
Continuations and Stackless Python 

Or "How to change a Paradigm of an existing Program" 
 

Christian Tismer 
Virtual Photonics GmbH 
mailto:tismer@tismer.com 

 

Abstract 

In this paper, an implementation of "Stackless 
Python" (a Python which does not keep state on the C 
stack) is presented. Surprisingly, the necessary 
changes affect just a small number of C modules, and 
a major rewrite of the C library can be avoided. The 
key idea in this approach is a paradigm change for the 
Python code interpreter that is not easy to understand 
in the first place. Recursive interpreter calls are 
turned into tail recursion, which allows deferring 
evaluation by pushing frames to the frame stack, 
without the C stack involved. 

By decoupling the frame stack from the C stack, we 
now have the ability to keep references to frames and 
to do non-local jumps. This turns the frame stack into 
a tree, and every leaf of the tree can now be a jump 
target. While exploring this idea, we will recognize 
ordinary function calls and returns to be just special 
cases of so-called continuations, and we will learn 
about them as a really simple idea that covers all 
kinds of program flow. 

Instead of an implementation of coroutines and 
generators as C extensions, we will see how they can 
be expressed in Python, using the continuation 
module. Since the theory of continuations is not very 
broadly known, a small introduction is given. 

1 Introduction 

There have been a few attempts to implement 
generators and coroutines in Python. These were 
either of low performance, since they were 
implemented using threads, or limited by Python's 
recursive interpreter layout, which prevented 
switching between frames liberally. Changing Python 
to become non-recursive was considered a major, 
difficult task. Actually it was true, and I had to 
change truth before I could continue. - 

2 Continuations 

2.1 What is a Continuation? 

Many attempts to explain continuations can be found 
in the literature[5-10], more or less hard to 
understand. The following is due to Jeremy Hylton, 
and I like it the best. Imagine a very simple series of 
statements: 

x = 2; y = x + 1; z = x * 2 

In this case, the continuation of x=2  is y=x+1; 
z=x*2 . You might think of the second and third 
assignments as a function (forgetting about variable 
scope for the moment). That function is the 
continuation. In essence, every single line of code has 
a continuation that represents the entire future 
execution of the program. 

Perhaps you remember the phrase "Goto is 
considered harmful". Functional programming's 
answer turns bad into good and makes that goto into a 
key idea: A continuation is a means of capturing the 
control flow of the program and manipulating it; it is 
a primitive idea that can be used to synthesize any 
form of control flow. 

Although we do not intend to re-invent the existing 
control structures, a simple example might help.  

Without going into details, our continuation this  is 
prepared to jump into exactly the situation where the 
boxed assignment takes place. The call this(k-1)  

def looptest(n): 
    this = continuation.current() 
    k = this.update(n) 
    if k: 
        this(k-1) 
    else: 
        del this.link 



moves us immediately back into the context of that 
assignment, just with a new value for k . This results 
in repeated execution of this piece of code, forming a 
while loop. 

In comparison to our first example, we did not use a 
continuation at the bounds of a statement, but it was 

located in the middle of a function call, in the 
situation of parameter passing. This kind of 
continuation is most useful since we can provide a 
parameter and get a result back. We will see more 
about this in the next chapter. In fact, continuations 
are not limited to statements or function calls. Every 
opcode of the (virtual) machine has a continuation. 

"The current continuation at any point in the 
execution of a program is an abstraction of the rest of 
the program" [5]. Another wording is "what to do 
next "[6] 

But in terms of Python frames, a continuation is 
nothing more than a frame object, together with its 
linked chain of calling frames. In order to make this 
callable, handy, and to protect frames from being run 
more than once at a time, we wrap them into 
continuation objects, which take care about that. 
Before discussing the details in chapter 4, let's now 
build a really useful example. 

3 Generators in Python 

Instead of a direct implementation of coroutines and 
generators, I decided to use the most general 
approach: Implement continuations as first class 
callable objects, and express generators and 
coroutines in Python. 

3.1 Generators expressed with Threads 

Few people might know that there is a generator 
implementation using threads. It can be found in the 
source distribution under demo/threads/Generator.py 
and has not been changed since 1994, when there was 
a longer discussion of generators on C.L.P [2]. A 
slightly modified version for Python 1.5.2 can be 
found in my distribution for comparison. The basic 
idea is to prove get()  and put() functions which 
communicate with a consumer and a producer thread. 

3.2 Generators done with Continuations 

Now we implement Generators using continuations.  

Instead of communicating with threads, get() and 
put() jump directly into the context of the 
consumer/producer function. The jumps are 
expressed by calls of continuations, which leave the 
current context and jump over to the context that is 
stored in the continuation object. 

