
Continuations and Stackless Python

Or "How to change a Paradigm of an existing Program"

Christian Tismer
Virtual Photonics GmbH
mailto:tismer@tismer.com

Abstract

In this paper, an implementation of "Stackless
Python" (a Python which does not keep state on the C
stack) is presented. Surprisingly, the necessary
changes affect just a small number of C modules, and
a major rewrite of the C library can be avoided. The
key idea in this approach is a paradigm change for the
Python code interpreter that is not easy to understand
in the first place. Recursive interpreter calls are
turned into tail recursion, which allows deferring
evaluation by pushing frames to the frame stack,
without the C stack involved.

By decoupling the frame stack from the C stack, we
now have the ability to keep references to frames and
to do non-local jumps. This turns the frame stack into
a tree, and every leaf of the tree can now be a jump
target. While exploring this idea, we will recognize
ordinary function calls and returns to be just special
cases of so-called continuations, and we will learn
about them as a really simple idea that covers all
kinds of program flow.

Instead of an implementation of coroutines and
generators as C extensions, we will see how they can
be expressed in Python, using the continuation
module. Since the theory of continuations is not very
broadly known, a small introduction is given.

1 Introduction

There have been a few attempts to implement
generators and coroutines in Python. These were
either of low performance, since they were
implemented using threads, or limited by Python's
recursive interpreter layout, which prevented
switching between frames liberally. Changing Python
to become non-recursive was considered a major,
difficult task. Actually it was true, and I had to
change truth before I could continue. -

2 Continuations

2.1 What is a Continuation?

Many attempts to explain continuations can be found
in the literature[5-10], more or less hard to
understand. The following is due to Jeremy Hylton,
and I like it the best. Imagine a very simple series of
statements:

x = 2; y = x + 1; z = x * 2

In this case, the continuation of x=2 is y=x+1;
z=x*2 . You might think of the second and third
assignments as a function (forgetting about variable
scope for the moment). That function is the
continuation. In essence, every single line of code has
a continuation that represents the entire future
execution of the program.

Perhaps you remember the phrase "Goto is
considered harmful". Functional programming's
answer turns bad into good and makes that goto into a
key idea: A continuation is a means of capturing the
control flow of the program and manipulating it; it is
a primitive idea that can be used to synthesize any
form of control flow.

Although we do not intend to re-invent the existing
control structures, a simple example might help.

Without going into details, our continuation this is
prepared to jump into exactly the situation where the
boxed assignment takes place. The call this(k-1)

def looptest(n):
 this = continuation.current()
 k = this.update(n)
 if k:
 this(k-1)
 else:
 del this.link

moves us immediately back into the context of that
assignment, just with a new value for k . This results
in repeated execution of this piece of code, forming a
while loop.

In comparison to our first example, we did not use a
continuation at the bounds of a statement, but it was

located in the middle of a function call, in the
situation of parameter passing. This kind of
continuation is most useful since we can provide a
parameter and get a result back. We will see more
about this in the next chapter. In fact, continuations
are not limited to statements or function calls. Every
opcode of the (virtual) machine has a continuation.

"The current continuation at any point in the
execution of a program is an abstraction of the rest of
the program" [5]. Another wording is "what to do
next "[6]

But in terms of Python frames, a continuation is
nothing more than a frame object, together with its
linked chain of calling frames. In order to make this
callable, handy, and to protect frames from being run
more than once at a time, we wrap them into
continuation objects, which take care about that.
Before discussing the details in chapter 4, let's now
build a really useful example.

3 Generators in Python

Instead of a direct implementation of coroutines and
generators, I decided to use the most general
approach: Implement continuations as first class
callable objects, and express generators and
coroutines in Python.

3.1 Generators expressed with Threads

Few people might know that there is a generator
implementation using threads. It can be found in the
source distribution under demo/threads/Generator.py
and has not been changed since 1994, when there was
a longer discussion of generators on C.L.P [2]. A
slightly modified version for Python 1.5.2 can be
found in my distribution for comparison. The basic
idea is to prove get() and put() functions which
communicate with a consumer and a producer thread.

3.2 Generators done with Continuations

Now we implement Generators using continuations.

Instead of communicating with threads, get() and
put() jump directly into the context of the
consumer/producer function. The jumps are
expressed by calls of continuations, which leave the
current context and jump over to the context that is
stored in the continuation object.

