
What's New in
Python 2.2

LinuxWorld - New York City - January 2002

Guido van Rossum

Director of PythonLabs at Zope Corporation

guido@python.org
guido@zope.com



Slide 2 ©2001, 2002 Guido van Rossum

Overview

• Appetizers
– Nested Scopes

– Int/Long Unification

– Integer Division

• First Course
– Iterators

– Generators

• Second Course
– Type/Class Unification

• Dessert
– Metaclass Programming



Slide 3 ©2001, 2002 Guido van Rossum

Nested Scopes

• Motivation:

– functions inside functions need to access outer locals

• Optional in 2.1

– from __future__ import nested_scopes

• Standard in 2.2

– Can't turn it off (__future__ statement still allowed)

• Only issue to watch out for:

– def f(str):
def g(x): print str(x)
...

– In 2.1, str argument independent from str() function

– In 2.2, str inside g() references outer str



Slide 4 ©2001, 2002 Guido van Rossum

Int/Long Unification

• 2**1000 no longer raises OverflowError
– but returns the appropriate long (no 'L' needed!)

• Ditto for:
– 1000000*1000000

– sys.maxint + 1

– 1000000000000000000000000

• But:
– 1<<100 is still zero

– repr(2**1000) still ends in 'L'

– hex(), oct(), %x, %o, %u differ for int vs. long

– These will change in 2.3 or 3.0



Slide 5 ©2001, 2002 Guido van Rossum

Integer Division

• Motivation:

– x/y computes different thing for ints than for floats

• This is unique among operators, and confusing

– def velocity(dist, time): return dist/time

• Lack of type declarations makes this hard to debug

• Solution:

– x//y new, "floor division": always truncates (to -Inf)

– x/y unchanged, "classic division"

– from __future__ import division

• x/y returns "true division": always a float value

• In Python 3.0, x/y will be true division

– Use Tools/scripts/fixdiv.py tool for conversion help



Slide 6 ©2001, 2002 Guido van Rossum

Iterators

• Motivation:
– Generalized for loop innards, doing away with 

index

• Iterator abstracts state of for loop
– Sequence may be a "real" sequence (e.g. a list)

– Or a "virtual" sequence (e.g. the nodes of a tree)

• Most iterator calls are implied by for loops
– For loop gets items one at a time from next()

– Exception StopIteration signals end of sequence

• You can also call next() explicitly



Slide 7 ©2001, 2002 Guido van Rossum

Iterator API

• t = iter(obj) returns a (new) iterator for obj

– Calls t = obj.__iter__(); obj must provide __iter__

• t.next() returns the next value

– Raises StopIteration when there is no next value

• Alternatives rejected (t.end(), if t, t.next() == None)

• The iterator should be a separate object

– Allow for multiple iterations over the same object

• e.g. nested loops, multiple threads, nested calls

• But when t is an iterator:

– iter(t) is t

– This is handy with "for x over <iterator>: ..."



Slide 8 ©2001, 2002 Guido van Rossum

The 'for' Loop

• for x in obj: f(x)
is now translated (roughly) as follows:

• t = iter(obj)
while 1:

try:
x = t.next()

except StopIteration:
break

f(x)



Slide 9 ©2001, 2002 Guido van Rossum

Built-in Iterators

• for item in sequence: ... # nothing new :-)

• for line in file: ... # most efficient way!

• for key in dict: ... # must not modify dict!
– for key, value in dict.iteritems(): ...

– (unrelated but also new: if key in dict: ...)

• for val in iter(callable, endval): ...
– while 1:

val = callable()
if val == endval: break
...

– Example: iter(file.readline, "")



Slide 10 ©2001, 2002 Guido van Rossum

Generators

• Motivation:

– Function to produce a sequence, one item at a time

• State represented by local variables and/or PC

• Using an object is overkill or inconvenient 

• Example:

– from __future__ import generators

– def fibonacci(a=1, b=1):
while 1:

yield a
a, b = b, a+b

– t = fibonacci() # t is an iterator!