Generators using Continuations 

import continuation 
Killed = 'Generator.Killed' 
get_caller = continuation.caller 
 
class Generator: 
  def __init__(self, func, *args, **kw): 
    self.func = func 
    self.args = args 
    self.kw = kw 
    self.done = 0 
    self.killed = 0 
    self.producer = self._start 

  def _start(self, dummy=None): 
    if not self.killed: 
      try: 
        apply(self.func, (self,) + 
                      self.args, self.kw) 
        raise EOFError, "no more values" 
      finally: 
        self.kill() 

  def put(self, value): 
    if self.killed: 
      raise TypeError,  
        'put() called on killed generator' 
    self.producer = get_caller() 
    self.consumer(value)  

  def get(self): 
    if self.killed: 
      raise TypeError,  
        'get() called on killed generator' 
    self.consumer = get_caller() 
    self.producer()  

  def kill(self): 
    if self.killed: 
      raise TypeError, 'kill() called on 

killed generator' 
    hold = self.func, self.args 
    self.__dict__.clear() 
    self.func, self.args = hold 
    self.killed = 1  

  def clone(self): 
    return Generator(self.func, self.args) 

def count(g, start=1, limit=0): 
  # just to measure switching time 
  i = start 
  while i != limit: 
    g.put(i) 
    i = i+1 
    #if i==42: g.kill() 
  g.done = 1 



Let us look at the put  method. The call of 
get_caller  returns a continuation object, which is 
a snapshot of put 's current caller. This is saved away 
in self.producer  and will be used later by the 
get method. A call of this object performs by default 
a jump to the saved context. 

It is crucial to understand how these objects exchange 
values: A continuation objects always accepts a value 
as its argument, and it returns a value as its result. It 
is just the question where or when the value is 
returned. When get_caller()  is executed in 
put() , it catches the calling frame in a situation, 
where it has been supplied with a value for the call. 

In our count() example, this is the expression 
g.put(i) , and the continuation is saved as 
producer()  function, waiting to run the next loop 
cycle. But the passed value is given to the 
consumer()  function that was captured in the 
context of a get()  call, and the value appears there 
as the function result. I admit that this is a little hard 
to understand. Basically, you have understood the 
idea of a coroutine switch, and in fact, this generator 
is made of two coroutines. More important: You have 
understood how continuations act as the building 
block for new control structures. 

4 Continuation Module 

The continuation module was always my real target 
application, and it has been rewritten the fifth time 
now. This was like iteration, since I had to learn what 
continuations are, what they need, and how Stackless 
Python must be to support it, without including it. 
Meanwhile it has grown quite complicated and has 
undergone many optimizations, and there is no 
chance to cover it all in this article. 

4.1 The Problem 

After you learned what a continuation is and how 
easy this all is to understand, I have to disappoint you 
a little. The implementation isn't easy at all, due to 
the fact that Pythons frames are not safe when used as 
continuations. Python frames hold besides some other 
things the local variables, exception state, current 
code location and the evaluation stack for 
expressions. 

And that is the problem. Whenever a frame is run, its 
state changes, especially the expression stack and the 
code location. But we wanted to save a continuation 

for later re-use. What we have so far is just enough 
for the little coroutine idea which I sketched in the 
beginning. But what happens if we are able to return 
to the same frame twice, intended or not? (Figure 1) 
We would need a copy of a frame. But a copy would 
give a problem if some other structure were pointing 
to the frame. This was one of the moments where I 
considered giving up. - 
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Figure 1: Multiple Return 
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Figure 2: Frame Mutation 

4.2 How it Works 

In order to solve this problem, I introduced another 
kind of frames, continuation frames. The idea is 
simple: While being of the same structure as an 
ordinary frame, it has a different execute function. It 
is named throw_continuation , and that's 
exactly its only purpose: Restore the state of a real 
frame and run it. (Figure 2) 



The other half of the solution is not to insert a copy of 
the real frame in front of it into the frame chain, but 
to create it behind the real frame, then turn the real 
frame into a continuation frame, and make the pushed 
back version into the real one.  

 This was fine for the first three versions of 
continuation module. But it turned quickly into a 
problem to keep track of chain growth, and 
normalization of the resulting mixture of real frames 
and continuation frames was necessary. 

Furthermore, I needed more control over the frame 
linkage and be able to predict necessary continuation 
frame creation as much as possible. So here comes 
the third half of the solution…(Figure 3) 

This structure adds a level of indirection, but the cost 
is very low. Adding a new continuation frame is not 
much more than the old pushback scheme, together 
with some pointer and refcount adjustment. 

4.3 How fast? Is it fast? Size? 

It is. Some more advanced versions of the get  and 
put  functions in our example run three times faster 
than the threads implementation. The following 
recursive call of one(!) frame has the same speed as 

the proper implementation via functions: 

On size: The size of our continuation is just one 
frame, some 400 bytes maybe. You can easily create 
10000 of these objects. Threads come at the cost of 
an extra C stack each, which is a megabyte on some 
machines. 

