| mplementing the SM S ser ver,
or why | switched from Tcl to Python

Frank Stajano

Olivetti-Oracle Research Laboratory &
University of Cambridge Computer Laboratory

http: //Amamww.orl.co.uk/~fms/
http://mww.cl.cam.ac.uk/~fms27/

Abstract

The SMS' server is a system that allows mobile users to
access information on their fixed computer facilities
through the short message facility of GSM cellphones.
Writing a versatile and extensible SM S server in Python,
with interfaces to the cellphone on one side and to the
Internet on the other, has been an interesting and enjoy-
able experience. This paper examines some Python pro-
gramming issues and techniques used in implementing
the server and distils some experience-based insights
about the relative strengths and weaknesses of this re-
markable programming environment when compared to

the “thin client” through which the user can send, re-
quest and receive small nuggets of information through
GSM short messages. A complete description of the
architecture and functionality of the system, together
with a discussion of some security and personalisation
aspects, is available elsewhere [Stajano+ 1998].

1.2 Architecture

The Short Message Service (SMS) facility [ETSI 1996]

defined by the European GSM digital cellphone standard
allows phones to exchange short (160 character) mes-
sages in a store-and-forward fashion. The cost of trans-

the author’s previous weapon of choice in the realm @hission is of the order of $0.10/message and is inde-

scripting.
1 System overview

1.1 Motivation: supporting the
computerless mobile user

pendent of distance, even for international use; though
outrageously high in terms of $/bit, is in fact moderate
for a normal usage pattern.

The SMS server physically consists of a GSM cellphone
connected, through a PCMCIA card, to a Linux PC run-
ning Python and with a permanent Internet connection.
The Python program runs continuously 24 hours/day and

Many research projects at the Olivetti-Oracle Researdéhtriggered into activity by two types of events:

Laboratory, such as the Active Badge, the Active Bat,
the Active Floor and the Virtual Network Computer, are

in some way connected with the core themesupport-

ing the mobile user. The work described here, the SMS

1) events on its attached cellphone (“pull” mode:
the user sends an SMS requesting a service; the
server performs the service and responds with
an SMS)

server, fits in this pattern too. How would you provide

the mobile user with access to personalised computing 2)

events on a special socket (“push” mode: other

programs, typically controlled byron or by
external events such as the arrival of mail, ask
the server to send a message to a particular
phone, without the user of that phone having ex-
plicitly initiated a request).

facilities when she is in a location where no computers
are available? And without forcing her to carry any extra
gadgetry? The SMS server does it by exploiting the
ubiquity of the cellphone. Assuming that the mobile user
will be carrying a cellphone anyway, we can use that as

As far as pull mode is concerned, the server has been
designed to be very similar to a web server with CGlI.
Each command that the user can type on her phone is
handled by its own “handler” program, which the server

1 In this paper SMS stands for Short Message Service, with no
connection whatsoever to Microsof8gstems Management
Server.

spawns when appropriate, passing it the arguments that
the user supplied. Anything that the handler writes on its
st dout isthen relayed by the server to the calling phone
as the response. This extremely simple APl makes it
easy to add new handlers written in any language.

Users can also add their own private handlers by adding
executables to their ~/ sms- bi n/ directory.

2 Python implementation issues

2.1 Serial communications

Initially the server was to run under Windows. The
PCMCIA card to which the phone was attached ap-
peared to the rest of the PC as an additional COM port.
The first problem was thus to find out how to talk to the
serial port.

Python on Windows had no direct support for serial
communications. With gratefully received help from
fellow Pythonist Roger Burnham it was eventually pos-
sible to compile an old version of Python for Winl6
together with an extension that could send characters
down the serial line. But this had too many drawbacks to
be workable: lots of obscure and evil-looking compiler
warnings, Win16 itself, no callback on receive.

The next attempt used Pythonwin (then in the beta cycle
for version 1.0) so as to be able to access the serial line

The sel ect () call is a unixism through which a pro-
gram can wait on a list of file-like objects up to a speci-
fied timeout, until one of the files changes state (for ex-
ample because new data is available to be read from it).
Through this mechanism a single-threaded program can
be waiting on, say, the serial line and a socket at the
same time, without consuming CPU cycles while idle.

2.2 The “server application” abstraction

The svrapp. py module was written to implement this
sel ect () -based structure in a general-purpose way. It
provides an object oriented core from which one can
conveniently derive a whole family of “server applica-
tions” whose job is to sit in a main loop waiting for
events on file descriptors.

o Readable 1
h----1 ----- o
I \ \
‘ OpenDataSocket ‘ ‘ OpenFile ‘ ‘OpenLlstenerSucket‘
[——— [
[userdefined | [Newserialline | [userdefined | [NewListenerSocket]

