
Python 3000 and You

Guido van Rossum
EuroPython
July 7, 2008

Why Py3k

•  “Open source needs to move or die”
•  Matz (creator of Ruby)

•  To fix early, sticky design mistakes
•  e.g. classic classes, int division, print statement

•  Changing times: time/space trade-off
•  e.g. str/unicode, int/long

•  New paradigms come along
•  e.g. dict views, argument annotations

Major Breakages

•  Print function: print(a, b, file=sys.stderr)
•  Distinguish sharply btw. text and data

•  b"…" for bytes literals
•  "…" for (Unicode) str literals

•  Dict keys() returns a set view [+items()/values()]

•  No default <, <=, >, >= implementation
•  1/2 returns 0.5
•  Library cleanup and reorganization

Long Anticipated Breakages

•  Kill classic classes
•  Int/long unification
•  Kill string exceptions

•  Exceptions must subclass BaseException

•  Raise syntax: raise Exc(args) [from tb]
•  Except syntax: except Exc as var:

•  Also makes var undefined at block exit

Many Small Breakages
•  Remove cmp() builtin
•  Remove cmp arg to sorted() and list.sort()
•  Kill map(None, …); use zip()
•  map(), filter() return iterators
•  Disallow int(‘- 1’)
•  Explicit relative import
•  Removed `…`
•  Removed <>
•  None, True, False are keywords
•  New keywords as, with, nonlocal
•  raw_input() -> input()
•  xrange() -> range()
•  Changed metaclass syntax
•  Kill compiler package
•  Kill tuple parameters – e.g. def f(a, (b, c)): ...
•  New octal literals (0o777)
•  .next() -> .__next__(); next() built-in
•  .func_code -> .__code__

•  Removed dict.has_key()
•  Removed dict.iteritems() etc.
•  Removed sys.maxint; use sys.maxsize
•  Removed reload(); use imp.reload()
•  Removed reduce(); use functools.reduce()
•  Removed apply(); use f(*args)
•  Removed callable(); use Callable ABC
•  Removed basestring; use str
•  .__nonzero__() -> .__bool__()
•  Must override __hash__ when defining __eq__
•  Module __builtin__ renamed to builtins (no __)
•  Removed many modules, e.g. gopherlib, cfmfile,

md5 (use hashlib), mimify (use email pkg), and all
the MacOS 9 support

•  Etc, etc.

Major New Features, e.g.

•  Argument annotations:
•  def f(a: 2*2, b: 'hello') -> 42: …

•  Abstract Base Classes
•  Extended iterable unpacking:

•  a, b, *x, y = range(5) # 0, 1, [2, 3], 4

•  New str.format() method:
•  "Got {0} {kind}".format(42, kind='bugs')

–  "Got 42 bugs"

Many Smaller Improvements
•  I/O no longer depends on C <stdio.h>
•  Source code encoding defaults to UTF-8
•  Allow Unicode letters in names
•  Class decorators
•  __prepare__() method on metaclass
•  Nonlocal statement
•  Keyword-only arguments
•  Default implementation of != negates ==
•  Binary literals 0b10101, bin() function
•  Mutable bytes type (bytearray)
•  Overloadable isinstance(), issubclass()
•  fractions.py defines Fraction type
•  super() without arguments
•  Set literals and set comprehensions
•  Dict comprehensions

•  New exception attributes:
–  __traceback__
–  __cause__ (raise <exc> from <cause>)
–  __context__ (when raised in handler)
–  Exceptions aren’t sequences; use e.args

•  Abstract Base Classes:
–  In abc.py: infrastructure
–  In collections.py: Set, Sequence, Mapping,

MutableSet etc.
–  In numbers.py: Number, Complex, Real,

Rational, Integer
–  In io.py: IOBase and more

•  New modules
–  e.g. json, multiprocessing

•  Etc, etc.