We close the continuation story with a look through 
PythonWin's Browser. 

 

Figure 4: Continuation Browser View 

5 Stackless Python 

After we had continuations as the real fruit of this 
work, let's come to Stackless Python and its 
implementation. Continuations were the reason to 
build Stackless Python; without it there is no chance 
to implement them in a machine independent manner. 

5.1 What does it mean to be stackless? 

The standard Python code interpreter is written in C. 
Every Python action is somehow performed by some 
C code. Whenever a piece of Python code is 
executed, a new incarnation of the interpreter loop is 
created and executed by a recursive call. 

First of all, let's see what it means to have a C stack. 
Consider a Python function a() , which calls a 
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Node Object
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to return
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Figure 3: Nodes Collect References 

def rectest2(n): 
    this = continuation.current() 
    call = this.call 
    k = this.update(n) 
    if k: 
        call(k-1) 
    else: 
        del this.link 



Python function b() , which calls a Python function 
c() . In the context of function c() , the C 
interpreters of all three functions are still alive. They 
are keeping their state on the C stack. When the 
Python functions come to an end or an exception is 
raised, the C functions are popped off the C stack. 
This is called "unwinding the stack".  

In that sense, Python is not so different from other C 
programs, which are usually all stack based. But this 
is not the full story, since Python does quite a lot 
more than using the C stack.  

Every running piece of Python code also has an 
associated Frame object. A Frame object is 
something like a running instance of a code object. 
Frames are used to hold local and global variables, to 
maintain the value stack of the byte code interpreter, 
and some other housekeeping information. (Figure 5) 

These Frames are chained together in a last-in/first-
out manner. They make up a stack by themselves. 
And they do this in a way quite similar to the C stack. 

5.2 Why the C stack should vanish 

The C stack limits recursion depth. The C stack has a 
fixed size, and therefore the stack cannot grow 
infinitely. The frame stack is not limited. I think it is 
good to keep recursion depth limited, but not as a 
matter of an implementation detail. This should be a 

user option. The C stack should be reserved for C 
modules that really need it.  

The C stack holds references to objects. Well, 
eval_code  is clean in this respect, but other C 
functions may pile up on the stack as well. 
References to function parameters are kept on the C 
stack until a function returns.  

The C stack holds execution state. Information of 
the frame's current program and stack counter is 
hidden in variables on the C stack and cannot be 
modified. The C stack therefore limits the possible 
order of execution.  

Removing the C stack is cheap. As I try to show in 
this paper, the implementation effort is much smaller 
than one would think. Execution speed is nearly the 
same. But the new possibilities of having an explicit 
stack are many, and they cannot even be tried in the 
moment.  

Coroutines can be incredibly fast. As we will see in 
the following, by decoupling the frames from the C 
stack, coroutines can be implemented so fast, that it 
might become feasible to use them for quite a number 
of problems. Switching between two coroutine 
frames needs just a built-in function call that is much 
cheaper than calling a Python function.  

PERL has already no longer a C stack. They will 
have some good reasons for this. Python has no 

def a(x):
...
b(x+1)
...

def b(x):
...
c(x*x)
...

def c(x):
...
print "x=",x
...

a(42)
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Figure 5: Standard Nested Call 



reason to be limited and stay behind.  

To conclude: I want to provide the same level of 
flexibility for the C API as we have already in 
Python, open Python for new, efficient algorithmic 
approaches, at low implementation and runtime cost.  

5.3 Targets Evolution and History 

Everything started with a discussion of coroutines in 
Python on the python-dev mailing list, initiated by 
Sam Rushing. In turn, a series of requirements 
materialized as consequences. 

Get rid of the C stack. This became clear quite 
quickly. In order to be able to rearrange frames, the C 
stack is in the way. 

Allow for pluggable interpreters. After a first 
implementation of a tail-recursive code interpreter, I 
realized that tail recursion (chapter 6.2) is necessary 
but not sufficient in order to make map, filter and 
reduce stackless. Instead, we have to build tiny 
custom interpreters. As a consequence, every 
extension module can provide its own interpreter for 
any frame. 

Do the minimum changes to existing code. It was 
never clear (and still is not) whether the Stackless 
Python patches would make it into the distribution at 
some time. Furthermore, Python will undergo a lot of 
changes in the future. The fewer changes are done 
now, the easier it will be to incorporate them into 
future versions. Alternatively, keeping running my 
own parallel python version becomes less effort. 

Stay compatible to compiled extension modules. 
Stackless Python should be a drop-in replacement for 
the official distribution. Every existing compiled 
extension module should work, provided it does not 
rely on the exact frame layout. The proof of concept 
was to replace python15.dll and have PythonWin on 
top of it. 

