Argument Clinic How-To

Release 3.8.19

Guido van Rossum
and the Python development team

March 19, 2024

Python Software Foundation
Email: docs@python.org

Contents

1 The Goals Of Argument Clinic 2

2 Basic Concepts And Usage 2

3 Converting Your First Function 3

4 Advanced Topics 9
4.1 Symbolic default values e e e e 9
4.2 Renaming the C functions and variables generated by Argument Clinic 9
4.3 Converting functions using PyArg UnpackTuple 10
44 Optional Groups L e e e 10
4.5 Using real Argument Clinic converters, instead of “legacy converters” 11
4.6 Py_buffer e e e e e 13
47 Advanced CONVEITEIS o v v v vt it e e e e e e e 13
4.8 Parameterdefaultvalues L e 14
49 TheNULLdefaultvalue o o e e e e 14
4.10 Expressions specified as default values L o o Lo 14
4.11 Using a return CONVEITEr v v v v v et i e e e e e e e e e e e e e e e e e 15
4.12 Cloning existing functions L e e e e e e 16
4.13 Calling Pythoncode e e e e e 16
4.14 Usinga “self converter” L e e e 17
4.15 Writing a Custom CONVETIET v v v v v v e e v e e e e e e e e e e e e e e e e 17
4.16 Writing a Custom return CONVEITEr v v v v v e e e e e et e e e e e e e 18
4.17 METH_O and METH_NOARGS s 18
4.18 tp_new and tp_init functions e e e e e e e e e e e 19
4.19 Changing and redirecting Clinic’soutput oL 19
420 The #ifdef trick L L e e 22
4.21 Using Argument Clinic in Pythonfiles, 23

Index 24

author Larry Hastings

Abstract

Argument Clinic is a preprocessor for CPython C files. Its purpose is to automate all the boilerplate involved with
writing argument parsing code for “builtins”. This document shows you how to convert your first C function to
work with Argument Clinic, and then introduces some advanced topics on Argument Clinic usage.

Currently Argument Clinic is considered internal-only for CPython. Its use is not supported for files outside
CPython, and no guarantees are made regarding backwards compatibility for future versions. In other words:
if you maintain an external C extension for CPython, you’re welcome to experiment with Argument Clinic in
your own code. But the version of Argument Clinic that ships with the next version of CPython could be totally
incompatible and break all your code.

1 The Goals Of Argument Clinic

Argument Clinic’s primary goal is to take over responsibility for all argument parsing code inside CPython. This
means that, when you convert a function to work with Argument Clinic, that function should no longer do any of its
own argument parsing—the code generated by Argument Clinic should be a “black box” to you, where CPython calls
in at the top, and your code gets called at the bottom, with PyObject *args (and maybe PyObject *kwargs)
magically converted into the C variables and types you need.

In order for Argument Clinic to accomplish its primary goal, it must be easy to use. Currently, working with CPython’s
argument parsing library is a chore, requiring maintaining redundant information in a surprising number of places.
When you use Argument Clinic, you don’t have to repeat yourself.

Obviously, no one would want to use Argument Clinic unless it’s solving their problem—and without creating new
problems of its own. So it’s paramount that Argument Clinic generate correct code. It'd be nice if the code was
faster, too, but at the very least it should not introduce a major speed regression. (Eventually Argument Clinic should
make a major speedup possible—we could rewrite its code generator to produce tailor-made argument parsing code,
rather than calling the general-purpose CPython argument parsing library. That would make for the fastest argument
parsing possible!)

Additionally, Argument Clinic must be flexible enough to work with any approach to argument parsing. Python has
some functions with some very strange parsing behaviors; Argument Clinic’s goal is to support all of them.

Finally, the original motivation for Argument Clinic was to provide introspection “signatures” for CPython builtins.
It used to be, the introspection query functions would throw an exception if you passed in a builtin. With Argument
Clinic, that’s a thing of the past!

One idea you should keep in mind, as you work with Argument Clinic: the more information you give it, the better
job it’ll be able to do. Argument Clinic is admittedly relatively simple right now. But as it evolves it will get more
sophisticated, and it should be able to do many interesting and smart things with all the information you give it.

2 Basic Concepts And Usage

Argument Clinic ships with CPython; you’ll find it in Tools/clinic/clinic.py. If you run that script, spec-
ifying a C file as an argument:

’$ python3 Tools/clinic/clinic.py foo.c

Argument Clinic will scan over the file looking for lines that look exactly like this:

’/*[clinic input] ‘

When it finds one, it reads everything up to a line that looks exactly like this:

’[clinic start generated code]*/

Everything in between these two lines is input for Argument Clinic. All of these lines, including the beginning and
ending comment lines, are collectively called an Argument Clinic “block”.

