

Building Components for a Distr ibuted Sentient Framework
with Python and CORBA

Diego López de Ipiña
Laboratory for Communications Engineering

Cambridge University Engineering Department
dl231@eng.cam.ac.uk

Abstract

TRIP (Target Recognition using Image Processing) is a
novel vision-based sensor system that uses a
combination of visual markers (2-D circular barcode
tags, or ringcodes) and conventional video cameras to
identify tagged objects in the field of view. A CORBA-
based distributed component architecture called
Sentient Information Framework has been devised to
efficiently manage and distribute to applications the
sensor data obtained both from TRIP and other sentient
technologies. This paper describes the implementation,
in Python, of two components for this framework; a
TRIP Directory Service mapping ringcode identifiers to
attributes and a context abstractor type component
insulating low level details of sensor data acquisition
and interpretation from an application. These case
studies will reflect the potential of Python and CORBA,
assisted by its Event Notification Services, as an ideal
technology combination for the rapid development and
efficient gluing of heterogeneous distributed software
components.

1. Introduction

TRIP1 (Target Recognition using Image Processing) is
a new vision-based sensor technology that, by means of
image processing and computer vision algorithms,
processes video frames captured from cameras
distributed through the environment to recognise 2D
circular barcode (ringcode) tags attached to objects.
The information inferred is the approximate location2,
orientation and identifier (TRIPcode) of the ringcodes
(see Figure 1) spotted.

It is expected that this sensor technology will be useful
in the realm of Sentient Computing, more commonly
known as context-aware computing [13], a research

1 TRIP has been developed in collaboration with AT&T Laboratories,
Cambridge
2 The current implementation only provides containment-based
location i.e. it identifies the camera view range within which the TRIP
target is sighted. Currently, the author is working on the improvement
of the location resolution using stereo vision techniques.

field concerned with the ability of computing devices
and applications to detect, interpret and respond to
changing aspects of the user’s context. Its goal is to
enhance computer systems with a sense of the real
world and make them know as much as the user about
the aspects of the environment relevant to their
application. To achieve this, it uses sensors distributed
throughout the environment to maintain a detailed
model of the real world and make it available to
applications. Applications can then respond to
environmental changes and autonomously change their
functionality, without explicit user intervention, based
on observations of who or what is around them, what
they are doing, where they are and when something is
happening.

Location-aware computing, whose behaviour is
determined by the position of objects in the
environment, represents an interesting subset of the
sentient computing paradigm since location is often an
essential attribute of context. Conventional sensor
technologies employed in the area of indoor location-
aware computing involve a network of complex and
expensive special purpose designed sensors to be
deployed throughout an indoor environment, and the
use of electronic battery-powered mobile positioning
devices that transmit a signal via an infrared, ultrasound
or radio wireless interface. AT&T’s Active Badge [16]
(infrared-based) and Active Bat [17] (ultrasound-
based), and PinPoint Corp.’s 3D-iD [18] (radio
frequency-based) location technologies are good

* 10 2011221210001

‘ 0’‘2’

‘1’

sync sector

even-par ity sectors

Figure 1: ringcode representing number 1160407.

examples of this. TRIP aims to demonstrate that similar
usability levels can also be achieved, by using existing
off-the-self technology (video cameras) to obtain the
identity, orientation and location of passive cheaply
printed ringcode tags (TRIPtags), with a less complex
and more cost-effective infrastructure.

TRIP’s current implementation, a C++ video filter [5]
performing the target recognition process, processes 3
frames/second on a 400 MHz Pentium II machine and
has accuracy levels in the range 98–100% when
TRIPtags of 5x5 cm are viewed within three metres of
the standard low-cost analogue cameras used. The
special geometric features of the targets’ design (see
Figure 1) enable their recognition even when they
occupy a very small number of pixels in the captured
images and reduce the complexity of the computer
vision task to a minimum.

A TRIPtag is a 2D black and white ringcode composed
of:

• A central bull’s-eye to make the identification

process easier due to its invariance to rotation and
perspective, and high contrast.

• A pair of encoding rings around the bull’s-eye,

divided into 16 sectors:
- The 1st sector’ s (or synchronisation sector)

encoding rings’ combination, impossible
anywhere else, indicates the beginning of a
TRIPcode.

- The 2nd and 3rd sectors implement a parity
error checking mechanism.

- The remaining 13 sectors represent a TRIP
target ternary code in the range3 0 to
1,594,322. Observe a ‘0’ is represented by
leaving a sector’s two code ring portions
blank, a ‘1’ by setting the sector’s inner code
ring portion to black and leaving the outer one
blank and ‘2’ is the reverse of this.

A TRIP-aware Jukebox Controller is the first
application developed to demonstrate TRIP’s context
sensing capability. This application controls a virtual
jukebox, implemented on top of an MP3 player, by
using TRIPtags as a user interface device. A TRIPtag is
used to identify a song, a person or jukebox control
actions. When the TRIPtag representing a song is ‘ seen’
by a camera attached to a TRIP-enabled computer, its
automatic playback is initiated, either on that computer
or on a nearby one with sound capabilities. Providing
the TRIPtag worn by a person is spotted, the application
produces the automatic selection of that person’s play-

3 Note 313 = 1,594,323 ≈ 220 valid codes

list. Finally, some TRIPtags sightings trigger control
actions on the jukebox (play, pause, etc.).

In the development of this application the following
issues were raised:

1. A file for each TRIPcodes’ category used (people,

music-tracks and control-actions), containing a
mapping between each TRIPcode and the attributes
required to drive the final application had to be
created. For example, the identifier representing a
song had to be mapped to the file path of such track
in the MP3 archive.