Learn how stackless extension modules work. 
Although my major goal was to provide stackless 
behavior for Python code, the requirement to figure 
out how to make stackless-aware extension modules 
came up quickly. Suppose that a fast XML parser is 
written in Python, which makes use of rapid context 
switching. In order to write a much faster version in 
C, we need to be able to model the same stackless 
behavior. Fortunately, the proof of concept comes for 
free by stackless map. 

Implement first class continuations. As a proof of 
concept, and to learn how all of this must work, I had 
not only to write an appropriate Python version, but 
also check the strength of the concept by 
implementing first class continuations. In fact, a 
number of improvements had to be done in order to 
get continuations to work.  

Keep continuations out of the core. While the 
Python core was changed to support continuations, it 
became clear that the majority of existing and future 
code would probably make no use of continuations. 
Therefore, the implementation had to have the 
smallest possible runtime impact on the Python core, 
and continuations had to be a dynamic module. The 
evolution of the continuation module resulted in 
several changes to Stackless Python, which has 
reached version 1.0 at the time of writing. It appears 
to be stable and is used in production code. 

6 The Paradigm Shift 

We will see in the next chapter, how Stackless 
Python was developed. Since this was a long, 
iterative process, the key ideas appear in the order of 
invention which is not optimal for the readers 
understanding. The essentials can be summarized as 
the following 3 axioms: 

6.1 Time of Frame Execution 

The paradigm in ceval.c  for running a Python 
function is to build a frame for the code object, to put 
all the parameters in place and then run 
eval_code2  and wait for it to return. 

The transformation: Making sure to run all frames in 
their correct order does not imply that we must call 
the interpreter function from the current C-stack 
nesting level. If we can avoid any C-stack related 
post-processing, unwinding the stack is possible 
before the frame execution. This implies the next 
shift: 

6.2 Lifetime of Parameters 

The function parameters in standard Python are kept 
alive by the caller. This means that the caller of 
eval_code2  has to wait until the call is finished. 
After the call the reference to the parameter tuple is 
removed. 



Thinking in frames instead of recursive calls, it is 
obvious that parameters should be kept alive as long 
as the frame exists. Therefore, we put a reference to 
the parameter tuple into a frame field. This reference 
will be automatically removed at the best possible 
time: when the frame is disposed. 

Since we removed the last cleanup task from the 
recursive C function call, there is nothing left do do 
for it, and it may return to its caller before the frame 
is run. This pattern of a function invocation as the last 
action of the caller is also known as tail recursion. 
Tail recursive calls are logical identical to jumps, and 
unwinding our C stack before running the next frame 
is our C equivalent of directly jumping back into the 
toplevel frame dispatcher. 

6.3 Third System State 

Standard Python has the throughout semantics of 
function calls that either a PyObject  is returned, or 
NULL which signals an exception. These are the two 
essential system states while returning from a frame. 

By introduction of a special object as a return value 
with a different meaning, we can control the C-stack 
and request to unwind it, before the next frame is run. 
Since this object is compatible with all other Python 
objects, this protocol change isn't visible to most of 
the involved code. Only the C functions which deal 
with running a new frame needed to be changed. This 
is the third system state. 

 

Return Value System State 

NULL An error occurred 

Py_UnwindToken Dispatch a frame 

Other PyObject  Return this value 

The above three ideas were central, necessary and 
sufficient for Stackless Python. All other details are 
consequences from these axioms. 

7 Implementing Stackless Python 

During the implementation, a number of rules 

showed up as being essential. They are quite simple:  

1. Avoid recursive calls into the interpreter.  

2. Store all runtime information in frames.  

3. Allow frames to be restarted. Just add to the 
frame structure, don't break anything.  

4. Store the interpreter function in the frames.  

5. Have one central frame handler, turn eval_code2 
into just one interpreter  

6. Provide new functions but keep backward 
compatible stub functions.  

Rule 1 is obvious but looks hard to fulfill.  

Rule 2 is obvious, too. The frame chain becomes our 
true stack. No information should be hidden in the C 
stack while a Python function is being called.  

Rule 3 is one of the key ideas. We come to it soon.  

Rule 4 is just a consequent move of information into 
frames. If a frame is to know everything about the 
running code, then it also should know which the 
interpreter is. As a side effect, frames can call each 
other at wilt, without having to know more than that 
this is just a runable frame.  

Rule 5 is a consequence of splitting responsibilities. 
The central frame handler is the very minimum that 
we need. It does nothing more than juggling the 
frame calls and passing results. With a single concept 
of frames, we can run any kind of interpreters 
together, as long as they obey the Python Object 
Protocol.  

Well, Rule 6 is clear. We want to be still standard 
Python with the standard C API just extended.  