Generators using Continuations

import continuation
Killed = 'Generator.Killed'
get_caller = continuation.caller

class Generator:
 def __init__(self, func, *args, **kw):
 self.func = func
 self.args = args
 self.kw = kw
 self.done = 0
 self.killed = 0
 self.producer = self._start

 def _start(self, dummy=None):
 if not self.killed:
 try:
 apply(self.func, (self,) +
 self.args, self.kw)
 raise EOFError, "no more values"
 finally:
 self.kill()

 def put(self, value):
 if self.killed:
 raise TypeError,
 'put() called on killed generator'
 self.producer = get_caller()
 self.consumer(value)

 def get(self):
 if self.killed:
 raise TypeError,
 'get() called on killed generator'
 self.consumer = get_caller()
 self.producer()

 def kill(self):
 if self.killed:
 raise TypeError, 'kill() called on

killed generator'
 hold = self.func, self.args
 self.__dict__.clear()
 self.func, self.args = hold
 self.killed = 1

 def clone(self):
 return Generator(self.func, self.args)

def count(g, start=1, limit=0):
 # just to measure switching time
 i = start
 while i != limit:
 g.put(i)
 i = i+1
 #if i==42: g.kill()
 g.done = 1

Let us look at the put method. The call of
get_caller returns a continuation object, which is
a snapshot of put 's current caller. This is saved away
in self.producer and will be used later by the
get method. A call of this object performs by default
a jump to the saved context.

It is crucial to understand how these objects exchange
values: A continuation objects always accepts a value
as its argument, and it returns a value as its result. It
is just the question where or when the value is
returned. When get_caller() is executed in
put() , it catches the calling frame in a situation,
where it has been supplied with a value for the call.

In our count() example, this is the expression
g.put(i) , and the continuation is saved as
producer() function, waiting to run the next loop
cycle. But the passed value is given to the
consumer() function that was captured in the
context of a get() call, and the value appears there
as the function result. I admit that this is a little hard
to understand. Basically, you have understood the
idea of a coroutine switch, and in fact, this generator
is made of two coroutines. More important: You have
understood how continuations act as the building
block for new control structures.

4 Continuation Module

The continuation module was always my real target
application, and it has been rewritten the fifth time
now. This was like iteration, since I had to learn what
continuations are, what they need, and how Stackless
Python must be to support it, without including it.
Meanwhile it has grown quite complicated and has
undergone many optimizations, and there is no
chance to cover it all in this article.

4.1 The Problem

After you learned what a continuation is and how
easy this all is to understand, I have to disappoint you
a little. The implementation isn't easy at all, due to
the fact that Pythons frames are not safe when used as
continuations. Python frames hold besides some other
things the local variables, exception state, current
code location and the evaluation stack for
expressions.

And that is the problem. Whenever a frame is run, its
state changes, especially the expression stack and the
code location. But we wanted to save a continuation

for later re-use. What we have so far is just enough
for the little coroutine idea which I sketched in the
beginning. But what happens if we are able to return
to the same frame twice, intended or not? (Figure 1)
We would need a copy of a frame. But a copy would
give a problem if some other structure were pointing
to the frame. This was one of the moments where I
considered giving up. -

a-frame with
refcount > 1

b-frame still
referenced

Critical Situation

c-frame wants
to return

Figure 1: Multiple Return

a-frame as
continuation

b-frame still
referenced

Push-back Frame

c-frame wants
to return

new frame with
contents of

a-frame

Figure 2: Frame Mutation

4.2 How it Works

In order to solve this problem, I introduced another
kind of frames, continuation frames. The idea is
simple: While being of the same structure as an
ordinary frame, it has a different execute function. It
is named throw_continuation , and that's
exactly its only purpose: Restore the state of a real
frame and run it. (Figure 2)

The other half of the solution is not to insert a copy of
the real frame in front of it into the frame chain, but
to create it behind the real frame, then turn the real
frame into a continuation frame, and make the pushed
back version into the real one.

 This was fine for the first three versions of
continuation module. But it turned quickly into a
problem to keep track of chain growth, and
normalization of the resulting mixture of real frames
and continuation frames was necessary.

Furthermore, I needed more control over the frame
linkage and be able to predict necessary continuation
frame creation as much as possible. So here comes
the third half of the solution…(Figure 3)

This structure adds a level of indirection, but the cost
is very low. Adding a new continuation frame is not
much more than the old pushback scheme, together
with some pointer and refcount adjustment.

4.3 How fast? Is it fast? Size?

It is. Some more advanced versions of the get and
put functions in our example run three times faster
than the threads implementation. The following
recursive call of one(!) frame has the same speed as

the proper implementation via functions:

On size: The size of our continuation is just one
frame, some 400 bytes maybe. You can easily create
10000 of these objects. Threads come at the cost of
an extra C stack each, which is a megabyte on some
machines.

We close the continuation story with a look through
PythonWin's Browser.

Figure 4: Continuation Browser View

5 Stackless Python

After we had continuations as the real fruit of this
work, let's come to Stackless Python and its
implementation. Continuations were the reason to
build Stackless Python; without it there is no chance
to implement them in a machine independent manner.