2. The set of TRIPtags used to control the application

had to be manually generated by providing the
label, identifier and size attributes of each tag to a
POSTSCRIPT generating script.

3. The final application logic was complicated due to

the need to:
a) Filter the raw contextual data provided by

TRIP to determine if the TRIPcode sighted
really corresponded to any of the TRIPcodes
of interest.

b) Transform this data into information directly
usable by the MP3 player (e.g. the file location
of a song).

These three issues led to the development of the
Sentient Information Framework (SIF), a programming
framework that streamlines and facilitates sentient
application development by isolating context capture
and abstraction from application semantics and
providing efficient mechanisms for context
communication. This work is inspired by previous
research efforts made with the same aim of managing
and disseminating contextual information efficiently,
such as the SPIRIT [4], Context Architecture [2] or
Context Information Service [12] projects. The rest of
this paper describes the SIF framework, focusing its
attention on analysing the benefits of having adopted
Python for the implementation of some key components
of it.

2. The Sentient Information Framework

The Sentient Information Framework (SIF) architecture
consists of a group of co-operating distributed software
components that use events as a uniform way of
informing each other of context notifications. Context
Channel objects that are both suppliers and consumers
of sentient data are interleaved in-between SIF
components, enabling multiple suppliers to
transparently and asynchronously communicate with

multiple consumers without the components knowing
about each other.

OMG’s CORBA [9] is the chosen middleware because
of its platform and language inter-operability features,
its popularity as an open standard for component
software operation and its rich set of standard
distributed services. The CORBA Event Service [10] is
used to enable SIF components to asynchronously
notify contextual events, to interested applications or
other SIF components, through Event Service’s Event
Channels (renamed as Context Channels in SIF). If the
Event Service had not been used, each SIF component
would have had to perform a distributed callback for
each event notification for all the clients registered. In
addition, this service adoption permits interested parties
to establish communication with SIF components,
following either a push or pull event communication
model. With a push model, the event producer takes the
initiative and pushes events to an Event Channel that
then subsequently sends them to consumers. For the
pull model, the consumer issues a pull request on the
Event Channel object and this, in turn, pulls the event
data from the supplier. This event pull request can be
blocking (pul l method) or non-blocking (t r y_pul l
method).

New components can be integrated into SIF as context
consumers, context suppliers or as both simultaneously.
The only requirement for a component to form part of
SIF is to be CORBA-enabled and to adopt the OMG
Event Service for contextual event communication,
regardless of the platform and programming language
used. Consumer components register with Context
Channels that serve their context notifications of
interest. Supplier components either create new Context
Channels or reuse previously created ones by other
components generating the same event types, where,
after registering, communicate their own contextual
events. In order for the different SIF components to
know about each other, every component binds its
object reference with the CORBA Naming Service
under a humanly recognisable name. Components
interested in other component services contact the
Naming Service, providing well-known component
names, to obtain their CORBA object references. The
following three component classes are found in SIF (see
Figure 2):

1. Context Generators (CG)

These encapsulate a single sensor or a set of related
sensors and the software that acquires raw context
information from them. The information obtained
is transferred to Context Channels in event form,
following usually a push event communication
model. CGs could be based on TRIP or other

sensors such as Active Badge [16], GPS, or a
simple microphone.

2. Context Abstractors (CA)
Seen by applications as proxy context generators,
they achieve the separation of concerns between
context sensing and application semantics. They
consume the raw sentient data provided by CGs,
interpret its contents and augment them with static
data from a database, producing enhanced
contextual events that can directly drive final
applications. Sometimes CAs also correlate other
CAs’ or CGs’ outcomes to generate the demanded
sentient data.

These components’ operation responds to an
Event-Condition-Action (ECA) model. They
monitor for asynchronous event communication,
apply conditional statements over them and
whenever a condition is fulfi lled, generate an
action (in this case, produce a higher level event).
Between a CG and a final application, an event can
flow through N-tiers of CA active components. For
example, a person’s TRIPtag sighting event, “code
1223 seen by camera 30” , could be transformed by
a location context abstractor into “Diego seen in
room 1’s camera 3’s view range” . In turn, this last
event could be fed into a lab access context
abstractor that would convey an “open door” event
providing a TRIPtag wearer stands in front of the
lab main door. Alternatively, a teleporting context
abstractor receiving the same event from the
location CA would, for example, issue a “move
Diego’s desktop to computer 5” event when the
user is sighted close to computer 5 location. The
abstracted events generated would finally reach the
sentient applications in charge of performing the
actual action, i.e. an access monitor and a teleport
application.

3. Context Channels (CC)
These are the intermediary entities that de-couple
the communication among components of the
previous two types and final applications. They
constitute the glue that enables the heterogeneous
software components and applications conforming
to this architecture to inter-operate and are
physically implemented as OMG Event Channels.
They are shared by co-operating components that
either generate or consume the same class of
events, providing a means to classify and separate
sentient events.

OMG Event Service’s suppliers, consumers and Event
Channels handle event data in the form of the IDL4
(Interface Definition Language) Any type5, which
enables components to send and receive domain-
specific event data without requiring Event Channels to
understand event data types. This implies that every
consumer must know what type to expect in the Any
they receive. Event Channels are only concerned with
event distribution and, therefore, they require a fi ltering
process in the event receivers to eliminate undesirable
events, unfortunately leading to an increase in the
required network bandwidth and consumers’ processing
load, as has been well discussed in [14]. The OMG
Notification Service [11] addresses the limitations of
the Event Service and supplies not only event fi ltering
but also control over the quality of service that an Event
Channel (here Notification Channel) provides. Future
work on SIF will adopt this facility.