7.1  Problem analysis 

 Let's have a look into the code (Figure 8). The first 
file to inspect is ceval.c . We compare the old and 
the new version. If you try to figure out what happens 
on a Python function call, you will first think it is 
impossible to do that without the C stack.  



 Have a look at function eval_code2 , at the case 
CALL_FUNCTION(Figure 8) . Many different cases 
are handled here; other functions are called, like 
PyEval_CallObjectWithKeywords . There, a 
number of decisions are made, which in turn cause 
other function calls, and finally, we end up 
somewhere deeply nested, with either a call to 
call_builtin  or call_function . For getting 
a result, either a C function is called, or a new 
interpreter incarnation handles the call, finally via 
eval_code2  again.  

In order to do this call, the calling function somehow 
prepares parameters, keeps a reference to the 
parameters, lets the evaluation happen, releases the 
parameters and returns the result.  

My biggest fear was that I would have to rewrite all 
of this. But this is not true.  

7.2 Problem solution 

If we just avoid doing the final call to eval_code2 , 
we are almost done. Please have a look into the old 
version of call_function , and compare it to the 
new version. Instead of calling the interpreter, we end 
up with the above piece of code: Prepare a frame to 
be run, but don't run it. 

eval_code2_setup  is a function that just 
prepares a new frame, in order to be run later. The 
frame holds all references to parameters, and the new 
field f_hold_ref  takes the role to keep a reference 
to arg . Instead of actually performing the call now, 
call_function  returns a special object, 
Py_UnwindToken  as its value. This value is passed 
as a result through the actual pile of invoked C 
functions until it is caught in the calling interpreter 
(yes, we are back at the CALL_FUNCTION opcode). 
The interpreter checks this value and knows that a 
call is pending, so the current frame must be left, and 
a new frame has been put onto the stack, which 
should be called now.  

Why is this possible, and why does it appear to be so 
easy? 

Python is already nearly stackless. All the functions 
try to do nothing more than just to prepare for the 
next interpreter call, which will do the actual 
evaluation. After as code object and its parameters 
have been checked for errors, the runtime error 
checking is already deferred to the responsible 
interpreter. However, this does not mean that we need 
to call the interpreter immediately. We can defer this 
until we have finished the currently active C 
functions! Do you get the idea?  

In other words: Almost all calls into the interpreter 
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frame

a-frame
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Figure 6: Minimizing Recursive Calls 



turn out to be tail recursive. After parameters have 
been checked and everything is prepared, there is no 
need to actually call the next function. It is ok to 
generate a frame on the frame stack, which is ready to 
be run by the next interpreter involved, but there is no 

need to do this while we are still in the current pile of 
active C functions. We can leave before we call. 

Whenever a function believes that it is done by 
running eval_code2 and returning a value, it defers 
all error handling to "the" interpreter. What I do is 
nothing more than to defer the whole call to just 
"one" interpreter, which has the same semantics. It is 
just a special form of tail recursion taking place. It 
does not matter where the result value is checked for 
an exception immediately from a deeply nested 
function call, or later, after unwinding to the top-level 
interpreter incarnation. The sequence of necessary 
actions is driven by the frame chain and nothing else. 

By following this principle, it was possible to make 
stackless versions of all of the interpreter functions. 
The conversion works like this: 

When a C function calls the interpreter (the former 
eval_code2), it does not immediately run the new 
stack frame. Instead, the new frame object is created 
and a special token, Py_UnwindToken, is returned.  
Py_UnwindToken is a special return value that 
indicates that the current interpreter should get out of 
the way immediately (which means to return). 

Another approach to explain this: The interpreter 
functions are (almost) all working with PyObjects. 
Return values can be NULL, or a proper PyObject. 
NULL has the semantics of an error that has to be 
handled, and it will cause the interpreters to unwind 
the stack by an exception. This gives us just a two-
valued logic: Return values are either PyObjects or 
NULL. By introducing the Py_UnwindToken, I 
extended this to three-valued logic. 

Since all these values can be passed through the 
existing interpreter functions, I saved a major rewrite 
and had just to take care to catch the right places to 
change.  

If you are still with me, now the time has come to 
change your understanding of functions, stacks and 
return values.  

7.3 The Frame Dispatcher 

Let's have a look into the new, central "interpreter" 
function in ceval.c Actually it is no interpreter, but a 
function that repeatedly evaluates the top of the frame 
stack, using that frame's execute function.  

