in s | O if an item of s is equal to z, else 1
s+t the concatenation of s and ¢
s * m, n * s | n copies of s concatenated (3)
s[4l i’th item of s, origin 0 (1)
sli:g] slice of s from i to j (1), (2)
len(s) length of s
min(s) smallest item of s
max (s) largest item of s

Notes:
(1) If i or j is negative, the index is relative to the end of the string, i.e., len(s) + i or len(s) + jis
substituted. But note that -0 is still 0.

(2) The slice of s from i to j is defined as the sequence of items with index k such that ¢ <= k£ < j. If
i or j is greater than len(s), use len(s). If ¢ is omitted, use 0. If j is omitted, use len(s). If i
is greater than or equal to j, the slice is empty.

(3) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s).

3They must have since the parser can’t tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions

More String Operations

String objects have one unique built-in operation: the % operator (modulo) with a string left argument
interprets this string as a C sprintf () format string to be applied to the right argument, and returns
the string resulting from this formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if
the string requires a single argument, the right argument may also be a single non-tuple object.* The
following format characters are understood: %, c, s, i, d, u, o, x, X, e, E, £, g, G. Width and precision may
be a * to specify that an integer argument specifies the actual width or precision. The flag characters
-, +, blank, # and 0 are understood. The size specifiers h, 1 or L may be present but are ignored. The
%s conversion takes any Python object and converts it to a string using str () before formatting it. The
ANSI features %p and %n are not supported. Since Python strings have an explicit length, %s conversions
don’t assume that >\0’ is the end of the string.

For safety reasons, floating point precisions are clipped to 50; %f conversions for numbers whose absolute
value is over 1e25 are replaced by %g conversions.® All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have
a parenthesized key into that dictionary inserted immediately after the ‘%’ character, and each format
formats the corresponding entry from the mapping. For example:

>>> count = 2

>>> language = ’Python’

>>> print ’Y%(language)s has %(count)03d quote types.’ 7% vars()
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard module string and in built-in module re.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations
would be supported by other mutable sequence types (when added to the language) as well. Strings and
tuples are immutable sequence types and such objects cannot be modified once created. The following
operations are defined on mutable sequence types (where z is an arbitrary object):

Operation Result Notes
sli] = item ¢ of s is replaced by x

sli:jl =t slice of s from ¢ to j is replaced by ¢

del s[i:7] same as s[i:j] = []

s.append(z) same as s[len(s):len(s)] = [z]

s.extend (z) same as s[len(s):len(s)] = z (5)

s.count (x) return number of i’s for which s[i] == =z

s.index(x) return smallest ¢ such that s[i] == z (1)

s.insert (i, xz) same as s[¢:4] = [z]if ¢ >= 0

s.pop([i]) same as £ = s[¢]; del s[i]; return z (4)

s.remove (z) same as del s[s.index(z)] (1)

s.reverse() reverses the items of s in place (3)
s. sort([cmpfunc]) sort the items of s in place (2), (3)

Notes:

(1) Raises an exception when z is not found in s.

4A tuple object in this case should be a singleton.
5These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without
hampering correct use and without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 7

(2) The sort () method takes an optional argument specifying a comparison function of two arguments
(list items) which should return -1, 0 or 1 depending on whether the first argument is considered
smaller than, equal to, or larger than the second argument. Note that this slows the sorting process
down considerably; e.g. to sort a list in reverse order it is much faster to use calls to the methods
sort () and reverse() than to use the built-in function sort () with a comparison function that
reverses the ordering of the elements.

(3) The sort() and reverse() methods modify the list in place for economy of space when sorting or
reversing a large list. They don’t return the sorted or reversed list to remind you of this side effect.

(4) The pop() method is experimental and not supported by other mutable sequence types than lists.
The optional argument i defaults to -1, so that by default the last item is removed and returned.

(5) Raises an exception when z is not a list object. The extend() method is experimental and not
supported by mutable types other than lists.

Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are mutable
objects. There is currently only one standard mapping type, the dictionary. A dictionary’s keys are
almost arbitrary values. The only types of values not acceptable as keys are values containing lists or
dictionaries or other mutable types that are compared by value rather than by object identity. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g.
1 and 1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: wvalue pairs within braces, for ex-
ample: {’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’}.

The following operations are defined on mappings (where a is a mapping, k is a key and z is an arbitrary
object):

Operation Result Notes
len(a) the number of items in a
alk] the item of a with key & (1)
alkl =z set a[k] to z
del alk] remove a[k] from a (1)
a.clear() remove all items from a
a.copy() a (shallow) copy of a
a.has_key(k) | 1if a has a key k, else O
a.items() a copy of a’s list of (key, value) pairs (2)
a.keys() a copy of a’s list of keys (2)
a.update(d) | for k, v in b.items(): alk] =v (3)
a.values() a copy of a’s list of values (2)
a.get (k[, f]) the value of a with key k (4)

Notes:

(1) Raises an exception if & is not in the map.
(2) Keys and values are listed in random order.
(3) b must be of the same type as a.

ever raises an exception i is not in the map, instead it returns f. is optional, when no
4) N i ti if ki t in th instead it ret i ti 1, wh t
provided and k is not in the map, None is returned.

Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

8 Chapter 2. Built-in Types, Exceptions and Functions

Modules

The only special operation on a module is attribute access: m.name, where m is a module and name
accesses a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the
import statement is not, strictly speaking, an operation on a module object; import foo does not
require a module object named foo to exist, rather it requires an (external) definition for a module
named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol
table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment
to the __dict__ attribute is not possible (i.e., you can write m.__dict__[’a’] = 1, which defines
m.a to be 1, but you can’t write m.__dict__ = {}.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a
file, they are written as <module ’os’ from ’/usr/local/lib/pythonl.5/os.pyc’>.

Classes and Class Instances

See Chapters 3 and 7 of the Python Reference Manual for these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call
it: funcCargument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both
support the same operation (to call the function), but the implementation is different, hence the different
object types.

The implementation adds two special read-only attributes: f.func_code is a function’s code object (see
below) and f.func_globals is the dictionary used as the function’s global name space (this is the same
as m.__dict__ where m is the module in which the function f was defined).

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in
methods (such as append() on lists) and class instance methods. Built-in methods are described with
the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the
object on which the method operates, and m.im_func is the function implementing the method. Call-
ing m(Carg-1, arg-2, ..., arg-n) is completely equivalent to calling m.im_func(m.im_self, arg-1,
arg-2, ..., arg-n).