What’s In It For You

•  More predictable Unicode handling
•  Smaller language

•  Makes “Python fits in your brain” more true

•  TOOWTDI (There’s Only One Way To Do It -- The Zen of Python)
•  Common traps removed
•  Fewer surprises
•  Fewer exceptions

Enables Future Evolution

•  Examples:
– Argument annotations
– print() function
– str.format() method
– Abstract Base Classes
– Unicode letters in names

The ‘2to3’ Tool

•  Context-free source code translator
•  Handles syntactic changes best

•  E.g. print; `…`; <>; except E, v:

•  Handles built-ins pretty well
•  E.g. xrange(), apply(), d.keys()

•  Doesn’t do type inferencing
•  Doesn’t follow variables in your code

When To Switch

•  No hurry! 2.6 will be fully supported
•  Probably 3-5 years or more
•  Release of 2.7 possible, maybe even 2.8

•  Switch when both of these are true:
1. You’re ready
2. All your dependencies have been ported

•  There are tools to help you switch!

Be Prepared

•  Start writing future-proof code for 2.5
•  Don’t bother with the trivial stuff though:

•  The 2to3 tool will handle this
•  E.g. callable(), `…`, <>, L suffix

•  Instead, focus on what 2to3 can’t do:
•  Stop using obsolete modules
•  Start using iterators and generators

Things You Can Do Now

•  Inherit classes from object
•  Use dict.iterkeys() etc.
•  Use xrange(), sorted(), zip()
•  Use // for floor division
•  Inherit exceptions from [Base]Exception
•  Use rich comparisons (__eq__ etc.)
•  Etc., etc.

What About Text Handling

•  There's no silver bullet
•  Isolate handling of encoded text
•  In 2.6:

– Use bytes and b'…' for all data
•  Knowing these are just aliases for str and '…'

– Use unicode and u'...' for all text
•  In 2.5: '...' for data, u'...' for text

The Role of Python 2.6

•  Stable, compatible, supported!
•  Many 3.0 features backported

•  But not the new text / data distinction

•  Warns about non-3.0-isms with ‘-3’ flag
•  Especially for things that 2to3 can't fix

Transition Strategies

•  If you can: burn your bridges! :-)
•  Otherwise:

– Port to 2.6 first
– Maintain 2.6 and 3.0 version together
– Derive 3.0 version from 2.6 source

•  Using 2to3 whenever you can
•  Using forked code only where you have to

– Enables feature parity of your app or lib

Porting C Extensions

•  Fork your code or sprinkle with #ifdef
•  We try to delete APIs or add new ones

•  But not break existing APIs that stay
•  I.e. number & type of arguments won't change

•  2.6: str, unicode -> PyString, PyUnicode
•  PyBytes is an alias for PyString

•  3.0: bytes, str -> PyBytes, PyUnicode
•  Also: PyInt vs. PyLong

Release Schedule

•  Releasing 2.6 and in lock step
– beta 1: June 18 (just released!)
– beta 2: July 15 (coming up next!)
– beta 3: August 23
–  release candidates: Sept 3, Sept 17
–  final release: October 1

“I Have This Great Idea…”

•  If your idea hasn’t made it into 3.0 yet,
it’s definitely too late to get it in

•  Current focus is on:
– Fixing bugs
– Perfecting backwards compatibility
–  Improving performance

Wrapping Up

•  Don’t fear Py3k!
•  Have fun with the new features
•  Enjoy fewer bugs, traps, surprises

•  Take your time to convert!
•  You will get lots of time, lots of help

•  2.6 will be stable, compatible, supported
•  For many years to come!

Resources

•  Docs: docs.python.org/dev/3.0/
•  docs.python.org/dev/3.0/whatsnew/3.0.html

•  Download: python.org/3.0/
•  PEPs: python.org/dev/peps/pep-3000/
•  Mailing list: python-3000@python.org
•  Subversion:

•  svn.python.org/view/python/branches/py3k/