When Argument Clinic parses one of these blocks, it generates output. This output is rewritten into the C file
immediately after the block, followed by a comment containing a checksum. The Argument Clinic block now looks
like this:

/*[clinic input]
clinic input goes here
[clinic start generated code]*/
clinic output goes here
/*[clinic end generated code: checksum=...]*/

If you run Argument Clinic on the same file a second time, Argument Clinic will discard the old output and write
out the new output with a fresh checksum line. However, if the input hasn’t changed, the output won’t change either.

You should never modify the output portion of an Argument Clinic block. Instead, change the input until it produces
the output you want. (That’s the purpose of the checksum—to detect if someone changed the output, as these edits
would be lost the next time Argument Clinic writes out fresh output.)

For the sake of clarity, here’s the terminology we’ll use with Argument Clinic:
¢ The first line of the comment (/* [clinic input]) is the start line.
¢ The last line of the initial comment ([clinic start generated code] */)is the end line.
e Thelastline (/* [clinic end generated code: checksum=...]*/)isthe checksum line.
* In between the start line and the end line is the input.
¢ In between the end line and the checksum line is the output.

* All the text collectively, from the start line to the checksum line inclusively, is the block. (A block that hasn’t
been successfully processed by Argument Clinic yet doesn’t have output or a checksum line, but it’s still con-
sidered a block.)

3 Converting Your First Function

The best way to get a sense of how Argument Clinic works is to convert a function to work with it. Here, then, are
the bare minimum steps you’d need to follow to convert a function to work with Argument Clinic. Note that for code
you plan to check in to CPython, you really should take the conversion farther, using some of the advanced concepts
you’ll see later on in the document (like “return converters” and “self converters”). But we’ll keep it simple for this
walkthrough so you can learn.

Let’s dive in!
0. Make sure you're working with a freshly updated checkout of the CPython trunk.

1. Find a Python builtin that calls either PyArg_ParseTuple () or
PyArg_ParseTupleAndKeywords (), and hasn’t been converted to work with Argument Clinic
yet. For my example I'm using _pickle.Pickler.dump ().

2. If the call to the PyArg_Parse function uses any of the following format units:

0&
0!
es
es#
et
et#

or if it has multiple calls to PyArg_ParseTuple (), you should choose a different function. Argument
Clinic does support all of these scenarios. But these are advanced topics—Iet’s do something simpler for your
first function.

Also, if the function has multiple calls to PyArg_ParseTuple () or
PyArg_ParseTupleAndKeywords () where it supports different types for the same argument,
or if the function uses something besides PyArg_Parse functions to parse its arguments, it probably isn’t
suitable for conversion to Argument Clinic. Argument Clinic doesn’t support generic functions or polymorphic
parameters.

. Add the following boilerplate above the function, creating our block:

/*[clinic input]
[clinic start generated code]*/

. Cut the docstring and paste it in between the [c1linic] lines, removing all the junk that makes it a properly
quoted C string. When you’re done you should have just the text, based at the left margin, with no line wider
than 80 characters. (Argument Clinic will preserve indents inside the docstring.)

If the old docstring had a first line that looked like a function signature, throw that line away. (The docstring
doesn’t need it anymore—when you use help () on your builtin in the future, the first line will be built
automatically based on the function’s signature.)

Sample:

/*[clinic input]
Write a pickled representation of obj to the open file.
[clinic start generated code]*/

. If your docstring doesn’t have a “summary” line, Argument Clinic will complain. So let’s make sure it has
one. The “summary” line should be a paragraph consisting of a single 80-column line at the beginning of the
docstring.

(Our example docstring consists solely of a summary line, so the sample code doesn’t have to change for this
step.)

. Above the docstring, enter the name of the function, followed by a blank line. This should be the Python name
of the function, and should be the full dotted path to the function—it should start with the name of the module,
include any sub-modules, and if the function is a method on a class it should include the class name too.

Sample:

/*[clinic input]
_pickle.Pickler.dump

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

. If this is the first time that module or class has been used with Argument Clinic in this C file, you must
declare the module and/or class. Proper Argument Clinic hygiene prefers declaring these in a separate block
somewhere near the top of the C file, in the same way that include files and statics go at the top. (In our sample
code we’ll just show the two blocks next to each other.)

The name of the class and module should be the same as the one seen by Python. Check the name defined in
the PyModuleDef or PyTypeObject as appropriate.

When you declare a class, you must also specify two aspects of its type in C: the type declaration you’d use for
a pointer to an instance of this class, and a pointer to the PyTypeObject for this class.

Sample:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "&Pickler Type"
[clinic start generated code]*/

/*[clinic input]
_pickle.Pickler.dump

(continues on next page)

8.

