The Python Library Reference
Release 3.7.4rc1

Guido van Rossum
and the Python development team

June 18, 2019

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Notesonavailability e 3
Built-in Functions 5
Built-in Constants 27
3.1 Constants added by the sitemodule e 28
Built-in Types 29
4.1 Truth Value Testing o o oot e e e e e 29
4.2 Boolean Operations — and, O, NOT « v v v v v v v v v v e e e e e e e e e e e e e e e e 29
4.3 COMPATISONS & v v v v v e 30
44 Numeric Types — int, float,complex« o oot v ittt 30
4.5 Tterator Types L e 36
4.6 Sequence Types — 1ist, tuple, range v v vvv vttt e 37
477 TextSequence TYPe — STT . . . o v v v v i e e e e e e e e e e e e e e e e e e e 43
4.8 Binary Sequence Types — bytes, bytearray, Memoryview oo v v v v v 53
49 SetTypes — set, frozenset o v i v v i i it i e e e e e e e e e e 73
4.10 Mapping Types — dict o e e 76
4.11 Context Manager Types e 79
4.12 Other Built-in Types L o o e e 80
4.13 Special AUribULES o e e e e e e e e e e e e e e e e e e e 82
Built-in Exceptions 85
S0 Baseclasses 85
5.2 Concrete €XCePLONS .« v v v v v v v v e 86
5.3 Warningso e e e e e e e e e e e e e 92
54 Exceptionhierarchy e 92
Text Processing Services 95
6.1 string— Common String OPerations e e i e e e e e e e e e e 95
6.2 re —Regular expression Operationso o e e e e 106
6.3 difflib — Helpers for computingdeltas, 125
6.4 textwrap —Textwrappingandfilling. o 135
6.5 unicodedata—Unicode Database e 139
6.6 stringprep — Internet String Preparation L Lo 141
6.7 readline—GNUreadlineinterface 142
6.8 rlcompleter — Completion function for GNU readline 146
Binary Data Services 149
7.1 struct — Interpret bytes as packed binary data oL 000 149

7.2 codecs — Codecregistryand base classes oo e

Data Types

8.1 datetime —Basicdateand timetypesot
8.2 calendar — General calendar-related functions oL
83 collections— Container datatypes v v v it e e e e e e e e e e
84 collections.abc — Abstract Base Classes for Containers
8.5 heapg—Heapqueuealgorithm L
8.6 Dbisect — Arraybisectionalgorithm oL
8.7 array — Efficient arrays of numeric values oL o
8.8 weakref —Weakreferences
8.9 types — Dynamic type creation and names for built-in types L.
8.10 copy — Shallow and deep copy operations
8.11 pprint —Datapretty prinfer it e e e e e e e e e e
8.12 reprlib — Alternate repr () implementation
8.13 enum — Support for enUMerations e e e e e e e e e e e e

Numeric and Mathematical Modules

9.1 numbers — Numeric abstract base classes e
9.2 math— Mathematical functions e e
9.3 cmath — Mathematical functions for complex numbers
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions—Rationalnumbers e e
9.6 random — Generate pseudo-random numbers L. Lo o
9.7 statistics — Mathematical statistics functions,

10 Functional Programming Modules

10.1 itertools — Functions creating iterators for efficient looping
10.2 functools — Higher-order functions and operations on callable objects
10.3 operator — Standard operators as functions Lo Lo

11 File and Directory Access

11.1 pathlib — Object-oriented filesystem paths,
11.2 os.path — Common pathname manipulations v i v ..
11.3 fileinput — Iterate over lines from multiple input streams
11.4 stat —Interpreting stat () results L
11.5 filecmp — File and Directory Comparisonso v v v v v v v v e e ettt
11.6 tempfile — Generate temporary files and directories
11.7 glob — Unix style pathname pattern eXpansion o v v v v v v v v v v v e e
11.8 fnmatch — Unix filename pattern matching
119 linecache —Random accesstotextlines
11.10 shutil — High-level file operations e
11.11 macpath — Mac OS 9 path manipulation functions

12 Data Persistence

12.1 pickle — Python object serialization
12.2 copyreg— Register pickle supportfunctions oo
12.3 shelve — Python object persistence v v v v i i v et e e e e e e
12.4 marshal — Internal Python object serialization
12.5 dbm — Interfaces to Unix “databases™ e
12.6 sglite3 — DB-API 2.0 interface for SQLite databases

13 Data Compression and Archiving

13.1 zlib — Compression compatible withgzip
13.2 gzip—Supportforgzipfiles

171
171
202
206
223
227
231
233
236
244
248
249
254
256

275
275
278
283
287
313
316
322

329
329
343
350

359
359
375
380
382
387
389
393
394
395
396
404

405
405
418
418
421
422
426

13.3 bz2 — Support for bzip2 compressiono oot e e e e e 455

13.4 1zma — Compression using the LZMA algorithm 459
13.5 zipfile— WorkwithZIP archives e 465
13.6 tarfile — Read and write tar archive files L oo 472
14 File Formats 483
14.1 csv—CSV File Readingand Writing 483
142 configparser — Configuration file parsero oL 489
143 netrc—netrcfile processing e e 506
144 xdrlib—Encode anddecode XDRdata 507
14.5 plistlib — Generate and parse Mac OS X .plistfiles 510
15 Cryptographic Services 515
15.1 hashlib — Secure hashes and message digests 515
15.2 hmac — Keyed-Hashing for Message Authentication 525
15.3 secrets — Generate secure random numbers for managing secrets 527
16 Generic Operating System Services 531
16.1 os — Miscellaneous operating system interfaces oo 531
16.2 io— Core tools for working with streams L oo 578
16.3 time — Time access and CONVETSIONS o ¢ v v v v v v v vt e e e e e e e e e e e e e e 591
16.4 argparse — Parser for command-line options, arguments and sub-commands 600
16.5 getopt — C-style parser for command line options 631
16.6 logging— Logging facility for Python 633
16.7 logging.config— Logging configuration 649
16.8 logging.handlers —Logginghandlers 659
16.9 getpass — Portable password input oo e 671
16.10 curses — Terminal handling for character-cell displays 672
16.11 curses.textpad — Text input widget for curses programs v v v v vt 689
16.12 curses.ascii — Utilities for ASCII characters 691
16.13 curses.panel — A panel stack extension forcurses oL 693
16.14 plat form — Access to underlying platform’s identifyingdata 694
16.15 errno — Standard errno system symbols o L 697
16.16 ctypes — A foreign function library for Python oo oo, 703
17 Concurrent Execution 737
17.1 threading— Thread-based parallelism 737
17.2 multiprocessing— Process-based parallelism. 749
17.3 The concurrent package o i i e e e e e e 791
17.4 concurrent.futures — Launching parallel tasks 791
17.5 subprocess — Subprocess managementl 797
17.6 sched—Eventscheduler 815
177 queue — A synchronized queue class oo 816
17.8 _thread — Low-level threading APT e 819
17.9 _dummy_thread — Drop-in replacement for the _threadmodule 821
17.10 dummy_threading — Drop-in replacement for the threadingmodule 822
18 contextvars — Context Variables 823
18.1 Context Variables e 823
18.2 Manual Context Management 824
18.3 aSyNCIO SUPPOIt v v o i ot e e e e e e e e e e e e e e e e e e 826
19 Networking and Interprocess Communication 827
19.1 asyncio—Asynchronous I/O e 827

19.2 socket — Low-level networking interface Lo 910

20

21

22

19.3 ss1 — TLS/SSL wrapper for socketobjects
19.4 select — Waiting for /O completion e
19.5 selectors — High-level I/O multiplexing i
19.6 asyncore — Asynchronoussockethandler
19.7 asynchat — Asynchronous socket command/response handler
19.8 signal — Set handlers for asynchronous events oL
19.9 mmap — Memory-mapped file Support L. e e e e

Internet Data Handling

20.1 email — Anemail and MIME handling package
20.2 json—JSONencoderanddecoder i
20.3 mailcap —Mailcapfilehandling e
20.4 mailbox — Manipulate mailboxes in various formats o000 oL
20.5 mimetypes — Mapfilenamesto MIME types
20.6 base64 — Basel6, Base32, Base64, Base85 Data Encodings
20.7 binhex — Encode and decode binhex4 files
20.8 binascii — Convert between binaryand ASCIT
20.9 quopri — Encode and decode MIME quoted-printabledata
20.10 uu — Encode and decode uuencode files