Figure 1: thereadabl e class hierarchy

The module contains two distinct class hierarchies:
Readabl e andsSer ver App (see figures 1 and 2; here and

elsewhere, the thick dashed border marks virtual
classes). Theeadabl e virtual base class describes those
file-like objects that you can put in the read list gfea

via Microsoft's own MsCOWB2. ocX control, obtained !ect(). These are normally either genuine data streams
from the Visual Basic distribution. This approach waéfiles, serial lines, open data sockets etc) or listener
finally made to work for both send and receive. Thergockets, and each one of these data types is represented
were however some instabilities; some parts of Pythd itS OWn Readabl e-derived class. The ones whose
behaved strangely under Windowsen() , for exam- name starts withcpen” are created arounekisting file-

ple) and some others (like the fundamental interfacing tdse objects: you have to pass a Unix file descriptor to
MscovB2. ocX) required too much undocumented blackhe constructor. The ones whose name starts withf'*
magic for me to feel confident using that code as tHgstead, create the low-level file-like object by them-
foundation of my server. It was also unclear whether f€lves. For each source you want to listen to, you derive
would be possible to write a main loop which would a@ class from the most appropriate descendameaf-

the same time listen for events both on the serial pce! e and redefine itsni nconi ngbat a() callback. Then

(through the OCX) and on a socket. you make your entire program an instance of
i Server App, You feed it theReadabl e-derived objects
The Windows platform was thus abandoned and thg,, defined, and finally run the application’s main loop.

server was moved to a Linux PC after finding that, withp,q program will sit there forever and deal with any

suitable configuration, it too could be made to talk to thﬁ\coming data by invoking the callbacks you defined.
PCMCIA card that gave us connectivity to the cell-

phone. ServerApp

Talking to the serial line from Python under Unix had its
share of problems but on the whole the programming
support was much better than on Windows. Once all the

gotchas are sorted out, the serial device looks just like
another file that can be used witkad(), wite() and For listener sockets, which create new data sockets when

a connection comes in, tl@l nconi ngbat a() is prede-
fined to automatically add the newly created data socket

TimerServerApp

Figure 2: theser ver App class hierarchy

select().

to the list of Readabl es held by the Server App. What spired by Don Libes’s invaluable tool, Expect [Libes
you supply instead is the Readabl e-derived class of 1995], though my code has only a microscopic fraction
those new data sockets that will be generated on de- of its functionality. Using these building blocks it be-
mand, and for this class you provide the callback that comes rather simple to control the phone through its set
says what to do when new data comesin. of extended “AT” modem-like commands.

As an illustration, the following listing shows you an))
application that bidirectionally connects port 1234 with 2.3 Supporting different phone models

seridl line / dev/ cuao: anything y\!r|tten on onevY|II @ The interface to the actual phone is based on a
pear on the other. (Actually, it's even better: many cli- ! :
%r’rphone. py module that contains gsnphone virtual

ents can connect simultaneously to 12.34; anything t.h%ass with methods for initialising, sending a message,
any of them writes goes to the serial line, and anythmr%ceiving a message and so on. To accommodate differ-

that the serial line writes goes to all of them.) ent models of phone, it suffices to derive a model-

specific class frongsnphone and redefine its low-level
methods that contain the format of the actual commands

def serialToSocket(): AUl .
app = ServerApp() and responses exchanged over the serial line with the
ser = MySerialLine('/dev/cua0’) phone.

ISock = NewListenerSocket(MyOpenDataSocket, 1234)
app.registerReadable(ser)
app.registerReadable(ISock)

app.serialLine = ser

app.mainLoop()

2.4 Grabbing information off the web

Among the “pull” services offered by the server, many
consist of queries that look up a particular piece of in-
formation on a specialized web site whose pages are

class MySerialLine(NewSerialLine): updated regularly but maintain the same structure: the

def onincomingData(self):
send it to all the data sockets
for fd in self.app.readList:
fdObject = self.app.fdObject[fd]

if fdObject.__class__ == MyOpenDataSocket:

fd.send(self.buffer)
self.buffer =""

class MyOpenDataSocket(OpenDataSocket):
def onincomingData(self):
send it to the serial port
print "readList =", self.app.readList
self.app.serialLine.fd.write(self.buffer)
self.buffer ="

weather service from Yahoo, the currency service from
Xenon Labs, the stock quotes from Stockmaster and so
on. The typical handler for this sort of query is a single
command line program that takes in arguments describ-
ing what to get within that family of pages (which city
for the weather forecast service, which pair of currencies
for the exchange rate service, which security for the
stock quote service etc), fetches the relevant page, ex-
tracts the right fields from it and prints a condensed re-
sult onst dout .

This is a classical case in which, after the first few such
handlers are in place, users of the system come up with
lots of new ideas for things that they would like to ac-

cess in the same way and new but very similar handlers
There is also a variant aferverApp called Ti mer- get written. Especially in a small research community
server App (see figure 2) which can, as well as Iisteninq:'here most of the users of the system are _themselves
to theReadabl es, generate a “tick” event at fixed time ackers ready to grab the source of an existing handler

intervals; and you can redefine the applicatioons and adapt it_to t_heir neat i(jea, t_his might have ea:?‘ily led

Ti ck() callback to execute some code when this ha|59 an unmaintainable proliferation of similar but inde-

pens. pendent handlers,_ al! startec_j from the same common
source but each with its own independent modifications.