Just try to understand the central loop. The dispatcher 

The Frame Dispatcher 
"Mario" 

PyObject * 
PyEval_Frame_Dispatch() 
{ 
  PyObject * result; 
  PyFrameObject *f; 
  PyThreadState *tstate = PyThreadState_GET(); 
  PyDispatcherObject *self; 
 
  f = tstate->frame; 
  if (f==NULL) return NULL; 
 
  self = PyDispatcher_New(f); 
  if (self == NULL) 
    return NULL; 
 
  /* the initial frame belongs to us */ 
  Py_INCREF(self); 
  Py_XDECREF(f->f_dispatcher); 
  f->f_dispatcher = self; 
  result = f->f_temp_val; 
  f->f_temp_val = NULL; 
 
  while (1) { 
    result = f->f_execute(f, result) ; 
    f = tstate->frame; 
    if (result == Py_UnwindToken) { 
      /* this is actually the topmost frame. */ 
      /* pick an optional return value */ 
      result = f->f_temp_val; 
      f->f_temp_val = NULL; 
      /* and mark the frame as our own */ 
      if (f->f_dispatcher != self) { 
        Py_INCREF(self); 
        Py_XDECREF(f->f_dispatcher); 
        f->f_dispatcher = self; 
      } 
    } 
    else if (f==NULL  
            || f->f_dispatcher != self) 
      break; 
  } 
  self->d_back->d_alive = 1; 
/* always possible since one always exists */ 
  self->d_alive = 0; 
  Py_DECREF(self); 
  return result; 
} 

Frame Protocol: 
After some frame's f_execute has been run, we always 
refer to the topmost tstate frame. If a frame returns the 
Py_UnwindToken  object, this indicates that a different 
frame will be run that now belongs to the current 
dispatcher. The f_temp_val field holds the temporary 
return value since f_execute 's return value was 
occupied. Otherwise, we will bail out whenever the 
result becomes NULL or a different dispatcher is 
detected. 
 



picks the topmost frame, the current result, and calls 
the frame's f_execute  function. This dispatcher 
loop is the place where we always return to, 
regardless for what reason we ran a frame or why we 
left a frame.  

This loop will continue to evaluate frames, until it 
reaches some end condition. It doesn't care about the 
frame stack that might grow as Python functions are 
called, or shrink when Python functions return or 
raise exceptions. It will simply run the topmost 
frame, whatever is there, whatever interpreter it uses. 
Calling frames and returning from frames is no 
longer different. It reduces to leaving a frame and 
executing another one. If the frame chain grows, it is 
a call, and if it shrinks, it is a return. The dispatcher 
does not care about that. 

You might wonder about the result  variable, 
which looks a little funny. This is indeed the result 
that the execution of a frame came up with. We 
wouldn't even need to examine this variable, since the 
executing interpreters know whether they expect a 
result and how to handle it. The reason why we do 
check for a Py_UnwindToken  is just to assign our 
ownership (see below) to a probably newly created 
frame, and to handle the special case of passing a 
return value 

You might also wonder thy this dispatcher object 
self  is needed. Every existing dispatcher creates a 
dispatcher object, in order to keep track of recursive 
calls. By inserting a reference from the frame to this 
object, we associate the frame's ownership. 

This is a necessary contribution for being stackless 
and backward compatible at once. Not every 
recursive interpreter call can be easily avoided: An 
__init__  call for instance has different semantics 
than "normal" frames, since it is expected to return 
None as result. This cannot easily be turned into tail 
recursion. In this case, the recursive call makes good 
sense. By monitoring the lifetime of dispatchers, we 
can track down whether a frame is a valid jump target 
or not. 

7.4 Extended Frame Compatibility 

Two frames are compatible iff control flow can be 
transferred without corrupting the C-stack. 

My early assumption was that compatible frames 
must necessarily share the same dispatcher. This 
leads to a couple of restrictions: Continuations, which 

are created from frames belonging to a different 
dispatcher would never be valid jump targets. You 
would never be able to save a continuation in an 
instance's __init__  function and call it later from 
the main module. The same is true for continuations 
which are saved during an import or which even 
come from a different thread. And most important, 
extension modules that are not stackless-aware often 
call back into Python functions and crate 
incompatible frames. 

But there is a way out: Dispatcher objects are keeping 
track of their running dispatcher function. Whenever 
the dispatcher returns, it marks its death in its 
dispatcher object. It is important to note that by the 
death of a frame's dispatcher, we know for sure that 
there is no longer an associated C function on the 
stack that holds a reference to it, thereby forbidding 
its re-use. 

The resulting rule is simple: Wait until a dispatcher is 
done with its frames, and they become valid jump 
targets. Before we jump to such a frame, we remove 
the reference to the dead dispatcher and assign our 
own. Dead dispatcher's frames are compatible. 

In other words: By waiting until a call to another 
dispatcher returns, we can treat this call again like a 
tail recursion which is equivalent to a jump back into 
our active dispatcher. Just a very long tail -. 