Structured Markup Processing Tools

21.1 html — HyperText Markup Language support
21.2 html.parser — Simple HTML and XHTML parser
21.3 html.entities — Definitions of HTML general entities
21.4 XML Processing Modules e e e e e e e e e e e e e
21.5 xml.etree.ElementTree — The ElementTree XML API
21.6 xml.dom — The Document Object Model APT
217 xml.dom.minidom — Minimal DOM implementation
21.8 xml.dom.pulldom— Support for building partial DOM trees
21.9 xml.sax — Support for SAX2 parserso e e e e e e e
21.10 xml.sax.handler — Base classes for SAX handlers
21.11 xml.sax.saxutils — SAX Utilities e
21.12 xml.sax.xmlreader — Interface for XML parsers
21.13 xml .parsers.expat — Fast XML parsingusing Expat

Internet Protocols and Support

22.1 webbrowser — Convenient Web-browser controller
22.2 cgi — Common Gateway Interface support
22.3 cgitb — Traceback manager for CGIscripts. e
22.4 wsgiref — WSGI Utilities and Reference Implementation
22,5 urllib—URLhandlingmodules e
22.6 urllib.request — Extensible library foropening URLs
2277 urllib.response — Responseclassesusedbyurllib
22.8 urllib.parse —Parse URLsintocomponents,
229 urllib.error — Exception classes raised by urllib.request
22.10 urllib.robotparser — Parser forrobots.txt oo
22.11 http—HTTP modules e e e e e e
2212 http.client — HTTP protocolclient
2213 ftplib —FTP protocol client e
22.14 poplib —POP3 protocol client
22.15 imaplib —IMAP4 protocolclient L e e e e
22.16 nntplib — NNTP protocol client e
2217 smtplib — SMTP protocol client L e
22.18 smtpd — SMTP Server e e e e e e e e e

22.19 telnetlib—Telnetclient e
22.20 uuid — UUID objects accordingto RFC 4122
22.21 socketserver — A framework for network servers Lo L
2222 http.server — HTTP servers o o 0 i i e e e e e e e e e
22.23 http.cookies — HTTP state management v i v,
22.24 http.cookiejar — Cookie handling for HTTP clients
22.25 xmlrpc — XMLRPC server and client modules
22.26 xmlrpc.client — XML-RPCclientaccess v v v v i i i vt e i e
22.27 xmlrpc.server — Basic XML-RPCservers.
22.28 ipaddress — IPv4/IPv6 manipulation libraryo 0oL

23 Multimedia Services
23.1 audioop — Manipulate raw audiodata. oL oL
23.2 aifc—Readand write AIFFand AIFCfiles
233 sunau—Readand write Sun AUfileso
234 wave —Readand write WAV files L
23,5 chunk —ReadIFFchunkeddata o o L.
23.6 colorsys — Conversions between color systems oo e
2377 imghdr — Determine the type of animage Lo L.
23.8 sndhdr — Determine type of soundfile oo
23.9 ossaudiodev — Access to OSS-compatible audiodevices 0oL

24 Internationalization
24.1 gettext — Multilingual internationalization serviceso
24.2 locale — Internationalization SEIVICES v v v v v v v e e e e e e e e e e e e

25 Program Frameworks
25.1 turtle—Turtlegraphics L e
25.2 cmd — Support for line-oriented command interpretersol oL
25.3 shlex —Simple lexical analysis e e e

26 Graphical User Interfaces with Tk
26.1 tkinter —Pythoninterfaceto Tcl/Tk
26.2 tkinter.ttk —Tkthemedwidgets e
263 tkinter.tix—Extensionwidgetsfor Tk 0 ...
264 tkinter.scrolledtext — Scrolled Text Widget
260.5 IDLE e e
26.6 Other Graphical User Interface Packages

27 Development Tools
27.1 typing—Supportfortypehints L
27.2 pydoc — Documentation generator and online helpsystem
27.3 doctest — Testinteractive Python examples
274 unittest —Unittesting framework Lo L
27.5 unittest.mock —mockobjectlibrary oL
27.6 unittest.mock —gettingstarted L
27.7 2to3 - Automated Python 2 to 3 code translation
27.8 test — Regression tests package for Python L o o oL
279 test.support — Utilities for the Python testsuite
27.10 test.support.script_helper — Utilities for the Python execution tests

28 Debugging and Profiling
28.1 bdb —Debugger framework oL
28.2 faulthandler — Dump the Python traceback
28.3 pdb — The Python Debugger

29

30

31

32

33

34

28.4 The Python Profilers e
28.5 timeit — Measure execution time of small code snippets
28.6 trace — Trace or track Python statement execution
287 tracemalloc — Trace memory allocations,

Software Packaging and Distribution

29.1 distutils — Building and installing Python modules
29.2 ensurepip — Bootstrapping the pipinstaller oL
29.3 venv — Creation of virtual environmentso
29.4 zipapp — Manage executable Python ziparchives o 0oL,

Python Runtime Services

30.1 sys — System-specific parameters and functions Lo
30.2 sysconfig— Provide access to Python’s configuration information
303 builtins —Built-inobjects L e e e e e e
304 _ _main__ —Top-level scriptenvironment oo
30.5 warnings—Warningcontrol oL oL e
30.6 dataclasses—DataClasses. o it e e
30.7 contextlib — Utilities for with-statement contextso v ...
30.8 abc — Abstract Base Classes e e
309 atexit —Exithandlers e
30.10 traceback — Print or retrieve a stack traceback o000 oL
30.11 __ future_ — Future statement definitions
30.12 gc — Garbage Collector interface
30.13 inspect — Inspectlive objects L e e e e e e e e e e
30.14 site — Site-specific configurationhook L L L L

Custom Python Interpreters
31.1 code —Interpreter base Classes o vt i e e e e e e e e e e
31.2 codeop — Compile Pythoncode e

Importing Modules

32.1 zipimport — Import modules from Zip archives
32.2 pkgutil — Package extension utility Lo
32.3 modulefinder —Find modulesused by ascript
32.4 runpy — Locating and executing Python modules
32,5 importlib — The implementation of import

Python Language Services

33.1 parser — Access Python parsetreeso e
332 ast — Abstract Syntax Trees o e e e e e
33.3 symtable — Access to the compiler’ssymboltables.
33.4 symbol — Constants used with Python parse trees
33.5 token — Constants used with Python parsetrees
33.6 keyword — Testing for Python keywords
337 tokenize — Tokenizer for Pythonsource o
33.8 tabnanny — Detection of ambiguous indentation 0oL
33.9 pyclbr — Python class browser support e e e e
33.10 py_compile — Compile Python source files
33.11 compileall — Byte-compile Python libraries,
33.12 dis — Disassembler for Python bytecode o o
33.13 pickletools — Tools for pickle developers

Miscellaneous Services
34.1 formatter — Generic output formattingl

vi

35 MS Windows Specific Services
35.1 msilib — Read and write Microsoft Installer files
35.2 msvcrt — Useful routines from the MS VC++ runtime .
35.3 winreg— Windows registry access
35.4 winsound — Sound-playing interface for Windows . . .

36 Unix Specific Services
36.1 posix — The most common POSIX systemcalls.
36.2 pwd— The password database
36.3 spwd — The shadow password database
36.4 grp—The group database
36.5 crypt — Function to check Unix passwords
36.6 termios — POSIXstyle tty control
36.7 tty — Terminal control functions
36.8 pty — Pseudo-terminal utilities
369 fcntl —The fentl and ioctl systemcalls.
36.10 pipes — Interface to shell pipelines
36.11 resource — Resource usage information
36.12 nis — Interface to Sun’s NIS (Yellow Pages)
36.13 syslog — Unix syslog library routines

37 Superseded Modules
37.1 optparse — Parser for command line options
37.2 imp — Access the importinternals

38 Undocumented Modules
38.1 Platform specific modules

A Glossary

B About these documents
B.1 Contributors to the Python Documentation

C History and License
C.1 Historyof thesoftware

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Bibliography
Python Module Index

Index

1789
1789
1794
1796
1804

1807
1807
1808
1809
1809
1810
1812
1813
1814
1815
1817
1818
1822
1823

1825
1825
1851

1857
1857

1859

1873
1873

1875
1875
1876
1879

1891

1893

1895

1899

vii

viii

The Python Library Reference, Release 3.7.4rc1

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that are
commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents listed
below. The library contains built-in modules (written in C) that provide access to system functionality such as file I/O that
would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs by abstracting away platform-specifics into platform-neutral
APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so it
may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual programs
and modules to packages and entire application development frameworks), available from the Python Package Index.

