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Abstract 
Our work at the National Center for Atmospheric 
Research includes processing data from research 
meteorological radars.   We evaluate and tune signal-
processing algorithms that process as much as 1500 
megabytes of data per hour in real-time.  In the past 
year, we have designed and implemented the Python 
Environment for Radar Processing  (PERP) using 
Numeric Python to aid in our research.  Because Python 
is an interactive, interpreted language that does not 
require the compile and link steps needed by compiled 
languages, Numeric Python is a very productive 
programming environment.  We were pleased to find 
that Numeric Python was also quite efficient in 
executing our algorithms.  We found both SWIG and 
CXX quite valuable in writing our Numeric Python 
extensions.  Although we did encounter some 
challenges in learning Numeric Python and debugging 
our extensions, Python allowed us to build a flexible, 
yet efficient, system to process our large data-sets and 
test our algorithms. 

1. Introduction 
To support our work in developing and testing new 
signal processing techniques, we needed a processing 
environment to perform IIR filtering and pulse-pair 
processing.   In addition, we wanted to implement a 
fuzzy logic algorithm to automatically recognize 
specific types of radar targets.  We also needed the 
ability to graph subsets of radar data for quality control 
purposes.  
 
Although we could have written a conventional C/C++ 
program consisting of compiled subroutines all linked 
together, we wanted the flexibility that an interpreted 
language would provide, without sacrificing 
performance.  We wanted to build a set of modules that 
could easily be invoked with different sets of data and 
parameters. We needed a “production” environment 
that could easily process gigabytes of data, yet we 
wanted the ease of programming that an interpreted 
language would provide.  When we discovered that 
Numeric Python1 could meet our requirements, we 
designed and implemented the Python Environment for 

Radar Processing (PERP).  PERP implements IIR 
filtering and pulse-pair processing as well as a fuzzy 
logic based recognizer. 
 
The next sections will explain what is Numeric Python, 
why we chose Numeric Python and how we built the 
Python Environment for Radar Processing (PERP). We 
then describe the capabilities of PERP, the challenges 
we overcame in using Numeric Python and some 
additional benefits of Numeric Python.  

2. What is Numeric Python? 
Numeric Python (NumPy) was written by Jim Hugunin 
at MIT, based on earlier work by Jim Fulton. It is now 
being maintained by Lawrence Livermore National 
Laboratory. NumPy was inspired by the array 
processing features of IDL, MATLAB and 
Mathematica.  NumPy adds efficient operations on N-
dimensional numeric arrays to the Python language.  
NumPy has its own SIG (Special Interest Group) on the 
www.python.org web site. 

3. Why Numeric Python? 
We chose Numeric Python to build our data analysis 
package for a variety of reasons, including its free 
availability, efficiency, open source, and general 
purpose features. 

3.1 Numeric Python is free 
We wanted to be able to freely share our package with 
our collaborators, without forcing our colleagues to buy 
a particular commercial package, like MATLAB or 
IDL.  Since our algorithms may run as part of a 
transportable research weather radar, it is easier to use a 
free package, rather than having to buy a separate 
license for our “field” computer. Python and Numeric 
Python are freely available, and do not require any 
licensing fees or license managers.  

3.2  Numeric Python is very efficient 
Our past experience with some commercial packages 
like MATLAB or IDL shows that although developing 
an algorithm in these languages may be straight-



forward, the interpreted implementation may be quite 
inefficient when processing large amounts (gigabytes) 
of data.  Our experiments with Numeric Python showed 
that Numeric Python’s overhead was small compared to 
the I/O and computations the application would 
perform.  

3.3 Numeric Python is Open Source 
Since Numeric Python is Open Source, it has 
significant advantages over proprietary solutions.  We 
saw several advantages in using an Open Source 
solution: 

• Debugging is much easier 
• Performance tuning is easier. 
• Adding new features is easier. 
• Support is great! 