5.1 What does it mean to be stackless?

The standard Python code interpreter is written in C.
Every Python action is somehow performed by some
C code. Whenever a piece of Python code is
executed, a new incarnation of the interpreter loop is
created and executed by a recursive call.

First of all, let's see what it means to have a C stack.
Consider a Python function a() , which calls a

a-frame as
continuation

b-frame still
referenced

Node Object

c-frame wants
to return

new frame with
contents of

a-frame

PyCoNode

Figure 3: Nodes Collect References

def rectest2(n):
 this = continuation.current()
 call = this.call
 k = this.update(n)
 if k:
 call(k-1)
 else:
 del this.link

Python function b() , which calls a Python function
c() . In the context of function c() , the C
interpreters of all three functions are still alive. They
are keeping their state on the C stack. When the
Python functions come to an end or an exception is
raised, the C functions are popped off the C stack.
This is called "unwinding the stack".

In that sense, Python is not so different from other C
programs, which are usually all stack based. But this
is not the full story, since Python does quite a lot
more than using the C stack.

Every running piece of Python code also has an
associated Frame object. A Frame object is
something like a running instance of a code object.
Frames are used to hold local and global variables, to
maintain the value stack of the byte code interpreter,
and some other housekeeping information. (Figure 5)

These Frames are chained together in a last-in/first-
out manner. They make up a stack by themselves.
And they do this in a way quite similar to the C stack.

5.2 Why the C stack should vanish

The C stack limits recursion depth. The C stack has a
fixed size, and therefore the stack cannot grow
infinitely. The frame stack is not limited. I think it is
good to keep recursion depth limited, but not as a
matter of an implementation detail. This should be a

user option. The C stack should be reserved for C
modules that really need it.

The C stack holds references to objects. Well,
eval_code is clean in this respect, but other C
functions may pile up on the stack as well.
References to function parameters are kept on the C
stack until a function returns.

The C stack holds execution state. Information of
the frame's current program and stack counter is
hidden in variables on the C stack and cannot be
modified. The C stack therefore limits the possible
order of execution.

Removing the C stack is cheap. As I try to show in
this paper, the implementation effort is much smaller
than one would think. Execution speed is nearly the
same. But the new possibilities of having an explicit
stack are many, and they cannot even be tried in the
moment.

Coroutines can be incredibly fast. As we will see in
the following, by decoupling the frames from the C
stack, coroutines can be implemented so fast, that it
might become feasible to use them for quite a number
of problems. Switching between two coroutine
frames needs just a built-in function call that is much
cheaper than calling a Python function.

PERL has already no longer a C stack. They will
have some good reasons for this. Python has no

def a(x):
...
b(x+1)
...

def b(x):
...
c(x*x)
...

def c(x):
...
print "x=",x
...

a(42)

interactive
frame

a-frame

b-frame

c-frame

Frame StackC Stack (simplified)

PyRun_InteractiveOne
PyEval_EvalCode

eval_code2

call_function
eval_code2

...

...
eval_code2

...

...
eval_code2

...

Standard „stackfull“ Python

Figure 5: Standard Nested Call

reason to be limited and stay behind.

To conclude: I want to provide the same level of
flexibility for the C API as we have already in
Python, open Python for new, efficient algorithmic
approaches, at low implementation and runtime cost.

5.3 Targets Evolution and History

Everything started with a discussion of coroutines in
Python on the python-dev mailing list, initiated by
Sam Rushing. In turn, a series of requirements
materialized as consequences.

Get rid of the C stack. This became clear quite
quickly. In order to be able to rearrange frames, the C
stack is in the way.

Allow for pluggable interpreters. After a first
implementation of a tail-recursive code interpreter, I
realized that tail recursion (chapter 6.2) is necessary
but not sufficient in order to make map, filter and
reduce stackless. Instead, we have to build tiny
custom interpreters. As a consequence, every
extension module can provide its own interpreter for
any frame.

Do the minimum changes to existing code. It was
never clear (and still is not) whether the Stackless
Python patches would make it into the distribution at
some time. Furthermore, Python will undergo a lot of
changes in the future. The fewer changes are done
now, the easier it will be to incorporate them into
future versions. Alternatively, keeping running my
own parallel python version becomes less effort.

Stay compatible to compiled extension modules.
Stackless Python should be a drop-in replacement for
the official distribution. Every existing compiled
extension module should work, provided it does not
rely on the exact frame layout. The proof of concept
was to replace python15.dll and have PythonWin on
top of it.

Learn how stackless extension modules work.
Although my major goal was to provide stackless
behavior for Python code, the requirement to figure
out how to make stackless-aware extension modules
came up quickly. Suppose that a fast XML parser is
written in Python, which makes use of rapid context
switching. In order to write a much faster version in
C, we need to be able to model the same stackless
behavior. Fortunately, the proof of concept comes for
free by stackless map.