CONTENTS 1

https://pypi.org

The Python Library Reference, Release 3.7.4rc1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists. For
these types, the Python language core defines the form of literals and places some constraints on their semantics, but does
not fully define the semantics. (On the other hand, the language core does define syntactic properties like the spelling and
priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection. Some
modules are written in C and built in to the Python interpreter; others are written in Python and imported in source form.
Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some provide interfaces
that are specific to particular operating systems, such as access to specific hardware; others provide interfaces that are
specific to a particular application domain, like the World Wide Web. Some modules are available in all versions and
ports of Python; others are only available when the underlying system supports or requires them; yet others are available
only when a particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you will
get a reasonable overview of the available modules and application areas that are supported by the Python library. Of
course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual), or
look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a section or two. Regardless of the order
in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the remainder of the
manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

¢ An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make any
claims about its existence on a specific operating system.

* If not separately noted, all functions that claim “Availability: Unix” are supported on Mac OS X, which builds on
a Unix core.

The Python Library Reference, Release 3.7.4rc1

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here in

alphabetical order.

Built-in Functions
abs () delattr() hash () memoryview () set ()
all() dict () help() min () setattr ()
any () dir() hex () next () slice()
ascii() divmod () id() object () sorted()
bin () enumerate () input () oct () staticmethod ()
bool () eval () int () open () str()
breakpoint () exec () isinstance() ord() sum ()
bytearray () filter() issubclass () pow () super ()
bytes () float () iter() print () tuple ()
callable () format () len () property () type ()
chr () frozenset () 1ist () range () vars ()
classmethod() getattr () locals () repr () zip ()
compile () globals () map () reversed/() __import__ ()
complex () hasattr () max () round ()

abs (x)

Return the absolute value of a number. The argument may be an integer or a floating point number. If the argument

is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

The Python Library Reference, Release 3.7.4rc1

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII characters
in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to that returned by
repr () in Python 2.

bin (x)
Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x is not
a Python int object, it has to define an __index___ () method that returns an integer. Some examples:

>>> bin (3)
'Ob11"

>>> bin (-10)
'-0b1010"

If prefix “Ob” is desired or not, you can use either of the following ways.

>>> format (14, '#b'), format (14, 'b'")
('Ob1110"', '1110")
>>> f! ! f! !

’

('0Ob1110", '1110")

See also format () for more information.

class bool ([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard rruth testing procedure. If
x is false or omitted, this returns False; otherwise it returns True. The bool class is a subclass of int (see
Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and True
(see Boolean Values).

Changed in version 3.7: x is now a positional-only parameter.

breakpoint (*args, **kws)
This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.set_trace ()
expecting no arguments. In this case, it is purely a convenience function so you don’t have to explicitly import pdb
or type as much code to enter the debugger. However, sys.breakpointhook () can be set to some other
function and breakpoint () will automatically call that, allowing you to drop into the debugger of choice.

New in version 3.7.

class bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as most
methods that the byt es type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

 If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

« If it is an integer, the array will have that size and will be initialized with null bytes.

« If it is an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

 If it is an iferable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size O is created.

See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.4rc1

class bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256. bytes
is an immutable version of byt earray — it has the same non-mutating methods and the same indexing and slicing
behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.
See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Operations.

callable (object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible that a
call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class returns a
new instance); instances are callable if their classhasa ___call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a', while chr (8364) returns the string '€ "'. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

@classmethod
Transform a method into a class method.

A class method receives the class as implicit first argument, just like an instance method receives the instance. To
declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @Rclassmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object is
passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod ().
For more information on class methods, see types.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source can
either be a normal string, a byte string, or an AST object. Refer to the a st module documentation for information
on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it wasn’t
read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will be
printed).

The optional arguments flags and dont_inherit control which future statements affect the compilation of source.
If neither is present (or both are zero) the code is compiled with those future statements that are in effect in the
code that is calling compile (). If the flags argument is given and dont_inherit is not (or is zero) then the future
statements specified by the flags argument are used in addition to those that would be used anyway. If dont_inherit

The Python Library Reference, Release 3.7.4rc1

is a non-zero integer then the flags argument is it — the future statements in effect around the call to compile are
ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_ flag attribute on the _Feature
instance inthe future module.

The argument optimize specifies the optimization level of the compiler; the default value of —1 selects the opti-
mization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is
true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source contains
null bytes.

If you want to parse Python code into its AST representation, see ast .parse ().

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in the code
module.

Warning: Itis possible to crash the Python interpreter with a sufficiently large/complex string when compiling
to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does not have
to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

class complex ([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without a
second parameter. The second parameter can never be a string. Each argument may be any numeric type (including
complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion like i nt and
float. If both arguments are omitted, returns 0 J.

Note: When converting from a string, the string must not contain whitespace around the central + or — operator.
For example, complex ('1+273") is fine, but complex ('1 + 23j') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, 'foobar') isequivalenttodel x.foobar.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 11 st, set, and t uple classes, as well as the collections module.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.4rc1

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes. This
allows objects that implement a custom __getattr__ () or __getattribute__ () function to customize
the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict___ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and may
be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

 If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

¢ Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace # doctest: +SKIP
['"__builtins__ ', '_ _name_ ', 'struct']

>>> dir (struct) # show the names in the struct module # doctest: +SKIP
['Struct', '__all__'", '_ builtins__ ', '_ _cached__', '__doc__"', '_ file_ "',
' __initializing__', '__loader__', '__name__', '_ package_ ',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_from']
>>> class Shape:

def _ dir_ (self):

C return ['area', 'perimeter', 'location']
>>> s = Shape ()
>>> dir(s)
["area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when the
argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators apply.
For integers, the result is the same as (a // b, a % b). For floating point numbers the resultis (g, a %
b), where ¢ is usually math.floor (a / b) but may be 1 less than that. Inanycaseg * b + a % bis

o

very close to a, if a % b is non-zero it has the same sign as b,and 0 <= abs(a % b) < abs(b).

enumerate (iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iferator, or some other object which supports iteration.
The __next__ () method of the iterator returned by enumerate () returns a tuple containing a count (from
start which defaults to 0) and the values obtained from iterating over iterable.

The Python Library Reference, Release 3.7.4rc1

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and does
not contain a value for the key __builtins__, areference to the dictionary of the built-in module builtins
is inserted under that key before expression is parsed. This means that expression normally has full access to the
standard builtins module and restricted environments are propagated. If the locals dictionary is omitted it
defaults to the globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval () is called. The return value is the result of the evaluated expression. Syntax errors are reported as
exceptions. Example:

>> x =1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compi le ()). In this case
pass a code object instead of a string. If the code object has been compiled with 'exec' as the mode argument,
eval ()’s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and l1ocals ()
functions returns the current global and local dictionary, respectively, which may be useful to pass around for use
by eval () or exec ().

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing only
literals.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If it is a
string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error occurs).’
If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be valid as file input
(see the section “File input” in the Reference Manual). Be aware that the return and yield statements may
not be used outside of function definitions even within the context of code passed to the exec () function. The
return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is provided,
it must be a dictionary, which will be used for both the global and the local variables. If globals and locals are
given, they are used for the global and local variables, respectively. If provided, locals can be any mapping object.
Remember that at module level, globals and locals are the same dictionary. If exec gets two separate objects as
globals and locals, the code will be executed as if it were embedded in a class definition.

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline conversion
mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.4rc1

filt

clas

If the globals dictionary does not contain a value for the key __builtins__, areference to the dictionary of the
built-in module bui It ins is inserted under that key. That way you can control what builtins are available to the
executed code by inserting your own ___builtins___ dictionary into globals before passing it to exec ().

