Lessons Learned in Developing PERP
(Python Environment for Radar Processing)

Joseph VanAndel

National Center for Atmospheric Research®
P.O. Box 3000, Boulder, CO, 80307, vanandel @ucar.edu

Abstract

Our work at the National Center for Atmospheric
Research includes processing data from research
meteorological radars. We evaluate and tune signal-
processing algorithms that process as much as 1500
megabytes of data per hour in real-time. In the past
year, we have designed and implemented the Python
Environment for Radar Processing (PERP) using
Numeric Python to aid in our research. Because Python
isan interactive, interpreted language that does not
require the compile and link steps needed by compiled
languages, Numeric Python isavery productive
programming environment. We were pleased to find
that Numeric Python was also quite efficient in
executing our algorithms. We found both SWIG and
CXX quite valuable in writing our Numeric Python
extensions. Although we did encounter some
challengesin learning Numeric Python and debugging
our extensions, Python allowed usto build aflexible,
yet efficient, system to process our large data-sets and
test our algorithms.

1. Introduction

To support our work in devel oping and testing new
signal processing techniques, we needed a processing
environment to perform IR filtering and pul se-pair
processing. |n addition, we wanted to implement a
fuzzy logic algorithm to automatically recognize
specific types of radar targets. We also needed the
ability to graph subsets of radar data for quality control
purposes.

Although we could have written a conventional C/C++
program consisting of compiled subroutines all linked
together, we wanted the flexibility that an interpreted
language would provide, without sacrificing
performance. We wanted to build a set of modules that
could easily be invoked with different sets of dataand
parameters. We needed a “production” environment
that could easily process gigabytes of data, yet we
wanted the ease of programming that an interpreted
language would provide. When we discovered that
Numeric Python® could meet our requirements, we
designed and implemented the Python Environment for

* NCAR is supported by the National Science Foundation.

Radar Processing (PERP). PERP implements|IR
filtering and pulse-pair processing as well as afuzzy
logic based recognizer.

The next sections will explain what is Numeric Python,
why we chose Numeric Python and how we built the
Python Environment for Radar Processing (PERP). We
then describe the capabilities of PERP, the challenges
we overcame in using Numeric Python and some
additional benefits of Numeric Python.

2. What is Numeric Python?

Numeric Python (NumPy) was written by Jim Hugunin
at MIT, based on earlier work by Jim Fulton. It is now
being maintained by Lawrence Livermore National
Laboratory. NumPy was inspired by the array
processing features of IDL, MATLAB and
Mathematica. NumPy adds efficient operations on N-
dimensional numeric arrays to the Python language.
NumPy hasits own SIG (Specia Interest Group) on the
www.python.org web site.

3. Why Numeric Python?

We chose Numeric Python to build our data analysis
package for avariety of reasons, including its free
availahility, efficiency, open source, and general
purpose features.

3.1 Numeric Python isfree

We wanted to be able to freely share our package with
our collaborators, without forcing our colleagues to buy
aparticular commercial package, like MATLAB or

IDL. Since our algorithms may run as part of a
transportable research weather radar, it is easier tousea
free package, rather than having to buy a separate
licensefor our “field” computer. Python and Numeric
Python are freely available, and do not require any
licensing fees or license managers.

3.2 Numeric Python is very efficient

Our past experience with some commercial packages
like MATLAB or IDL shows that although developing
an algorithm in these languages may be straight-

forward, the interpreted implementation may be quite
inefficient when processing large amounts (gigabytes)
of data. Our experiments with Numeric Python showed
that Numeric Python’ s overhead was small compared to
the I/O and computations the application would
perform.

3.3 Numeric Python is Open Source

Since Numeric Python is Open Source, it has
significant advantages over proprietary solutions. We
saw several advantagesin using an Open Source
solution:

Debugging is much easier

Performance tuning is easier.

Adding new featuresis easier.

Support is great!

When using a computation environment like Numeric
Python, MATLAB, or IDL to build acomplexsignal
processing or data analysis system, we must write our
own compiled extensions to the environment to
efficiently perform particular computations. All of these
computation environments support user written
subroutines in C/C++ to extend their functionality.
However, we've found it can be quite difficult to debug
programs that are linked to vendor provided proprietary
object code. Our experience indicates that having the
full source code for the data analysis programis
extremely valuable, if not essential. For example, to
debug certain memory usage problems (dangling
pointers or memory leaks), theentire agpl ication must
be re-compiled using Insure++2, Purify® or some other
memory validation tool. Without source code for the
entire application, aprogrammer is dependent on the
vendor to find problems in his/her source code or to
help trace problemsin his/her code. Clearly, if the
vendor source code is not available, a programmer can
only debug or fix his’her own code, not the vendor’s
code. But without all the source code, a programmer
will find it difficult to trace problemsthat originatein
his/her own code, particularly if his’/her codetriggersa
bus error within the vendor provided analysis package.