Implement first class continuations. As a proof of
concept, and to learn how all of this must work, I had
not only to write an appropriate Python version, but
also check the strength of the concept by
implementing first class continuations. In fact, a
number of improvements had to be done in order to
get continuations to work.

Keep continuations out of the core. While the
Python core was changed to support continuations, it
became clear that the majority of existing and future
code would probably make no use of continuations.
Therefore, the implementation had to have the
smallest possible runtime impact on the Python core,
and continuations had to be a dynamic module. The
evolution of the continuation module resulted in
several changes to Stackless Python, which has
reached version 1.0 at the time of writing. It appears
to be stable and is used in production code.

6 The Paradigm Shift

We will see in the next chapter, how Stackless
Python was developed. Since this was a long,
iterative process, the key ideas appear in the order of
invention which is not optimal for the readers
understanding. The essentials can be summarized as
the following 3 axioms:

6.1 Time of Frame Execution

The paradigm in ceval.c for running a Python
function is to build a frame for the code object, to put
all the parameters in place and then run
eval_code2 and wait for it to return.

The transformation: Making sure to run all frames in
their correct order does not imply that we must call
the interpreter function from the current C-stack
nesting level. If we can avoid any C-stack related
post-processing, unwinding the stack is possible
before the frame execution. This implies the next
shift:

6.2 Lifetime of Parameters

The function parameters in standard Python are kept
alive by the caller. This means that the caller of
eval_code2 has to wait until the call is finished.
After the call the reference to the parameter tuple is
removed.

Thinking in frames instead of recursive calls, it is
obvious that parameters should be kept alive as long
as the frame exists. Therefore, we put a reference to
the parameter tuple into a frame field. This reference
will be automatically removed at the best possible
time: when the frame is disposed.

Since we removed the last cleanup task from the
recursive C function call, there is nothing left do do
for it, and it may return to its caller before the frame
is run. This pattern of a function invocation as the last
action of the caller is also known as tail recursion.
Tail recursive calls are logical identical to jumps, and
unwinding our C stack before running the next frame
is our C equivalent of directly jumping back into the
toplevel frame dispatcher.

6.3 Third System State

Standard Python has the throughout semantics of
function calls that either a PyObject is returned, or
NULL which signals an exception. These are the two
essential system states while returning from a frame.

By introduction of a special object as a return value
with a different meaning, we can control the C-stack
and request to unwind it, before the next frame is run.
Since this object is compatible with all other Python
objects, this protocol change isn't visible to most of
the involved code. Only the C functions which deal
with running a new frame needed to be changed. This
is the third system state.

Return Value System State

NULL An error occurred

Py_UnwindToken Dispatch a frame

Other PyObject Return this value

The above three ideas were central, necessary and
sufficient for Stackless Python. All other details are
consequences from these axioms.

7 Implementing Stackless Python

During the implementation, a number of rules

showed up as being essential. They are quite simple:

1. Avoid recursive calls into the interpreter.

2. Store all runtime information in frames.

3. Allow frames to be restarted. Just add to the
frame structure, don't break anything.

4. Store the interpreter function in the frames.

5. Have one central frame handler, turn eval_code2
into just one interpreter

6. Provide new functions but keep backward
compatible stub functions.

Rule 1 is obvious but looks hard to fulfill.

Rule 2 is obvious, too. The frame chain becomes our
true stack. No information should be hidden in the C
stack while a Python function is being called.

Rule 3 is one of the key ideas. We come to it soon.

Rule 4 is just a consequent move of information into
frames. If a frame is to know everything about the
running code, then it also should know which the
interpreter is. As a side effect, frames can call each
other at wilt, without having to know more than that
this is just a runable frame.

Rule 5 is a consequence of splitting responsibilities.
The central frame handler is the very minimum that
we need. It does nothing more than juggling the
frame calls and passing results. With a single concept
of frames, we can run any kind of interpreters
together, as long as they obey the Python Object
Protocol.

Well, Rule 6 is clear. We want to be still standard
Python with the standard C API just extended.

7.1 Problem analysis

 Let's have a look into the code (Figure 8). The first
file to inspect is ceval.c . We compare the old and
the new version. If you try to figure out what happens
on a Python function call, you will first think it is
impossible to do that without the C stack.

 Have a look at function eval_code2 , at the case
CALL_FUNCTION(Figure 8) . Many different cases
are handled here; other functions are called, like
PyEval_CallObjectWithKeywords . There, a
number of decisions are made, which in turn cause
other function calls, and finally, we end up
somewhere deeply nested, with either a call to
call_builtin or call_function . For getting
a result, either a C function is called, or a new
interpreter incarnation handles the call, finally via
eval_code2 again.

In order to do this call, the calling function somehow
prepares parameters, keeps a reference to the
parameters, lets the evaluation happen, releases the
parameters and returns the result.