Note: The built-in functions gZlobals () and Iocals () return the current global and local dictionary, respec-
tively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function Jocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on locals
after function exec () returns.

er (function, iterable)

Construct an iterator from those elements of iterable for which function returns true. iterable may be either a
sequence, a container which supports iteration, or an iterator. If function is None, the identity function is assumed,
that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for item
in iterable if function (item)) if functionisnotNoneand (item for item in iterable
if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for which
function returns false.

s float ([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+"' or '—"';a '+"' sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or a positive or negative infinity. More
precisely, the input must conform to the following grammar after leading and trailing whitespace characters are
removed:

Sign I — "+" | m_nmn

infinity = "Infinity" | "inf"

nan = "nan"

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an
OverflowError will be raised.

For a general Python object x, f1oat (x) delegatesto x.__float__ ().
If no argument is given, O . O is returned.

Examples:

>>> float ('+1.23")
1.23
>>> float (' -12345\n")

(continues on next page)

11

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

-12345.0

>>> float ('1e-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—-inf

The float type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

format (value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument, however there is a standard formatting syntax that is used by most
built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st (value).

A call to format (value, format_spec) is translated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s __ format__ ()
method. A TypeError exception is raised if the method search reaches object and the format_spec is non-
empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec is
not an empty string.

class frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in class.
See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one of the ob-
ject’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar') isequivalentto
x . foobar. If the named attribute does not exist, default is returned if provided, otherwise At t ributeError
is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current module
(inside a function or method, this is the module where it is defined, not the module from which it is called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (ocbject, name) and seeing whether it
raises an AttributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even if
they are of different types, as is the case for 1 and 1.0).

Note: For objects with custom __hash___ () methods, note that hash () truncates the return value based on
the bit width of the host machine. See __hash__ () for details.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.4rc1

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the inter-
active help system starts on the interpreter console. If the argument is a string, then the string is looked up as the
name of a module, function, class, method, keyword, or documentation topic, and a help page is printed on the
console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function, when invoking help (), it means that the
parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only parameters.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are now
more comprehensive and consistent.

hex (x)
Convert an integer number to a lowercase hexadecimal string prefixed with “0x”. If x is not a Python int object,
it has to define an __index__ () method that returns an integer. Some examples:

>>> hex (255)
'Oxff!
>>> hex (-42)
'-0x2a'

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you can
use either of the following ways:

>>> ! ''% 255, ! ''% 255, ! !
('oxff', 'ff', 'FEF'")

>>> format (255, '#x'), format (255, 'x'), format (255, 'X")
('oxff', '"f£f', 'FEF')

>>> f! I I !

('oxff', 'f£f', 'FEF')

o\

255

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = input ('-—> ")
--> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

class int ([x])

13

The Python Library Reference, Release 3.7.4rc1

class int (x, base=10)

Return an integer object constructed from a number or string x, or return 0 if no arguments are given. If x defines
dint (), int (x) returns x.__int__ (). If x defines __ trunc__ (), itreturns x.__trunc__ ().
For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or — (with no space in between) and
surrounded by whitespace. A base-n literal consists of the digits O to n-1, with a to z (or A to Z) having values 10
to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be optionally
prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base O means to interpret exactly as a code
literal, so that the actual base is 2, 8, 10, or 16, and so that int ('010', 0) is notlegal, while int ('010")
is,aswell as int ('010"', 8).

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index__ method,
that method is called to obtain an integer for the base. Previous versions used base.___int__ instead of base.
__index__ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.7: x is now a positional-only parameter.

isinstance (object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virfual)
subclass thereof. If object is not an object of the given type, the function always returns false. If classinfo is a tuple
of type objects (or recursively, other such tuples), return true if object is an instance of any of the types. If classinfo
is not a type or tuple of types and such tuples, a TypeError exception is raised.

issubclass (class, classinfo)

Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other case,
a TypeError exception is raised.

iter (object[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method
with integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then object must be a callable object. The iterator created in this case will
call object with no arguments for each call toits ___next___ () method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-width
blocks from a binary database file until the end of file is reached:

from functools import partial
with open('mydata.db', 'rb') as f:
for block in iter (partial (f.read, 64), b''"):
process_block (block)

len (s)

Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

class list([iterable])

Rather than being a function, 1 i st is actually a mutable sequence type, as documented in Lists and Sequence Types
— list, tuple, range.

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.4rc1

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
Jlocals () whenitis called in function blocks, but not in class blocks. Note that at the module level, 1ocals ()
and globals () are the same dictionary.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and free
variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable arguments
are passed, function must take that many arguments and is applied to the items from all iterables in parallel. With
multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the function inputs are
already arranged into argument tuples, see itertools.starmap ().

max (iterable, *[key, default])
max (argl, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If two
or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function like
thatused for 1ist.sort (). The default argument specifies an object to return if the provided iterable is empty.
If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0] and
heapg.nlargest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

memoryview (obj)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *[, key, default])
min (argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned. If two
or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function like
that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable is empty.
If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with other sort-
stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapg.nsmallest (1,
iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

next (iterator[, default])
Retrieve the next item from the iterator by calling its ___next___ () method. If default is given, it is returned if
the iterator is exhausted, otherwise StopTterat ion is raised.

class object
Return a new featureless object. object is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

15

The Python Library Reference, Release 3.7.4rc1

Note: object doesnothavea _ dict___,soyou can’t assign arbitrary attributes to an instance of the object

class.

oct (x)
Convert an integer number to an octal string prefixed with “00”. The result is a valid Python expression. If x is not
a Python int object, it has to define an __index___ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (-50)
'-0070"

If you want to convert an integer number to octal string either with prefix “0o” or not, you can use either of the
following ways.

>>> ! ''% 10, " ''% 10

('"Oo12', "12")

>>> format (10, '#o0'), format (10, 'o')
("0012', '12")

>>> f! Y, £ !

("O0ol12', '12")

See also format () for more information.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file to be
opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when the
returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r' which means
open for reading in text mode. Other common values are 'w' for writing (truncating the file if it already exists),
'x ' for exclusive creation and 'a' for appending (which on some Unix systems, means that all writes append to
the end of the file regardless of the current seek position). In text mode, if encoding is not specified the encoding
used is platform dependent: 1ocale.getpreferredencoding (False) is called to get the current locale
encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available

modes are:
Character | Meaning
'r' open for reading (default)
"w' open for writing, truncating the file first
'x! open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b' binary mode
"t text mode (default)
T+t open a disk file for updating (reading and writing)

The default mode is 'r' (open for reading text, synonym of 'rt'). For binary read-write access, the mode
'w+b ' opens and truncates the file to O bytes. ' r+b' opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b' in the mode argument) return contents as byt e s objects without any decoding. In text mode (the

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.4rc1

default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the bytes
having been first decoded using a platform-dependent encoding or using the specified encoding if given.

There is an additional mode character permitted, ' U', which no longer has any effect, and is considered deprecated.
It previously enabled universal newlines in text mode, which became the default behaviour in Python 3.0. Refer to
the documentation of the newline parameter for further details.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is done
by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass O to switch buffering off (only allowed in binary
mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size in bytes of a
fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as follows:

* Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT BUFFER_SIZE. On
many systems, the buffer will typically be 4096 or 8192 bytes long.

* “Interactive” text files (files for which i satty () returns True) use line buffering. Other text files use the
policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever locale.getpreferredencoding () returns), but
any fext encoding supported by Python can be used. See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be used
in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though any error
handling name that has been registered with codecs. register_error () is also valid. The standard names
include:

* 'strict' toraisea ValueError exception if there is an encoding error. The default value of None has
the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
e 'replace' causes a replacement marker (such as ' ? ') to be inserted where there is malformed data.

e 'surrogateescape' will represent any incorrect bytes as code points in the Unicode Private Use Area
ranging from U+DC80 to U+DCFF. These private code points will then be turned back into the same bytes
when the surrogateescape error handler is used when writing data. This is useful for processing files
in an unknown encoding.

e 'xmlcharrefreplace’ is only supported when writing to a file. Characters not supported by the en-
coding are replaced with the appropriate XML character reference & #nnn; .

* 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

* 'namereplace' (also only supported when writing) replaces unsupported characters with \N{ . . . } es-
cape sequences.

newline controls how universal newlines mode works (it only applies to text mode). It can be None, '', '"\n"',
"\r',and '\r\n"'. It works as follows:

¢ When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in the
inputcanendin '\n', '\r',or '\r\n', and these are translated into ' \n"' before being returned to the
caller. If itis ' ', universal newlines mode is enabled, but line endings are returned to the caller untranslated.
If it has any of the other legal values, input lines are only terminated by the given string, and the line ending
is returned to the caller untranslated.