When developing adataanalysis package, it is
frequently necessary to tune the system to improve
performance and avoid excessive memory use. For
example, we wrote some signal processing codein
MATLAB using MATLAB’s high-level graphics
package. This code required enormous amounts of
virtua memory to display our output (i.e., processing
20 megabytes of datarequired 700 megabytes of virtual
memory.) Without the source code, we have been
unable to determine the reason for this problem. With
the source code, it would be possible to determine the
reason for this problem.

As has been noted in The Cathedral and the Bazaar?,
Open Source software benefits from having many
talented programmers scrutinizing the source, and
contributing bug fixes and enhancements. Therefore,
Open Source data analysis packages may actually be
more reliable than commercial, proprietary solutions.

When using an analysis package, we sometimes need to
add anew feature. For example, when we needed the
Numeric Python “interp()” routine to accept multi-
dimensional arrays, we simply modified the Numeric
Python source code. This source code simply would
not have been available if we wereusing MATLAB or
IDL. Asaresult, either we would have had to write the
routine “from scratch”, or live without it.

On occasion, we have needed support to solve problems
with our data analysis package. On the rare occasions
we' ve had any problems with Python or the Numeric
extensions, we have gotten very quick support
(sometimesin less than 8 hours time) from the
developers or from other users, and of course we could
examine the source code ourselves. In contrast, when
using commercia software, we have found it difficult

to get atimely response from some of our vendors.

3.4 Python is a general purpose language
Commercial productslike MATLAB and IDL provide
powerful array processing data analysis environments.
Infact, they provide aricher set of basic signal
processing libraries than currently available for
Numeric Python. However, MATLAB and IDL are not
general-purpose programming languages. (For
example, we would not write aweb-site link
consistency checker or a database interfacein
MATLAB!) In contrast, in addition to Numeric
Python's very powerful array processing features,
Python can be used as a scripting language and a
systems programming language. Pythonisafull-
featured programming language and provides an
extensive set of runtime libraries for general-purpose
program development. Python makesit considerably
easier to interface the PERP package to other software
or to build a GUI to control the PERP package.

4. How isPERP built?

When writing PERP, we wanted to concentrate on our
problem domain, and not on the details of interfacing
Python to C++. The standard C API for Pythonisquite
low level, and requires writing lots of “boilerplate”

code to access Python datatypes (lists, tuples,
dictionaries), perform parameter checking, and handle

Python’ s reference counting. Fortunately, we could use
CXX and SWIG to simplify our extension writing.

41 SMG

SWIG’ isthe Simplified Wrapper Interface Generator,
written by David Beazley. SWIG uses an interface
description file derived from an existing C/C++ include
file. SWIG processes the interface file and generates C
or C++ code that interfaces Python to C/C++
extensions. Python programs can invoke C/C++
functions or methods, and can reference elements of
C/C++ structures or objects. SWIG hasafairly
complete manual, and an active mailing list that can
provide answers to questions about SWIG or problems
with using SWIG. Wefound SWIG very helpful in
building our interface functions. However, when
writing C++ extension code that manipulates Python
objects, we wanted a higher level interfacethanis
available from either Python or SWIG.

42 CXX

Paul Dubois wrote a package called CXX® that is
included with the Livermore Labs Numerical Python
distribution. CXX is specifically designed to simplify
manipulating Python objects from C++. Sincewe
represent our radar data as arrays, tuples and
dictionaries contained in a dictionary (see section 5.1),
CXX was quite helpful in building and accessing these
data structures in our C++ extensions. The following is
an excerpt from one of our C++ extensions that uses
CXX.

PyObject *array = PyArray_FromDims(2, dims,
PyArray FLOAT);

/I Store al per-variableinfo in adictionary

Dict d;

d["scale"] = Float(scale);

d["bias"] = Float(bias);

d["badVauelnt"] = Int(badValue);

d["badValueFloat"] = Float((badV alue-
bias)/scale);

d["array"] = Object(array);

/I thisarray isonly referenced by this dictionary.