See the Python Reference Manual for more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code
such as a function body. They differ from function objects because they don’t contain a reference to
their global execution environment. Code objects are returned by the built-in compile() function and
can be extracted from function objects through their func_code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement
or the built-in eval() function.

See the Python Reference Manual for more information.

2.1. Built-in Types 9

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function
type(). There are no special operations on types. The standard module types defines names for all
standard built-in types.

Types are written like this: <type ’int’>.

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name).

It is written as None.

The Ellipsis Object

This object is used by extended slice notation (see the Python Reference Manual). It supports no special
operations. There is exactly one ellipsis object, named E1lipsis (a built-in name).

It is written as E11lipsis.

File Objects

File objects are implemented using C’s stdio package and can be created with the built-in function
open() described section 2.3, “Built-in Functions.” They are also returned by some other built-in
functions and methods, e.g., posix.popen() and posix.fdopen() and the makefile () method of socket
objects.

When a file operation fails for an I/O-related reason, the exception I0Error is raised. This includes
situations where the operation is not defined for some reason, like seek() on a tty device or writing a
file opened for reading.

Files have the following methods:

close()
Close the file. A closed file cannot be read or written anymore.

flush (O
Flush the internal buffer, like stdio’s £flush().

isatty ()
Return 1 if the file is connected to a tty(-like) device, else 0.

fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request 1/0O
operations from the operating system. This can be useful for other, lower level interfaces that use
file descriptors, e.g. module fcntl or os.read() and friends.

read ([Size])
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the
size argument is negative or omitted, read all data until EOF is reached. The bytes are returned as
a string object. An empty string is returned when EOF is encountered immediately. (For certain
files, like ttys, it makes sense to continue reading after an EOF is hit.) Note that this method may
call the underlying C function fread () more than once in an effort to acquire as close to size bytes
as possible.

readline([size])
Read one entire line from the file. A trailing newline character is kept in the string® (but may

6The advantage of leaving the newline on is that an empty string can be returned to mean EOF without being ambiguous.
Another advantage is that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning
its lines) you can tell whether the last line of a file ended in a newline or not (yes this happens!).

10 Chapter 2. Built-in Types, Exceptions and Functions

be absent when a file ends with an incomplete line). If the size argument is present and non-
negative, it is a maximum byte count (including the trailing newline) and an incomplete line may
be returned. An empty string is returned when EOF is hit immediately. Note: unlike stdio’s
fgets (), the returned string contains null characters (*\0?) if they occurred in the input.

readlines([sizehint])
Read until EOF using readline() and return a list containing the lines thus read. If the optional
sizehint argument is present, instead of reading up to EOF, whole lines totalling approximately
sizehint bytes (possibly after rounding up to an internal buffer size) are read.

seek(oﬁset[, whence])
Set the file’s current position, like stdio’s fseek(). The whence argument is optional and defaults
to 0 (absolute file positioning); other values are 1 (seek relative to the current position) and 2 (seek
relative to the file’s end). There is no return value.

tell ()
Return the file’s current position, like stdio’s ftell().

truncate([size])
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most)
that size. The size defaults to the current position. Availability of this function depends on the
operating system version (e.g., not all UNIX versions support this operation).

write(str)
Write a string to the file. There is no return value. Note: due to buffering, the string may not
actually show up in the file until the f1lush() or close() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to match
readlines(); writelines() does not add line separators.)

File objects also offer the following attributes:

closed
Boolean indicating the current state of the file object. This is a read-only attribute; the close ()
method changes the value.

mode
The I/0 mode for the file. If the file was created using the open() built-in function, this will be
the value of the mode parameter. This is a read-only attribute.

name
If the file object was created using open(), the name of the file. Otherwise, some string that
indicates the source of the file object, of the form ‘<...>’. This is a read-only attribute.

softspace
Boolean that indicates whether a space character needs to be printed before another value when
using the print statement. Classes that are trying to simulate a file object should also have
a writable softspace attribute, which should be initialized to zero. This will be automatic for
classes implemented in Python; types implemented in C will have to provide a writable softspace
attribute.

Internal Objects

See the Python Reference Manual for this information. It describes code objects, stack frame objects,
traceback objects, and slice objects.

Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are
relevant:

2.1. Built-in Types 11

—_dict__
A dictionary of some sort used to store an object’s (writable) attributes.

__methods__
List of the methods of many built-in object types, e.g., [1.__methods__ yields [’append’,
’count’, ’index’, ’insert’, ’pop’, ’remove’, ’reverse’, ’sort’].

__members_ _
Similar to __methods__, but lists data attributes.

__class__
The class to which a class instance belongs.

__bases__
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string
objects, in Python 1.5, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The source code for those exceptions is present in the standard library
module exceptions; this module never needs to be imported explicitly.

For backward compatibility, when Python is invoked with the -X option, most of the standard exceptions
are strings’. This option may be used to run code that breaks because of the different semantics of class
based exceptions. The -X option will become obsolete in future Python versions, so the recommended
solution is to fix the code.

Two distinct string objects with the same value are considered different exceptions. This is done to force
programmers to use exception names rather than their string value when specifying exception handlers.
The string value of all built-in exceptions is their name, but this is not a requirement for user-defined
exceptions or exceptions defined by library modules.

For class exceptions, in a try statement with an except clause that mentions a particular class, that
clause also handles any exception classes derived from that class (but not exception classes from which
it is derived). Two exception classes that are not related via subclassing are never equivalent, even if
they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except
where mentioned, they have an “associated value” indicating the detailed cause of the error. This may
be a string or a tuple containing several items of information (e.g., an error code and a string explaining
the code). The associated value is the second argument to the raise statement. For string exceptions,
the associated value itself will be stored in the variable named as the second argument of the except
clause (if any). For class exceptions, that variable receives the exception instance. If the exception
class is derived from the standard root class Exception, the associated value is present as the exception
instance’s args attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an
error condition “just like” the situation in which the interpreter raises the same exception; but beware
that there is nothing to prevent user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions. When string-based standard
exceptions are used, they are tuples containing the directly derived classes.

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined
exceptions should also be derived from this class, but this is not (yet) enforced. The str () function,
when applied to an instance of this class (or most derived classes) returns the string value of the
argument or arguments, or an empty string if no arguments were given to the constructor. When
used as a sequence, this accesses the arguments given to the constructor (handy for backward

"For forward-compatibility the new exceptions Exception, LookupError, ArithmeticError, EnvironmentError, and
StandardError are tuples.