 
When using a computation environment like Numeric 
Python, MATLAB, or IDL to build a complex signal 
processing or data analysis system, we must write our 
own compiled extensions to the environment to 
efficiently perform particular computations. All of these 
computation environments support user written 
subroutines in C/C++ to extend their functionality.  
However, we’ve found it can be quite difficult to debug 
programs that are linked to vendor provided proprietary 
object code.  Our experience indicates that having the 
full source code for the data analysis program is 
extremely valuable, if not essential.  For example, to 
debug certain memory usage problems (dangling 
pointers or memory leaks), the entire application must 
be re-compiled using Insure++2, Purify3 or some other 
memory validation tool.  Without source code for the 
entire application, a programmer is dependent on the 
vendor to find problems in his/her source code or to 
help trace problems in his/her code.  Clearly, if the 
vendor source code is not available, a programmer can 
only debug or fix his/her own code, not the vendor’s 
code.  But without all the source code, a programmer 
will find it difficult to trace problems that originate in 
his/her own code, particularly if his/her code triggers a 
bus error within the vendor provided analysis package.  
 
When developing a data analysis package, it is 
frequently necessary to tune the system to improve 
performance and avoid excessive memory use. For 
example, we wrote some signal processing code in 
MATLAB using MATLAB’s high-level graphics 
package. This code required enormous amounts of 
virtual memo ry to display our output (i.e., processing 
20 megabytes of data required 700 megabytes of virtual 
memory.) Without the source code, we have been 
unable to determine the reason for this problem.  With 
the source code, it would be possible to determine the 
reason for this problem. 

 
 
As has been noted in The Cathedral and the Bazaar4, 
Open Source software benefits from having many 
talented programmers scrutinizing the source, and 
contributing bug fixes and enhancements.  Therefore, 
Open Source data analysis packages may actually be 
more reliable than commercial, proprietary solutions. 
 
When using an analysis package, we sometimes need to 
add a new feature.  For example, when we needed the 
Numeric Python “interp()”  routine to accept multi-
dimensional arrays, we simply modified the Numeric 
Python source code.  This source code simply would 
not have been available if we were using MATLAB or 
IDL.  As a result, either we would have had to write the 
routine “from scratch”, or live without it. 
 
On occasion, we have needed support to solve problems 
with our data analysis package. On the rare occasions 
we’ve had any problems with Python or the Numeric 
extensions, we have gotten very quick support 
(sometimes in less than 8 hours time) from the 
developers or from other users, and of course we could 
examine the source code ourselves.  In contrast, when 
using commercial software, we have found it difficult 
to get a timely response from some of our vendors. 

3.4 Python is a general purpose language 
Commercial products like MATLAB and IDL provide 
powerful array processing data analysis environments.  
In fact, they provide a richer set of basic signal 
processing libraries than currently available for 
Numeric Python.  However, MATLAB and IDL are not 
general-purpose programming languages.  (For 
example, we would not write a web-site link 
consistency checker or a database interface in 
MATLAB!) In contrast, in addition to Numeric 
Python's very powerful array processing features, 
Python can be used as a scripting language and a 
systems programming language. Python is a full-
featured programming language and provides an 
extensive set of runtime libraries for general-purpose 
program development.  Python makes it considerably 
easier to interface the PERP package to other software 
or to build a GUI to control the PERP package.  

4. How is PERP built? 
When writing PERP, we wanted to concentrate on our 
problem domain, and not on the details of interfacing 
Python to C++.  The standard C API for Python is quite 
low level, and requires writing lots of “boilerplate” 
code to access Python data types (lists, tuples, 
dictionaries), perform parameter checking, and handle 



Python’s reference counting.  Fortunately, we could use 
CXX and SWIG to simplify our extension writing. 

4.1  SWIG 
SWIG5 is the Simplified Wrapper Interface Generator, 
written by David Beazley.  SWIG uses an interface 
description file derived from an existing C/C++ include 
file.  SWIG processes the interface file and generates C 
or C++ code that interfaces Python to C/C++ 
extensions.  Python programs can invoke C/C++ 
functions or methods, and can reference elements of 
C/C++ structures or objects.  SWIG has a fairly 
complete manual, and an active mailing list that can 
provide answers to questions about SWIG or problems 
with using SWIG.  We found SWIG very helpful in 
building our interface functions. However, when 
writing C++ extension code that manipulates Python 
objects, we wanted a higher level interface than is 
available from either Python or SWIG. 