Py_DECREF(array);

Note the ease with which we created a dictionary, and
added floating point, integer, and array objectsto the
dictionary. However, also note the use of

Py_DECRER(), to maintain the correct reference count
on the newly created array. CXX only supports multi-

dimensional NumPy arrays by using the Blitz’ scientific
computation package. Since we were not ready to use
Blitz (which at that time was only available as an alpha
release), we used the standard C Numeric Python
interface, which requires the programmer to explicitly
handle reference counts.

Because PERP uses CX X, PERP requires amodern

C++ compiler that has comprehensive template and
exception handling support. Fortunately, aswe were
designing PERP, the EGCS version of the GNU C
compiler was just adding these features. Now that
EGCSistheofficid GNU C compiler, Gnu C++ (2.95

or better) provides the necessary C++ features.
Although some of the CXX template-based C++
routines are noticeably slower to compile than ordinary
C++ code, the compilation speed is quite acceptable on
amodern, 400Mhz, Linux PC. Although PERP does
require amodern C++ compiler, it is portable to other
architectures. We've also built PERP on Sun/Solaris
usi ng gcc 2.95. Apparently, Kuck & Associates’ KA
C++" compiler will also compile CXX-based code.

5. What capabilities does PERP provide?

5.1 Input/Output of data.

Clearly, to be useful, PERP needed to read and write
our radar data. For time-series data, we use netCDF® to
store our data. NetCDF stores binary datain a machine
independent form, such that we can read the same data
files on either PCs or Sun SPARC machines, without
having to code our I/O routines to swap bytes. In
addition netCDF data files are self-describing, so an
application can determine the dimensions of all arrays,
and what sort of dataisstored in each array. PERP
uses the netCDF Python package written by Konrad
Hinsen® to read and write radar time-series data.

We' ve written our own translator programsin C to
translate “raw” time-series datainto netCDF, so that
PERP can processiit.

Once PERP has processed our time-series data into
reflectivity and velocity fields, we storeitin NCAR's
DORADE" format, since this format is used by an
existing radar display program and by other analysis
programs. Asaresult, we wrote our own input/output
routines to translate Numeric Python arrays to/from the
DORADE format. We used SWIG's ahility to map C
structures to Python to allow our Python scriptsto read
and write individual members of DORADE "C"
structures that describe the radar data.

At first, we had some difficulty deciding how to
represent our collection of numeric arrays and their
associated attributesin Python (Attributesinclude the

integer value used for a“bad dataflag” and the scale
factor used when the datais stored in afile). We
experimented with storing the array’ s attributesin a
tuple, but we finally decided to use dictionariesto
organize our data, since the key/value pairsin the
dictionary provided “ self-documentation” for our data.
The entire dataset was stored in adictionary that
contains dictionaries, as shown below:

{'DZ" { 'array": array((20, 1040),f), 'scal€:100.0,
'bias: 0.0, 'badVaueFloat". -327.68},

'VE' : {"array". array((20, 1040),f), 'sca€’: 100.0,

'bias: 0.0, 'badVaueFloat": -327.68} }
Each radar variable s dictionary can be located by the
variable' sname. Oncethedictionary for a particular
radar variableislocated, the attributes and the actual
data can also be located by name. Using nested
dictionariesin Python provided some of the same
functionality that an array of structures doesin C++.

5.2 Radar Sgnal Processing

PERP allows the user to filter radar datausing a
collection of Infinite Impulse Response (11R) filters. |
converted a colleague’ sfilter code to C++, and then
wrapped the resulting IIR_Filter classwith SWIG. An
example of using the IIR_Filter classin Pythonis
shown below:

coeff = FloatTuple(len(coeff_list), coeff_list))
f = IR_Filter(numPoles, const_gain, coeff)
iFiltered, gFiltered = f filter(iRaw, qRaw)

Notethat FloatTuple is asimple class that convertsa
variable length tuple of floating point valuesto a C++
object used by IIR_Filter. If we had used CXX for the
IIR_Filter class, we would have not needed the
FloatTuple class.