10.

(continued from previous page)

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

Declare each of the parameters to the function. Each parameter should get its own line. All the parameter
lines should be indented from the function name and the docstring.

The general form of these parameter lines is as follows:

’name_of_parameter: converter

If the parameter has a default value, add that after the converter:

’name_of_parameter: converter = default_value

Argument Clinic’s support for “default values” is quite sophisticated; please see the section below on default
values for more information.

Add a blank line below the parameters.

What's a “converter”? It establishes both the type of the variable used in C, and the method to convert the
Python value into a C value at runtime. For now you’re going to use what’s called a “legacy converter”—a
convenience syntax intended to make porting old code into Argument Clinic easier.

For each parameter, copy the “format unit” for that parameter from the PyArg_Parse () format argument
and specify that as its converter, as a quoted string. (“format unit” is the formal name for the one-to-three
character substring of the format parameter that tells the argument parsing function what the type of the
variable is and how to convert it. For more on format units please see arg-parsing.)

For multicharacter format units like z #, use the entire two-or-three character string.

Sample:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "gPickler_ Type"
[clinic start generated code]*/

/*[clinic input]
_pickle.Pickler.dump

obj: 'O’

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

If your function has | in the format string, meaning some parameters have default values, you can ignore it.
Argument Clinic infers which parameters are optional based on whether or not they have default values.

If your function has $ in the format string, meaning it takes keyword-only arguments, specify * on a line by
itself before the first keyword-only argument, indented the same as the parameter lines.

(_pickle.Pickler.dump has neither, so our sample is unchanged.)

If the existing C function calls PyArg_ParseTuple () (as opposed to
PyArg_ParseTupleAndKeywords ()), then all its arguments are positional-only.

To mark all parameters as positional-only in Argument Clinic, add a / on a line by itself after the last parameter,
indented the same as the parameter lines.

Currently this is all-or-nothing; either all parameters are positional-only, or none of them are. (In the future
Argument Clinic may relax this restriction.)

Sample:

11.

12.

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "&Pickler Type"
[clinic start generated code]*/

/*[clinic input]
_pickle.Pickler.dump

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

It’s helpful to write a per-parameter docstring for each parameter. But per-parameter docstrings are optional;
you can skip this step if you prefer.

Here’s how to add a per-parameter docstring. The first line of the per-parameter docstring must be indented
further than the parameter definition. The left margin of this first line establishes the left margin for the whole
per-parameter docstring; all the text you write will be outdented by this amount. You can write as much text
as you like, across multiple lines if you wish.

Sample:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "gPickler Type"
[clinic start generated code]*/

/*[clinic input]
_pickle.Pickler.dump

obj: 'O’
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

Save and close the file, then run Tools/clinic/clinic.py onit. With luck everything worked—your
block now has output, and a . c . h file has been generated! Reopen the file in your text editor to see:

/*[clinic input]
_pickle.Pickler.dump

obj: 'O’
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

static PyObject *
_pickle_Pickler_dump (PicklerObject *self, PyObject *obj)
/*[clinic end generated code: output=87ecadlZ6lel2ac7/7 input=552eblc0f52260d9]*/

Obviously, if Argument Clinic didn’t produce any output, it’s because it found an error in your input. Keep
fixing your errors and retrying until Argument Clinic processes your file without complaint.

For readability, most of the glue code has been generated to a . ¢ . h file. You'll need to include that in your
original . c file, typically right after the clinic module block:

13.

14.

#include "clinic/_pickle.c.h"

Double-check that the argument-parsing code Argument Clinic generated looks basically the same as the ex-
isting code.

First, ensure both places use the same argument-parsing function. The existing code must call either
PyArg_ParseTuple () or PyArg_ParseTupleAndKeywords (); ensure that the code generated
by Argument Clinic calls the exact same function.

Second, the format string passed in to PyArg_ParseTuple () or
PyArg_ParseTupleAndKeywords () should be exactly the same as the hand-written one in the
existing function, up to the colon or semi-colon.

(Argument Clinic always generates its format strings with a : followed by the name of the function. If the
existing code’s format string ends with ;, to provide usage help, this change is harmless—don’t worry about
it.)

Third, for parameters whose format units require two arguments (like a length variable, or an encoding string,
or a pointer to a conversion function), ensure that the second argument is exactly the same between the two
invocations.

Fourth, inside the output portion of the block you’ll find a preprocessor macro defining the appropriate static
PyMethodDef structure for this builtin:

#define _ PICKLE PICKLER DUMP_METHODDEF \
{"dump", (PyCFunction)__pickle Pickler dump, METH O, __pickle_Pickler_ dump___
—doc__},

This static structure should be exactly the same as the existing static PyMethodDe £ structure for this builtin.