12 Chapter 2. Built-in Types, Exceptions and Functions

compatibility with old code). The arguments are also available on the instance’s args attribute,
as a tuple.

StandardError
The base class for all built-in exceptions except SystemExit. StandardError itself is derived from
the root class Exception.

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:
OverflowError, ZeroDivisionError, FloatingPointError.

LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndexError, KeyError.

EnvironmentError
The base class for exceptions that can occur outside the Python system: I0Error, 0SError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s errno
attribute (it is assumed to be an error number), and the second item is available on the strerror
attribute (it is usually the associated error message). The tuple itself is also available on the args
attribute. New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are avail-
able as above, while the third item is available on the filename attribute. However, for backwards
compatibility, the args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The
errno and strerror attributes are also None when the instance was created with other than 2 or
3 arguments. In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised. They are class objects, except when
the -X option is used to revert back to string-based standard exceptions.

AssertionError
Raised when an assert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute
references or attribute assignments at all, TypeError is raised.)

EQFError
Raised when one of the built-in functions (input () or raw_input()) hits an end-of-file condition
(EOF) without reading any data. (N.B.: the read() and readline () methods of file objects return
an empty string when they hit EOF.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be
raised when Python is configured with the -—with-fpectl option, or the WANT_SIGFPE_HANDLER
symbol is defined in the ‘config.h’ file.

I0Error
Raised when an I/O operation (such as a print statement, the built-in open() function or a
method of a file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes.

ImportError
Raised when an import statement fails to find the module definition or when a from ... import
fails to find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not a plain integer, TypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

2.2. Built-in Exceptions 13

KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or DEL). During execution, a
check for interrupts is made regularly. Interrupts typed when a built-in function input() or
raw_input ()) is waiting for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting
some objects). The associated value is a string indicating what kind of (internal) operation ran out
of memory. Note that because of the underlying memory management architecture (C’s malloc()
function), the interpreter may not always be able to completely recover from this situation; it
nevertheless raises an exception so that a stack traceback can be printed, in case a run-away
program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The
associated value is the name that could not be found.

NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version
1.5.2.

0SError
This class is derived from EnvironmentError and is used primarily as the os module’s os.error
exception. See EnvironmentError above for a description of the possible associated values. New
in version 1.5.2.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot
occur for long integers (which would rather raise MemoryError than give up). Because of the lack
of standardization of floating point exception handling in C, most floating point operations also
aren’t checked. For plain integers, all operations that can overflow are checked except left shift,
where typical applications prefer to drop bits than raise an exception.

RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated
value is a string indicating what precisely went wrong. (This exception is mostly a relic from a
previous version of the interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an
exec statement, in a call to the built-in function eval() or input(), or when reading the initial
script or standard input (also interactively).

When class exceptions are used, instances of this class have atttributes filename, lineno, offset
and text for easier access to the details; for string exceptions, the associated value is usually a
tuple of the form (message, (filename, lineno, offset, text)). For class exceptions, str()
returns only the message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to
cause it to abandon all hope. The associated value is a string indicating what went wrong (in
low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the
version string of the Python interpreter (sys.version; it is also printed at the start of an interactive
Python session), the exact error message (the exception’s associated value) and if possible the source
of the program that triggered the error.

SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter
exits; no stack traceback is printed. If the associated value is a plain integer, it specifies the system
exit status (passed to C’s exit () function); if it is None, the exit status is zero; if it has another
type (such as a string), the object’s value is printed and the exit status is one.

14 Chapter 2. Built-in Types, Exceptions and Functions

When class exceptions are used, the instance has an attribute code which is set to the proposed exit
status or error message (defaulting to None). Also, this exception derives directly from Exception
and not StandardError, since it is not technically an error.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of
try statements) can be executed, and so that a debugger can execute a script without running the
risk of losing control. The os._exit () function can be used if it is absolutely positively necessary
to exit immediately (e.g., after a fork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The
associated value is a string giving details about the type mismatch.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but
an inappropriate value, and the situation is not described by a more precise exception such as
IndexError.

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value
is a string indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

__import__(name[, globals[, locals[, fmmlist]]])
This function is invoked by the import statement. It mainly exists so that you can replace it with
another function that has a compatible interface, in order to change the semantics of the import
statement. For examples of why and how you would do this, see the standard library modules
ihooks and rexec. See also the built-in module imp, which defines some useful operations out of
which you can build your own __import__() function.

For example, the statement ‘import spam’ results in the following call: __import__(’spam’,
globals(), 1locals(), [1); the statement from spam.ham import eggs results in
—_import__(’spam.ham’, globals(), locals(), [’eggs’]). Note that even though locals()
and [’eggs’] are passed in as arguments, the __import__ () function does not set the local vari-
able named eggs; this is done by subsequent code that is generated for the import statement. (In
fact, the standard implementation does not use its locals argument at all, and uses its globals only
to determine the package context of the import statement.)

When the name variable is of the form package.module, normally, the top-level package (the
name up till the first dot) is returned, not the module named by name. However, when a non-
empty fromlist argument is given, the module named by name is returned. This is done for
compatibility with the bytecode generated for the different kinds of import statement; when using
‘import spam.ham.eggs’, the top-level package spam must be placed in the importing namespace,
but when using ‘from spam.ham import eggs’, the spam.ham subpackage must be used to find the
eggs variable. As a workaround for this behavior, use getattr () to extract the desired components.
For example, you could define the following helper:

import string

def my_import (name) :
mod = __import__(name)
components = string.split(name, ’.’)
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

2.3. Built-in Functions 15

abs(z)
Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

apply (function, args [, keywords])
The function argument must be a callable object (a user-defined or built-in function or method,
or a class object) and the args argument must be a sequence (if it is not a tuple, the sequence is
first converted to a tuple). The function is called with args as the argument list; the number of
arguments is the the length of the tuple. (This is different from just calling func(args), since in
that case there is always exactly one argument.) If the optional keywords argument is present, it
must be a dictionary whose keys are strings. It specifies keyword arguments to be added to the
end of the the argument list.

buffer(object[, offset [, sz'ze]])
The object argument must be an object that supports the buffer call interface (such as strings,
arrays, and buffers). A new buffer object will be created which references the object argument.
The buffer object will be a slice from the beginning of object (or from the specified offset). The
slice will extend to the end of object (or will have a length given by the size argument).

callable(object)
Return true if the object argument appears callable, false if not. If this returns true, it is still
possible that a call fails, but if it is false, calling object will never succeed. Note that classes
are callable (calling a class returns a new instance); class instances are callable if they have a
__call__ () method.

