
Optional Type Annotations for Python

Paul Prescod

ISOGEN Consulting Engineer
paul@prescod.net

The primary difference between Python and a
language like Java is that Python does not
require type declarations. This allows Python
programmers to write wonderfully elegant
dynamic code. Most Python users would agree
that this is a great source of Python’s power.

And yet, this dynamicity comes with a high
price. The techniques necessary to optimize a
language as dynamic as Python seem to be out
of reach of the resources of the Python
community, if they exist at all. Type
declarations in most other languages help the
compiler and/or interpreter to improve the
performance of the compiler. Undergraduate
students routinely write compilers for strongly
typed languages and these compilers generate
reasonably efficient assembly language.

The other major cost of dynamicity is compile
time safety. Finding type errors or attribute
errors in Python can sometimes be much
harder than in languages where types and
attributes are frozen in advance. It is
undeniably true that type checks do not
substitute for proper testing but it is also true
that finding errors early in the development
process is cheaper than finding them later. A
static type checking system can find some
kinds of errors earlier in the process.

The members of the Types-SIG are working
on a mechanism for annotating Python code
with type declarations. The details of the
proposal are still under development but some
of the basic principles are already becoming
visible.

Adding a major feature like static type
checking to Python is an extremely difficult
project because every effort must be taken not
to interfere with Python’s existing features.
In particular, a static type system must not
prevent or punish dynamicity. It must also not
be “contagious”: programmers shouldn’t need
to add type annotations to their code because
they use a module that uses type annotations.
Conversely it should be easy for annotated
code to call into ordinary Python.

An optional type annotation system should
also acknowledge that Python has advanced
support for generic (not genetic!) data
structures and algorithms. For instance a
Python sort algorithm can work on any type of
writeable sequence containing elements of any
type. Therefore a type annotation system
should also support generic data structures and
algorithms.

Finally an annotation system must be related
to an interface declaration system. Python
functions and methods should work with
objects with a certain interface or protocol, not
on subtypes of some pre-declared type.

This poster describes the current proposal by
the members of the Types-SIG. Hopefully we
will be able to get wide feedback from
members of the Python community.