– for i in range(10): print t.next()



Slide 11 ©2001, 2002 Guido van Rossum

How Does It Work?

• Stack frame is created in suspended state

– Arguments in place, but no byte code executed yet

• t is a wrapper pointing to the suspended frame

– t supports the iterator interface

• Calling t.next() resumes the stack frame

– Execution continues where it left off previously

• A yield statement suspends the stack frame

– Yield "argument" is the returned from t.next()

• An exception terminates the stack frame

– Propagates out normally

– Return (or falling through) raises StopIteration



Slide 12 ©2001, 2002 Guido van Rossum

Examples: "Iterator Algebra"

• def alternating(a):
ta = iter(a)
while 1:

ta.next(); yield ta.next()

• def zip(a, b):
ta = iter(a); tb = iter(b)
while 1:

yield (ta.next(), tb.next())

• for x, y in zip("ABC", "XYZ"):
print x+y

• For a real-life example, see tokenize.py



Slide 13 ©2001, 2002 Guido van Rossum

Type/Class Unification

• Subclassing built-in types like dict or list

• "Cast" functions are now types, acting as factories

• Built-in objects have __class__, types have 
__dict__

• Overriding __getattr__()

• Descriptors and the __get__() operation

• property()

• classmethod(), staticmethod()

• super() and the new method resolution order (MRO)

• Subclassing immutable types: __new__()

• Performance hacks: __slots__

• Metaclasses



Slide 14 ©2001, 2002 Guido van Rossum

Subclassing Built-ins

• class mydict(dict):
def keys(self):

K = dict.keys(self)
K.sort()
return K

• class mylist(list):
def __sub__(self, other):

L = self[:]
for x in other:

if x in L: L.remove(x)
return L

• These are "new-style" because of their base classes

• Note: self is an instance of the base class; the 
subclass is not a wrapper like UserDict or UserList



Slide 15 ©2001, 2002 Guido van Rossum

"Cast" Functions

• These built-ins are now types instead of factory 
functions (with the same signature):

– int, long, float, complex

– str, unicode

– tuple, list

– open (now an alias for file)

– type

• These are new as built-in names:

– dict, file

– object: the universal base class (new-style)

• Useful new idiom: if isinstance(x, file) etc.



Slide 16 ©2001, 2002 Guido van Rossum

Unified Introspection

• obj.__class__ == type(obj)

– Exception for unconverted 3rd party extension types

• Types have __dict__, __bases__

• All methods and operators shown in __dict__

– E.g. list.__dict__ contains 'append', '__add__' etc.

– list.append is an "unbound method":

• list.append(a, 12) same as a.append(12)

• list.append.__doc__ yields the doc string

• list.__bases__ == (object,)

• list.__class__ is type



Slide 17 ©2001, 2002 Guido van Rossum

Overriding __getattribute__

• class mylist(list):
def __getattribute__(self, name):

try:
return list.__getattribute__(self, name)

except AttributeError:
return "Hello World"

• The __getattribute__ method is always called
– Not just when the attribute isn't found

– Classic __getattr__ also available on new-style classes

• Do not use self.__dict__[name]
– Call the base class __getattribute__ or __setattr__



Slide 18 ©2001, 2002 Guido van Rossum

Descriptors

• Generalization of unbound methods

– Used by new-style object getattr, setattr

– Also by classic instance getattr

• Descriptor protocol: __get__(), __set__(), __delete()

• descr.__get__(object) is binding operation

– invoked by getattr when descriptor found in class

– e.g. function or unbound method -> bound method

• descr.__get__(None, class): unbound method

• descr.__set__(object, value)

– invoked by setattr when descriptor found in class

• __get__() is also used by classic classes!



Slide 19 ©2001, 2002 Guido van Rossum

Properties

• class C(object):
def get_x(self): return self.__x
def set_x(self, value): self.__x = value
x = property(get_x, set_x, doc="...")

• a = C()

• a.x # invokes C.get_x(a)

• a.x = 1 # invokes C.set_x(a, 1)
– Descriptor overrides attribute assignment

• C.x.__doc__ == "..."