chr (¢)
Return a string of one character whose ASCII code is the integer 4, e.g., chr(97) returns the string
>a’. This is the inverse of ord(). The argument must be in the range [0..255], inclusive.

cmp (z, y)
Compare the two objects x and y and return an integer according to the outcome. The return
value is negative if z < y, zero if x == y and strictly positive if z > y.

coerce(z, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the
same rules as used by arithmetic operations.

compile(string, filename, kind)
Compile the string into a code object. Code objects can be executed by an exec statement or
evaluated by a call to eval (). The filename argument should give the file from which the code was
read; pass e.g. ’<string>’ if it wasn’t read from a file. The kind argument specifies what kind of
code must be compiled; it can be ’exec’ if string consists of a sequence of statements, ’eval’ if
it consists of a single expression, or ’single’ if it consists of a single interactive statement (in the
latter case, expression statements that evaluate to something else than None will printed).

complex(real[, imag])
Create a complex number with the value real + imag*j or convert a string or number to a complex
number. Each argument may be any numeric type (including complex). If imag is omitted, it
defaults to zero and the function serves as a numeric conversion function like int (), long() and
float (); in this case it also accepts a string argument which should be a valid complex number.

delattr (object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be
the name of one of the object’s attributes. The function deletes the named attribute, provided the
object allows it. For example, delattr(z, ’foobar’) is equivalent to del x.foobar.

dir([object])
Without arguments, return the list of names in the current local symbol table. With an argument,
attempts to return a list of valid attribute for that object. This information is gleaned from
the object’s __dict__, __methods__ and __members__ attributes, if defined. The list is not
necessarily complete; e.g., for classes, attributes defined in base classes are not included, and for
class instances, methods are not included. The resulting list is sorted alphabetically. For example:

16 Chapter 2. Built-in Types, Exceptions and Functions

>>> import sys

>>> dir()

[’sys’]

>>> dir(sys)

[’argv’, ’exit’, ’modules’, ’path’, ’stderr’, ’stdin’, ’stdout’]
>>>

divmod(a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a / b, a % b). For
floating point numbers the result is the same as (math.floor(a / 0), a % b).

eval(e:zrpression[, globals[, locals]])
The arguments are a string and two optional dictionaries. The expression argument is parsed and
evaluated as a Python expression (technically speaking, a condition list) using the globals and locals
dictionaries as global and local name space. If the locals dictionary is omitted it defaults to the
globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

>>>x =1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. created by compile()). In
this case pass a code object instead of a string. The code object must have been compiled passing
’eval’ to the kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of state-
ments from a file is supported by the execfile () function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be useful to pass around
for use by eval() or execfile().

execfile(ﬁle[, globals[, locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different
from the import statement in that it does not use the module administration — it reads the file
unconditionally and does not create a new module.?

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as
global and local name space. If the locals dictionary is omitted it defaults to the globals dictionary.
If both dictionaries are omitted, the expression is executed in the environment where execfile ()
is called. The return value is None.

filter (function, list)
Construct a list from those elements of list for which function returns true. If list is a string or a
tuple, the result also has that type; otherwise it is always a list. If function is None, the identity
function is assumed, i.e. all elements of list that are false (zero or empty) are removed.

float(z)
Convert a string or a number to floating point. If the argument is a string, it must contain a
possibly signed decimal or floating point number, possibly embedded in whitespace; this behaves
identical to string.atof (z). Otherwise, the argument may be a plain or long integer or a floating
point number, and a floating point number with the same value (within Python’s floating point
precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

81t is used relatively rarely so does not warrant being made into a statement.

2.3. Built-in Functions 17

getattr (object, name)
The arguments are an object and a string. The string must be the name of one of the object’s
attributes. The result is the value of that attribute. For example, getattr(z, °’foobar’) is
equivalent to z . foobar.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of
the current module (inside a function or method, this is the module where it is defined, not the
module from which it is called).

hasattr (object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the
object’s attributes, 0 if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to
quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal
have the same hash value (even if they are of different types, e.g. 1 and 1.0).

hex (z)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, hex(-1) yields
’Oxfffff£££f°. When evaluated on a machine with the same word size, this literal is evaluated as
-1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

id(object)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique and constant
for this object during its lifetime. (Two objects whose lifetimes are disjunct may have the same
id() value.) (Implementation note: this is the address of the object.)

input([pmmpt])
Equivalent to eval (raw_input (prompt)).

intern (string)
Enter string in the table of “interned” strings and return the interned string — which is string itself
or a copy. Interning strings is useful to gain a little performance on dictionary lookup — if the keys
in a dictionary are interned, and the lookup key is interned, the key comparisons (after hashing)
can be done by a pointer compare instead of a string compare. Normally, the names used in Python
programs are automatically interned, and the dictionaries used to hold module, class or instance
attributes have interned keys. Interned strings are immortal (i.e. never get garbage collected).

int(z)
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly
signed decimal number representable as a Python integer, possibly embedded in whitespace; this
behaves identical to string.atoi(z). Otherwise, the argument may be a plain or long integer
or a floating point number. Conversion of floating point numbers to integers is defined by the C
semantics; normally the conversion truncates towards zero.”

isinstance(object, class)
Return true if the object argument is an instance of the class argument, or of a (direct or indirect)
subclass thereof. Also return true if class is a type object and object is an object of that type. If
object is not a class instance or a object of the given type, the function always returns false. If
class is neither a class object nor a type object, a TypeError exception is raised.

issubclass(classi, class?2)
Return true if class! is a subclass (direct or indirect) of class2. A class is considered a subclass of
itself. If either argument is not a class object, a TypeError exception is raised.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string,

9This is ugly — the language definition should require truncation towards zero.