If any of these items differ in any way, adjust your Argument Clinic function specification and rerun Tools/
clinic/clinic.py until they are the same.

Notice that the last line of its output is the declaration of your “impl” function. This is where the builtin’s im-
plementation goes. Delete the existing prototype of the function you're modifying, but leave the opening curly
brace. Now delete its argument parsing code and the declarations of all the variables it dumps the arguments
into. Notice how the Python arguments are now arguments to this impl function; if the implementation used
different names for these variables, fix it.

Let’s reiterate, just because it’s kind of weird. Your code should now look like this:

static return_type
your_function_impl(...)
/*[clinic end generated code: checksum=...]*/

{

Argument Clinic generated the checksum line and the function prototype just above it. You should write the
opening (and closing) curly braces for the function, and the implementation inside.

Sample:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "gPickler Type"
[clinic start generated code]*/

/*[clinic end generated code:._
—checksum=da39a3eeb5e6b4b0d3255bfef95601890afd80709] */

/*[clinic input]
_pickle.Pickler.dump

obj: 'O’
The object to be pickled.

(continues on next page)

15.

16.

(continued from previous page)

/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

PyDoc_STRVAR(__pickle_Pickler_dump__doc__,
"Write a pickled representation of obj to the open file.\n"
ll\nH

static PyObject *

_pickle_Pickler_dump_impl (PicklerObject *self, PyObject *obj)
/*[clinic end generated code:.
—checksum=3bd30745bf206a48f8b576alda3d90f55a0a4187]*/

{

/* Check whether the Pickler was initialized correctly (issue3664).

Developers often forget to call __init__ () in their subclasses, which
would trigger a segfault without this check. */
if (self->write == NULL) {
PyErr_Format (PicklingError,
"Pickler.__init__ () was not called by %s.__init__ ()",

Py_TYPE (self)->tp_name);
return NULL;

if (_Pickler_ClearBuffer (self) < 0)
return NULL;

Remember the macro with the PyMethodDe £ structure for this function? Find the existing PyMethodDe £
structure for this function and replace it with a reference to the macro. (If the builtin is at module scope, this
will probably be very near the end of the file; if the builtin is a class method, this will probably be below but
relatively near to the implementation.)

Note that the body of the macro contains a trailing comma. So when you replace the existing static
PyMethodDef structure with the macro, don’t add a comma to the end.

Sample:

static struct PyMethodDef Pickler_methods[] = {
__ PICKLE_PICKLER_DUMP_METHODDEF
__ PICKLE_PICKLER_CLEAR_MEMO_METHODDEF
{NULL, NULL} /* sentinel */
bi

Compile, then run the relevant portions of the regression-test suite. This change should not introduce any new
compile-time warnings or errors, and there should be no externally-visible change to Python’s behavior.

Well, except for one difference: inspect.signature () run on your function should now provide a valid
signature!

Congratulations, you’ve ported your first function to work with Argument Clinic!

4 Advanced Topics

Now that you’ve had some experience working with Argument Clinic, it’s time for some advanced topics.

4.1 Symbolic default values
The default value you provide for a parameter can’t be any arbitrary expression. Currently the following are explicitly
supported:
* Numeric constants (integer and float)
« String constants
e True, False, and None
» Simple symbolic constants like sy s .maxs1ize, which must start with the name of the module
In case you’re curious, this is implemented in from_builtin () in Lib/inspect.py.

(In the future, this may need to get even more elaborate, to allow full expressions like CONSTANT - 1.)

4.2 Renaming the C functions and variables generated by Argument Clinic

Argument Clinic automatically names the functions it generates for you. Occasionally this may cause a problem, if
the generated name collides with the name of an existing C function. There’s an easy solution: override the names
used for the C functions. Just add the keyword "as™" to your function declaration line, followed by the function name
you wish to use. Argument Clinic will use that function name for the base (generated) function, then add "_impl"
to the end and use that for the name of the impl function.

For example, if we wanted to rename the C function names generated for pickle.Pickler.dump, it'd look like
this:

/*[clinic input]
pickle.Pickler.dump as pickler_dumper

The base function would now be named pickler_dumper (), and the impl function would now be named pick—
ler_dumper_impl ().

Similarly, you may have a problem where you want to give a parameter a specific Python name, but that name may
be inconvenient in C. Argument Clinic allows you to give a parameter different names in Python and in C, using the
same "as" syntax:

/*[clinic input]
pickle.Pickler.dump

obj: object
file as file_obj: object
protocol: object = NULL

*

fix _imports: bool = True

Here, the name used in Python (in the signature and the keywords array) would be £1i 1e, but the C variable would
be named file_obj.

You can use this to rename the self parameter too!