Readabl e also provides a family of high-level methodsit would have been very inconvenient to propagate im-

(which you won’t normally redefine) that let you expeciprovements and fixes to the “common part”, which each

a specific reply from the object, chosen from a set of

possible targets that you specify; these targets can be

either plain strings or symbolically compiled regular, .

expressions. The method will return within the timeout, ! Wasaware of the existence of an Expect port to Python,

specifying either the index number of the first target th t it had a 0.x version number, so | ignored it; | didn’t want

matched, or -1 to indicate that none did. This was iri?errz]etly(/:g:ﬁzoefrt]vg:re in which not even the authors had suffi-

handler might have subtly modified for its own pur- user-supplied tag for the page (e.g. the ticker symbol)
poses. into whatever is necessary to obtain the page (typically

Scripting lets you write programs so quickly that it’ the URL, but maybe something more if the page hides

easy to consider them as “throw-away”, in the Utopianehlnd several CGl forms).

belief that if the script is found to be actually useful one [vebgrab pageFamiy]
will always be able to come back to it and rewrite it | it st .
“properly”. Fortunately, Python's object structure fa- [curencyxenoniabs| [railRaiTrack | T shares sharesiie }

cilitates the construction of modular and extensiblg Www.xenevcurrency www railtrack.co. uk e 1
components: as correctly advocated in [Watters+ 1996],

the right way to approach this problem is to build a base shares.StockMaster
class describing the generic behaviour and derive all the N hf“:’g;‘:gmﬁsy‘es’?m
individual clients from it. This is what th&bgr ab. py

module does. TheageFani |y class models a web site

shares.Yahoo
— finance.yahoo.co.uk

(or sub-site if you prefer) as a family of pages that can LSE, FSE, ...
all be parsed by the same symbollc regul_ar expression: shares Easdag
Coca Cola and Pepsi Cola will have distinct pages on L www.easdag.be

EASDAQ

Stockmaster, but the same regular expression applied to
either will extract their respective share prices.

Figure 3: therageFani | y class hierarchy

When analysing We_b pages programmatically, it is OA partial class hierarchy is shown in figure 3. The root is
course conv_enlen_t i the_se pages haye been gener"’ﬁ?éjvirtual base clagmgeFani | y, from thewebgr ab. py
programmatically in the first place! This form of auto-q,qje. The various handlers, such as the currency con-
mated web grat_)b_lng IS S_t'” rare compared to the numb@érter or the rail timetable lookup, inherit from it and
of users who visit the sites manually and thus have i jajise the class to the web site that they milk. The
endure all the animated GIF adverts. It is concelvablbff1ares handler is more complex because it must fetch
that, '_f web grabbing becpmes SO W|de_spread asto b guote from different web sites depending upon the
perceived by web advertisers as causing a significailije,ant stock exchange (the LSE in London, the HSE in
loss of “page impressions”, then the sites might tweql—ﬁelsinki, the NYSE in New York, the NASDAQ wher-
their page generators to insert random variations in ordg\r/er that is, etc.). All the common actions such as cal-
to break the automatic grabbers that expect a reguigiiating the profit or loss since you bought the stock are
structure. This in turn will force the grabbers to usf)erformed by the intermediate virtual claggr eSi t e.

more general pattern matching techniques, in an escajgiq cjasses dedicated to the individual share information
tion reminiscent of the wars between virus and antrqu;,eb sites inherit from this one

authors. On the other hand, a more optimistic scenario

will see information sources provide their contents in &ince handlers are shortlived, in practice a given handler
more structured and typed way, & la XML, so that theill make only one object of a giveRageFani|y-

web grabbers won't have to tentatively milk the pagéderived class, and then throw it away after a single use.

with regular expressions but will instead be able to 9%nother class in theebgr ab. py module, namelyapp
directly to explicitly labelled content. will drive the whole process and call all those methods

To write a handler for a specific new web site you inin the right order. It provides extra facilities such as
herit fromPageFani | y and redefine a few items. Firstly, passing command line parameters, dealing with web
of course, you must provide the symbolic regular exsites that don’t respond, and supporting debugging of the
pression that matches pages in the family (any symboh@ndler by allowing the page to be fetched from a local
subexpressions found are copied to a dictionary so tH#e instead of the URL implied by theageFanily as

you can access the fields in the page by their name#gll as allowing the received page to be printed “as is”
Then, optionally, you redefine the method (hook) tdefore feeding it to the regular expression. For most
post-process the fields and possibly change their tyﬁé'np|e handlers it is thus sufficient to define an appro-
(e.g. to change the string “23 %" into the float 23.75) dpriate PageFani | y subclass and invoke it via the stan-
even add new calculated fields (e.g. a “profit” field dedardapp.