17

The Python Library Reference, Release 3.7.4rc1

* When writing output to the stream, if newline is None, any '\n' characters written are translated to the
system default line separator, os. I inesep. If newlineis ' ' or ' \n', no translation takes place. If newline
is any of the other legal values, any ' \n"' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be kept
open when the file is closed. If a filename is given closefd must be True (the default) otherwise an error will be
raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os. open as
opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os. open () function to open a file relative to a given
directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open(path, flags, dir_fd=dir_f£fd)

>>> with open('spamspam.txt', 'w', opener=opener) as f:
print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used to open a
fileinatextmode ('w', 'r', 'wt', 'rt"', etc.), it returns a subclass of io. Text TOBase (specifically io.
Text IOWrapper). When used to open a file in a binary mode with buffering, the returned class is a subclass of
io.BufferedIOBase. The exact class varies: in read binary mode, it returns an i o . Buf feredReader;in
write binary and append binary modes, it returns an io.Bufferediriter, and in read/write mode, it returns
an io.BufferedRandom. When buffering is disabled, the raw stream, a subclass of i0. RawIOBase, io0.
FileIO,is returned.

See also the file handling modules, such as, fileinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

Changed in version 3.3:
* The opener parameter was added.
e The 'x' mode was added.
e TOError used to be raised, it is now an alias of OSError.
e FileExistsError is now raised if the file opened in exclusive creation mode ('x ') already
exists.
Changed in version 3.4:

¢ The file is now non-inheritable.

Deprecated since version 3.4, will be removed in version 4.0: The 'U' mode.
Changed in version 3.5:

* If the system call is interrupted and the signal handler does not raise an exception, the function now
retries the system call instead of raising an TnterruptedError exception (see PEP 475 for
the rationale).

e The 'namereplace"' error handler was added.

18

Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.7.4rc1

Changed in version 3.6:
* Support added to accept objects implementing os . PathLike.

* On Windows, opening a console buffer may return a subclass of i0. RawIOBase otherthan io.
FileIO.

ord (c)
Given a string representing one Unicode character, return an integer representing the Unicode code point of that
character. For example, ord ('a ') returns the integer 97 and ord ('€") (Euro sign) returns 8364. This is the
inverse of chr ().

pow (x, y[. z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than pow (x,

o

v) % z). The two-argument form pow (x, y) is equivalent to using the power operator: x* *vy.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the second
argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example,
10**2 returns 100, but 10**—-2 returns 0. 01. If the second argument is negative, the third argument must be
omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print (*objects, sep="", end="\n’, file=sys.stdout, flush="False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file and flush, if present, must
be given as keyword arguments.

All non-keyword arguments are converted to strings like st = () does and written to the stream, separated by sep
and followed by end. Both sep and end must be strings; they can also be None, which means to use the default
values. If no objects are given, print () will just write end.

The file argument must be an object withawrite (string) method;if it is not present or None, sys. stdout
will be used. Since printed arguments are converted to text strings, print () cannot be used with binary mode
file objects. For these, use file.write (...) instead.

Whether output is buffered is usually determined by file, but if the flush keyword argument is true, the stream is
forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property (fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function for
deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self._x = None

def getx(self):
return self._x

def setx(self, wvalue):
self._x = value

def delx (self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

19

The Python Library Reference, Release 3.7.4rc1

If c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fger’s docstring (if it
exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def _ init_ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the same
name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C:
def init__ (self):
self._x = None

@property

def x(self):
"""I'm the 'x' property."""
return self._x

@x.setter
def x(self, wvalue):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as the
original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

range (stop)
range (start, stop[, step])

Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and Se-
quence Types — list, tuple, range.

repr (object)

Return a string containing a printable representation of an object. For many types, this function makes an attempt to
return a string that would yield an object with the same value when passed to eval (), otherwise the representation
is a string enclosed in angle brackets that contains the name of the type of the object together with additional
information often including the name and address of the object. A class can control what this function returns for
its instances by defininga __repr__ () method.

20

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.4rc1

reversed (seq)
Return a reverse iterator. seq must be an object whichhasa __reversed__ () method or supports the sequence
protocol (the __len__ () method and the __getitem__ () method with integer arguments starting at 0).

round (number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns the
nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power mi-
nus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round (0.5) and round (-0.5) are 0, and round (1.5) is 2). Any integer value is valid for ndigits (pos-
itive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise the return value
has the same type as number.

For a general Python object number, round delegates to number.__round__.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives 2.67
instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be
represented exactly as a float. See tut-fp-issues for more information.

class set ([iterable])
Return a new set object, optionally with elements taken from iferable. set is a built-in class. See set and Ser
Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the
collections module.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, 'foobar', 123) isequivalentto x.foobar = 123.

class slice (stop)

class slice (start, stop[, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The startand
step arguments default to None. Slice objects have read-only data attributes st art, st op and st ep which merely
return the argument values (or their default). They have no other explicit functionality; however they are used by
Numerical Python and other third party extensions. Slice objects are also generated when extended indexing syntax
isused. For example: a [start:stop:step] ora[start:stop, 1i].Seeitertools.islice () for
an alternate version that returns an iterator.

sorted (iterable, *, key=None, reverse=False)
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable (for
example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

21

The Python Library Reference, Release 3.7.4rc1

@staticmethod

Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see function for details.
A static method can be called either on the class (such as C. £ ()) or on an instance (suchas C () . £ ()).

Static methods in Python are similar to those found in Java or C++. Also see cl1assmethod () for a variant that
is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want to
avoid the automatic transformation to instance method. For these cases, use this idiom:

class C:
builtin_open = staticmethod (open)

For more information on static methods, see types.

class str (object=")
class str (object=b", encoding=utf-8’, errors=strict’)

Return a st r version of object. See st r () for details.

str is the built-in string class. For general information about strings, see 7ext Sequence Type — str.

sum (iterable[, start])

Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The iterable’s
items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence of
strings is by calling ' ' . join (sequence). To add floating point values with extended precision, see math.
fsum (). To concatenate a series of iterables, consider using i tertools.chain ().

super ([type[, object-or-type]])

Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr ()
except that the rype itself is skipped.

The __ _mro___ attribute of the type lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) mustbe true. If the second argumentis atype, issubclass (type2, type)
must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer to
parent classes without naming them explicitly, thus making the code more maintainable. This use closely parallels
the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single
inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement the
same method. Good design dictates that this method have the same calling signature in every case (because the
order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and because
that order can include sibling classes that are unknown prior to runtime).

22

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.4rc1

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, argqg):
super () .method (arqg) # This does the same thing as:
super (C, self).method(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such as
super () .__getitem__ (name). It does so by implementing its own __getattribute__ () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly, super ()
is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class being
defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

tuple ([iterable])
Rather than being a function, ¢ up 1 e is actually an immutable sequence type, as documented in Tuples and Sequence
Types — list, tuple, range.

class type (object)

class type (name, bases, dict)
With one argument, return the type of an object. The return value is a type object and generally the same object as
returned by object.___class__.

The isinstance () built-in function is recommended for testing the type of an object, because it takes subclasses
into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement. The
name string is the class name and becomes the ___name___ attribute; the bases tuple itemizes the base classes
and becomes the ___bases___ attribute; and the dict dictionary is the namespace containing definitions for class
body and is copied to a standard dictionary to become the __dict___ attribute. For example, the following two
statements create identical t ype objects:

>>> class X:
a =1

>>> X = type('X', (object,), dict(a=1))

See also Type Objects.

Changed in version 3.6: Subclasses of ¢ ype which don’t override type.___new___ may no longer use the one-
argument form to get the type of an object.

vars ([object])
Return the __dict___ attribute for a module, class, instance, or any other object witha __dict___ attribute.

Objects such as modules and instances have an updateable __dict___ attribute; however, other objects may have
write restrictions on their ___dict___ attributes (for example, classes use a t ypes.MappingProxyType to
prevent direct dictionary updates).

Without an argument, vars () acts like 1ocals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

zip (*iterables)
Make an iterator that aggregates elements from each of the iterables.