4.3 Converting functions using PyArg_UnpackTuple

To convert a function parsing its arguments with PyArg_UnpackTuple (), simply write out all the arguments,
specifying each as an object. You may specify the t ype argument to cast the type as appropriate. All arguments
should be marked positional-only (add a / on a line by itself after the last argument).

Currently the generated code will use PyArg_ParseTuple (), but this will change soon.

4.4 Optional Groups

Some legacy functions have a tricky approach to parsing their arguments: they count the number of positional argu-
ments, then use a switch statement to call one of several different PyArg_ParseTuple () calls depending on
how many positional arguments there are. (These functions cannot accept keyword-only arguments.) This approach
was used to simulate optional arguments back before PyArg_ParseTupleAndKeywords () was created.

While functions using this approach can often be converted to use PyArg_ParseTupleAndKeywords (),
optional arguments, and default values, it’s not always possible. Some of these legacy functions have behaviors
PyArg_ParseTupleAndKeywords () doesn’t directly support. The most obvious example is the builtin func-
tion range (), which has an optional argument on the left side of its required argument! Another example is
curses.window.addch (), which has a group of two arguments that must always be specified together. (The
arguments are called x and v; if you call the function passing in x, you must also pass in y—and if you don’t pass in
x you may not pass in y either.)

In any case, the goal of Argument Clinic is to support argument parsing for all existing CPython builtins without
changing their semantics. Therefore Argument Clinic supports this alternate approach to parsing, using what are
called optional groups. Optional groups are groups of arguments that must all be passed in together. They can be to
the left or the right of the required arguments. They can only be used with positional-only parameters.

Note: Optional groups are only intended for use when converting functions that make multiple calls to
PyArg_ParseTuple () ! Functions that use any other approach for parsing arguments should almost never be
converted to Argument Clinic using optional groups. Functions using optional groups currently cannot have accu-
rate signatures in Python, because Python just doesn’t understand the concept. Please avoid using optional groups
wherever possible.

To specify an optional group, add a [on a line by itself before the parameters you wish to group together, and a] on
a line by itself after these parameters. As an example, here’s how curses.window.addch uses optional groups
to make the first two parameters and the last parameter optional:

/*[clinic input]
curses.window.addch

[

x: int
X—-coordinate.

y: int
Y-coordinate.

]

ch: object
Character to add.

[
attr: long
Attributes for the character.

—

10

Notes:

* For every optional group, one additional parameter will be passed into the impl function representing the group.
The parameter will be an int named group_{direction}_{number}, where {direction} is either
right or left depending on whether the group is before or after the required parameters, and { number }
is a monotonically increasing number (starting at 1) indicating how far away the group is from the required
parameters. When the impl is called, this parameter will be set to zero if this group was unused, and set to
non-zero if this group was used. (By used or unused, I mean whether or not the parameters received arguments
in this invocation.)

* If there are no required arguments, the optional groups will behave as if they’re to the right of the required
arguments.

¢ In the case of ambiguity, the argument parsing code favors parameters on the left (before the required param-
eters).

* Optional groups can only contain positional-only parameters.

* Optional groups are only intended for legacy code. Please do not use optional groups for new code.

4.5 Using real Argument Clinic converters, instead of “legacy converters”

To save time, and to minimize how much you need to learn to achieve your first port to Argument Clinic, the walk-
through above tells you to use “legacy converters”. “Legacy converters” are a convenience, designed explicitly to
make porting existing code to Argument Clinic easier. And to be clear, their use is acceptable when porting code for
Python 3.4.

However, in the long term we probably want all our blocks to use Argument Clinic’s real syntax for converters. Why?
A couple reasons:

¢ The proper converters are far easier to read and clearer in their intent.

* There are some format units that are unsupported as “legacy converters”, because they require arguments, and
the legacy converter syntax doesn’t support specifying arguments.

e In the future we may have a new argument parsing library that isn’t restricted to what
PyArg ParseTuple () supports; this flexibility won’t be available to parameters using legacy con-
verters.

Therefore, if you don’t mind a little extra effort, please use the normal converters instead of legacy converters.

In a nutshell, the syntax for Argument Clinic (non-legacy) converters looks like a Python function call. However, if
there are no explicit arguments to the function (all functions take their default values), you may omit the parentheses.
Thus bool and bool () are exactly the same converters.

All arguments to Argument Clinic converters are keyword-only. All Argument Clinic converters accept the following
arguments:

c_default The default value for this parameter when defined in C. Specifically, this will be the
initializer for the variable declared in the “parse function”. See the section on default values for
how to use this. Specified as a string.

annotation The annotation value for this parameter. Not currently supported, because PEP 8 man-
dates that the Python library may not use annotations.