Pendlng on the Eu_rrent stock value and the user-sup_pllﬁqs clear that, with this arrangement, any improvements
purchase price” field). Then a parametric format string, thewebgr ab. py library (bug fixes or new features in

specifying how to display those fields. There are al e common code) propagate automatically to all the
other minor details such as a method to translate t@ﬁents

More complex handlers may want to query several web tion about the specific white space that originally sepa-
sites at once and combine the results: this is done, for rated the words

example, when combining foreign share information
with currency exchange rates to give profits and losses
in loca currency. To this end the handler will use its
own driving application and will combine fields from
various PageFami | y instances.

The core operation was to execute an external program
(potentially in any language) with arguments supplied by
the user, collect itst dout in a string and send the string
back to the user. Having placed the command and its
arguments in a list that we shall callgv, it is easy to

imagine that the solution could be similar to
2.5 Neat hacks (asrequested)

One of the brilliant reviews | received jokingly accused fullCommand = string.join(argv)

me of “tantalisingly referring to a hacker community handle = os.popen(fullCommand, "r")
developing around the service without telling us about result = handle.read()

the neat hacks”.

| feel that a narrative description of the many handledhich minimalists are free to rewrite as a one-liner
we developed, while certainly fun, would have littleWithout intermediate values.

relevance to Python and be outside the scope of this §$re trouble with this approach is that the command to
sentially implementation-oriented paper, so | refer thge executed is passed as a string, and the contents of this
interested reader to [Stajano+ 1998] instead, where tgﬁing is something unknown that has been supplied by
topic is treated in detail. Here, just as a teaser, I'll te}he yser. Even if the code preceding our fragment has
you about a new handler written by my colleague Martiearefu”y checked thargv[0] is one of the allowed
Brown after | submitted the final version of that othegyecutables, a malicious user could still exploit this call
paper. to execute other programs of his choice by judiciously

Imagine you are at the pub, or at a friend’s home, ariacing appropriate shell escape characters within the
you suddenly remember that you haven't loaded a fre§ifher arguments, as in the following examples and the
cassette in your VCR to videotape your favourite showWany other variations that are possible on this theme:
No problem—with a practiced air of techno-superiority
you extract your mobile phone. From it, you search the
TV schedule (coming from teletext or from the broad-
caster's web pages) for the programme you want, you
disambiguate and confirm the hit if necessary, and lastly
you instruct the multimedia back-end system at the Iaﬁ1

0 §ch_edu|e a digital _recordmg of _that show, Wh'dfﬂython library manual [van Rossum 1998] gives a word
you'l find the next day in an MPEG file! Cool or What?of warning in the section about CGI: “To be on the safe

%;ﬁﬁétoﬁé gsﬁfm?t:m;’stbgr:;e ;\;amy. F;gf:ei(ljt zﬁside, if you must pass a string gotten (sic) from a form to
. v y Uit 12 9ad9eL shell command, you should make sure the string con-

from Pythonwin using OCX.) tains only alphanumeric characters, dashes, underscores
_) _ and periods.” Similar conservative advice comes from
2.6 Spawning, quoting and security the well-respected security guide [Garfinkel+ 1996]: to

An interesting point came up when writing the portiorgaraphrase their advice (p. 546), again in the context of

of server code that spawns the various handlers in re-))
sponse to requests from the phone. The simple API pfe- avoid spawning external processes;

viously hinted at prescribes that the string received from Or at least avoid passing them user-supplied strings;
the phone be chopped up into words (at whitespate O atleast avoid passing| ; >*<&

boundaries, as perring.split()), that the first word
be taken as identifying a handler and that all the re

maining words be passed to the handler as argumerzl;§hiS given the 160 character budget imposed by SMS, has
This convention has the advantage of working transpaérénera”y been seen as a feature (compresses away useless

ently in simple cases and of not introducing any quotinghite space) rather than a bug, but to be honest there has been

rules; the price to pay for this is the loss of any informasne case of a user who had written a handler that would have
preferred to see all the white space exactly as supplied by the
phone.

getshares msft; mail x@y.com </etc/passwd
getshares msft & mail x@y.com </etc/passwd
getshares ‘mail x@y.com </etc/passwd’

is is a well-known security hole about which even the

These draconian guidelines, however, place an excess is now) and the new behaviour would apply when the
sively redtrictive burden on legitimate users. for exam- supplied command is a list.
ple, those wishing to send a brief e-mail from their

phone can’t even punctuate the message properly w@q The Python success story
something as innocent as a semicolon.