8 The New C API 

In order to stay backward compatible, all the known 
recursive interpreter functions needed to be retained. 
To avoid duplication of all the code, the following 
technique was applied:  

The old function header was copied; the new function 
got a "_nr" appended to its name. The new function 
was changed to be non-recursive. If the old version 
was short enough or had to be changed anyway, code 
was indeed copied. An example for this is the well-
known eval_code :  

The difference is obvious: While the backward 
compatible version creates a ready-to-run frame 
(which is put onto the frame stack by 
eval_code2_setup ) and runs it to the end by 
PyEval_Frame_Dispatch , the other just leaves 
that frame and returns Py_UnwindToken .  

An example where the original version was expressed 
in terms of the new version, we have a look at 



PyEval_CallObjectWithKeywords : 
The old version was turned into a call to the new, 
followed by a dispatcher call. Note that in the case of 
PyEval_CallObjectWithKeywords , the 
"new" function is exactly the same code as the 
original one. The difference is just that the used 
internal functions of ceval.c,  call_builtin  
and call_function  have changed their semantics 
to be non-recursive versions. PyEval_Call-
ObjectWithKeywords_nr  does not know that it 
now can return something special, since a 
Py_UnwindToken  is just another PyObject. So the 
"new" function in this case is the new version of 
PyEval_CallObjectWithKeywords  that just 
takes care that no Py_UnwindToken  can leak out 
to a C function that is not stackless-aware.  

The backward compatible version has exactly the 
same semantics as in the original code. It runs some 
code and returns either a PyObject or a NULL, 
indicating an exception. Extension modules that wish 
to implement stackless C functions in a similar 
fashion as shown here, will use the new function 
instead.  

New stackless functions in ceval.c:   
PyEval_CallObjectWithKeywords_nr   
PyEval_CallObject_nr   
PyEval_EvalCode_nr   
PyEval_Frame_Dispatch   

New stackless functions in pythonrun.c:   
PyRun_SimpleFile_nr   
PyRun_String_nr   
PyRun_File_nr   

New stackless functions in bltinmodule.c:   
builtin_map_nr done  
builtin_eval_nr to do  
builtin_filter_nr  to do  
builtin_reduce_nr to do  
builtin_apply_nr done  

The builtin_xxx  functions finally replaced their 
originals, since they are not used elsewhere. 
builtin_eval  and builtin_apply  are 
straightforward to implement, some are not done yet. 

The major problem is functions that cannot easily be 
converted since they are not tail recursive 
preparations of a single eval_code  call, but 
repetitive calls are performed. To obtain a stackless 
version of these, it is necessary to define their own 
interpreter function. I implemented this as a proof of 
concept just for builtin_map . 

9 Alternatives to "The Token" 

The approach to introduce a special object to 
represent a third system state is considered not clean 
sometimes. It should be noted that there are other 
equivalent approaches. A special flag could be set in 
the current thread state or the current frame to 
indicate the special situation of unwinding. My 
choice was directed by execution speed, since 
comparison of the current result against a constant 
value is fast. For sure there is the need of a third 
system state, by whatever it is expressed. 

10 Future directions 

A stackless implementation of the SGMLOP module 
is under consideration. This leads to fast XML 
parsers, which are no longer driven by callbacks into 
Python, but using coroutines and quick context 
switches between instantiated frames. This parsing 
style may appear not only as faster, but also as not 
less intuitive than callbacks. Tiny threads will be 
implemented with Stackless Python and Continuation 
module. Generators and coroutines will get direct 
support in the C code, after they have been 
implemented in Python. Since their layout is not as 
obvious as for continuations, we should play with 
different prototypes and choose what fits best. 
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Appendix: Code Examples 
 

 
/* Backward compatible interface */ 
 
PyObject * 
PyEval_EvalCode(co, globals, locals) 
  PyCodeObject *co; 
  PyObject *globals; 
  PyObject *locals; 
{ 
  PyFrameObject *frame; 
  frame=eval_code2_setup(co, 
        globals, locals, 
        (PyObject **)NULL, 0, 
        (PyObject **)NULL, 0, 
        (PyObject **)NULL, 0, 
        (PyObject *)NULL); 
  if (frame != NULL) 
    return PyEval_Frame_Dispatch(); 
  else 
    return NULL; 
} 
 
 
PyObject * 
PyEval_EvalCode_nr(co, globals, locals) 
  PyCodeObject *co; 
  PyObject *globals; 
  PyObject *locals; 
{ 
  PyFrameObject *frame; 
  frame = eval_code2_setup(co, 
        globals, locals, 
        (PyObject **)NULL, 0, 
        (PyObject **)NULL, 0, 
        (PyObject **)NULL, 0, 
        (PyObject *)NULL); 
  if (frame != NULL) 
    return Py_UnwindToken; 
  else 
    return NULL; 
} 