In addition, some converters accept additional arguments. Here is a list of these arguments, along with their meanings:

accept A set of Python types (and possibly pseudo-types); this restricts the allowable Python argu-
ment to values of these types. (This is not a general-purpose facility; as a rule it only supports
specific lists of types as shown in the legacy converter table.)

To accept None, add NoneType to this set.

bitwise Only supported for unsigned integers. The native integer value of this Python argument will
be written to the parameter without any range checking, even for negative values.

11

https://www.python.org/dev/peps/pep-0008

converter Only supported by the object converter. Specifies the name of a C “converter function”
to use to convert this object to a native type.

encoding Only supported for strings. Specifies the encoding to use when converting this string from
a Python str (Unicode) value into a C char * value.

subclass_of Only supported for the object converter. Requires that the Python value be a sub-
class of a Python type, as expressed in C.

type Only supported for the object and self converters. Specifies the C type that will be used to
declare the variable. Default value is "PyObject *".

zeroes Only supported for strings. If true, embedded NUL bytes (' \\0 ") are permitted inside the
value. The length of the string will be passed in to the impl function, just after the string parameter,
as a parameter named <parameter_name>_length.

Please note, not every possible combination of arguments will work. Usually these arguments are implemented
by specific PyArg_ParseTuple format units, with specific behavior. For example, currently you cannot call
unsigned_short without also specifying bitwise=True. Although it’s perfectly reasonable to think this
would work, these semantics don’t map to any existing format unit. So Argument Clinic doesn’t support it. (Or, at
least, not yet.)

Below is a table showing the mapping of legacy converters into real Argument Clinic converters. On the left is the
legacy converter, on the right is the text you’d replace it with.

'B' unsigned_char (bitwise=True)

'o! unsigned_char

'c! char

'C! int (accept={str})

'da’ double

'D' Py_complex

'es' str (encoding='name_of_encoding')

'es#' str (encoding="'name_of_encoding', zeroes=True)
‘et str (encoding='name_of_encoding', accept={bytes, bytearray, str})
'et#' | str(encoding="'name_of_encoding', accept={bytes, bytearray, str}, zeroes=True)
‘£ float

'h' short

'H' unsigned_short (bitwise=True)

it int

T unsigned_int (bitwise=True)

k' unsigned_long (bitwise=True)

"K' unsigned_long_long (bitwise=True)

'l long

'L! long long

'n' Py_ssize_t

'O’ object

‘ol object (subclass_of="'&PySomething_Type')
'0&! object (converter="name_of_c_function')
'p' bool

'S PyBytesObject

's'! str

's#! str (zeroes=True)

's*! Py_buffer (accept={buffer, str})

'U’ unicode

'u' Py_UNICODE

uf! Py_UNICODE (zeroes=True)

Tw*! Py_buffer (accept={rwbuffer})

'y! PyByteArrayObject

'y! str (accept={bytes})

Continued on next page

12

Table 1 - continued from previous page

'y str (accept={robuffer}, zeroes=True)

ty*! Py_buffer

'z Py_UNICODE (accept={str, NoneType})

7% Py_UNICODE (accept={str, NoneType}, zeroes=True)
'z! str (accept={str, NoneType})

'z str (accept={str, NoneType}, zeroes=True)

tzx! Py_buffer (accept={buffer, str, NoneType})

As an example, here’s our sample pickle.Pickler.dump using the proper converter:

/*[clinic input]
pickle.Pickler.dump

obj: object
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

One advantage of real converters is that they’re more flexible than legacy converters. For example, the un-—
signed_int converter (and all the unsigned_ converters) can be specified without bitwise=True. Their
default behavior performs range checking on the value, and they won’t accept negative numbers. You just can’t do
that with a legacy converter!

Argument Clinic will show you all the converters it has available. For each converter it’'ll show you all the param-
eters it accepts, along with the default value for each parameter. Just run Tools/clinic/clinic.py --
converters to see the full list.

4.6 Py_buffer

When using the Py_buffer converter (or the 's*', 'w*', "*y' or 'z*' legacy converters), you must not
call PyBuffer_Release () on the provided buffer. Argument Clinic generates code that does it for you (in the
parsing function).

4.7 Advanced converters

Remember those format units you skipped for your first time because they were advanced? Here’s how to handle
those too.

The trick is, all those format units take arguments—either conversion functions, or types, or strings specifying an
encoding. (But “legacy converters” don’t support arguments. That’s why we skipped them for your first function.) The
argument you specified to the format unit is now an argument to the converter; this argument is either converter
(for 0&), subclass_of (for O!), or encoding (for all the format units that start with e).