My biggest fear was that I would have to rewrite all
of this. But this is not true.

7.2 Problem solution

If we just avoid doing the final call to eval_code2 ,
we are almost done. Please have a look into the old
version of call_function , and compare it to the
new version. Instead of calling the interpreter, we end
up with the above piece of code: Prepare a frame to
be run, but don't run it.

eval_code2_setup is a function that just
prepares a new frame, in order to be run later. The
frame holds all references to parameters, and the new
field f_hold_ref takes the role to keep a reference
to arg . Instead of actually performing the call now,
call_function returns a special object,
Py_UnwindToken as its value. This value is passed
as a result through the actual pile of invoked C
functions until it is caught in the calling interpreter
(yes, we are back at the CALL_FUNCTION opcode).
The interpreter checks this value and knows that a
call is pending, so the current frame must be left, and
a new frame has been put onto the stack, which
should be called now.

Why is this possible, and why does it appear to be so
easy?

Python is already nearly stackless. All the functions
try to do nothing more than just to prepare for the
next interpreter call, which will do the actual
evaluation. After as code object and its parameters
have been checked for errors, the runtime error
checking is already deferred to the responsible
interpreter. However, this does not mean that we need
to call the interpreter immediately. We can defer this
until we have finished the currently active C
functions! Do you get the idea?

In other words: Almost all calls into the interpreter

interactive
frame

a-frame

b-frame

c-frame

PyRun_InteractiveOne
PyEval_EvalCode

eval_code2_loop

Stackless Python

PyEval_Frame_Dispatch
always calls from here

Dispatcher Object

PyEval_Frame_Dispatch
this *can* still happen

Dispatcher Object

eval_code2_loop Bad case: an internal function does a call via the old interface

Good case: always the same dispatcher

Figure 6: Minimizing Recursive Calls

turn out to be tail recursive. After parameters have
been checked and everything is prepared, there is no
need to actually call the next function. It is ok to
generate a frame on the frame stack, which is ready to
be run by the next interpreter involved, but there is no

need to do this while we are still in the current pile of
active C functions. We can leave before we call.

Whenever a function believes that it is done by
running eval_code2 and returning a value, it defers
all error handling to "the" interpreter. What I do is
nothing more than to defer the whole call to just
"one" interpreter, which has the same semantics. It is
just a special form of tail recursion taking place. It
does not matter where the result value is checked for
an exception immediately from a deeply nested
function call, or later, after unwinding to the top-level
interpreter incarnation. The sequence of necessary
actions is driven by the frame chain and nothing else.

By following this principle, it was possible to make
stackless versions of all of the interpreter functions.
The conversion works like this:

When a C function calls the interpreter (the former
eval_code2), it does not immediately run the new
stack frame. Instead, the new frame object is created
and a special token, Py_UnwindToken, is returned.
Py_UnwindToken is a special return value that
indicates that the current interpreter should get out of
the way immediately (which means to return).

Another approach to explain this: The interpreter
functions are (almost) all working with PyObjects.
Return values can be NULL, or a proper PyObject.
NULL has the semantics of an error that has to be
handled, and it will cause the interpreters to unwind
the stack by an exception. This gives us just a two-
valued logic: Return values are either PyObjects or
NULL. By introducing the Py_UnwindToken, I
extended this to three-valued logic.

Since all these values can be passed through the
existing interpreter functions, I saved a major rewrite
and had just to take care to catch the right places to
change.

If you are still with me, now the time has come to
change your understanding of functions, stacks and
return values.

7.3 The Frame Dispatcher

Let's have a look into the new, central "interpreter"
function in ceval.c Actually it is no interpreter, but a
function that repeatedly evaluates the top of the frame
stack, using that frame's execute function.

Just try to understand the central loop. The dispatcher

The Frame Dispatcher
"Mario"

PyObject *
PyEval_Frame_Dispatch()
{
 PyObject * result;
 PyFrameObject *f;
 PyThreadState *tstate = PyThreadState_GET();
 PyDispatcherObject *self;

 f = tstate->frame;
 if (f==NULL) return NULL;

 self = PyDispatcher_New(f);
 if (self == NULL)
 return NULL;

 /* the initial frame belongs to us */
 Py_INCREF(self);
 Py_XDECREF(f->f_dispatcher);
 f->f_dispatcher = self;
 result = f->f_temp_val;
 f->f_temp_val = NULL;

 while (1) {
 result = f->f_execute(f, result) ;
 f = tstate->frame;
 if (result == Py_UnwindToken) {
 /* this is actually the topmost frame. */
 /* pick an optional return value */
 result = f->f_temp_val;
 f->f_temp_val = NULL;
 /* and mark the frame as our own */
 if (f->f_dispatcher != self) {
 Py_INCREF(self);
 Py_XDECREF(f->f_dispatcher);
 f->f_dispatcher = self;
 }
 }
 else if (f==NULL
 || f->f_dispatcher != self)
 break;
 }
 self->d_back->d_alive = 1;
/* always possible since one always exists */
 self->d_alive = 0;
 Py_DECREF(self);
 return result;
}