PERP also contains a complex auto-correlation
algorithm (pulse-pair) algorithm that processes time-
series datainto radar reflectivity, velocity and width.
Again, | converted acolleague’s“C” routine to C++,
and wrapped the PulsePair class with SWIG. Below is
an example of calling this class from Python:

p = PulsePair(scale,offset, prt, radarConst,
gateSpacing, firstGate)

#1,Q,P,ZV W are Numeric arrays

p.compute(l,Q, P,Z,V,W)

5.3 Fuzzy Logic Implementation

In addition to our signal processing work, we have been
exploring algorithms that automatically identify radar
datathat has been contaminated by “anomalous
propagation ground clutter” (AP). AP occurs when
atmospheric conditions refract (bend) the radar beam
causing it to be reflected from the ground, rather than
continuing to sample the atmosphere. This
phenomenon is comparabl e to observing what appears
to be water on the road on a hot, dry day (an optical
mirage.) If AP isnot properly identified, meteorologists
or automatic algorithms may interpret AP as an intense
storm, which can cause false alarms for flooding, or can
cause aircraft to be routed around a non-existent
“storm”.

Feature Calculations Membership

DBZ /_‘

VR

Function Lookup

Fuzzy Recognizer

BN

SW

J

Recognizer

Output

Figurel - Fuzzy Logic Algorithm

Our previous research had shown that a“Fuzzy Logic’
algorithm could be used to identify AP. In brief, we
compute “features” or “interest fields’ such as mean or
standard deviation for each spatial position in our radar
data. A membership function (related to a probability
density function) isthen applied to each of these
features, yielding a set of valuesin therange [0-1]. We
then computed a weighted sum of the membership
functionsfor each spatial position. If the weighted sum
exceeds a specified threshold, the fuzzy logic algorithm
hasidentified AP at thislocation. Figure 1 showsa
block diagram of afuzzy logic computation.

We had already implemented a*“Fuzzy Logic”
algorithm as a stand-alone C++ program, but wanted to
build amore flexible, higher performance
implementation. We wanted an environment which
would allow us manipulate entire arrays of data, aswith
MATLAB or IDL, that would allow usto dynamically
choose what cal culations were performed. To add
fuzzy logic calculations to PERP, we re-implemented
the feature computation algorithms from our previous
C++ code and used SWIG to build adynamically
loaded Numeric Python extension. The membership
function lookup tables were implemented using the
interp() function in arrayfnmodule.c. Thefina
weighted sum calculation is performed directly in
Numeric Python.

5.4 Graphs of radar data

We have found it quite hel pful to graph our radar data
from inside Numeric Python. We ended up installing
“Yorick” *? and using the “gist” module from the
Numeric Python distribution for scientific plotting.
Using “gist”, we' ve displayed scattergrams of our radar
data. Also, we produced graphs of received power
versus antenna position that helped us verify the
performance of our radar antenna. For example, Figure
2 shows a contour plot of received power versus
antennaposition. Each contour indicates a given
amount of received power. (Ideal antenna performance
would be indicated by uniformly circular contours.) To
produce this plot, we wrote a simple Python Contour
class. The Contour class"grids" values of power for a
given azimuth and elevation into a 2D array and plots
the result with the "gist" contour plotting routine. We
were very pleased how easily we could plot our data
using Numeric Python.

6. Challengesin usng Numeric Python

Although we were strongly motivated to use Numeric
Python for this project, we did have to overcome
several significant challenges.

Horizontal
1l |||| I |

=
on
Loyl

|I|I||hI|I|I|hl

Lttt

U5l BET [T
-0.5 0.0 0.5

Figure 2-Contour Plot of Received Power

6.1 Documentation needs improvement.

Until | attended David Ascher’stutorial - “An
Overview of the Numeric Extensions to Python” at the
7" International Python Conference, it was difficult to
learn Numeric Python. The available documentation
has been improving, but learning Numeric Python is
till not easy. The scarcity of Numeric Python
documentation has made it harder to train other
potential users. In particular, thereisvery little
documentation on writing Numeric Python extensions.
We had to carefully study existing code to understand
extension programming. More Numeric Python “How-
To" documents are needed.

6.2 Unwanted type promotion
The current implementation of Numeric Python hasthe
undesired side effect of automatically producing double
precision arrays when performing cal culations on single
precision variables. For example:

>>>x=0nes((10,),' ")

>>> X.typecode(), X.itemsize()

(‘4

S>>y =x*2

>>>y.typecode(), y.itemsize()

(1 dy ,8)
Notethat 'y’ isadouble precision array, even though
‘X’ wasasingle precision array. Since we simply could
not afford to double the memory usage of our program
when manipulating multiple 20-megabyte data-sets, we
had to consistently use the * SameSizeAs()” procedure
recommended by David Ascher.

def SameSizeAs(input, ref):

return array(input, ref.typecode())

>>>y =X * SameSizeAs2,x)
>>> y.typecode(), y.itemsize()

(.4

Using the SameSizeAs() routine eliminates the “up-
casting” problem.