23

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.7.4rc1

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument, it
returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(*iterables):
zip('ABCD', 'xy') —--> AxX By
sentinel = object ()
iterators = [iter(it) for it in iterables]
while iterators:
result = []
for it in iterators:
elem = next (it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple (result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a data
series into n-length groups using zip (* [iter (s)] *n). This repeats the same iterator n times so that each
output tuple has the result of n calls to the iterator. This has the effect of dividing the input into n-length chunks.

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched values from
the longer iterables. If those values are important, use i tertools.zip_longest () instead.

zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> zipped = zip(x, V)

>>> list (zipped)

(1, 4y, (2, 5, (3, 6)]

>>> x2, y2 = zip(*zip(x, vy))

>>> x == list(x2) and y == list (y2)
True

__import__ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike importlib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui It ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but doing
so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same goals
and does not cause issues with code which assumes the default import implementation is in use. Direct use of
__import__ () is also discouraged in favor of importlib.import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to interpret
the name in a package context. The fromlist gives the names of objects or submodules that should be imported
from the module given by name. The standard implementation does not use its locals argument at all, and uses its
globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the module
calling___import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up till the

24

Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.7.4rc1

first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is given, the
module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__ ('spam', globals(), locals(), [1, 0)

The statement import spam.ham results in this call:

spam = __import__ ('spam.ham', globals (), locals(), [], 0)

Note how ___import___ () returns the toplevel module here because this is the object that is bound to a name by
the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage']l, 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value to
0).

25

The Python Library Reference, Release 3.7.4rc1

26 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eq_ (), __1t_ (),
__add__ (), _rsub__ (), etc.) to indicate that the operation is not implemented with respect to the other

type; may be returned by the in-place binary special methods (e.g. __imul__ (),__iand__ (), etc.) for the

same purpose. Its truth value is true.

Note: When a binary (or in-place) method returns NotImplemented the interpreter will try the
reflected operation on the other type (or some other fallback, depending on the operator). If all at-
tempts return Not Implemented, the interpreter will raise an appropriate exception. Incorrectly returning
Not Implemented will result in a misleading error message or the Not Implemented value being returned to
Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and NotImplemented are not interchangeable, even though they have
similar names and purposes. See Not ImplementedError for details on when to use it.

Ellipsis
The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax for
user-defined container data types.

__debug__
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and __debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

27

The Python Library Reference, Release 3.7.4rc1

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given) adds
several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be used in
programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemEx1it with the specified exit code.

copyright
credits
Objects that when printed or called, print the text of copyright or credits, respectively.

license
Object that when printed, prints the message “Type license() to see the full license text”, and when called, displays
the full license text in a pager-like fashion (one screen at a time).

28 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested for
truth value, and converted to a string (with the repr () function or the slightly different st () function). The latter
function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or while condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a __bool__ () method that returns False or a
__len__ () method that returns zero, when called with the object.' Here are most of the built-in objects considered
false:

¢ constants defined to be false: None and False.
e zero of any numeric type: 0, 0.0, 0J, Decimal (0),Fraction (0, 1)
e empty sequences and collections: ' ', (), [], {}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for true,
unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X Or y if x is false, then y, else x €))]
x and y | if xis false, then x, else y 2)
not x if x is false, then True, else False | (3)

! Additional information on these special methods may be found in the Python Reference Manual (customization).

29

The Python Library Reference, Release 3.7.4rc1

Notes:
(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.
(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b), and
a == not b isa syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the Boolean
operations). Comparisons can be chained arbitrarily; for example, x < y <= zisequivalenttox < y and y <=
z, except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for example,
function objects) support only a degenerate notion of comparison where any two objects of that type are unequal. The
<, <=, > and >= operators will raise a TypeError exception when comparing a complex number with another built-in
numeric type, when the objects are of different types that cannot be compared, or in other cases where there is no defined
ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object, unless the
class defines enough of the methods __1t__ (), __le_ (), _gt__ (),and __ge__ () (ingeneral, __ 1t__ ()
and __eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects and
never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the __contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition, Booleans are a
subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using double
in C; information about the precision and internal representation of floating point numbers for the machine on which
your program is running is available in sys. float_info. Complex numbers have a real and imaginary part, which
are each a floating point number. To extract these parts from a complex number z, use z.real and z.imag. (The
standard library includes additional numeric types, fractions that hold rationals, and decimal that hold floating-
point numbers with user-definable precision.)

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appending ' 5 ' or 'J"' to a numeric literal yields an imaginary number (a complex number
with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types, the
operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point, which
is narrower than complex. Comparisons between numbers of mixed type use the same rule.” The constructors int (),
float (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (all numeric operations
have a higher priority than comparison operations):

Operation Result Notes| Full documenta-
tion
X +y sum of x and y
X -y difference of x and y
X *y product of x and y
x /y quotient of x and y
x //y floored quotient of x and y €))
X %y remainder of x / y 2)
-X X negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)®6) | int ()
float (x) x converted to floating point @) 6) | float ()
complex (re, a complex number with real part re, imaginary part im. im de- | (6) complex ()
im) faults to zero.
c. conjugate of the complex number ¢
conjugate ()
divmod (x, y) the pair (x // vy, x % y) 2) divmod ()
pow (X, V) X to the power y 5 pow ()
X ** oy X to the power y)
Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily
int. The result is always rounded towards minus infinity: 1//2 is 0, (-1)//2is -1, 1//(-2) is -1, and
(-1)//(-2) is 0.

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

(3) Conversion from floating point to integer may round or truncate as in C; see functions math. floor () and
math.ceil () for well-defined conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and positive
or negative infinity.

(5) Python defines pow (0, 0) and O ** 0 to be 1, as is common for programming languages.
(6) The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd property).

See http://www.unicode.org/Public/10.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and f1loat) also include the following operations:

2 As a consequence, the list [1, 2] is considered equalto [1.0, 2.0],and similarly for tuples.

4.4. Numeric Types — int, float, complex 31

http://www.unicode.org/Public/10.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.7.4rc1

Operation Result

math.trunc (x) | xtruncated to Tntegral

round (x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor (x) | the greatest Integral <=x

math.ceil (x) the least Tntegral >=x

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out in
two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the comparisons;
the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority:

Notes:

Operation | Result Notes
x |y bitwise or of x and y 4)

x Ny bitwise exclusive or of x and y | (4)

X &Yy bitwise and of x and y @)

x << n x shifted left by n bits (H®2)
X >> n x shifted right by n bits (HA3)
~X the bits of x inverted

(1) Negative shift counts are illegal and cause a ValueError to be raised.

(2) A left shift by n bits is equivalent to multiplication by pow (2, n) without overflow check.

(3) A right shift by » bits is equivalent to division by pow (2, n) without overflow check.

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representation

(aworking bit-widthof 1 + max (x.bit_length(), y.bit_length ()) ormore)is sufficient to get the
same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length ()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin (n)
'-0b100101"

>>> n.bit_length()
6

More precisely, if x is nonzero, then x .bit_length () is the unique positive integer k such that 2** (k-1)
<= abs (x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm, then
k = 1 + int(log(abs(x), 2)).Ifxiszero,then x.bit_length () returns 0.

32

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) —--> '-0b100101"'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') —-—> 6

New in version 3.1.

int.to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"'

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)

b \xfA\XfA\XfA\XEF\XEF\xEf\xff\xff\xfc\x00"

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

The integer is represented using length bytes. An OverflowError is raised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byfeorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most significant byte is at the
end of the byte array. To request the native byte order of the host system, use sys . byteorder as the byte order
value.

The signed argument determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

New in version 3.2.

classmethod int.from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little")

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big')

16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byfeorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1itt1le", the most significant byte is at the
end of the byte array. To request the native byte order of the host system, use sys.byteorder as the byte order
value.

The signed argument indicates whether two’s complement is used to represent the integer.

New in version 3.2.