18 Chapter 2. Built-in Types, Exceptions and Functions

tuple or list) or a mapping (dictionary).

list (sequence)
Return a list whose items are the same and in the same order as sequence’s items. If sequence is
already a list, a copy is made and returned, similar to sequence[:]. For instance, list(’abc’)
returns returns [’a’, ’b’, ’c’] and list((1, 2, 3)) returns [1, 2, 3].

locals()
Return a dictionary representing the current local symbol table. Warning: the contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long(z)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly
signed decimal number of arbitrary size, possibly embedded in whitespace; this behaves identical
to string.atol(z). Otherwise, the argument may be a plain or long integer or a floating point
number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers is defined by the C semantics; see the description of int ().

map (function, list, ...)
Apply function to every item of list and return a list of the results. If additional list arguments are
passed, function must take that many arguments and is applied to the items of all lists in parallel;
if a list is shorter than another it is assumed to be extended with None items. If function is None,
the identity function is assumed; if there are multiple list arguments, map () returns a list consisting
of tuples containing the corresponding items from all lists (i.e. a kind of transpose operation). The
list arguments may be any kind of sequence; the result is always a list.

max(s[, args..,])
With a single argument s, return the largest item of a non-empty sequence (e.g., a string, tuple or
list). With more than one argument, return the largest of the arguments.

min(s[, args...])
With a single argument s, return the smallest item of a non-empty sequence (e.g., a string, tuple
or list). With more than one argument, return the smallest of the arguments.

oct(z)
Convert an integer number (of any size) to an octal string. The result is a valid Python ex-
pression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, oct(-1) yields
2037777777777°. When evaluated on a machine with the same word size, this literal is evaluated
as -1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

open (filename [, mode [, bufsize]])
Return a new file object (described earlier under Built-in Types). The first two arguments are the
same as for stdio’s fopen(): filename is the file name to be opened, mode indicates how the file
is to be opened: ’r’ for reading, ’w’ for writing (truncating an existing file), and ’a’ opens it
for appending (which on some UNIX systems means that all writes append to the end of the file,
regardless of the current seek position).

Modes ’r+’, >w+’ and ’a+’ open the file for updating (note that ’w+’ truncates the file). Append
’b’ to the mode to open the file in binary mode, on systems that differentiate between binary and
text files (else it is ignored). If the file cannot be opened, I0Error is raised.

If mode is omitted, it defaults to >r’. When opening a binary file, you should append ’b’ to the
mode value for improved portability. (It’s useful even on systems which don’t treat binary and text
files differently, where it serves as documentation.) The optional bufsize argument specifies the
file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use the system default,
which is usually line buffered for for tty devices and fully buffered for other files. If omitted, the
system default is used.'®

10Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the
buffer size is not done using a method that calls setvbuf (), because that may dump core when called after any I/O has
been performed, and there’s no reliable way to determine whether this is the case.

2.3. Built-in Functions 19

ord(c)

Return the Ascil value of a string of one character. E.g., ord(’a’) returns the integer 97. This is
the inverse of chr().

pow (z, y[, z])

Return z to the power y; if z is present, return z to the power y, modulo z (computed more
efficiently than pow(z, y) % z). The arguments must have numeric types. With mixed operand
types, the rules for binary arithmetic operators apply. The effective operand type is also the type
of the result; if the result is not expressible in this type, the function raises an exception; e.g.,
pow(2, -1) or pow(2, 35000) is not allowed.

range([start,] stop [, step])

This is a versatile function to create lists containing arithmetic progressions. It is most often used
in for loops. The arguments must be plain integers. If the step argument is omitted, it defaults
to 1. If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers
[start, start + step, start + 2 * step, ...]. If step is positive, the last element is the largest
start + i * step less than stop; if step is negative, the last element is the largest start + i * step
greater than stop. step must not be zero (or else ValueError is raised). Example:

>>> range(10)

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[o, 3, 6, 9]

>>> range(0, -10, -1)

o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

1

>>> range(1, 0)

]

>>>

raw_input([prompt])

If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and
returns that. When EOF is read, EOFError is raised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> s

"Monty Python’s Flying Circus"
>>>

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing
and history features.

reduce (function, sequence[, im'tialz'zer])

Apply function of two arguments cumulatively to the items of sequence, from left to right, so as
to reduce the sequence to a single value. For example, reduce(lambda x, y: =x+y, [1, 2, 3,
4, 5]) calculates ((((1+2)+3)+4)+5). If the optional initializer is present, it is placed before the
items of the sequence in the calculation, and serves as a default when the sequence is empty.

reload (module)

Re-parse and re-initialize an already imported module. The argument must be a module object,
so it must have been successfully imported before. This is useful if you have edited the module
source file using an external editor and want to try out the new version without leaving the Python
interpreter. The return value is the module object (i.e. the same as the module argument).

There are a number of caveats:

20

Chapter 2. Built-in Types, Exceptions and Functions

If a module is syntactically correct but its initialization fails, the first import statement for it does
not bind its name locally, but does store a (partially initialized) module object in sys.modules. To
reload the module you must first import it again (this will bind the name to the partially initialized
module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained.
Redefinitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache
of objects — with a try statement it can test for the table’s presence and skip its initialization if
desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules,
except for sys, __main__ and __builtin__. In certain cases, however, extension modules are
not designed to be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload()
for the other module does not redefine the objects imported from it — one way around this is
to re-execute the from statement, another is to use import and qualified names (module.name)
instead.

If a module instantiates instances of a class, reloading the module that defines the class does not
affect the method definitions of the instances — they continue to use the old class definition. The
same is true for derived classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded
by conversions (reverse quotes). It is sometimes useful to be able to access this operation as an
ordinary function. For many types, this function makes an attempt to return a string that would
yield an object with the same value when passed to eval().

round(x[, n])
Return the floating point value z rounded to n digits after the decimal point. If n is omitted, it
defaults to zero. The result is a floating point number. Values are rounded to the closest multiple
of 10 to the power minus n; if two multiples are equally close, rounding is done away from 0 (so
e.g. round(0.5) is 1.0 and round(-0.5) is -1.0).

setattr (object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary
value. The string may name an existing attribute or a new attribute. The function assigns the
value to the attribute, provided the object allows it. For example, setattr(z, ’foobar’, 123) is
equivalent to x.foobar = 123.

slice([start,] stop [, step])
Return a slice object representing the set of indices specified by range(start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop
and step which merely return the argument values (or their default). They have no other explicit
functionality; however they are used by Numerical Python and other third party extensions. Slice
objects are also generated when extended indexing syntax is used, e.g. for ‘a[start:stop:step]’
or ‘alstart:stop, i]’.

str(object)
Return a string containing a nicely printable representation of an object. For strings, this returns
the string itself. The difference with repr (object) is that str(object) does not always attempt to
return a string that is acceptable to eval(); its goal is to return a printable string.

tuple (sequence)
Return a tuple whose items are the same and in the same order as sequence’s items. If sequence
is already a tuple, it is returned unchanged. For instance, tuple(’abc’) returns returns (’a’,
’b?, ’c’) and tuple([1, 2, 3]) returns (1, 2, 3).

type (object)
Return the type of an object. The return value is a type object. The standard module types
defines names for all built-in types. For instance:

2.3. Built-in Functions 21

>>> import types
>>> if type(x) == types.StringType: print "It’s a string"

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a
module, class or class instance object as argument (or anything else that hasa __dict__ attribute),
returns a dictionary corresponding to the object’s symbol table. The returned dictionary should
not be modified: the effects on the corresponding symbol table are undefined.!!

xrange([start,] stop[, step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is
an opaque sequence type which yields the same values as the corresponding list, without actually
storing them all simultaneously. The advantage of xrange() over range() is minimal (since
xrange () still has to create the values when asked for them) except when a very large range
is used on a memory-starved machine (e.g. MS-DOS) or when all of the range’s elements are never
used (e.g. when the loop is usually terminated with break).