4.2  CXX 
Paul Dubois wrote a package called CXX6 that is 
included with the Livermore Labs Numerical Python 
distribution.  CXX is specifically designed to simplify 
manipulating Python objects from C++.  Since we 
represent our radar data as arrays, tuples and 
dictionaries contained in a dictionary (see section 5.1), 
CXX was quite helpful in building and accessing these 
data structures in our C++ extensions. The following is 
an excerpt from one of our C++ extensions that uses 
CXX. 
  

PyObject *array = PyArray_FromDims(2, dims, 
PyArray_FLOAT); 

// Store all per-variable info in a dictionary 

Dict d; 

 d["scale"] = Float(scale); 

d["bias"] = Float(bias); 

d["badValueInt"] = Int(badValue); 

d["badValueFloat"] = Float((badValue-
bias)/scale); 

 d["array"] = Object(array); 

// this array is only referenced by this dictionary. 

Py_DECREF(array); 

 
Note the ease with which we created a dictionary, and 
added floating point, integer, and array objects to the 
dictionary.  However, also note the use of 
Py_DECREF(), to maintain the correct reference count 
on the newly created array. CXX only supports multi-

dimensional NumPy arrays by using the Blitz7 scientific 
computation package.  Since we were not ready to use 
Blitz (which at that time was only available as an alpha 
release), we used the standard C Numeric Python 
interface, which requires the programmer to explicitly 
handle reference counts. 
 
Because PERP uses CXX, PERP requires a modern 
C++ compiler that has comprehensive template and 
exception handling support.  Fortunately, as we were 
designing PERP, the EGCS version of the GNU C 
compiler was just adding these features.  Now that 
EGCS is the official GNU C compiler, Gnu C++ (2.95 
or better) provides the necessary C++ features.  
Although some of the CXX template-based C++ 
routines are noticeably slower to compile than ordinary 
C++ code, the compilation speed is quite acceptable on 
a modern, 400Mhz, Linux PC.  Although PERP does 
require a modern C++ compiler, it is portable to other 
architectures. We’ve also built PERP on Sun/Solaris 
using gcc 2.95. Apparently, Kuck & Associates’ KAI 
C++8 compiler will also compile CXX-based code.  

5. What capabilities does PERP provide? 

5.1 Input/Output of data. 
Clearly, to be useful, PERP needed to read and write 
our radar data.  For time-series data, we use netCDF9 to 
store our data.  NetCDF stores binary data in a machine 
independent form, such that we can read the same data  
files on either PCs or Sun SPARC machines, without 
having to code our I/O routines to swap bytes.  In 
addition netCDF data files are self-describing, so an 
application can determine the dimensions of all arrays, 
and what sort of data is stored in each array.  PERP 
uses the netCDF Python package written by Konrad 
Hinsen10 to read and write radar time-series data.  
We’ve written our own translator programs in C to 
translate  “raw” time-series data into netCDF, so that 
PERP can process it. 
 
Once PERP has processed our time-series data into 
reflectivity and velocity fields, we store it in NCAR’s 
DORADE11 format, since this format is used by an 
existing radar display program and by other analysis 
programs.  As a result, we wrote our own input/output 
routines to translate Numeric Python arrays to/from the 
DORADE format.  We used SWIG’s ability to map C 
structures to Python to allow our Python scripts to read 
and write individual members of DORADE "C" 
structures that describe the radar data.  
 
At first, we had some difficulty deciding how to 
represent our collection of numeric arrays and their 
associated attributes in Python  (Attributes include the 



integer value used for a “bad data flag” and the scale 
factor used when the data is stored in a file).  We 
experimented with storing the array’s attributes in a 
tuple, but we finally decided to use dictionaries to 
organize our data, since the key/value pairs in the 
dictionary provided “self-documentation” for our data.  
The entire dataset was stored in a dictionary that 
contains dictionaries, as shown below: 
 

{'DZ': { 'array': array((20, 1040),f), 'scale':100.0, 
'bias': 0.0, 'badValueFloat': -327.68 }, 

 
'VE' : {'array': array((20, 1040),f), 'scale': 100.0, 
'bias': 0.0, 'badValueFloat': -327.68} } 

Each radar variable’s dictionary can be located by the 
variable’s name.  Once the dictionary for a particular 
radar variable is located, the attributes and the actual 
data can also be located by name.  Using nested 
dictionaries in Python provided some of the same 
functionality that an array of structures does in C++. 