4 IDL is a descriptive language that supports C++ syntax for constant,
type, and operation declarations and lets one specify components’
boundaries and their interfaces with potential clients.

3. The TRIP Monitor ing Service CG

The key component of the TRIP technology is a C++
written video filter software [5] that performs the TRIP
target recognition process over video frames supplied
by a set of networked cameras. In order to make the
output of this environment monitoring process available
to interested parties, the TRIP video filter has been
encapsulated in a distributed CORBA component
named TRIP Monitoring Service. Its operation is de-
coupled from its consumers via an interleaved TRIP
Monitor Context Channel where it pushes TRIP
sighting events. Figure 3 shows the IDL code defining a
TRIP sighting event structure and the interfaces offered
to clients to connect to its CC as either push or pull
event consumers6.

4. The TRIP Directory Service

The TRIP Directory Service component aims to provide
a centralised body that regulates the TRIPcode granting
process, stores static properties associated with
TRIPcodes, and provides interfaces for their query.
This Python written distributed component performs the
following operations:

1. Creation, modification and deletion of new

TRIPcodes categories.
2. Creation, modification and deletion of TRIPcodes

and attributes associated with them.
3. Retrieval of categories’ TRIPcodes and

subcategories details.
4. Retrieval of a given TRIPcode’s details.

It is assumed that clients of this component, for
efficiency purposes, will on initialisation retrieve the
properties associated with their TRIPcodes’ subset of
interest. Occasionally, clients will be long-lived and in

5 The Any type is a CORBA IDL built-in type that can represent any
possible IDL data type, whether it is built-in or user-defined.
6 These two interfaces must be provided by every SIS component that
communicates contextual events to a Context Channel.

modul e TRI PMoni t or {
 i nt er f ace TRI P {
 / / Event i nt er f ace:
 CosEvent Channel Admi n: : Pr oxyPushSuppl i er get PushEvent Suppl i er () ;
 CosEvent Channel Admi n: : Pr oxyPul l Suppl i er get Pul l Event Suppl i er () ;

 / / Event st r uct ur es:
 s t r uct TRI Pevent {
 s t r i ng TRI Pcode; / / code t er nar y r epr esent at i on
 par amsEl l i pse par ams; / / bul l ’ s- eye out er el l i pse par amet er s (x, y, a, b, θ)
 s t r i ng camer aI D; / / capt ur i ng camer a i dent i f i er
 } ;
 (…)
 } ;
} ;

Figure 3: IDL interfaces for the TRIP Monitoring Service

Context Generator 1 Context Generator 3

Context Channel A Context Channel B

Context Abstractor 1 Context Abstractor 2

Context Channel C Context Channel D

Application 1 Application 2 Application 3

 push events CG1 push events CG3

 push events

 push events CA1 push events CA2

 push events
 pull events

 push event CG2

 pull events

 push events

 push events

Context Generator 2

 push events CG2

Figure 2: The SIF Architecture

the mean time their information of interest will change
in the Directory Server. Thus, this component requires
an asynchronous notification mechanism to notify to its
clients in real-time when the TRIPcode categories they
use are modified. This facility converts this component
into a context generator.

4.1. Reasons for Implementing in Python

Python is a general-purpose dynamic language that
brings the power and flexibility of scripting to large
software systems, like the one in mind. Moreover, it
satisfies the three main programming requisites of this
component: (1) a key-based (TRIPcode) object
persistence mechanism through its shel ve module, (2)
CORBA support thanks to the existing Python CORBA
mappings and (3) an asynchronous notification
mechanism by means of the CORBA Event Service.
Alternatively, a system-level programming language
such as C++ or Java could have been adopted to
provide higher performance, especially considering the
fact that for the TRIP Monitoring Service, CORBA and
C++ had already been used. However, in our case
Python’s speed of development determined our choice
despite the obvious sacrifice of execution efficiency.

Python’s shel ve module provides a key-based
persistence mechanism that enables the straightforward
creation of persistent associative arrays of objects.
Creating or accessing shel ve’ s instances is as easy as
manipulating items in a normal Python dictionary. Keys
in a shelf are ordinary strings but the values can be
arbitrary Python objects, anything that the pi ckl e7
module can serialise into character streams. Shel ves
facilitate the creation of databases of native Python
objects because there is no need to deal with another
API, manage database-specific record structures, or
convert to and from them when interfacing with the
database. From C++ the UNIX dbm [3] library could
have been used instead. However, dbm fi les only allow
string-to-string associations and object serialisation in
C++ must be hand coded. Java, on the contrary,
provides good object serialisation features but lacks
support for serialising objects by key through a
convenient hash-file mechanism. The emerging JNDI
(Java Naming and Directory Interface) [7] aims to
overcome this Java deficiency but provides a much
more complicated API than shel ves because it is
conceived as a universal interface to existing
commercial Directory Services.

7 shelve mechanism’s performance is very acceptable when the C
implemented version of pickle, cPickle, is used.