H1n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved
from other scopes (e.g. modules) can be. This may change.

22 Chapter 2. Built-in Types, Exceptions and Functions

CHAPTER
THREE

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter
and its interaction with its environment. Here’s an overview:

sys Access system-specific parameters and functions.

types Names for all built-in types.

UserDict Class wrapper for dictionary objects.

UserList Class wrapper for list objects.

operator All Python’s standard operators as built-in functions.
traceback Print or retrieve a stack traceback.

pickle Convert Python objects to streams of bytes and back.
cPickle Faster version of pickle, but not subclassable.

copy_reg Register pickle support functions.

shelve Python object persistency.

copy Shallow and deep copy operations.

marshal Convert Python objects to streams of bytes and back (with different constraints).
imp Access the implementation of the import statement.
parser Access parse trees for Python source code.

symbol Constants representing internal nodes of the parse tree.
token Constants representing terminal nodes of the parse tree.
keyword Test whether a string is a keyword in Python.

tokenize Lexical scanner for Python source code.

pyclbr Supports information extraction for a Python class browser.
code Code object services.

pprint Data pretty printer.

repr Alternate repr () implementation with size limits.
py_compile Compile Python source files to byte-code files.

compileall Tools for byte-compiling all Python source files in a directory tree.
dis Disassembler.

site A standard way to reference site-specific modules.

user A standard way to reference user-specific modules.
__builtin__ The set of built-in functions.

__main_ The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions
that interact strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script. argv[0] is the script name (it is
operating system dependent whether this is a full pathname or not). If the command was executed
using the ‘-c’ command line option to the interpreter, argv[0] is set to the string >-c’. If no
script name was passed to the Python interpreter, argv has zero length.

23

builtin_module_names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter.
(This information is not available in any other way — modules.keys() only lists the imported
modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

exc_info()

This function returns a tuple of three values that give information about the exception that is
currently being handled. The information returned is specific both to the current thread and to
the current stack frame. If the current stack frame is not handling an exception, the information
is taken from the calling stack frame, or its caller, and so on until a stack frame is found that is
handling an exception. Here, “handling an exception” is defined as “executing or having executed
an except clause.” For any stack frame, only information about the most recently handled exception
is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is
returned. Otherwise, the values returned are (type, wvalue, traceback). Their meaning is: type
gets the exception type of the exception being handled (a string or class object); value gets the
exception parameter (its associated value or the second argument to raise, which is always a class
instance if the exception type is a class object); traceback gets a traceback object (see the Reference
Manual) which encapsulates the call stack at the point where the exception originally occurred.

Warning: assigning the traceback return value to a local variable in a function that is handling an
exception will cause a circular reference. This will prevent anything referenced by a local variable
in the same function or by the traceback from being garbage collected. Since most functions
don’t need access to the traceback, the best solution is to use something like type, value =
sys.exc_info() [:2] to extract only the exception type and value. If you do need the traceback,
make sure to delete it after use (best done with a try ... finally statement) or to call exc_info()
in a function that does not itself handle an exception.

exc_type
exc_value
exc_traceback
Deprecated since release 1.5. Use exc_info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe
in a multi-threaded program. When no exception is being handled, exc_type is set to None and
the other two are undefined.

exec_prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are in-
stalled; by default, this is also ’ /usr/local’. This can be set at build time with the -—exec-prefix
argument to the configure script. Specifically, all configuration files (e.g. the ‘config.h’ header file)
are installed in the directory exec_prefix + ’/lib/pythonversion/config’, and shared library
modules are installed in exec_prefix + ’/lib/pythonversion/lib-dynload’, where version is
equal to version[:3].

executable
A string giving the name of the executable binary for the Python interpreter, on systems where
this makes sense.

exit([arg])
Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions
specified by finally clauses of try statements are honored, and it is possible to intercept the exit
attempt at an outer level. The optional argument arg can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer, zero is considered “successful
termination” and any nonzero value is considered “abnormal termination” by shells and the like.
Most systems require it to be in the range 0-127, and produce undefined results otherwise. Some
systems have a convention for assigning specific meanings to specific exit codes, but these are
generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1
for all other kind of errors. If another type of object is passed, None is equivalent to passing zero,

24 Chapter 3. Python Services

and any other object is printed to sys.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc

This value is not actually defined by the module, but can be set by the user (or by a program) to
specify a clean-up action at program exit. When set, it should be a parameterless function. This
function will be called when the interpreter exits. Note: the exit function is not called when the
program is killed by a signal, when a Python fatal internal error is detected, or when os._exit()
is called.

getrefcount (object)

Return the reference count of the object. The count returned is generally one higher than you
might expect, because it includes the (temporary) reference as an argument to getrefcount ().

last_type
last_value

last_traceback

These three variables are not always defined; they are set when an exception is not handled and
the interpreter prints an error message and a stack traceback. Their intended use is to allow an
interactive user to import a debugger module and engage in post-mortem debugging without having
to re-execute the command that caused the error. (Typical use is ‘import pdb; pdb.pm()’ to enter
the post-mortem debugger; see the chapter “The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return values from exc_info() above.
(Since there is only one interactive thread, thread-safety is not a concern for these variables, unlike
for exc_type etc.)

maxint

The largest positive integer supported by Python’s regular integer type. This is at least 2*¥*31-1.
The largest negative integer is -maxint-1 — the asymmetry results from the use of 2’s complement
binary arithmetic.

modules

path

This is a dictionary that maps module names to modules which have already been loaded. This
can be manipulated to force reloading of modules and other tricks. Note that removing a module
from this dictionary is not the same as calling reload() on the corresponding module object.

A list of strings that specifies the search path for modules. Initialized from the environment variable
$PYTHONPATH, or an installation-dependent default.