4.4. Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.7.4rc1

4.4.3 Additional Methods on Float

The float type implements the numbers. Real abstract base class. float also has the following additional methods.

float.as_integer_ratio ()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0) .is_integer()
True

>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as binary
numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast, hexadecimal
strings allow exact representation and specification of floating-point numbers. This can be useful when debugging, and in
numerical work.

float.hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers, this
representation will always include a leading 0x and a trailing p and exponent.

classmethod float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2 of
the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of f1oat . hex () is usable
as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format character
or Java’s Double.toHexString are accepted by float. fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to multiply
the coefficient. For example, the hexadecimal string 0x 3 . a7p 10 represents the floating-point number (3 + 10./16
+ 7./16**2) * 2.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x ==
v (see the __hash__ () method documentation for more details). For ease of implementation and efficiency across a

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

variety of numeric types (including int, float, decimal.Decimaland fractions.Fraction)Python’s hash
for numeric types is based on a single mathematical function that’s defined for any rational number, and hence applies
to all instances of int and fractions.Fraction, and all finite instances of f1oat and decimal.Decimal.
Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P is made available to Python
as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedisP = 2**31 - 1 onmachines with 32-bit C longs and
P = 2**61 — 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash (x) as m *
invmod (n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / nisanonnegative rational number and n is divisible by P (but m is not) then n has no inverse modulo
P and the rule above doesn’t apply; in this case define hash (x) to be the constant value sys.hash_info.inf.

e If x = m / nis a negative rational number define hash (x) as —hash (-x). If the resulting hash is -1,
replace it with —2.

e The particular values sys.hash_info.inf, —sys.hash_info.inf and sys.hash_info.nan are
used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have the same
hash value.)

e For a complex number z, the hash values of the real and imaginary parts are combined by com-
puting hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.
hash_info.width so that it lies in range (-2** (sys.hash_info.width - 1), 2** (sys.
hash_info.width - 1)). Again, if the result is -1, it’s replaced with —-2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash of a
rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):
""n"Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

men

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
while m $ P == n $ P == 0:
m, n=m// P, n//P
if n $ P ==
hash_value = sys.hash_info.inf
else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:

hash_value = -hash_value
if hash_value == -1:

hash_value = -2

return hash_value

def hash_float (x):
"""Compute the hash of a float x."""

(continues on next page)

4.4. Numeric Types — int, float, complex 35

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

if math.isnan (x):

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""

hash_value = hash_float (z.real) + sys.hash_info.imag * hash_float (z.imaqg)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2

return hash_value

4.5 lterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are used
to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the iteration
methods.

One method needs to be defined for container objects to provide iteration support:

container.__iter__ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C APL

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in the
Python/C APIL.

iterator.__next__ ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries, and other
more specialized forms. The specific types are not important beyond their implementation of the iterator protocol.

Once an iterator’s ___next___ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__ ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter_ () and __next__ () methods. More information about generators can be found in the
documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for processing
of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABCis provided to make it easier to correctly implement these operations on custom
sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same type,
n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and *
(repetition) operations have the same priority as the corresponding numeric operations.’

Operation Result Notes
X in s True if an item of s is equal to x, else False €))

x not in s False if anitem of s is equal to x, else True (1)

s + t the concatenation of s and ¢ ©)(7)
S * norn * s equivalent to adding s to itself # times)7
s[i] ith item of s, origin 0 3
s[i:J] slice of s from i to j 3)4)
s[i:3:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (x[, 1il, index of the first occurrence of x in s (at or after index i and before index | (8)
j11))

s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically by
comparing corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full details see comparisons in the language reference.)

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> llgg" in "eggS"
True

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — list, tuple, range 37

The Python Library Reference, Release 3.7.4rc1

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that items
in the sequence s are not copied; they are referenced multiple times. This often haunts new Python programmers;
consider:
>>> lists = [[]] * 3
>>> lists
ey, 11, 111
>>> lists[0].append(3)
>>> lists
[[31, [31, [31]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]1] *
3 are references to this single empty list. Modifying any of the elements of 11ists modifies this single list. You
can create a list of different lists this way:

>>> lists = [[] for 1 in range(3)]

>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2] .append(7)

>>> lists

[[31, [51, [71]

Further explanation is available in the FAQ entry fag-multidimensional-list.

(3) If i or j is negative, the index is relative to the end of sequence s: len(s) + 1iorlen(s) + j issubstituted.
But note that —0 is still 0.

(4) The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If iis
greater than or equal to j, the slice is empty.

(5) The slice of s from i to j with step & is defined as the sequence of items withindex x = i1 + n*ksuchthat0 <=
n < (j-1i) /k. In other words, the indices are i, i+k, 1+2*k, i+3*k and so on, stopping when j is reached
(but never including j). When £ is positive, i and j are reduced to 1en (s) if they are greater. When £ is negative,
iand j are reduced to 1en (s) — 1 if they are greater. If i or j are omitted or None, they become “end” values
(which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated like 1.

(6) Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime cost,
you must switch to one of the alternatives below:

* if concatenating st r objects, you can build a list and use str. join () at the end or else write toan io.
StringIO instance and retrieve its value when complete

* if concatenating byt es objects, you can similarly use bytes. join () or io.BytesIO, or you can do
in-place concatenation with a bytearray object. bytearray objects are mutable and have an efficient
overallocation mechanism

* if concatenating t uple objects, extend a 1 i st instead

« for other types, investigate the relevant class documentation

(7) Some sequence types (such as range) only support item sequences that follow specific patterns, and hence don’t
support sequence concatenation or repetition.

(8) index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra ar-
guments is roughly equivalent to using s [i : j] . index (x) , only without copying any data and with the returned
index being relative to the start of the sequence rather than the start of the slice.

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable sequence
types is support for the hash () built-in.

This support allows immutable sequences, such as tuple instances, to be used as dict keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABC is provided to make it easier to correctly implement these operations on custom sequence

types.
In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object that meets any

type and value restrictions imposed by s (for example, byt earray only accepts integers that meet the value restriction
0 <= x <= 255).

Operation Result Notes
s[i] = x item i of s is replaced by x

s[i:j] =t slice of s from i to j is replaced by the contents of the iterable ¢

del s[i:7j] sameas s[i:3] = []

s[i:j:k] =t the elements of s [1:j:k] are replaced by those of ¢ @))
del s[i:j:k] removes the elements of s [1:7:k] from the list

s.append (x) appends x to the end of the sequence (sameas s [len (s) :len(s)] = [x])
s.clear () removes all items from s (same as del s[:]) (®))
s.copy () creates a shallow copy of s (same as s[:]) 5
s.extend (t) or extends s with the contents of ¢ (for the most part the same as

+= t s[len(s):len(s)] = t)

S *=n updates s with its contents repeated n times 6)
s.insert (i, x) inserts x into s at the index given by i (same as s[1:1] = [x])

s.pop([il) retrieves the item at i and also removes it from s)
s.remove (x) remove the first item from s where s [1] is equal to x 3)
s.reverse () reverses the items of s in place @)

Notes:

(1) r must have the same length as the slice it is replacing.

(2) The optional argument i defaults to -1, so that by default the last item is removed and returned.

(3) remove raises ValueError when x is not found in s.

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large sequence.
To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear () and copy () are included for consistency with the interfaces of mutable containers that don’t support
slicing operations (such as dict and set)

New in version 3.3: clear () and copy () methods.

(6) The value n is an integer, or an object implementing __index__ (). Zero and negative values of n clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n under
Common Sequence Operations.

4.6. Sequence Types — list, tuple, range

39

The Python Library Reference, Release 3.7.4rc1

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of sim-
ilarity will vary by application).

class list ([itemble])
Lists may be constructed in several ways:

» Using a pair of square brackets to denote the empty list: []

» Using square brackets, separating items with commas: [a], [a, b, c]
e Using a list comprehension: [x for x in iterable]

» Using the type constructor: 1ist () or list (iterable)

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similar to iterable[:]. For example, 1ist ('abc') returns ['a', 'b', 'c']
and 1ist ((1, 2, 3)) returns [1, 2, 3].If noargument is given, the constructor creates a new empty
list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (*, key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items. Exceptions are not suppressed -
if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a partially
modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element (for
example, key=str.lower). The key corresponding to each item in the list is calculated once and then used
for the entire sorting process. The default value of None means that list items are sorted directly without
calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To remind
users that it operates by side effect, it does not return the sorted sequence (use sorted () to explicitly request
a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration,
and raises ValueError if it can detect that the list has been mutated during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples produced
by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous data is
needed (such as allowing storage in a set or dict instance).