Numeric Python programs would be easier to write and
understand if each programmer did not have to use such
“helper” functions to avoid unwanted up-casting.
These helper routines tend to obscure the algorithm.
Besides using these “helper” functions, | wrote my own
version of theinterp() function in arrayfnmodule.c that
returns asingle-precision array, rather than the default
double precision arrays.

6.3 CXX Parameter Type Checking Can Yield
Confusing Diagnostics
Using CXX alows automatic type checking of
parameters using C++ exceptionsto signal the Python
runtime that an error has occurred. However, if aset of
parametersis checked by asingle C++ “exception
handler”, thistechnique can easily produce obscure
runtime error messages. Since only asingle generic
error message is returned, the caller of the extension
may not know which parameter isincorrect. We found
it difficult to find parameter errorsin our own Python
code calling our own CXX extensions, given these
vague error messages. The obvious solutionisto use an
exception handler for each parameter, even though it
doestend to clutter up the C++ code. It would be
helpful if the CXX documentation had better examples
of such error checking.

6.4 Reference counting can still be tricky.

Although CXX handles most of the reference counting
details, we still encountered reference count issues
when using the Numerical Array APl with CXX (see
section 4.2). We found using the Python function
sys.getrefcount() invaluable infinding reference count

errors. For example, when one of our C++ extension
functions returned a dictionary, we invoked
sys.getrefcount() for each key in the dictionary, and
verified the reference count was correct. (Otherwise,
each call to an array processing routine can “leak”
memory, causing the application’s memory usage to
grow at an enormous rate!). When debugging memory
usage in PERP, we have found it helpful to use
Insure++2. We also found it valuable to link Python or
our “embedded” Python application with the “Electric
Fence” 13 library to verify our use of memory. Electric
Fence uses the computer’ s virtual memory hardware to
stop aprogram at the moment it references memory
outside valid regions.

6.5 Debugging an extension can be tricky

Python supports dynamically loaded extensions. If
possible, extensions should be built as a dynamic
extension, so that any application can use them.
However, when debugging a dynamically loaded
extension in the standard Python interpreter, it is
necessary to set abreakpoint in the
Pylmport_LoadDynamicModul e routine and repeatedly
stop at this breakpoint until the extension has been
loaded. Once the extension isloaded, breakpoints can
be set. We found it much easier to debug our extensions
by building a test program that statically links our
extension with the Python interpreter. In this
“embedded Python” environment, we could
immediately set breakpointsin any of our routines.
Fortunately, SWIG makesit fairly ssimpleto build both
ashared library and a custom application with an
embedded Python interpreter. (See my websitefor a
sample makefile').

6.6 Packaging is painful

One of the strengths of Python and Numeric Pythonis
the availability of so many optional packages — e.g., for
netCDF file access, plotting, and GUIs. However,
sometimes the “ do-it-yourself” nature of building an
application using (Numeric) Python isfrustrating. For
example, how is the average programmer supposed to
determine which of the six or more available Numeric
Python plotting packagesis best? In contrast, the
plotting functions provided by commercial packages
like MATLAB or IDL are highly polished and fully
integrated with the product.

In addition, when trying to install PERP on another
machine, we' ve found it somewhat painful to gather up
the source code for all the separate packages to build on
the new machine. We end up having to manually
maintain an (ever-growing) list of packages needed by

PERP. Toillustrate the problem, here'sthe current
dependency tree for PERP:

SWIG
Python 1.5.2
Numeric Python
netCDF package
netCDF library
yorick
wxPython
wxWindows
otk+
glib
glcanvas
Mesa

In contrast, if we were using acommercial package, we
would simply install the vendor provided CD-ROM or
tar archive, and install atar file of our scripts and
extensions.

7. More Benefits of Numeric Python

Numeric Python and its extensions greatly simplify
writing dataanalysis algorithms. In fact, some
algorithms became trivial — we implemented the core of
the fuzzy logic routinesin 80 lines of Python—no C or
C++ was required™. Since Numeric Python encourages
“array-at-a-time” computations, we found our
applications are much easier to read, since the code
does not contain the details of indexing arraysin 2 (or
more) dimensions.