5.2 Radar Signal Processing 
PERP allows the user to filter radar data using a 
collection of Infinite Impulse Response (IIR) filters.  I 
converted a colleague’s filter code to C++, and then 
wrapped the resulting IIR_Filter class with SWIG.  An 
example of using the IIR_Filter class in Python is 
shown below: 
 

coeff = FloatTuple(len(coeff_list), coeff_list)) 

f = IIR_Filter(numPoles, const_gain, coeff) 
iFiltered, qFiltered = f.filter(iRaw, qRaw) 

 

 
Note that FloatTuple is a simple class that converts a 
variable length tuple of floating point values to a C++ 
object used by IIR_Filter.  If we had used CXX for the 
IIR_Filter class, we would have not needed the 
FloatTuple class. 
 
PERP also contains a complex auto-correlation 
algorithm  (pulse-pair) algorithm that processes time-
series data into radar reflectivity, velocity and width.  
Again, I converted a colleague’s “C” routine to C++, 
and wrapped the PulsePair class with SWIG.  Below is 
an example of calling this class from Python: 
 

p = PulsePair(scale,offset, prt, radarConst, 
      gateSpacing, firstGate) 
# I,Q,P,Z,V,W are Numeric arrays 

p.compute(I,Q, P,Z,V,W) 

5.3 Fuzzy Logic Implementation 
In addition to our signal processing work, we have been 
exploring algorithms that automatically identify radar 
data that has been contaminated by “anomalous 
propagation ground clutter” (AP).  AP occurs when 
atmospheric conditions refract (bend) the radar beam 
causing it to be reflected from the ground, rather than 
continuing to sample the atmosphere.  This 
phenomenon is comparable to observing what appears 
to be water on the road on a hot, dry day (an optical 
mirage.) If AP is not properly identified, meteorologists 
or automatic algorithms may interpret AP as an intense 
storm, which can cause false alarms for flooding, or can 
cause aircraft to be routed around a non-existent 
“storm”.   
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Figure 1 - Fuzzy Logic Algorithm 



 
Our previous research had shown that a “Fuzzy Logic” 
algorithm could be used to identify AP. In brief, we 
compute “features” or “interest fields” such as mean or 
standard deviation for each spatial position in our radar 
data. A membership function (related to a probability 
density function) is then applied to each of these 
features, yielding a set of values in the range [0-1].  We 
then computed a weighted sum of the membership 
functions for each spatial position.  If the weighted sum 
exceeds a specified threshold, the fuzzy logic algorithm 
has identified AP at this location.  Figure 1 shows a 
block diagram of a fuzzy logic computation. 
 
We had already implemented a “Fuzzy Logic” 
algorithm as a stand-alone C++ program, but wanted to 
build a more flexible, higher performance 
implementation.  We wanted an environment which 
would allow us manipulate entire arrays of data, as with 
MATLAB or IDL, that would allow us to dynamically 
choose what calculations were performed.  To add 
fuzzy logic calculations to PERP, we re-implemented 
the feature computation algorithms from our previous 
C++ code and used SWIG to build a dynamically 
loaded Numeric Python extension.  The membership 
function lookup tables were implemented using the 
interp() function in arrayfnmodule.c.  The final 
weighted sum calculation is performed directly in 
Numeric Python.  

5.4 Graphs of radar data 
We have found it quite helpful to graph our radar data 
from inside Numeric Python.  We ended up installing 
“Yorick” 12 and using the “gist” module from the 
Numeric Python distribution for scientific plotting. 
Using “gist”, we’ve displayed scattergrams of our radar 
data.  Also, we produced graphs of received power 
versus antenna position that helped us verify the 
performance of our radar antenna. For example, Figure 
2 shows a contour plot of received power versus 
antenna position.  Each contour indicates a given 
amount of received power.  (Ideal antenna performance 
would be  indicated by uniformly circular contours.) To 
produce this plot, we wrote a simple Python Contour 
class.  The Contour class "grids" values of power for a 
given azimuth and elevation into a 2D array and plots 
the result with the "gist" contour plotting routine. We 
were very pleased how easily we could plot our data 
using Numeric Python. 