The existing OMG IDL to Python mappings supported
by either Xerox’s ILU [6] or University of
Queensland’s Fnorb [1] products provide Python
programmers with CORBA distributed systems
programming capability. The simplicity of the mapping,
compared to C++ and Java, makes these CORBA
implementations ideally suited as a tool for the rapid
prototyping and scripting of CORBA systems and
architectures. Python’s object-oriented features
integrate seamlessly with the CORBA Object Model.
Python releases programmers from the complicated
memory management issues of the CORBA C++
mapping. The language’s dynamic features remove the
need for tedious type-casting and long variable
declarations as occur in the C++ and Java mappings for
CORBA. Python’s high code density is further
emphasised when dealing with CORBA programming.
CORBA eases distributed systems programming but
requires a considerable amount of extra code to be
added to programs – Python minimises this. Fnorb was
the Python CORBA mapping chosen because, unlike
ILU, is Python and CORBA/IDL specific, which makes
it simple, l ightweight, and easy to install and use. It
supports all CORBA 2.0 data types (including Any) and
provides a full implementation of IIOP8.

CORBA’s clear separation of implementation and
interfaces, by means of IDL, makes possible to re-
implement a given component in a more efficient
programming language without having to modify the
code of its clients. If scalability or performance
problems appear in the future, the TRIP Directory
Server could be re-coded in a better performing
programming language and/or a commercial DBMS
engine or X.500/LDAP Directory Service could be used
instead of shel ve. Furthermore, CORBA adoption
opens the TRIP Directory Service to clients
implemented in different programming languages and
running on distinct platforms and enables this Python
component to benefit from the existing rich set of
standard CORBA services such as the Naming Service
and Event Service.

4.2. Server Implementation Issues

4.2.1. TRIP Directory Server Persistent Dictionar ies

The TRIP Directory Service is logically formed by a
tree-based structure containing category nodes’ sub-
trees beginning from an initial category node named
root. The children of a category node are either sub-
category nodes or TRIPcode nodes; TRIPcode nodes

8 Internet Inter-ORB protocol that allows the communication between
different vendors ORBs, such as in our case when we communicate
between omniORB2 and Fnorb ORBs.

are always leaves in the tree. Physically the TRIP
Directory Service’s tree is materialised into the
following two Python persistent dictionaries:

1. The Categories Shelf contains category nodes

hashed by cat egor yKey . A cat egor yKey is a
string with the format (xxx)+, where xxx is a three-
digit ternary code in the range9 000 to 212 and ‘+’
denotes one or more of these sequences. Each
category node is, at the same time, a dictionary by
itself. Figure 4 shows the contents of this

9 Note the codes 220, 221 and 222 are reserved because the prefix
‘22’ denotes the beginning of a valid TRIPcode.

dictionary. The cat egor yI D key maps to a
category identifier string in the form
root(.subCategoryName)*, where * stands for zero
or more times. The subcat egor i es and
TRI Pcodes keys point to counters indicating the
number of subcategories and TRIPcodes in a
category, respectively. del et ed_subcat egor i es
and del et ed_i t ems keys hash to a list of deleted
subcategories’ keys and a list of deleted
TRIPcodes, whose addresses can later be reused.

modul e TRI PDi r ect or ySer vi ce {
 i nt er f ace TRI PDi r ect or ySer vi ceI F {
 / / Cat egor i es Di ct i onar y mani pul at i on i nt er f aces
 bool ean cr eat eCat egor y(i n st r i ng par ent Cat egor yI D, i n st r i ng cat egor yName) ;
 (…)
 / / TRI Pcode Di c t i onar y mani pul at i on i nt er f aces
 s t r i ng gr ant TRI PCode(i n st r i ng cat egor yI D) ;
 voi d saveTRI Pcode(i n st r i ng TRI Pcode, i n TRI PcodeDet ai l s dat a) ;
 (…)
 / / Quer y i nt er f aces f or Cat egor i es Di ct i onar y
 s t r i ngLi st get SubCat egor i esLi s t (i n st r i ng cat egor yI D) ;
 (…)
 / / Quer y i nt er f aces f or TRI Pcodes Di ct i onar y
 TRI PcodeDet ai l s get TRI PcodeDet ai l s(i n st r i ng TRI Pcode) ;
 (…)

 / / Event I nt er f aces
 CosEvent Channel Admi n: : Pr oxyPushSuppl i er get PushEvent Suppl i er () ;
 CosEvent Channel Admi n: : Pr oxyPul l Suppl i er get Pul l Event Suppl i er () ;

 / / Event st r uct ur es:
 s t r uct AddTRI PcodeEvent {
 s t r i ng cat egor yI D;
 s t r i ng TRI Pcode;
 TRI PcodeDet ai l s det ai l s ;
 } ;
 (…)
 } ;
} ;

Figure 6: TRIP Directory Server IDL interfaces

categoryKey { cat egor yI D : r oot (. nameSubCat egor y) *

 subcat egor i es : #
 TRI Pcodes : #
 del et ed_subcat egor i es : [cat egor yKeys]
 del et ed_i t ems : [TRI Pcodes] }

(e.g. 000122)

Figure 4: Categories Dictionary Node

TRIPcode TRI PcodeDet ai l s(l abel , pr oper t i esLi st) , wher e:
 pr oper t i esLi st = [Pr oper t y(pr oper t yName, pr oper t yVal ue)]

modul e TRI PDi r ect or ySer vi ce {
 s t r uct Pr oper t y {
 s t r i ng pr oper t yName;
 any pr oper t yVal ue;
 } ;
 t ypedef sequence<Pr oper t y> Pr oper t yLi st ;

 s t r uct TRI PcodeDet ai l s {
 s t r i ng l abel ;
 Pr oper t yLi st pr oper t i esLi st ;
 } ;
 (…)
} ;

 (e.g. 0001222200101)

Figure 5: TRIPcodes Dictionary Node and its associated IDL structures

2. The TRIPcodes Shelf associates a TRI Pcode, the
ternary representation of a number in the range 0 to
1594322 (213-1), to a Python mapped CORBA IDL
structure containing as members a sequence of
name/value pairs and a l abel (see Figure 5). Note
IDL structures are mapped into Python classes with
a public attribute for each member of the structure.