Frame Protocol:
After some frame's f_execute has been run, we always
refer to the topmost tstate frame. If a frame returns the
Py_UnwindToken object, this indicates that a different
frame will be run that now belongs to the current
dispatcher. The f_temp_val field holds the temporary
return value since f_execute 's return value was
occupied. Otherwise, we will bail out whenever the
result becomes NULL or a different dispatcher is
detected.

picks the topmost frame, the current result, and calls
the frame's f_execute function. This dispatcher
loop is the place where we always return to,
regardless for what reason we ran a frame or why we
left a frame.

This loop will continue to evaluate frames, until it
reaches some end condition. It doesn't care about the
frame stack that might grow as Python functions are
called, or shrink when Python functions return or
raise exceptions. It will simply run the topmost
frame, whatever is there, whatever interpreter it uses.
Calling frames and returning from frames is no
longer different. It reduces to leaving a frame and
executing another one. If the frame chain grows, it is
a call, and if it shrinks, it is a return. The dispatcher
does not care about that.

You might wonder about the result variable,
which looks a little funny. This is indeed the result
that the execution of a frame came up with. We
wouldn't even need to examine this variable, since the
executing interpreters know whether they expect a
result and how to handle it. The reason why we do
check for a Py_UnwindToken is just to assign our
ownership (see below) to a probably newly created
frame, and to handle the special case of passing a
return value

You might also wonder thy this dispatcher object
self is needed. Every existing dispatcher creates a
dispatcher object, in order to keep track of recursive
calls. By inserting a reference from the frame to this
object, we associate the frame's ownership.

This is a necessary contribution for being stackless
and backward compatible at once. Not every
recursive interpreter call can be easily avoided: An
__init__ call for instance has different semantics
than "normal" frames, since it is expected to return
None as result. This cannot easily be turned into tail
recursion. In this case, the recursive call makes good
sense. By monitoring the lifetime of dispatchers, we
can track down whether a frame is a valid jump target
or not.

7.4 Extended Frame Compatibility

Two frames are compatible iff control flow can be
transferred without corrupting the C-stack.

My early assumption was that compatible frames
must necessarily share the same dispatcher. This
leads to a couple of restrictions: Continuations, which

are created from frames belonging to a different
dispatcher would never be valid jump targets. You
would never be able to save a continuation in an
instance's __init__ function and call it later from
the main module. The same is true for continuations
which are saved during an import or which even
come from a different thread. And most important,
extension modules that are not stackless-aware often
call back into Python functions and crate
incompatible frames.

But there is a way out: Dispatcher objects are keeping
track of their running dispatcher function. Whenever
the dispatcher returns, it marks its death in its
dispatcher object. It is important to note that by the
death of a frame's dispatcher, we know for sure that
there is no longer an associated C function on the
stack that holds a reference to it, thereby forbidding
its re-use.

The resulting rule is simple: Wait until a dispatcher is
done with its frames, and they become valid jump
targets. Before we jump to such a frame, we remove
the reference to the dead dispatcher and assign our
own. Dead dispatcher's frames are compatible.

In other words: By waiting until a call to another
dispatcher returns, we can treat this call again like a
tail recursion which is equivalent to a jump back into
our active dispatcher. Just a very long tail -.

8 The New C API

In order to stay backward compatible, all the known
recursive interpreter functions needed to be retained.
To avoid duplication of all the code, the following
technique was applied:

The old function header was copied; the new function
got a "_nr" appended to its name. The new function
was changed to be non-recursive. If the old version
was short enough or had to be changed anyway, code
was indeed copied. An example for this is the well-
known eval_code :

The difference is obvious: While the backward
compatible version creates a ready-to-run frame
(which is put onto the frame stack by
eval_code2_setup) and runs it to the end by
PyEval_Frame_Dispatch , the other just leaves
that frame and returns Py_UnwindToken .

An example where the original version was expressed
in terms of the new version, we have a look at

PyEval_CallObjectWithKeywords :
The old version was turned into a call to the new,
followed by a dispatcher call. Note that in the case of
PyEval_CallObjectWithKeywords , the
"new" function is exactly the same code as the
original one. The difference is just that the used
internal functions of ceval.c, call_builtin
and call_function have changed their semantics
to be non-recursive versions. PyEval_Call-
ObjectWithKeywords_nr does not know that it
now can return something special, since a
Py_UnwindToken is just another PyObject. So the
"new" function in this case is the new version of
PyEval_CallObjectWithKeywords that just
takes care that no Py_UnwindToken can leak out
to a C function that is not stackless-aware.