 
PyObject * 
PyEval_CallObjectWithKeywords(func, arg, kw) 
  PyObject *func; 
  PyObject *arg; 
  PyObject *kw; 
{ 
  PyObject *retval = 
    PyEval_CallObjectWithKeywords_nr( 
        func, arg, kw); 
  if (retval == Py_UnwindToken) { 
    retval = PyEval_Frame_Dispatch(); 
  } 
  return retval; 
} 
 
PyObject * 
PyEval_CallObjectWithKeywords_nr(func, arg, kw) 
  PyObject *func; 
  PyObject *arg; 
  PyObject *kw; 
{ 
    ternaryfunc call; 
    PyObject *result; 
 
  if (arg == NULL) 
    arg = PyTuple_New(0); 
  else if (!PyTuple_Check(arg)) { 
    PyErr_SetString(PyExc_TypeError, 
        "argument list must be a tuple"); 
    return NULL; 
  } 
  else 
  ... 
  ... 
 

Figure 7: PyEval_CallObjectWithKeywords 



 
 

Source code and a Python 1.5.2 compatible 
build are available at: 

http://www.tismer.com/research/stackless 

 

old case CALL_FUNCTION: 
    { 

[ declarations and initializations ] 
      if (PyFunction_Check(func)) { 

[ prepare Python function call ] 
        x = eval_code2( 
          (PyCodeObject *)co, globals,  
          (PyObject *)NULL, stack_pointer-n, na, 
          stack_pointer-2*nk, nk, d, nd, class); 
      } 
      else { 

[ prepare builtin function call ] 
        x = PyEval_CallObjectWithKeywords( 
          func, args, kwdict); 
        Py_DECREF(args); 
        Py_XDECREF(kwdict); 
      } 
      Py_DECREF(func); 
      while (stack_pointer > pfunc) { 
        w = POP(); 
        Py_DECREF(w); 
      } 
      PUSH(x); 
      if (x != NULL) continue; 
      break; 
    } 
 
 

old function call_function() 
[ preparations ] 

  result = eval_code2( 
    (PyCodeObject *)PyFunction_GetCode(func), 
    PyFunction_GetGlobals(func), 
    (PyObject *)NULL, 
    &PyTuple_GET_ITEM(arg, 0), PyTuple_Size(arg), 
    k, nk, 
    d, nd, 
    class); 
 
  Py_DECREF(arg); 
  PyMem_XDEL(k); 
 
  return result; 
} 
 
 

new function call_function() 
[ preparations ] 

f = eval_code2_setup( 
    (PyCodeObject *)PyFunction_GetCode(func), 
    PyFunction_GetGlobals(func),  
   (PyObject *)NULL, 
    &PyTuple_GET_ITEM(arg, 0), PyTuple_Size(arg), 
    k, nk, 
    d, nd, 
    class); 
  if (f != NULL) { 
    f->f_hold_ref = arg;  /* the decref will 
              happen on frame disposal */ 
    result = Py_UnwindToken; 
  } 
  else result = NULL; 
 
  PyMem_XDEL(k); 
  return result; 
} 

 

new case CALL_FUNCTION: 
    { 

[ declarations and initializations ] 
      if (PyFunction_Check(func)) { 

[ prepare Python function call ] 
        x = (PyObject *)eval_code2_setup( 
          (PyCodeObject *)co, globals,  
          (PyObject *)NULL, stack_pointer-n, na, 
          stack_pointer-2*nk, nk, d, nd, class); 
        if (x != NULL)  
          x = Py_UnwindToken; 
      } 
      else { 

[ prepare builtin function call ] 
        f->f_stackpointer = stack_pointer; 
        x = PyEval_CallObjectWithKeywords_nr( 
          func, args, kwdict); 
        Py_DECREF(args); 
        Py_XDECREF(kwdict); 
      } 
      Py_DECREF(func); 
      while (stack_pointer > pfunc) { 
        w = POP(); 
        Py_DECREF(w); 
      } 
 
      /* stackless postprocessing */ 
   
      if (x == Py_UnwindToken) { 
        why = WHY_CALL; 
        break; 
      } 
      else if (f->f_callguard != NULL) { 
        /* also protect normal calls 990712 */ 
        f->f_stackpointer = stack_pointer; 
        f->f_next_instr = next_instr; 
        f->f_temp_val = x; 
        f->f_statusflags |= WANTS_RETURN_VALUE; 
        err = f->f_callguard(f, 2); 
        if(err) { 
          if(err==-42) { 
            return Py_UnwindToken; 
          } 
          else 
            break; 
        } 
        f->f_statusflags &= ~WANTS_RETURN_VALUE; 
      } 
      PUSH(x); 
      if (x != NULL) continue; 
      break;  
    } 
     
 
 

Figure 8: CALL_FUNCTION 