We also found it easy to synthesize test data using
standard numeric python routines. This simplifies
testing of user written routines. For example, we tested
our pulse-pair radar processing code by generating a
synthetic sinusoidal input. Having invoked a user-
written extension, Numeric Python’s ability to
interactively access subsets of arrays and structure
membersisagreat debugging aid. Rather than having
to compile in debug print statementsin our code, we
simply used Python’s “print” command. At first, when
using Python's print commands, we were frustrated that
Python would always try to print entire arrays, even if
the array contained megabytes of data. However, even
this default behavior could be modified, using routines
in NumUtil.py*. With this utility code, the user can
specify the maximum number of array elementsthat are
printed. Arraysthat exceed thissize are printed in the
form:

array((20,2000), f)

8. Conclusion

We found both CXX and SWIG extremely valuablein
generating the Python specific portions of our C++
code. After learning these tools, we could concentrate
on our extension’s code, rather than generating our own
Python<->C++ interfaces using Python’s native C
interface. CXX greatly simplifies accessto Python's
list, tuple, and dictionary data structures. SWIG greatly
simplifies the code required to access C++ structures
and classes from Python, and allowed usto easily
interface our C++ routines to Python.

We were quite pleased with our use of Numeric Python
to build our application. Even with the flexibility
provided by Numeric Python, our application is quite
efficient. The time our application spends in the Python
interpreter issmall (<10%) compared to thetime
required for data l/O and data manipulation in our
CI/C++ extensions.

9. FuturePlans

We want to try one of the “packaging” options for
Python, so that we can build a single executable for
“production” use. Currently, it isfairly tediousto find
and install all the Python packages we need to run the
PERP package. We are considering using
“squeezeTool .py” !’ to package our python scripts.
However, we may still need to build an RPM fileto
install all the extension scripts and shared libraries
needed for PERP.

Also, we are starting to write aradar data display
package using wxPython'® and Mesa®. Thiswill allow
usto view radar data from inside PERP with out having
to write out the datato afile, and run a separate
standalone program to view our radar data.

10. Acknowledgments

Thisresearch is sponsored by the National Oceanic and
Atmospheric Administration/National Weather

Service' s Operational Support Facility (OSF). Thanks
to Guido, al the Numeric Python Developers, David
Beazley for SWIG, and Paul Duboisfor CXX. |
particularly want to thank the reviewers of this paper
for their helpful suggestions.

11. References
(All URLs current as of November 1999.)

! Lawrence Livermore National Laboratory, Numerical
Python, http://xfiles.lInl.gov/NumDoc4.html

2 parasoft Corporation, Insure++,
http://www.parasoft.com/

% Rational Software, Purify. http://www.rational.com/

* Eric S. Raymond, The Cathedral and the Bazaar.
http://www.tuxedo.org/~esr/writings/cathedral-bazaar

° David Beazley, SMG. http://www.swig.org/

® paul F. Dubois. A Facility for Creating Python
Extensionsin C++, Seventh International Python
Conference, p. 61-68. available online from
http://xfiles.linl.gov/CXX_Objects/cxx.htm

" Todd Veldhuizen, BLITZ, http://oonumerics.org/blitz
8 Kuck and Associates. KAl C++. http://www.kai.com

® Unidata, Unidata, netCDF,
http://www.unidata.ucar.edu/packages/netcdf

10 K onrad Hinsen, Scientific Python,
http://starship.python.net/crew/hinsen/scientific.html

1 NCAR Atmospheric Technology Division, Doppler
Radar Data Exchange Format,
http://www.atd.ucar.edu/rsf/dorade_software/dorade.ps

12 |_awrence Livermore National Laboratory, Yorick,
ftp://ftp-icf.IInl.gov:/pub//Y orick

13 Bruce Perens. Electric Fence,
http://perens.com/FreeSoftware

14 Joseph VanAndel. Sample Makefile using SM G to
build Python extensions and embedding Python in an
application.
http://starship.python.net/crew/vanandel/ipc8/M akefile.
txt

15 Joseph VanAndel. Fuzzy Logic Implementation in
Python.
http://starship.python.net/crew/vanandel/ipc8/fuzzy.py

16 Joseph VanAndel. Numeric Python Utilities.
http://starship.python.net/crew/vanandel/ipc8/NumuUtil.

by

7 Fredrik Lundh, SqueezeTool .
http://www.pythonware.com/downloads.htm

18 Robin Dunn, wxPython. http://alldunn.com/wxPython

19 Brian Paul et al., The Mesa 3D Graphics Library,
http://www.mesa3d.org/