The backward compatible version has exactly the
same semantics as in the original code. It runs some
code and returns either a PyObject or a NULL,
indicating an exception. Extension modules that wish
to implement stackless C functions in a similar
fashion as shown here, will use the new function
instead.

New stackless functions in ceval.c:
PyEval_CallObjectWithKeywords_nr
PyEval_CallObject_nr
PyEval_EvalCode_nr
PyEval_Frame_Dispatch

New stackless functions in pythonrun.c:
PyRun_SimpleFile_nr
PyRun_String_nr
PyRun_File_nr

New stackless functions in bltinmodule.c:
builtin_map_nr done
builtin_eval_nr to do
builtin_filter_nr to do
builtin_reduce_nr to do
builtin_apply_nr done

The builtin_xxx functions finally replaced their
originals, since they are not used elsewhere.
builtin_eval and builtin_apply are
straightforward to implement, some are not done yet.

The major problem is functions that cannot easily be
converted since they are not tail recursive
preparations of a single eval_code call, but
repetitive calls are performed. To obtain a stackless
version of these, it is necessary to define their own
interpreter function. I implemented this as a proof of
concept just for builtin_map .

9 Alternatives to "The Token"

The approach to introduce a special object to
represent a third system state is considered not clean
sometimes. It should be noted that there are other
equivalent approaches. A special flag could be set in
the current thread state or the current frame to
indicate the special situation of unwinding. My
choice was directed by execution speed, since
comparison of the current result against a constant
value is fast. For sure there is the need of a third
system state, by whatever it is expressed.

10 Future directions

A stackless implementation of the SGMLOP module
is under consideration. This leads to fast XML
parsers, which are no longer driven by callbacks into
Python, but using coroutines and quick context
switches between instantiated frames. This parsing
style may appear not only as faster, but also as not
less intuitive than callbacks. Tiny threads will be
implemented with Stackless Python and Continuation
module. Generators and coroutines will get direct
support in the C code, after they have been
implemented in Python. Since their layout is not as
obvious as for continuations, we should play with
different prototypes and choose what fits best.

11 Acknowledgements

I wish to thank all people who helped me to turn this
idea into reality. Special thanks apply to

Andrea Tismer for standing a husband who has been
hacking day and night for half a year

Jeremy Hylton who provided outstanding help to give
this paper its final touch

Tim Peters for all his input and involvement

Sam Rushing for inspiration and the reason at all

Axel Roepke for long and constructive discussions

Jean-Claude Wippler for helping to get the final bits
of the very first version done.

Guido for the promised hug :-)

Aaron Watters for being my shepherd for this paper.
Actually he never got something, but I hacked on my
code since he suggested "meaty examples"

Francois Ladouceur for the proofreading, which
didn't happen for the same reasons -

References
1. Richard Kelsey, William Clinger, And Jonathan Rees (Editors), Revised^5 Report on the Algorithmic

Language Scheme, http://www.swiss.ai.mit.edu/~jaffer/r5rs_toc.html, February 1998
2. Tim Peters, Coroutines in Python, http://www.pns.cc/stackless/coroutines.tim.peters.html, May 1994
3. Guido van Rossum, [Python-Dev] 'stackless' python?,

http://www.pns.cc/stackless/continuations.guido.van.rossum.html, May 1999
4. Sam Rushing, Coroutines In Python, http://www.nightmare.com/~rushing/copython/index.html, Nov. 1999
5. Dorai Sitaram, Teach Yourself Scheme in Fixnum Days, http://www.cs.rice.edu/~dorai/t-y-scheme/,

September 1998
6. Andrew W. Appel, Compiling with Continuations, Cambridge University Press, 1992
7. Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes, Essentials of Programming Languages,

MIT Press, 1993
8. Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand, Continuations and Coroutines, Computer

Languages, 11(3/4): 143-153, 1986.
9. Guy L. Steele. Rabbit: a compiler for Scheme, MIT AI Tech Report 474. 1978.
10. Strachey and Wadsworth, Continuations: A mathematical semantics which can deal with full jumps.

Technical monograph PRG-11, Programming Research Group, Oxford, 1974.