• You can leave out set_x, or add del_x



Slide 20 ©2001, 2002 Guido van Rossum

Static Methods

• class C:
def spawn():

return C()
spawn = staticmethod(spawn)

• c1 = C. spawn()

• c2 = c1.spawn()

• Use is just like in Java

• Syntax is ugly, provisional
– Python 2.3 may bring new syntax



Slide 21 ©2001, 2002 Guido van Rossum

Class Methods

• [Skip if running out of time]

• Similar to static methods, but get class 
arg:

• class C:
def spawn(cls):

return cls()
spawn = classmethod(spawn)

• class D(C): pass

• c1 = C.spawn(); c2 = c1.spawn()

• d1 = D.spawn()



Slide 22 ©2001, 2002 Guido van Rossum

Superclass Method Calls

• class A(object):
def save(self, f):

"save state to file f"
...

• class B(A):
def save(self, f):

super(B, self).save(f)
# instead of A.save(self, f)
...

• Motivation: see following slides

• Verbose syntax: may be fixed later



Slide 23 ©2001, 2002 Guido van Rossum

Cooperative Methods

• Now it gets interesting:

• class C(A):
def save(self, f):

super(C, self).save(f)
...

• class D(B, C):
def save(self, f):

super(D, self).save(f)

• D().save(f)
– D.save() -> B.save() -> C.save() -> A.save() !!!

– This will be explained shortly :-)



Slide 24 ©2001, 2002 Guido van Rossum

CB

D

A

Diamond Diagram



Slide 25 ©2001, 2002 Guido van Rossum

...But How...?!?!

• How does super(B, self).save(f) know to 
call C.save(f) when self is a D instance?!?!

• Answer: linearized MRO stored as 
D.__mro__
– MRO = Method Resolution Order (see next slide)

• D.__mro__ == (D, B, C, A)

• super(B, self).save looks for B in 
self.__mro__ and looks for save in classes 
following it
– It searches (C, A) for save

• Specifically it looks for C.save and A.save in that 
order



Slide 26 ©2001, 2002 Guido van Rossum

Method Resolution Order

• Used for method lookup in new-style classes

• Compare to classic MRO:

– classic MRO: left-to-right, depth-first (D, B, A, C, A)

– new MRO removes duplicates from the left

• Motivation:

– In diamond diagram, C.save should override A.save

• If B and D don't define save, D.save should find C.save

– This is more important because of 'object'

• The universal base class for all new-style classes



Slide 27 ©2001, 2002 Guido van Rossum

Immutable Types

• Override __new__ instead of __init__

• __new__ is a static method with a class arg!

• tuple(arg) calls tuple.__new__(tuple, arg)

• class mytuple(tuple):
def __new__(cls, *args):

return tuple.__new__(cls, args)

• t = mytuple(1, 2, 3)



Slide 28 ©2001, 2002 Guido van Rossum

__slots__

• Allocates instance variables in the object 
structure instead of using a pointer to a 
__dict__; saves a lot of space

• class C(object):
__slots__ = ['foo', 'bar']
def __init__(self, x, y):

self.foo = x; self.bar = y

• c1 = C(1, 2)

• c1.spam = 12 # error



Slide 29 ©2001, 2002 Guido van Rossum

Incompatibilities

• dir() behaves differently
– shows instance variables and methods

– shows methods from base classes as well

– exceptions:

• dir(module) returns only __dict__ contents

• dir(class_or_type) doesn't look in the metaclass

• type("").__name__ == "str" # was "string"

• type(1L).__name__ == "long" # "long int"



Slide 30 ©2001, 2002 Guido van Rossum

Metaclass Programming

• class autosuper(type):
def __init__(cls, name, bases, dict):

attrname = '_%s__super' % name
setattr(cls, attrname, super(cls))

• class myclass(object):
__metaclass__ = autosuper
def foo(self):

self.__super.foo()
...etc...

• myclass.__class__ is autosuper



Slide 31 ©2001, 2002 Guido van Rossum

Questions

• Now or never :-)