6. Challenges in using Numeric Python 
Although we were strongly motivated to use Numeric 
Python for this project, we did have to overcome 
several significant challenges. 

6.1 Documentation needs improvement. 
Until I attended David Ascher’s tutorial - “An 
Overview of the Numeric Extensions to Python” at the 
7th International Python Conference, it was difficult to 
learn Numeric Python.  The available documentation 
has been improving, but learning Numeric Python is 
still not easy.  The scarcity of Numeric Python 
documentation has made it harder to train other 
potential users.  In particular, there is very little 
documentation on writing Numeric Python extensions.  
We had to carefully study existing code to understand 
extension programming.  More Numeric Python “How-
To” documents are needed. 

6.2 Unwanted type promotion 
The current implementation of Numeric Python has the 
undesired side effect of automatically producing double 
precision arrays when performing calculations on single 
precision variables.  For example: 
 

 >>> x= ones((10,),’f’) 

 >>> x.typecode(), x.itemsize() 

 (‘f’,4) 

Figure 2 -Contour Plot of Received Power 



 >>> y = x * 2 

 >>> y.typecode(), y.itemsize() 

 (‘d’,8) 

Note that ‘y’ is a double precision array, even though 
‘x’ was a single precision array.  Since we simply could 
not afford to double the memory usage of our program 
when manipulating multiple 20-megabyte data-sets, we 
had to consistently use the ‘SameSizeAs()” procedure 
recommended by David Ascher. 

 def  SameSizeAs(input, ref): 
        return array(input, ref.typecode()) 

 
 >>> y = x * SameSizeAs(2,x) 
 >>> y.typecode(), y.itemsize() 

 (‘f’,4) 

 Using the SameSizeAs() routine eliminates the “up-
casting” problem. 
 
 Numeric Python programs would be easier to write and 
understand if each programmer did not have to use such 
“helper” functions to avoid unwanted up-casting.  
These helper routines tend to obscure the algorithm.  
Besides using these “helper” functions, I wrote my own 
version of the interp() function in arrayfnmodule.c that  
returns a single-precision array, rather than the default 
double precision arrays. 

6.3 CXX Parameter Type Checking Can Yield 
Confusing Diagnostics 

Using CXX allows automatic type checking of 
parameters using C++ exceptions to signal the Python 
runtime that an error has occurred.  However, if a set of 
parameters is checked by a single C++ “exception 
handler”, this technique can easily produce obscure 
runtime error messages.  Since only a single generic 
error message is returned, the caller of the extension 
may not know which parameter is incorrect.  We found 
it difficult to find parameter errors in our own Python 
code calling our own CXX extensions, given these 
vague error messages. The obvious solution is to use an 
exception handler for each parameter, even though it 
does tend to clutter up the C++ code.  It would be 
helpful if the CXX documentation had better examples 
of such error checking. 

6.4 Reference counting can still be tricky. 
 Although CXX handles most of the reference counting 
details, we still encountered reference count issues 
when using the Numerical Array API with CXX  (see 
section 4.2).  We found using the Python function 
sys.getrefcount() invaluable in finding reference count 

errors.  For example, when one of our C++ extension 
functions returned a dictionary, we invoked 
sys.getrefcount() for each key in the dictionary, and 
verified the reference count was correct.  (Otherwise, 
each call to an array processing routine can “leak” 
memory, causing the application’s memory usage to 
grow at an enormous rate!).  When debugging memory 
usage in PERP, we have found it helpful to use 
Insure++2.  We also found it valuable to link Python or 
our “embedded” Python application with the “Electric 
Fence”13 library to verify our use of memory. Electric 
Fence uses the computer’s virtual memory hardware to 
stop a program at the moment it references memory 
outside valid regions.  

6.5 Debugging an extension can be tricky 
Python supports dynamically loaded extensions. If 
possible, extensions should be built as a dynamic 
extension, so that any application can use them. 
However, when debugging a dynamically loaded 
extension in the standard Python interpreter, it is 
necessary to set a breakpoint in the 
PyImport_LoadDynamicModule routine and repeatedly 
stop at this breakpoint until the extension has been 
loaded. Once the extension is loaded, breakpoints can 
be set. We found it much easier to debug our extensions 
by building a  test program that statically links our 
extension  with the Python interpreter.  In this 
“embedded Python” environment, we could 
immediately set breakpoints in any of our routines.  
Fortunately, SWIG makes it fairly simple to build both 
a shared library and a custom application with an 
embedded Python interpreter.  (See my website for a 
sample makefile14).   
 