Appendix: Code Examples

/* Backward compatible interface */

PyObject *
PyEval_EvalCode(co, globals, locals)
 PyCodeObject *co;
 PyObject *globals;
 PyObject *locals;
{
 PyFrameObject *frame;
 frame=eval_code2_setup(co,
 globals, locals,
 (PyObject **)NULL, 0,
 (PyObject **)NULL, 0,
 (PyObject **)NULL, 0,
 (PyObject *)NULL);
 if (frame != NULL)
 return PyEval_Frame_Dispatch();
 else
 return NULL;
}

PyObject *
PyEval_EvalCode_nr(co, globals, locals)
 PyCodeObject *co;
 PyObject *globals;
 PyObject *locals;
{
 PyFrameObject *frame;
 frame = eval_code2_setup(co,
 globals, locals,
 (PyObject **)NULL, 0,
 (PyObject **)NULL, 0,
 (PyObject **)NULL, 0,
 (PyObject *)NULL);
 if (frame != NULL)
 return Py_UnwindToken;
 else
 return NULL;
}

PyObject *
PyEval_CallObjectWithKeywords(func, arg, kw)
 PyObject *func;
 PyObject *arg;
 PyObject *kw;
{
 PyObject *retval =
 PyEval_CallObjectWithKeywords_nr(
 func, arg, kw);
 if (retval == Py_UnwindToken) {
 retval = PyEval_Frame_Dispatch();
 }
 return retval;
}

PyObject *
PyEval_CallObjectWithKeywords_nr(func, arg, kw)
 PyObject *func;
 PyObject *arg;
 PyObject *kw;
{
 ternaryfunc call;
 PyObject *result;

 if (arg == NULL)
 arg = PyTuple_New(0);
 else if (!PyTuple_Check(arg)) {
 PyErr_SetString(PyExc_TypeError,
 "argument list must be a tuple");
 return NULL;
 }
 else
 ...
 ...

Figure 7: PyEval_CallObjectWithKeywords

Source code and a Python 1.5.2 compatible
build are available at:

http://www.tismer.com/research/stackless

old case CALL_FUNCTION:
 {

[declarations and initializations]
 if (PyFunction_Check(func)) {

[prepare Python function call]
 x = eval_code2(
 (PyCodeObject *)co, globals,
 (PyObject *)NULL, stack_pointer-n, na,
 stack_pointer-2*nk, nk, d, nd, class);
 }
 else {

[prepare builtin function call]
 x = PyEval_CallObjectWithKeywords(
 func, args, kwdict);
 Py_DECREF(args);
 Py_XDECREF(kwdict);
 }
 Py_DECREF(func);
 while (stack_pointer > pfunc) {
 w = POP();
 Py_DECREF(w);
 }
 PUSH(x);
 if (x != NULL) continue;
 break;
 }

old function call_function()
[preparations]

 result = eval_code2(
 (PyCodeObject *)PyFunction_GetCode(func),
 PyFunction_GetGlobals(func),
 (PyObject *)NULL,
 &PyTuple_GET_ITEM(arg, 0), PyTuple_Size(arg),
 k, nk,
 d, nd,
 class);

 Py_DECREF(arg);
 PyMem_XDEL(k);

 return result;
}

new function call_function()
[preparations]

f = eval_code2_setup(
 (PyCodeObject *)PyFunction_GetCode(func),
 PyFunction_GetGlobals(func),
 (PyObject *)NULL,
 &PyTuple_GET_ITEM(arg, 0), PyTuple_Size(arg),
 k, nk,
 d, nd,
 class);
 if (f != NULL) {
 f->f_hold_ref = arg; /* the decref will
 happen on frame disposal */
 result = Py_UnwindToken;
 }
 else result = NULL;

 PyMem_XDEL(k);
 return result;
}

new case CALL_FUNCTION:
 {

[declarations and initializations]
 if (PyFunction_Check(func)) {

[prepare Python function call]
 x = (PyObject *)eval_code2_setup(
 (PyCodeObject *)co, globals,
 (PyObject *)NULL, stack_pointer-n, na,
 stack_pointer-2*nk, nk, d, nd, class);
 if (x != NULL)
 x = Py_UnwindToken;
 }
 else {

[prepare builtin function call]
 f->f_stackpointer = stack_pointer;
 x = PyEval_CallObjectWithKeywords_nr(
 func, args, kwdict);
 Py_DECREF(args);
 Py_XDECREF(kwdict);
 }
 Py_DECREF(func);
 while (stack_pointer > pfunc) {
 w = POP();
 Py_DECREF(w);
 }

 /* stackless postprocessing */

 if (x == Py_UnwindToken) {
 why = WHY_CALL;
 break;
 }
 else if (f->f_callguard != NULL) {
 /* also protect normal calls 990712 */
 f->f_stackpointer = stack_pointer;
 f->f_next_instr = next_instr;
 f->f_temp_val = x;
 f->f_statusflags |= WANTS_RETURN_VALUE;
 err = f->f_callguard(f, 2);
 if(err) {
 if(err==-42) {
 return Py_UnwindToken;
 }
 else
 break;
 }
 f->f_statusflags &= ~WANTS_RETURN_VALUE;
 }
 PUSH(x);
 if (x != NULL) continue;
 break;
 }

Figure 8: CALL_FUNCTION