The reason why these guidelines are overzealous is t%a.i
they want to protect programmers who can't properly’
handle quoting. And in fact, as lan Jackson [Jacksdrhere is no doubt that the SMS server is a success story
1997] once rightly remarked about a different but relatefdr Python, and vice versa. The time from initial idea to
security hole irsendni |, “the real problem is that peo- a working version of the server as described above took
ple are generally incompetent at quoting”. Overzealouspproximately six months of one developer, of which
mutilation of the unknown string supplied by the user ithe first three were spent messing about with various
not the solution: it's an ugly patch. The correct solutiorattempts on Windows as described earlier and diagnos-
regardless of how it is achieved, is to ensure that tiweg and solving or bypassing various nasty reliability
intended program receive the arguments just like th®oblems with the hardware (temperamental cables be-
user supplied them, without any random shell having taveen the PCMCIA and the phone, bugs in the ROM of
go at interpreting them. One way to achieve this is witthe PCMCIA and so on), the details of which are well
iron-clad quoting. An even better way, if the argumentsutside the scope of this paper. Further development
are already separated in a list, is to bypass the shell ineluding user documentation, logging, access control,
terpretation altogether. So the real problem here is irew handlers and so on took about another six months to
os. popen(), which forces us to supply the program andbring the system to the state described in [Stajano+
its arguments all lumped together in a string, which will998].

then be parsed back into arguments by... drum roll..
mandatory pass obi n/ sh!

Project history

A% this point | handed over the code and moved to other
work, but others have since made significant contribu-
What we want instead is a function with the calling intions such as a new low-level interface to the phone im-
terface of os. execv() (to which the arguments are plementing the ETSI protocol. The positive comments
passed independently one by one with no shell getting fitom these new owners who have had to extend some-
the way) but with the semantics@f. popen() (i.e. with one else’s Python code are a testimonial to the lan-
a means of reading tha dout of the program into a guage’s effectiveness in supporting the construction of
Python string). This request was posted to the Pythe@sadable, modular and maintainable software. As a trib-
newsgroup at the time of the beta cycle for Python lite to Python's own reliability and its beneficial influ-
and Guido van Rossum suggested a modification to héaice on writing reliable software, it must also be men-
(at the time undocumentedjopen2. py modulé that tioned that the server has now been running 24
would allow popen2() to accept a list of arguments ashours/day for months without ever crashing, to be
well as a string, and would not pass the argumenssopped only for upgrades of the software.

through a round afbi n/ sh in the former case.

We have been successfully using this enhanged 3.2 How did Python get in?

pen2() since and we are pleased to see that the fix h%r few programmers will quote Pvthon as their onl
now been incorporated in tip@pen2() included in the y prog " q ytho . y
nguage and | am certainly no exception, having pro-

standard distribution. Since these semantics are Cleanlgrrémmed since 1982 in about a dozen lanquaqes in-
safer and more efficient than those of going throug guag

. ding BASIC, assembler, Pascal, Prolog, C, Hyper-
/bin/sh, we hope that one day the same backward:" .
compatible fix will be applied to the standard, bette ard and C++. The discovery of Tcl/Tk [Ousterhout

knownos. popen() : the old behaviour would be retained 994] in early 1993, and later of its object-oriented ex-

when the supplied command argument is a string (IiketﬁnSlon [incr Tell[McLennan 1993.‘]’ .started a I0_/e affg|r)
that lasted for several years. Scripting was so liberating:

with high-level data structures such as associative arrays
(dictionaries in Python-speak), powerful text processing
tools such as regular expressions, and a clear and elegant
4 The popen2. py module offersavariant of os. popen() that GUI toolkit, | could finally concentrate on solving the
allowsthe caler to connect not just to the st dout or the problem at hand instead of wasting time thinking about
st di n of the spawned program, but to both at once, and op-

tiondly also to thest derr .

memory allocation every time “Hello” had to be condire in user interface toolkits-so much so that every
catenated with “world”. other scripting language under the sun, Python included,
has stolen it for its own use. The most sincere form of

In late 1995 | got interested in Python because of a S%éttery as they say... Both Tcl and Python have a co-

cific deficiency in Tcl—the inability to have nulls inside . ; . .
. . herent design that is easy for programmers to internalise
stringS. Two friends | ranked as great hackers had re- .) .
. : nd make sense of, despite little quirks. Both incorporate

cently printed the Python manual and seemed to like the . - .
. owerful data structures such as lists and dictionaries,

stuff, and this was for me a good enough recommen aaﬁd owerful primitives such as regular expressions

tion. | taught myself a bit of Python and used it for a few P P 9 P '

pet projects. Language-wise, the point on which they diverge is Tcl's

When the idea of the SMS server came along | knewlafCk of opject orientation. | find t.h's a major drawbac_k
wanted to do it in a scripting language first: as is corﬂcpr anything but the smallest scripts, so | cheat and in-
: clude [incr Tcl] as part of my idea of Tcl, because that's

mon with research projects, the initial idea may underq}\)/hat I would use instead of raw Tcl in practice. Inci-

several revisions before converging and | wanted th entally, [incr Tcl] offers a more complete and much

freedom of scripting (object sc_rlptlng, at that_) 10 Iterat%Ieaner object-oriented support than Python: data mem-
over the process. | thought | might later rewrite the corg . .
. . : bers can be declared as public, protected or private and

of the server in C++ or Java once the functionality wa : o
. . . all objects of a class have the same members, unlike in

frozen, to get the confidence of static checking (I neveF;

did, by the way). | could have used [incr Tcl] again, bu}uﬁh%%ghﬁrgem;;?;;ﬁf cgp g;%vr\]/ noet\t/]ve?atgurpergit;erls at
| took up Python instead, partly for intellectual curiosity, b y . P gy,

and partly because | liked the look of its much richerrlowever’ these basic deficiencies in Python's object

standard library. | didn’t particularly think that the Ian-mOdeI don’t cause too much trouble in normal pro-

guage in itself was any better, but | was willing to give igrammmg.