For each category up to 24 subcategories can be created
(range of ternary codes 000 to 212). When a new
subcategory is assigned, the identifier of the new
category is formed by adding to the parent’s
cat egor yKey the following non-used ternary code
string in the mentioned range. A TRI Pcode is
composed of a prefix with the key of its category,
followed by the ternary string ‘22’ , and the remaining
ternary digits up to 13, the design of TRIP targets
address supports, with the representation of the TRIP
target sequence number within its category.

4.2.2. TRIP Directory Server Functionality

Figure 6 lists some of the IDL interfaces provided by
the TRIP Directory Server to enable clients to
manipulate and query its contents. It also shows the
event interfaces that permit clients to register as event
consumers of the TRIP Directory Server Context
Channel, where category modifications are notified.
The OMG Event Service’s implementation omniEvents,
provided by AT&T’s C++ ORB omniORB2 [8], was
used to provide this server’s asynchronous
communication mechanism. On initialisation, the server
obtains from the CORBA Naming Service (omniNames

of omniORB2) an object reference to a registered Event
Channel Factory object. It then invokes the method
cr eat e_obj ect in this factory to generate the TRIP
Directory Server Context Channel and connects to it as
a push event supplier. Figure 7 shows how this
registration process is implemented in Python. It might
prove a little difficult to understand without a thorough
study of the OMG Event Service [10]. When the TRIP
Directory Server’s shelves are modified, a notification
is pushed to the previously obtained channel indicating
the type and attributes of the modification. Figure 8
shows the Python code for sending a TRIPcode creation
notification (AddTRI PcodeEvent IDL structure in
Figure 6). Once an event is received at the CC, this
takes the responsibility of delivering it to all registered
consumers.

5. A GUI-based front-end for the TRIP
Directory Server

In order to provide a user-friendly way to manage the
query, creation, deletion and manipulation of
TRIPcodes and categories, and the TRIPtag generation,
a GUI front-end client for the TRIP Directory Server
has been created.

5.1. Reasons for Implementing in Python

Once again a decision had to be made regarding choice
of programming language. We discarded C++ because
we wanted a Directory Service front-end that would run
on all of our platforms (Windows NT 4.0 and RedHat

Figure 7: TRIP Directory Server registration to its Context Channel as Push Event Supplier

Get a r ef er ence t o t he i ni t i al nami ng ser v i ce cont ext
i ni t i al Cont ext = or b. r esol ve_i ni t i al _r ef er ences(" NameSer vi ce")
Cr eat e name under whi ch Event Channel Fact or y i s bound wi t h Nami ngSer vi ce
name = [CosNami ng. NameComponent (’ Event Channel Fact or y ’ , ’ Event Channel Fact or y ’)]
(…)
Lookup t he Event Channel Fact or y i n t he nami ng ser v i ce
obj = i ni t i al Cont ext . r esol ve(name)
The Nami ng Ser vi ce obj ect r ef er ences r et ur ned i s downcast ed t o t he pr oper t ype
event Channel Fact or y = obj . _nar r ow(CosLi f eCycl e. Gener i cFact or y)
(…)
Obt ai n an Event Channel i nst ance f r om t he Event Channel Fact or y
event Channel = event Channel Fact or y. cr eat e_obj ect (…) ;
(…)
Obt ai n a r ef er ence t o t he Event Channel ’ s Fact or y of Pr oxy Push Consumer s
suppl i er Admi n = sel f . event Channel . f or _suppl i er s()
(…)
Cr eat e an i nst ance of t he Event Channel ’ s pr oxyPushConsumer
self.consumer = supplierAdmin.obtain_push_consumer();
(…)
The TRI P Di r ect or y Ser ver connect s i t sel f as push Event Suppl i er
self.consumer.connect_push_supplier(self)

(…)
t ypeCode = CORBA. t ypecode(CORBA. i d(TRI PDi r ect or ySer v i ce. AddTRI PcodeEvent))
dat a = TRI PDi r ect or ySer vi ce. AddTRI PcodeEvent (cat egor yI D, TRI Pcode, det ai l sTRI Pcode)
self.consumer.push(CORBA.Any(typeCode, data))
(…)

Figure 8: AddTRIPcodeEvent transmission to Context Channel

Linux 6.1) without having to recompile our code or use
different GUI toolkit libraries. Java seemed to be a
good candidate due to its multi-platform portability,
CORBA support and excellent GUI toolkits (AWT or
Swing). However, Python was chosen because it
provides these same facilities and it has GUI toolkit
libraries that are even easier to use than these of Java,
requiring fewer code lines to achieve GUIs of similar
sophistication. The main interest was to rapidly
prototype this GUI-based client, without any special
real-time execution performance requirements, making
Python undoubtedly the best choice. Pmw [15], a
toolkit for building high-level compound widgets in

Python using the Tkinter module, was used because of
its rich set of widgets and its multi-platform portability
features.