The first item of this list, path[0], is the directory containing the script that was used to invoke
the Python interpreter. If the script directory is not available (e.g. if the interpreter is invoked
interactively or if the script is read from standard input), path[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is
inserted before the entries inserted as a result of SPYTHONPATH.

platform

This string contains a platform identifier, e.g. ’sunos5’ or ’linux1’. This can be used to append
platform-specific components to path, for instance.

prefix

psi
ps2

A string giving the site-specific directory prefix where the platform independent Python files are
installed; by default, this is the string ’/usr/local’. This can be set at build time with the
—--prefix argument to the configure script. The main collection of Python library modules is
installed in the directory prefix + ’/1ib/pythonversion’ while the platform independent header
files (all except ‘config.h’) are stored in prefix + ’/include/pythonversion’, where version is
equal to version[:3].

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if
the interpreter is in interactive mode. Their initial values in this case are ’>>> ? and ’... . If
a non-string object is assigned to either variable, its str () is re-evaluated each time the interpreter

3.1.

sys — System-specific parameters and functions 25

prepares to read a new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter
checks for periodic things such as thread switches and signal handlers. The default is 10, meaning
the check is performed every 10 Python virtual instructions. Setting it to a larger value may
increase performance for programs using threads. Setting it to a value <= 0 checks every virtual
instruction, maximizing responsiveness as well as overhead.

setprofile(profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in
Python. See the chapter on the Python Profiler. The system’s profile function is called similarly
to the system’s trace function (see settrace()), but it isn’t called for each executed line of code
(only on call and return and when an exception occurs). Also, its return value is not used, so it
can just return None.

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in
Python. See section “How It Works” in the chapter on the Python Debugger.

stdin

stdout

stderr
File objects corresponding to the interpreter’s standard input, output and error streams. stdin is
used for all interpreter input except for scripts but including calls to input() and raw_input().
stdout is used for the output of print and expression statements and for the prompts of input ()
and raw_input (). The interpreter’s own prompts and (almost all of) its error messages go to
stderr. stdout and stderr needn’t be built-in file objects: any object is acceptable as long as it
has a write() method that takes a string argument. (Changing these objects doesn’t affect the
standard I/O streams of processes executed by os.popen(), os.system() or the exec*() family
of functions in the os module.)

__stdin__

__stdout__

__stderr___
These objects contain the original values of stdin, stderr and stdout at the start of the program.
They are used during finalization, and could be useful to restore the actual files to known working
file objects in case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of
traceback information printed when an unhandled exception occurs. The default is 1000. When
set to 0 or less, all traceback information is suppressed and only the exception type and value are
printed.

version
A string containing the version number of the Python interpreter.

3.2 types — Names for all built-in types.

This module defines names for all object types that are used by the standard Python interpreter, but
not for the types defined by various extension modules. It is safe to use ‘from types import *’ — the
module does not export any names besides the ones listed here. New names exported by future versions
of this module will all end in ‘Type’.

Typical use is for functions that do different things depending on their argument types, like the following:

26 Chapter 3. Python Services

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by type()).

IntType
The type of integers (e.g. 1).

LongType
The type of long integers (e.g. 1L).

FloatType
The type of floating point numbers (e.g. 1.0).

ComplexType
The type of complex numbers (e.g. 1.0j).

StringType
The type of character strings (e.g. ’Spam’).

TupleType
The type of tuples (e.g. (1, 2, 3, ’Spam’)).

ListType
The type of lists (e.g. [0, 1, 2, 3]).

DictType

The type of dictionaries (e.g. {’Bacon’: 1, ’Ham’: O0}).

DictionaryType
An alternate name for DictType.

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name for FunctionType.

CodeType
The type for code objects such as returned by compile().

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

BuiltinFunctionType
The type of built-in functions like 1len() or sys.exit ().

BuiltinMethodType

3.2. types — Names for all built-in types.

27

An alternate name for BuiltinFunction.

ModuleType
The type of modules.

FileType
The type of open file objects such as sys.stdout.

XRangeType
The type of range objects returned by xrange().

SliceType
The type of objects returned by slice().

EllipsisType
The type of Ellipsis.

TracebackType
The type of traceback objects such as found in sys.exc_traceback.

FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

3.3 UserDict — Class wrapper for dictionary objects.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class
for your own dictionary-like classes, which can inherit from them and override existing methods or add
new ones. In this way one can add new behaviours to dictionaries.

The UserDict module defines the UserDict class:

UserDict ()
Return a class instance that simulates a dictionary. The instance’s contents are kept in a regular
dictionary, which is accessible via the data attribute of UserDict instances.

data
A real dictionary used to store the contents of the UserDict class.

3.4 UserList — Class wrapper for list objects.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your
own list-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviours to lists.

The UserList module defines the UserList class:

UserList([list])
Return a class instance that simulates a list. The instance’s contents are kept in a regular list, which
is accessible via the data attribute of UserList instances. The instance’s contents are initially set
to a copy of list, defaulting to the empty list []1. list can be either a regular Python list, or an
instance of UserList (or a subclass).

data
A real Python list object used to store the contents of the UserList class.

3.5 operator — Standard operators as functions.

The operator module exports a set of functions implemented in C corresponding to the intrinsic oper-
ators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function
names are those used for special class methods; variants without leading and trailing ‘__’ are also
provided for convenience.

28 Chapter 3. Python Services

The operator module defines the following functions:

add(a, b)
__add__(a, b)
Return a + b, for a and b numbers.

sub(a, b)
__sub__C(a, b)
Return a - b.

mul (a, b)
__mul__(a, b)
Return a * b, for a and b numbers.

div(a, b)
__div__C(a, b)
Return a / b.

mod(a, b)
__mod__C(a, b)
Return a % b.

neg(o)
__neg__(0)

Return o negated.
pos (o)
—_pos__(o0)

Return o positive.
abs (o)
__abs__(0)

Return the absolute value of o.
inv (o)
__inv__ (o)

Return the inverse of o.

1shift(a, b)
__1shift__(a, b)
Return a shifted left by b.

rshift(a, b)
__rshift__(a, b)
Return a shifted right by b.

and_(a, b)
__and__(a, b)
Return the bitwise and of a and b.

or_~(a, b)
__or__C(a, b)
Return the bitwise or of a and b.

xor (a, b)
__xor__C(a, b)
Return the bitwise exclusive or of a and b.

not_ (o)
__not__~(o)
Return the outcome of not o.

truth(o)
Return 1 if o is true, and 0 otherwise.

concat (a, b)
__concat__(a, b)

3.5. operator — Standard operators as functions.