When using subclass_of, you may also want to use the other custom argument for object () : type, which
lets you set the type actually used for the parameter. For example, if you want to ensure that the object is a subclass
of PyUnicode_Type, you probably want to use the converter object (type='PyUnicodeObject *',
subclass_of="'&PyUnicode_Type').

One possible problem with using Argument Clinic: it takes away some possible flexibility for the format units starting
with e. When writing a PyArg_Parse call by hand, you could theoretically decide at runtime what encoding string
topassinto PyArg_ParseTuple (). But now this string must be hard-coded at Argument-Clinic-preprocessing-
time. This limitation is deliberate; it made supporting this format unit much easier, and may allow for future opti-
mizations. This restriction doesn’t seem unreasonable; CPython itself always passes in static hard-coded encoding
strings for parameters whose format units start with e.

13

4.8 Parameter default values

Default values for parameters can be any of a number of values. At their simplest, they can be string, int, or float
literals:

foo: str = "abc"
bar: int = 123
bat: float = 45.6

They can also use any of Python’s built-in constants:

yep: Dbool = True
nope: bool = False
nada: object = None

There’s also special support for a default value of NULL, and for simple expressions, documented in the following
sections.

4.9 The NULL default value

For string and object parameters, you can set them to None to indicate that there’s no default. However, that means
the C variable will be initialized to Py_None. For convenience’s sakes, there’s a special value called NULL for just
this reason: from Python’s perspective it behaves like a default value of None, but the C variable is initialized with
NULL.

4.10 Expressions specified as default values

The default value for a parameter can be more than just a literal value. It can be an entire expression, using math
operators and looking up attributes on objects. However, this support isn’t exactly simple, because of some non-
obvious semantics.

Consider the following example:

foo: Py_ssize_t = sys.maxsize - 1

sys.maxsize can have different values on different platforms. Therefore Argument Clinic can’t simply evaluate
that expression locally and hard-code it in C. So it stores the default in such a way that it will get evaluated at runtime,
when the user asks for the function’s signature.

‘What namespace is available when the expression is evaluated? It’s evaluated in the context of the module the builtin
came from. So, if your module has an attribute called “max_widgets”, you may simply use it:

foo: Py_ssize_t = max_widgets

If the symbol isn’t found in the current module, it fails over to looking in sys.modules. That’s how it can find
sys.maxsize for example. (Since you don’t know in advance what modules the user will load into their interpreter,
it’s best to restrict yourself to modules that are preloaded by Python itself.)

Evaluating default values only at runtime means Argument Clinic can’t compute the correct equivalent C default value.
So you need to tell it explicitly. When you use an expression, you must also specify the equivalent expression in C,
using the c_default parameter to the converter:

foo: Py_ssize_t (c_default="PY_SSIZE_T_MAX - 1") = sys.maxsize - 1

Another complication: Argument Clinic can’t know in advance whether or not the expression you supply is valid. It
parses it to make sure it looks legal, but it can’t actually know. You must be very careful when using expressions to
specify values that are guaranteed to be valid at runtime!

Finally, because expressions must be representable as static C values, there are many restrictions on legal expressions.
Here’s a list of Python features you're not permitted to use:

14

* Function calls.

e Inline if statements (3 if foo else 5).

* Automatic sequence unpacking (* [1, 2, 31).

* List/set/dict comprehensions and generator expressions.

* Tuple/list/set/dict literals.

4.11 Using a return converter

By default the impl function Argument Clinic generates for you returns PyObject *. But your C function often
computes some C type, then converts it into the PyObject * at the last moment. Argument Clinic handles
converting your inputs from Python types into native C types—why not have it convert your return value from a
native C type into a Python type too?

That’s what a “return converter” does. It changes your impl function to return some C type, then adds code to the
generated (non-impl) function to handle converting that value into the appropriate PyObject *.

The syntax for return converters is similar to that of parameter converters. You specify the return converter like it
was a return annotation on the function itself. Return converters behave much the same as parameter converters; they
take arguments, the arguments are all keyword-only, and if you’re not changing any of the default arguments you can
omit the parentheses.

(If you use both "as" and a return converter for your function, the "as" should come before the return converter.)

There’s one additional complication when using return converters: how do you indicate an error has occurred? Nor-
mally, a function returns a valid (non-NULL) pointer for success, and NULL for failure. But if you use an integer
return converter, all integers are valid. How can Argument Clinic detect an error? Its solution: each return con-
verter implicitly looks for a special value that indicates an error. If you return that value, and an error has been set
(PyErr_Occurred () returns a true value), then the generated code will propagate the error. Otherwise it will
encode the value you return like normal.