atry. Python’s inventor [van Rossum 1998.2] views this be-
haviour as a natural extension of what happens to vari-

3.3 Tdl, [incr Tcl] and Python, with ables: variables are held in a dictionary and, when as-

hindsiah signed to, they are created on-the-fly if they didn’t exist.
Inasignt This, he says, is a clear semantic model for a dynamic

Every good craftsman who takes pride in his work bdanguage (though obviously different from most static
comes emotionally attached to his tools. Programmei&iguages), and in Python it extends naturally to the data
are no exception, and this makes it hard to compare pfembers of an instance. Personally, while | see the
gramming |anguages with a Semblance Of Ob]ecn\nty beauty of the Conceptual uniﬁcation, | would feel more
certainly won’t claim to be beyond emotions in mycomfortable as a programmer if the data members of a
comparison of Tcl and Python, but at least | am emélass could be statically declared.

tionally attached to both and | am ready to defend angegarding encapsulation, Guido van Rossum suggests
praise Tcl instead of deprecating it, as an ungratefile yse of a naming convention based on leading under-
convert to something else typically would. scores (one for protected and two for private) and points

Talking of the languages themselves, | do not see the?Ht the little-known fact that the convention is partially
as fundamentally different: functionally, anything oneenforced by the interpreter: the data members whose
might want to do in one is also doable in the other. Tcl R@me starts with a double underscore will automatically
elegantly cleaner in a LISP-ish sort of way and ityecome hidden to outside callers (see [van Rossum
minimalist syntax is very easy to remember; Python %998], 521) While a masochistic hacker will still be
conceptually larger, requires many more rules to be dable to access the mangled name, the technique is very
scribed, but is more similar to a traditional language, fffective in protecting against accidental misuse, which
for programmers it may be learned just as easily. Tk, i What really counts in the software engineering con-
we want to mention that too, is a first-class design (ari@Xt:

implementation!) that stands out like the discovery of; |eaving aside the technicalities of the object model,
what is much more relevant in practice is the fact that

® Tcl later caught up on this and on some other shortcomings ® Some claim this honour should go to Hypercard, which
such asthe lack of a preliminary compilation to byte code, but Ousterhout says inspired Tk, but the latter isincredibly more
by then | had already shifted towards Python. generd, powerful, versatile yet simpler than the former.

Python explicitly supports objects as a fundamental de- developers) is clearly in favour of it [van Rossum
sign decision, while Tcl doesn’'t—and this isn’t changed 1998.2].

by the existence of [incr Tcl]. The consequence of thiéut if | had to put the finger on the single most impor-

standard library, from socket to regular expression . . ;
clearly and naturally follows the object paradigm. Eve gut a library issue. | prefer Python becase its standard

the most fundamental items (such as lists) have th?llr)rary Is a gold mine. Sure, for anything | want to do

own methods (such aseverse()), although strictly ere’'s bound to be an extension available in the Tcl

. . N . . _code repository on the FTP site. Now | just have to find
speaking the basic types don't fit perfectly in the objec :
!) . _ it, fetch it, recompile the interpreter with {Oh wait—
model since one can't derive MLi st class from the

basic Python list (which doesn’t exist as a class) anm!s may mean.gettmg and installing a ¢ com_p|Ier fpr
: : . is system. Will the GNU one compile the windowing
say, override ever se() . But still, every entity you work

! . . stuff properly or do | need to get VC++, or Borland?
with has the flavour of an object and encourages its syt ? .
. . . ho wants to have some fun discovering where another
rounding software to be organised around object ori—

: :) 5
ented interfaces. This can’'t happen in the [incr Tcl DE has hidden the useful compiler flags this wgek

world: objects are not in the language &ose the stan- | ope that it won't clash with other extensions I've had to
install, hope that it will not require a different version of

dard library cant be based on that paradigm—evetlple interpreter from the one | am running, and so on
when it's invoked through [incr Tcl]. interp unning, :

Python supports the same C extension mechanism as
Overall, while John Ousterhout explicitly targeted Tcl aTcl—but the practical difference is that the stuff | want
short programs of not more than a few hundred lineis, most of the time, already included and shipped in the
arguing that the core of the application would be writtestandard distribution of the language!