5.2. Implementation Issues

The TRIP Directory Server GUI-based client (see
Figure 9) is divided into two main interaction panes.
The TRIPcode Manager Pane permits the user to: (1)
browse through the existing TRIPcode categories
displaying their subcategories and TRIPcodes, (2)
create, modify and delete subcategories, and (3) create

Figure 9: Snapshots of the TRIP Directory Client

def showTRI Pcode(sel f) :
 # Obt ai n t he sel ect ed i t em f r om t he TRI Pcodes l i s t
 TRI PcodeSel ect ed = sel f . TRI PcodeLi st . component (’ l i s t box’) . get (Tki nt er . ACTI VE)
 # Ext r act t he TRI Pcode i dent i f i er f r om t he sel ect ed i t em st r i ng
 i ndex = st r i ng. f i nd(TRI PcodeSel ect ed, ’ ’)
 TRI Pcode = TRI PcodeSel ect ed[: i ndex]

 # I nvoke a RPC i n t he TRI PDi r ect or ySer ver t o obt ai n t he det ai l s of t he TRI Pcode
 TRIPcodeDetails = self.TRIPDirectoryServer.getTRIPcodeDetails(ternary(TRIPcode))
 cat egor yI D = sel f . cat egor yEnt r y. get ()

 # Cr eat e a modal di al og v i sual i s i ng t he cont ent s of t he TRI Pcode sel ect ed
 TRI PcodeVi suDi al og(TRI Pcode, cat egor yI D, TRI PcodeDet ai l s)

def getTRIPcodeDetails(sel f , TRI Pcode) :
 sel f . __l k. acqui r e() # Lock access t o TRI PcodesShel ve f or t he ser ver t hr ead execut i ng t hi s met hod
 i f sel f . TRI PcodesShel ve. has_key(TRI Pcode) :
 TRI PcodeDet ai l s = sel f . TRI PcodesShel ve[TRI Pcode]
 el se:
 TRI PcodeDet ai l s = TRI PDi r ect or ySer vi ce. TRI PcodeDet ai l s(’ ’ , [])
 sel f . __l k. r el ease()

Figure 10: TRIP Directory Client and Server method invocation after double click over TRIPcode list item.

TRIPcodes within a category. On the other hand, the
Search TRIPcode pane provides the means to (1) query
the information associated with a given TRIPcode, (2),
add, modify and delete its properties and (3) print a
TRIPtag. Figure 9 shows the result of double clicking
over a TRIPcode list item in the TRIPcode Manager
Pane. Figure 10 illustrates in its first part the GUI
callback method invoked when such action is
performed and in the second the server implementation
of the method get TRI PcodeDet ai l s remotely called
by the client.

6. Implementing a CA in Python

Context abstractor components aim to translate
incoming raw sensor data (e.g. TRIP target 2345
spotted) into augmented contextual data directly usable
for applications (e.g. play song event). The further
layers of abstraction they provide insulate applications’
logic from sensor data gathering and interpretation. The
Python implementation of a TRIP-aware context
abstractor for the Jukebox Controller application,
described in section 1, il lustrates the general procedure
to be followed when implementing other components of
this type. Its mission is to provide the virtual jukebox
with context notifications that it can directly
understand. To achieve this, it (1) filters out target
sightings that do not correspond to the domain of the
application and (2) interprets raw valid target sighting
events generating the actual event types required to
drive its operation.

Potentially the virtual jukebox could also be controlled
by the signals generated from another context
generator, e.g. an infrared remote control. A remote
control context abstractor would gather the infrared-
modulated code signals received by an infrared sensor
CG, interpret them and push jukebox control events to a
shared context channel with the TRIP-aware context
abstractor. In this way, the final application would
transparently respond to the control events received,
regardless of their origin. Python is ideal for the
implementation of these CAs because of its rapid
prototyping capability and CORBA support. These
components are usually not very computation-intensive,
they just need to process and/or combine events
obtained from CCs, producing as outcome enhanced
sentient notifications.

Figure 11 represents the flow of interaction among
some SIF components and the Jukebox Controller
application. When the TRIP-aware Jukebox controller
context abstractor is started, it obtains from
omniORB2’s Naming Service object references for the
two heterogeneous CORBA components with which it
will interact: the Python implemented TRIP Directory
Server, over Fnorb ORB, and the C++ implemented
TRIP Monitoring Service, over omniORB2. The
obtained TRIP Directory Server reference is used to
retrieve the details associated with the three TRIPcodes'
categories of interest for the context abstractor:

1. root.people.LCE: TRIPcodes associated with LCE

lab members.

TRIP Monitoring
Service Context

Generator

omniORB2 TRIP Monitor
Context Channel

omniORB2 TRIP-aware
Jukebox Controller
Context Abstractor

Fnorb

TRIP Directory Server
Context Channel

omniORB2

Jukebox
Controller
Application

omniORB2

Jukebox Controller
Context Channel

omniORB2
TRIP

Directory
Server

Fnorb
Categories
Dictionary

Shelve
TRIPcodes
Dictionary

Shelve

push Target sightings event

push Target sightings event

push Jukebox controller event

push Jukebox controller event

push category modification event

push category modification event

obtain jukebox controller TRIPcode mappings

Figure 11: TRIP-aware Python (grey) and C++ (white) SIF components and application

2. root.object.music-tracks: TRIPcodes representing
MP3 tracks to be played.

3. root.action.jukebox: TRIPcodes depicting jukebox
control operations (play, pause, etc.)

Next, the Jukebox abstractor has to register as push
event consumer of both the TRIP Monitoring and TRIP
Directory Servers’ Context Channels. For this, the
abstractor must:

1. Implement the OMG Event Service

CosEvent Com: : PushConsumer [10] interface
(see Figure 12).

2. Invoke the method get PushEvent Suppl i er in
both servers to obtain proxy push supplier object
references of their context channels.

3. Connect to the proxy push event suppliers.

Figure 13 shows stages 2 and 3’s implementation. Note
the TRIP-aware Jukebox Controller CA will receive
event notifications from two different context channels
through the same distributed callback interface (push).