6.6 Packaging is painful 
One of the strengths of Python and Numeric Python is 
the availability of so many optional packages – e.g., for 
netCDF file access, plotting, and GUIs.  However, 
sometimes the “do-it-yourself” nature of building an 
application using (Numeric) Python is frustrating. For 
example, how is the average programmer supposed to 
determine which of the six or more available Numeric 
Python plotting packages is best? In contrast, the 
plotting functions provided by commercial packages 
like MATLAB or IDL are highly polished and fully 
integrated with the product. 
 
In addition, when trying to install PERP on another 
machine, we’ve found it somewhat painful to gather up 
the source code for all the separate packages to build on 
the new machine.  We end up having to manually 
maintain an (ever-growing) list of packages needed by 



PERP.  To illustrate the problem, here’s the current 
dependency tree for PERP: 
 

SWIG  
Python 1.5.2 
Numeric Python 

    netCDF package 
     netCDF library  
    yorick   

wxPython   
    wxWindows  
       gtk+ 

     glib 
       glcanvas  
     Mesa  

 
In contrast, if we were using a commercial package, we 
would simply install the vendor provided CD-ROM or 
tar archive, and install a tar file of our scripts and 
extensions. 

7. More Benefits of Numeric Python 
Numeric Python and its extensions greatly simplify 
writing data analysis algorithms. In fact, some 
algorithms became trivial – we implemented the core of 
the fuzzy logic routines in 80 lines of Python – no C or 
C++ was required15.  Since Numeric Python encourages 
“array-at-a-time” computations, we found our 
applications are much easier to read, since the code 
does not contain the details of indexing arrays in 2 (or 
more) dimensions. 
 
We also found it easy to synthesize test data using 
standard numeric python routines. This simplifies 
testing of user written routines.  For example, we tested 
our pulse-pair radar processing code by generating a 
synthetic sinusoidal input.  Having invoked a user-
written extension, Numeric Python’s ability to 
interactively access subsets of arrays and structure 
members is a great debugging aid.  Rather than having 
to compile in debug print statements in our code, we 
simply used Python’s “print” command.  At first, when 
using Python’s print commands, we were frustrated that 
Python would always try to print entire arrays, even if 
the array contained megabytes of data. However, even 
this default behavior could be modified, using routines 
in NumUtil.py16.  With this utility code, the user can 
specify the maximum number of array elements that are 
printed. Arrays that exceed this size are printed in the 
form: 

array((20,1000), f) 

8. Conclusion 
We found both CXX and SWIG extremely valuable in 
generating the Python specific portions of our C++ 
code.  After learning these tools, we could concentrate 
on our extension’s code, rather than generating our own 
Python<->C++ interfaces using Python’s native C 
interface.  CXX greatly simplifies access to Python’s 
list, tuple, and dictionary data structures.  SWIG greatly 
simplifies the code required to access C++ structures 
and classes from Python, and allowed us to easily 
interface our C++ routines to Python. 
 
We were quite pleased with our use of Numeric Python 
to build our application.  Even with the flexibility 
provided by Numeric Python, our application is quite 
efficient.  The time our application spends in the Python 
interpreter is small (<10%) compared to the time 
required for data I/O and data manipulation in our 
C/C++ extensions. 

9. Future Plans 
We want to try one of the “packaging” options for 
Python, so that we can build a single executable for 
“production” use.  Currently, it is fairly tedious to find 
and install all the Python packages we need to run the 
PERP package.   We are considering using 
“squeezeTool.py”17 to package our python scripts.  
However, we may still need to build an RPM file to 
install all the extension scripts and shared libraries 
needed for PERP. 
 
Also, we are starting to write a radar data display 
package using wxPython18 and Mesa19.  This will allow 
us to view radar data from inside PERP with out having 
to write out the data to a file, and run a separate 
standalone program to view our radar data. 
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