in a system language such as C, Python brings the power.
and flexibility of scripting to larger software systemsvzﬁ's is not simply a convenience for the benefit of those

apart from the ubiquity of objects, many other aspects g?at are too lazy or incompetent to recompile their inter-

the language, from modular namespaces to documenﬁ?ter: it is instead a crucially important guarantee that

tion strings and to the wonderful indentation-directe € extension is in sync with the rest of the distribution. |
syntax, facilitate the construction of large yet man::ugjé:—an now safely use the extension w ithout having t'o
able pieces of software. worry that, at the next r_elease of thg interpreter, 1 won't
be able to upgrade until the extension author wakes up
While on this subject, though, one respect under whigpossibly a few months later) and restores compatibility.
both Tcl and Python have been sorely lacking for mandn internal core with a clean interface for adding C ex-
years is the absence of static checks on the code. Itdsisions is a nice and laudable design in principle; but,
always a bit unsettling to think that there may still béor many users, having to mess around recompiling the
several trivial bugs in the code (such as leftovers fromiaterpreter (and in particular having to know what to do
renaming) that have not been spotted only because thelyen the compilation fails for one trivial reason or an-
occur in code branches that are executed very infrether) is something with which they don’t want to be
quently. Tcl has finally started to plug this hole with theroubled. Indeed, it may be part of the reason why they
inclusion of a static checker in its recently releasetirned to the scripting language in the first place!
(September 1998) TclPro commercial development Kkit.
This very welcome addition is a crucial piece of the
puzzle if scripting is to be a useful tool for building en-
tire applications as opposed to short “tool control” one-
pagers that can be checked by eyeballing. Hopefultyin the course of an interesting discussion at the 1994 Tcl
Python will soon follow suit: its author (like many of usconference, Lindsay Marshall [Marshall 1994] eloquently
argued that, as a software author, he always tried to distribute
his open source programs as pure Tcl instead of as extensions,
because of all the problems that his users reported whenever
7 Ray Johnson argues [Johnson 1998] that building objectsin they attempted to recompile the interpreter (sometimes, on a

the core may be a double-edged sword, since it may make shared installation, they didn’t even have the right file permis-
writing simple C extensions unnecessarily complicated and sions to do so0). John Ousterhout, a keen advocate of the ex-
because having to deal with typed objects (instead of Tcl's tension mechanism, who was chairing the session and summa-

universal data type of “string”) may make it more difficult to rising the speakers’ opinions on a transparency, reluctantly but
integrate systems or languages or devices that use very diffeconcisely wrote up Lindsay’s contribution as “Extensions
ent data types. suck”, amidst a roar of laughter from the audience.

So it's very good of Python to provide this incrediblepening. While | have taken sides by shifting most of my

wealth of modules in the standard library distributionscripting activities to Python, | sincerely wish well to

Historically, to use the terminology introduced by Ericboth.

Raymond in his landmark paper [Raymond 1998], T , : . .

has evolved in aathedral fashion: the contributions, %ytf)on s ijept model IS somevyhat weqk (|°0k. at l[|ncr
. L Tcl]'s for inspiration on how to improve it) but it wins

however good, stay outside the distribution for years as

2 . . Decause of its pervasiveness: Python uses objects eve-
clearly distinct pieces of code under someone else’s re-

sponsibility (the examples of Tcl-DP’s socket calls an(rywhere, from its most bgsm built-in data} types to the
: . ..more complex structures in the standard library. Python,
TclX's core system calls come to mind). Python,

in,)) .
; . ike [incr Tcl], is much better suited than raw Tcl to
contrast, has evolved followingbazaar style of quickly [.] . -

)) S large projects, and will be even more so when it incorpo-
and eagerly incorporating good contributions from an rates an optional static checker like TclPro now does
where. This is what soon gave it a much more mature '
library even if Python came out several years later th@But, as a general-purpose tool, Python’s single most
Tcl. important selling point is the richness of its standard
library—an idea that Tcl is only now starting to inter-

nalise. It's all in the distribution. You can attack your

tribution. and the intearation of more extansions igractical problem using the stuff that’s already installed
o g . .~ .on your system, and documented in the library manual
promised for future releases. Tcl is at last following in

the footsteps of Python! Between this and the stat}lou already printedPython is great because it comes

C. . .
checker, Tcl has finally made up for lost ground in term\émh batteries included
of being suitable for the larger projects. Ray Johnson,
while correctly pointing out that both Tcl and Python arddcknowledgements
at the bazaar end of the spectrum when compared { hile | was responsible for its development and imple-
say, Microsoft or most commercial software, admits t entation. the %MS Server was deslia ned iointl vr\)/ith
Tcl's more cathedral-oriented attitude and defends Ean Jonés (ORL), who contributed it?leas ;nd f)ﬁuitful
with pride: the Tcl distribution only contains code with & . ' .
proper test suite and full documentation, which iglscussmns throughout the whole project.
something that many users prefer. On the other hand thiso from ORL, Steve Hodges and Quentin Stafford-
nonprofit Tcl Consortium (very roughly Tcl's version of Fraser eventually took over administration of the de-
the PSA) recently produced a CD with precompiled veiployed server and afrious times contributed ideas and
sions of Tcl that include several popular extensions; am/thon code. Frazer Bennet helped withect () . Gray
Scriptics recently announced [Ousterhout 1998] the@irling was the local Linux guru. Frazer, Gray, Alan and
intention to open up the source workspaces of Tcl/Tk f@teve Platt all at some point helped with elusive serial
read-only access by anyone on the Internet—both welemmunications problems.
come moves in Python’s bazaar direction.