Finally, the context abstractor looks up in the Naming
Service for a registered Jukebox Controller Context
Channel and, if one exists, obtains its object reference.
(If one does not exist, then it creates a context channel
instance from an Event Channel Factory, found through
the Naming Service, and binds the obtained channel

reference with the Naming Service). Either way, then, it
registers as a push event supplier of this CC, using code
similar to that in Figure 7. The IDL code of the events
this CA conveys to its channel and the interfaces
provided for clients to connect to it are shown in Figure
14. Whenever an event from the TRIP Monitoring
Service or the TRIP Directory Service is received, the
context abstractor’s push method is invoked. Providing
the notification originates at the TRIP Monitoring
Service, and if it corresponds to a jukebox related
TRIPcode, then after its processing, one of the jukebox
control events of Figure 14 is pushed. Otherwise, the
event received, coming from the TRIP Directory
Server, is checked to determine whether the category
modification has been done in any of the jukebox
related categories, and if it is so, it updates its in-
memory TRIPcode details. Figure 15 illustrates the
push method’s implementation.

7. Conclusion

This work has shown the ample range of capabilities
offered by the integration of Python and CORBA,
demonstrating Python’s space in the development of
CORBA distributed software components. Python has
served us to develop a full-fledged Directory Service
for our novel sensor technology that if implemented
with a system-level programming language, such as

modul e CosEvent Comm {
 i nt er f ace PushConsumer {
 voi d push (i n any dat a) r ai ses(Di sconnect ed) ;
 voi d di sconnect _push_consumer () ;
 } ;
 (…)
} ;

Figure 12: OMG Event Service PushConsumer Interface

Figure 14: Event interfaces for Jukebox Context Abstractor

modul e JukeboxAbst r act or {
 i nt er f ace JukeboxAbst r act or I F {
 / / Event i nt er f ace:
 CosEvent Channel Admi n: : Pr oxyPushSuppl i er get PushEvent Suppl i er () ;
 CosEvent Channel Admi n: : Pr oxyPul l Suppl i er get Pul l Event Suppl i er () ;

 / / Event st r uct ur es:
 s t r uct pl ayl i s t Event {
 s t r i ng pl ayl i s t Fi l ePat h;
 } ;
 s t r uct mpg3Tr ackEvent {
 s t r i ng songToPl ay;
 } ;
 s t r uct act i onEvent {
 s t r i ng act i on;
 } ;
 (…)
 } ;
} ;

suppl i er TRI P = sel f . TRI PMoni t or Ser ver . get PushEvent Suppl i er ()
suppl i er TRI P. connect _push_consumer (sel f)
suppl i er Di r ect or y = sel f . TRI PDi r ec t or ySer ver . get PushEvent Suppl i er ()
suppl i er Di r ect or y. connect _push_consumer (sel f)

Figure 13: Context Abstractor registration to Context Channels

C++ or Java, would have required a much longer
development time than the three programmer-weeks it
took. Python has also assisted us in the rapid
development of context abstractor type components
that enabled us to experiment with, and show the
potential of our sensor technology (TRIP) and the SIF
architecture. The Jukebox Controller application has
been successfully re-coded and integrated with SIF.

Further context abstractors and applications will be
developed in Python, to explore new application
domains for TRIP. For example, a planned context
abstractor will store TRIPtag sightings indexed by
location and timestamp to permit context-based
retrieval applications. In addition, new context
generators will be created to combine TRIP’s sentient
data with inputs from other sensors. This process will
lead to the generation of a catalogue of reusable and
extensible SIF components. The CORBA Trader
Service [10], which defines a yellow pages service
classifying CORBA object references by object
properties, will be useful in its creation.

This work reveals that Python’s known extensibility
and gluing capabilities with higher performance
languages, such as C, C++ or Java, can be further
increased thanks to integration with CORBA and the
usage of its event notification services. The case study
described in Section 6 illustrates how OMG Event
Channels can be used as glue for heterogeneous
distributed software components.

The SIF architecture requires several improvements, the
most critical one being the replacement of the Event
Service by the Notification Service [11]. This
modification will release context abstractors from the
event-filtering stage and reduce event transmission
bandwidth. Event consumers will specify at their
registration the conditions or constraints the events they
wish to receive must satisfy, and the Notification
Channels will carry out the fi ltering process for them.

Never has the development of CORBA distributed
applications been such a simple and fast process as it is
with Python. Very little CORBA literacy is required
from the programmer to produce working distributed
applications. Memory management is done

def push(sel f , event) :
 eventType = event.typecode().name()
 eventData = event.value()