Currently Argument Clinic supports only a few return converters:

bool

int

unsigned int
long

unsigned int
size_t
Py_ssize_t
float

double
DecodeFSDefault

None of these take parameters. For the first three, return -1 to indicate error. For DecodeFSDefault, the return
type is const char *;return a NULL pointer to indicate an error.

(There’s also an experimental None Type converter, which lets you return Py_None on success or NULL on failure,
without having to increment the reference count on Py_None. I'm not sure it adds enough clarity to be worth using.)

To see all the return converters Argument Clinic supports, along with their parameters (if any), just run Tools/
clinic/clinic.py —-converters for the full list.

15

4.12 Cloning existing functions
If you have a number of functions that look similar, you may be able to use Clinic’s “clone” feature. When you clone
an existing function, you reuse:

* its parameters, including

their names,

their converters, with all parameters,

their default values,

their per-parameter docstrings,

their kind (whether they’re positional only, positional or keyword, or keyword only), and
* its return converter.
The only thing not copied from the original function is its docstring; the syntax allows you to specify a new docstring.

Here’s the syntax for cloning a function:

/*[clinic input]
module.class.new_function [as c_basename] = module.class.existing_function

Docstring for new_function goes here.
[clinic start generated code]*/

(The functions can be in different modules or classes. I wrote module.class in the sample just to illustrate that
you must use the full path to both functions.)

Sorry, there’s no syntax for partially-cloning a function, or cloning a function then modifying it. Cloning is an all-or
nothing proposition.

Also, the function you are cloning from must have been previously defined in the current file.

4.13 Calling Python code

The rest of the advanced topics require you to write Python code which lives inside your C file and modifies Argument
Clinic’s runtime state. This is simple: you simply define a Python block.

A Python block uses different delimiter lines than an Argument Clinic function block. It looks like this:

/*[python input]
python code goes here
[python start generated code]*/

All the code inside the Python block is executed at the time it’s parsed. All text written to stdout inside the block is
redirected into the “output” after the block.

As an example, here’s a Python block that adds a static integer variable to the C code:

/*[python input]

print ('static int __ignored_unused_variable _ = 0;"')
[python start generated code]*/

static int __ _ignored_unused_variable__ = 0;
/*[python checksum:...]*/

16

4.14 Using a “self converter”

Argument Clinic automatically adds a “self” parameter for you using a default converter. It automatically sets the
type of this parameter to the “pointer to an instance” you specified when you declared the type. However, you
can override Argument Clinic’s converter and specify one yourself. Just add your own self parameter as the first
parameter in a block, and ensure that its converter is an instance of self_converter or a subclass thereof.

What's the point? This lets you override the type of self, or give it a different default name.

How do you specify the custom type you want to cast se1f to? If you only have one or two functions with the same
type for self, you can directly use Argument Clinic’s existing se1f converter, passing in the type you want to use
as the t ype parameter:

/*[clinic input]
_pickle.Pickler.dump
self: self (type="PicklerObject *")

obj: object
/

Write a pickled representation of the given object to the open file.
[clinic start generated code]*/

On the other hand, if you have a lot of functions that will use the same type for self, it’s best to create your own
converter, subclassing self_converter but overwriting the t ype member:

/*[python input]

class PicklerObject_converter (self_converter):
type = "PicklerObject *"

[python start generated code]*/

/*[clinic input]

_pickle.Pickler.dump
self: PicklerObject
obj: object

/

Write a pickled representation of the given object to the open file.
[clinic start generated code]*/

4.15 Writing a custom converter

As we hinted at in the previous section... you can write your own converters! A converter is simply a Python class
that inherits from CConverter. The main purpose of a custom converter is if you have a parameter using the O&
format unit—parsing this parameter means calling a PyArg_ParseTuple () “converter function”.

Your converter class should be named *something*_converter. If the name follows this convention, then
your converter class will be automatically registered with Argument Clinic; its name will be the name of your class
with the _converter suffix stripped off. (This is accomplished with a metaclass.)

You shouldn’t subclass CConverter.__init__ . Instead, you should write a converter_init () func-
tion. converter_init () always accepts a self parameter; after that, all additional parameters must be
keyword-only. Any arguments passed in to the converter in Argument Clinic will be passed along to your con—
verter_init ().

There are some additional members of CConverter you may wish to specify in your subclass. Here’s the current
list:

17

type The C type to use for this variable. type should be a Python string specifying the type, e.g. int. If this is
a pointer type, the type string should end with ' *'.

default The Python default value for this parameter, as a Python value. Or the magic value unspecified if
there is no default.

py_default default as it should appear in Python code, as a string. Or None if there is no default.
c_default default as it should appear in C code, as a string. Or None if there is no default.

c_ignored_default The default value used to initialize the C variable when there is no default, but not spec-
ifying a default may result in an “uninitialized variable” warning. This can easi