29

Return a + b for a and b sequences.

repeat(a, b)
__repeat__(a, b)
Return a * b where a is a sequence and b is an integer.

contains(a, b)
sequenceIncludes(a, b)
Return the outcome of the test b in a. Note the reversed operands.

countOf (a, b)
Return the number of occurrences of b in a.

index0f (a, b)
Return the index of the first of occurrence of b in a.

getitem(a, b)
__getitem__(a, b)
Return the value of a at index b.

setitem(a, b, ¢)
__setitem__(a, b, ¢)
Set the value of a at index b to c.

delitem(a, b)
__delitem__(a, b)
Remove the value of a at index b.

getslice(a, b, ¢)
__getslice__(a, b, ¢)
Return the slice of a from index b to index c-1.

setslice(a, b, ¢, v)
__setslice__(a, b, ¢, v)
Set the slice of a from index b to index c-1 to the sequence v.

delslice(a, b, ¢)
__delslice__(a, b, ¢)
Delete the slice of a from index b to index c¢-1.

Example: Build a dictionary that maps the ordinals from O to 256 to their character equivalents.

>>> import operator

>>> d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.6 traceback — Print or retrieve a stack traceback.

This module provides a standard interface to extract, format and print stack traces of Python programs.
It exactly mimics the behavior of the Python interpreter when it prints a stack trace. This is useful
when you want to print stack traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the wvariables
sys.exc_traceback and sys.last_traceback and returned as the third item from sys.exc_info().

The module defines the following functions:

printftb(tmceback[, limit [, ﬁle]])
Print up to limit stack trace entries from traceback. If limit is omitted or None, all entries are
printed. If file is omitted or None, the output goes to sys.stderr; otherwise it should be an open

30 Chapter 3. Python Services

file or file-like object to receive the output.

print_exception(type, value, tmceback[, limat [, ﬁle]])
Print exception information and up to limit stack trace entries from traceback to file. This differs
from print_tb() in the following ways: (1) if traceback is not None, it prints a header ‘Traceback
(innermost last):’; (2) it prints the exception type and value after the stack trace; (3) if type
is SyntaxError and walue has the appropriate format, it prints the line where the syntax error
occurred with a caret indicating the approximate position of the error.

print_exc([lz'mit [, ﬁle]])
This is a shorthand for ‘print_exception(sys.exc_type, sys.exc_value,
sys.exc_traceback, limit, file)’. (In fact, it uses sys.exc_info() to retrieve the same
information in a thread-safe way.)

print_last([limit[, ﬁle]])
This is a shorthand for ‘print_exception(sys.last_type, sys.last_value,
sys.last_traceback, limit, file) .

print_stack([f[, limit [, ﬁle]]])
This function prints a stack trace from its invocation point. The optional f argument can be used
to specify an alternate stack frame to start. The optional limit and file arguments have the same
meaning as for print_exception().

extract_tb (traceback [, limit])
Return a list of up to limit “pre-processed” stack trace entries extracted from the traceback object
traceback. It is useful for alternate formatting of stack traces. If limit is omitted or None, all entries
are extracted. A “pre-processed” stack trace entry is a quadruple (filename, line number, function
name, text) representing the information that is usually printed for a stack trace. The text is a
string with leading and trailing whitespace stripped; if the source is not available it is None.

extract_stack([f [, limit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract_tb(). The optional f and limit arguments have the same meaning as for print_stack().

format_1list (list)
Given a list of tuples as returned by extract_tb() or extract_stack(), return a list of strings
ready for printing. Each string in the resulting list corresponds to the item with the same index
in the argument list. Each string ends in a newline; the strings may contain internal newlines as
well, for those items whose source text line is not None.

format_exception_only (type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as
given by sys.last_type and sys.last_value. The return value is a list of strings, each ending
in a newline. Normally, the list contains a single string; however, for SyntaxError exceptions,
it contains several lines that (when printed) display detailed information about where the syntax
error occurred. The message indicating which exception occurred is the always last string in the
list.

format_exception(type, value, tb[, limit])
Format a stack trace and the exception information. The arguments have the same meaning as
the corresponding arguments to print_exception(). The return value is a list of strings, each
ending in a newline and some containing internal newlines. When these lines are contatenated and
printed, exactly the same text is printed as does print_exception().

format_tb(th [, limit])
A shorthand for format_list(extract_tb(tb, limit)).

format_stack([f [, limit]])
A shorthand for format_list(extract_stack(f, limit)).

tb_lineno (tb)
This function returns the current line number set in the traceback object. This is normally the
same as the tb.tb_lineno field of the object, but when optimization is used (the -O flag) this field

3.6. traceback — Print or retrieve a stack traceback. 31

is not updated correctly; this function calculates the correct value.
A simple example follows:

import sys, traceback

def run_user_code(envdir):

source = raw_input(">>> ")

try:
exec source in envdir

except:
print "Exception in user code:"
print ’-’*60
traceback.print_exc(file=sys.stdout)
print ’-’*60

envdir = {}
while 1:
run_user_code (envdir)

3.7 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, mar-
shalling or flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream
of bytes (and back: “unpickling”). This is a more primitive notion than persistency — although pickle
reads and writes file objects, it does not handle the issue of naming persistent objects, nor the (even
more complicated) area of concurrent access to persistent objects. The pickle module can transform a
complex object into a byte stream and it can transform the byte stream into an object with the same
internal structure. The most obvious thing to do with these byte streams is to write them onto a file, but
it is also conceivable to send them across a network or store them in a database. The module shelve
provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: The pickle module is rather slow. A reimplementation of the same algorithm in C, which is
up to 1000 times faster, is available as the cPickle module. This has the same interface except that
Pickler and Unpickler are factory functions, not classes (so they cannot be used as base classes for
inheritance).

Unlike the built-in module marshal, pickle handles the following correctly:

e recursive objects (objects containing references to themselves)
e object sharing (references to the same object in different places)

e user-defined classes and their instances

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions
imposed by external standards such as XDR, (which can’t represent pointer sharing); however it means
that non-Python programs may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a printable ASCII representation. This is slightly more volu-
minous than a binary representation. The big advantage of using printable Ascit (and of some other
characteristics of pickle’s representation) is that for debugging or recovery purposes it is possible for a
human to read the pickled file with a standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value for
the bin argument to the Pickler constructor or the dump () and d