 i f eventType == "TRIPevent":
 # Pr ocess t he event s r ecei ved f r om TRI P Moni t or Cont ext Channel
 i f string.find(eventData.TRIPcode, self.lceCategPrefix) == 0:
 # TRI Pcode r epr esent s a member of LCE
 pr oper t i esLi s t = sel f . peopl e[event Dat a. TRI Pcode] . pr oper t i esLi st
 i ndex = 0
 whi l e (pr oper t i esLi st [i ndex] . pr oper t yName ! = " pl ayl i s t _f i l e") and
 (i ndex < l en(pr oper t i esLi st)) :
 i ndex = i ndex + 1
 i f i ndex ! = l en(pr oper t i esLi st) :
 # Push an event of t ype pl ayl i s t t o t he Event Channel
 t ypeCode = CORBA. t ypecode(CORBA. i d(JukeboxAbst r act or . pl ayl i s t Event))
 dat a = JukeboxAbst r act or . pl ayl i s t Event (pr oper t i esLi st [i ndex] . pr oper t yVal ue)
 sel f . consumer . push(CORBA. Any(t ypeCode, dat a))
 el i f string.find(eventData.code, self.trackCategPrefix) == 0:
 # TRI Pcode r epr esent s an MP3 song t r ack
 (…)
 el i f string.find(eventData.code, self.jukeboxActionCategPrefix) == 0:
 # TRI Pcode r epr esent s an j ukebox act i on
 (…)
 el se: # Fi l t er out t he event
 pass
 # Pr ocess t he event s r ecei ved f r om TRI P Di r ect or y Ser ver Cont ext Channel
 el i f eventType == "AddTRIPcodeEvent":
 # Det er mi ne cat egor y i n whi ch new TRI Pcode was added
 i f eventData.categoryID == "root.people.LCE":
 # Updat e peopl e di ct i onar y wi t h t he new TRI Pcode of a per son
 sel f . peopl e[event Dat a. TRI Pcode] = event Dat a. det ai l s
 el i f eventData.categoryID == "root.action.jukebox":
 # Updat e j ukebox oper at i ons di ct i onar y
 (…)
 el i f eventData.categoryID == "root.object.music-tracks":
 # Updat e MP3 t r acks di ct i onar y
 (…)
 el se: # I gnor e modi f i cat i on i n cat egor i es of no i nt er est
 pass
 el i f eventType == "DeleteTRIPcodeEvent":
 (…)

Figure 15: Jukebox Controller Context Abstractor push method implementation

automatically by Python and, due to its dynamic
properties, inconvenient long CORBA variable name
declarations are eliminated. The Python programming
community has much to gain from the existing CORBA
Python mapping implementations, providing they
become a little more robust and faster. The newly
appeared omniORB2’s CORBA Python binding
(omniORBpy) promises much on this aspect. Its
performance and robustness will be explored in future
work. Although, due to Python’s performance
constraints, mostly client-side CORBA systems will be
developed in this language, still they can benefit much
from both the ample set of existing standard CORBA
services and Python’s excellent standard library for the
development of sophisticated distributed systems.

Acknowledgements

The author is very grateful to Sai-Lai Lo for his expert
advice and help on the TRIP project and to Frank
Stajano for introducing him to Python and encouraging
him to write this paper. He would also like to thank
AT&T for the industrial sponsorship of the TRIP
project and to the Basque Government Education
Department for the financial support to his PhD studies.

References

[1] Chilvers, M., ”Fnorb – Version 1.0” , Distributed
Systems Technology Centre, University of Queensland,
Brisbane, Australia, April 1999,
http://www.dstc.edu.au/Products/Fnorb/user-guide.html

[2] Dey A.K., Salber D., Futakawa M. and Abowd G.
“An architecture to support context-aware
applications” , UIST '99, 1999.

[3] “GNU Gdbm Database Library” , 1999,
http://www.polaris.net/docs/gdbm/

[4] Harter A., Hopper A, Steggles P., Ward A. and
Webster P. “The Anatomy of a Context-Aware
Application” , Proceedings of MOBICOM’99, Seattle,
August 1999.

[5] Lopez de Ipina D., ”TRIP: A Distributed vision-
based Sensor System”, PhD 1st Year Report, 1999,
http://www-
lce.eng.cam.ac.uk/~dl231/trip/docs/report.ps.gz

[6] Janssen B., Spreitzer M., Larner D.and Jacobi C.
“ ILU 2.0alpha14 Reference Manual” , Xerox
Corporation, 1999,
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html#explanation

[7] “Java Naming and Directory Interface (JNDI)”
Home Page, 1999,
http://java.sun.com/products/jndi/docs.html

[8] Lo. S, Riddoch D, “The omniORB2 version 2.8
User's Guide ” , AT&T Labs Cambridge, UK, February
1999,
http://www.uk.research.att.com/omniORB/doc/omniOR
B2/omniORB2.html

[9] OMG, Object Management Group, “CORBA/IIOP
2.2 Specification” , February 1998,
ftp://ftp.omg.org/pub/docs/formal/98-07-01.pdf

[10] OMG, Object Management Group, “CORBA
Services: Common Object Services Specification” ,
September 1998, ftp://ftp.omg.org/pub/docs/formal/98-
12-09.pdf

[11] OMG, Object Management Group, “Notification
Service – Joint Revised Submission” , November 1998,
ftp://ftp.omg.org/pub/docs/telecom/98-11-01.pdf

[12] Pascoe J., “The Context Information Service” ,
April 1999,
http://www.cs.ukc.ac.uk/people/staff/jp/cis/index.html

[13] Schilit B., Adams N., and Want R. “Context-
Aware Computing Applications “ , Proceedings of the
Workshop on Mobile Computing Systems and
Applications, Santa Cruz, CAIEEE Computer Society,
December 1994.

[14] Smith, D., Vinoski, S., “Overcoming Drawbacks in
the OMG Event Service” , SIGS C++ Report magazine,
June 1997

[15] Telstra Corporation Limited, Australia , “Pmw
Python megawidgets” , June 1999,
http://www.dscpl.com.au/pmw/

[16] Want R., Hopper A., Falcão A. and Gibbons J.
“The Active Badge Location System”, ACM
Transactions on Information Systems, Vol. 10, No. 1.
91-102, January 1992

[17] Ward A., Jones A. and Hopper A. “A New
Location Technique for the Active Office” , IEEE
Personal Communications, October 1997, pp. 42-47

[18] Werb J. and Lanzl C. “Designing a positioning
system for finding things and people indoors” , IEEE
Spectrum, September 1998, pp.71-78.