Interestingly, another significant novelty of TclPro is
that [incr Tcl] is now finally included in the regular dis-

The comp.lang.python community was always a pre-
. cious and friendly resource and, while I'm grateful to
4 Conclusions many others, | wish to thank in particular Roger Burn-

. . ham (serial communications under Windows), Andrew
Smaller projects in Python gave me the flavour of thE . . L
uchling (sel ect (), serial communications on UNIX,

language but it was with the SMS server, on which rlegular expression tips and lots more) and Mark
worked for ayear, that I learned gznough of Python to l:ﬁammond (OCX and anything Pythonwin), as well as of
able to putitinto proper perspective. course the one and only Guido, for many helpful post-
There is no question about the power and flexibility oihgs and emails.

object-oriented scripting compared to more traditiongl

languages. | love both Tcl and Python: they share tﬁleam also grateful to the anonymous reviewers, whose

o . . Hsefu| and motivating comments improved on the origi-
pen source mindset, a clean and elegant design (eac 0 submission

its own way) and that undefinableacker nature that '

makes them not only productive but genuinely fun t&inally, while their inputs should not be taken as denot-
use. The language authors’ positive and constructiveg endorsement of the opinions of this paper, whose
reactions to this paper show that the two camps can bagsponsibility remains clearly mine, it is a great pleasure
benefit from using each other's best achievements & me to thank John Ousterhout, Michael McLennan
inspiration—and for some aspects this is already hapnd Guido van Rossum (as well as Ray Johnson from

Scriptics) for their friendly and insightful feedback ona [McLennan 1993] Michael J. McLennan, “[incr Tcl] —

preliminary version of this paper, and above al for in- Object-Oriented Programming in TcPyo-
venting and implementing the first-class languages that ceedings of the Tcl/Tk Workshop,University of
I've been happily using for the past six years. California at Berkeley, USA, June 1993.
Availability [Ousterhout 1994] John K. Ousterholit| and the Tk

toolkit, Addison-Wesley, 1994.
Having now moved to other exciting projects, | would
never have the resources to distribute, maintain and Ygyysterhout 1998] John K. Ousterhout, Ouster-Votes at
grade a public release of the SMS server. However some the @" Tcl/Tk Conference, September 1998, in

self-contained building blocks, which may be useful on http:/Avww.scriptics.com/about/news/votes98.ht
their own even if | can't offer support for them, in par- mi

ticular thesvrapp. py module described in section 2.2,

are freely ayailable as open source under the GNU Ge‘[Ee'aymond 1998] Eric S. Raymond, “The Cathedral and
eral Public Licence from the Bazaar’, rev. 1.40 of 1998-08-11, in

http://www_or'_CO_uk/-..fms/sms-server-goodies/ ‘ http://tuxedo.0rg/"‘esr/Writingslcathed ral-bazaar/

[van Rossum 1998] Guido van Rossum, Python Library
References Reference for version 1.5.1, CNRI, 1998.
[ETSI 1996] European Telecommunications Standards
Institute, “Digital cellular telecommunications [van Rossum 1998.2] Guido van Rossum, personal
system (Phase 2+), Technical realization of the communication, 1998-09-10.
Short Message Service (SMS), Point-to-Point

(PP)”, GSM 03.40 version 5.4.0, November g4aiano+ 1998] Frank Stajano, Alan Jones, “The Thin-

1996. nest Of Clients: Controlling It All Via Cell-
phone”, inACM Mobile Computing and Com-
[Garfinkel+ 1996] Simson Garfinkel, Gene Spafford, munications Review vol 2 no 4, October 1998.
Practical UNIX and Internet Security (2nd ed), Also available as ORL Technical Report TR-98-
O’'Reilly and Associates, 1996. 3 from http://www.orl.co.uk/abstracts.html

[incr Tcl] It is unfortunate that the square-brackets con-[Watters+ 1996] Aaron Watters, Guido van Rossum,
vention for bibliographical references makes this James C. Ahlstromnternet Programming with
appear as one, while it is only the name that Mi- Python, M&T Books, 1996.
chael McLennan chose for his object-oriented
extension of Tcl—a pun on C++.

[Jackson 1997] lan Jackson, comment from the floor at
Alec Muffett’s security seminar, University of
Cambridge Computer Laboratory, Computer Se-
curity Group, Cambridge, UK, 1997-03-11.

[Johnson 1998] Ray Johnson, personal communication,
1998-09-14.

[Libes 1995] Don Libesixploring Expect, O'Reilly &
Associates, 1995.

[Marshall 1994] Lindsay Marshall, impromptu presen-
tation at the “short statements” session of the
1994 Tcl/Tk workshop, New Orleans, LA, USA,
1994-06-24.