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

class tuple ([iterable])
Tuples may be constructed in a number of ways:

» Using a pair of parentheses to denote the empty tuple: ()

 Using a trailing comma for a singleton tuple: a, or (a,)
 Separating items with commas: a, b, cor (a, b, c)

e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iferable is already a tuple, it is
returned unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') andtuple([1, 2, 3]
) returns (1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional, except
in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, £ (a, b, c) isa
function call with three arguments, while £ ((a, b, c¢)) is a function call with a 3-tuple as the sole argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number of
times in for loops.

class range (stop)

class range (start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that implements the
___index___ special method). If the step argument is omitted, it defaults to 1. If the start argument is omitted, it
defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1] = start + step*i where
i >= O0andr[i] < stop.

For a negative step, the contents of the range are still determined by the formula r [1] = start + step*i,
but the constraintsare i >= Oandr[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices, but
these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sy s.maxsize are permitted but some features (such as 1en ())
may raise OverflowError

Range examples:

>>> list (range (10))

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list (range (1, 11))

[+, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list (range (0, 30, 5))

[o, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

(o, -1, -2, -3, -4, -5, -6, -7, -8, -9]

(continues on next page)

4.6. Sequence Types — list, tuple, range 41

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

>>> list (range(0))
[]
>>> list (range (1, 0))

[]

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact that
range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually
violate that pattern).

start
The value of the start parameter (or O if the parameter was not supplied)

stop
The value of the stop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over a regular 1ist or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step
values, calculating individual items and subranges as needed).

Range objects implement the collections.abc. Sequence ABC, and provide features such as containment tests,
element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[—-1]

18

Testing range objects for equality with == and ! = compares them as sequences. That is, two range objects are considered
equal if they represent the same sequence of values. (Note that two range objects that compare equal might have different
start, stop and step attributes, for example range (0) == range (2, 1, 3) or range (0, 3, 2) ==
range (0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘!="to compare range objects based on the sequence of values they define (instead
of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.
See also:

 The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.

42 Chapter 4. Built-in Types

http://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.7.4rc1

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code points.
String literals are written in a variety of ways:

¢ Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes".
e Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted to
a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty string
s,s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct strings
from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted on
string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object=")

class str (object=b", encoding=utf-8’, errors=strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior of
str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns object.__str__ (), which is the “informal”
or nicely printable string representation of object. For string objects, this is the string itself. If object does not have
a__str__ () method, then st r () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or bytearray). In
this case, if object is a bytes (or bytearray) object, then str (bytes, encoding, errors) isequiv-
alent to bytes.decode (encoding, errors). Otherwise, the bytes object underlying the buffer object
is obtained before calling bytes. decode (). See Binary Sequence Types — bytes, bytearray, memoryview and
bufferobjects for information on buffer objects.

Passing a bytes object to st r () without the encoding or errors arguments falls under the first case of returning
the informal string representation (see also the —b command-line option to Python). For example:

>>> str(b'Zoot!")
"blzoot! ™

For more information on the str class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition, see the
Text Processing Services section.

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

4.7. Text Sequence Type — str 43

The Python Library Reference, Release 3.7.4rc1

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see st .
format (), Format String Syntax and Custom String Formatting) and the other based on C print f style formatting that
handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle
(printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various text
related utilities (including regular expression support in the re module).

str.

str.

str.

str

str.

capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.

casefold()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in
a string. For example, the German lowercase letter ' ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to 'R '; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

center (width|, fillchar |)
Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII space).
The original string is returned if width is less than or equal to 1en (s).

.count (sub[, start[, end]])

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

encode (encoding="utf-8”, errors="strict”)

Return an encoded version of the string as a bytes object. Default encoding is 'ut£-8"'. errors may be given
to set a different error handling scheme. The default for errors is 'strict', meaning that encoding errors
raise a UnicodeError. Other possible values are 'ignore', 'replace', 'xmlcharrefreplace’,
'backslashreplace' and any other name registered via codecs. register_error (), see section Er-
ror Handlers. For a list of possible encodings, see section Standard Encodings.

Changed in version 3.1: Support for keyword arguments added.

str.endswith (suﬁix[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that
position.

str.expandtabs (fabsize=8)

str.

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab positions at
columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string is examined
character by character. If the character is a tab (\ t), one or more space characters are inserted in the result until the
current column is equal to the next tab position. (The tab character itself is not copied.) If the character is a newline
(\n) or return (\ r), it is copied and the current column is reset to zero. Any other character is copied unchanged
and the current column is incremented by one regardless of how the character is represented when printed.

>>> "01\t012\t0123\t01234" .expandtabs ()

'01 012 0123 01234"
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found within the slice s [start :end]. Optional

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

arguments start and end are interpreted as in slice notation. Return —1 if sub is not found.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or re-
placement fields delimited by braces { }. Each replacement field contains either the numeric index of a positional
argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced
with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is ".format (1+2)
'The sum of 1 + 2 is 3'

See Format String Syntax for a description of the various formatting options that can be specified in format strings.

Note: When formatting a number (int, float, complex, decimal.Decimal and subclasses) with the n
type(ex: '{:n}'.format (1234)), the function temporarily sets the LC_CTYPE locale to the LC_NUMERIC
locale to decode decimal_point and thousands_sep fields of localeconv () if they are non-ASCII or
longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE locale. This temporary change
affects other threads.

Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the LC_CTYPE
locale to the LC_NUMERIC locale in some cases.

str.format_map (mapping)
Similar to str. format (**mapping), except that mapping is used directly and not copied to a dict. This
is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> ! was born in '.format_map (Default (name="'Guido'"))
'Guido was born in country'

New in version 3.2.

str.index (sub[, start[, end]])
Like find (), butraise ValueError when the substring is not found.

str.isalnum/()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha (), c.isdecimal (), c.
isdigit (),orc.isnumeric ().

str.isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise. Alpha-
betic characters are those characters defined in the Unicode character database as “Letter”, i.e., those with general
category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different from the “Alphabetic”
property defined in the Unicode Standard.

4.7. Text Sequence Type — str 45

The Python Library Reference, Release 3.7.4rc1

str.

str.

str.

str.

str.

str.

str.

str.

str.

str.

str.

isascii ()
Return true if the string is empty or all characters in the string are ASCII, false otherwise. ASCII characters have
code points in the range U+0000-U+007F.

New in version 3.7.

isdecimal ()

Return true if all characters in the string are decimal characters and there is at least one character, false otherwise.
Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-INDIC DIGIT
ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.

isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits include
decimal characters and digits that need special handling, such as the compatibility superscript digits. This covers
digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a character
that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()

Return true if the string is a valid identifier according to the language definition, section identifiers.

Use keyword. iskeyword () to test for reserved identifiers such as def and class.

islower ()

Return true if all cased characters® in the string are lowercase and there is at least one cased character, false
otherwise.

isnumeric ()

Return true if all characters in the string are numeric characters, and there is at least one character, false otherwise.
Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e.g.
U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property value
Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()

Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable characters
are those characters defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space
(0x20) which is considered printable. (Note that printable characters in this context are those which should not be
escaped when repr () isinvoked on a string. It has no bearing on the handling of strings written to sy s . stdout
or sys.stderr.)

isspace ()

Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.
Whitespace characters are those characters defined in the Unicode character database as “Other” or “Separator”
and those with bidirectional property being one of “WS”, “B”, or “S”.

istitle ()

Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

isupper ()

Return true if all cased characters* in the string are uppercase and there is at least one cased character, false
otherwise.

join (iterable)

Return a string which is the concatenation of the strings in iferable. A TypeError will be raised if there are any
non-string values in iferable, including byt e s objects. The separator between elements is the string providing this
method.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter, titlecase).

46

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

str

str.

str.

.1ljust (width[,ﬁllchar])

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is an
ASCII space). The original string is returned if width is less than or equal to 1en (s).

lower ()
Return a copy of the string with all the cased characters* converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

1strip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious '".1lstrip()
'spacious !
>>> 'www.example.com'.lstrip('cmowz.")

'example.com'

static str.maketrans (x[, y[, Z]])

str.

str

str.

str.

str.

str.

str.

This static method returns a translation table usable for st r. translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted to
ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in
x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose
characters will be mapped to None in the result.

partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string
itself, followed by two empty strings.

.replace (old, new[, count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

rfind (sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s [start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the substring sub is not found.

rjust (width|, fillchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default is
an ASCII space). The original string is returned if width is less than or equal to len (s).

rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

rsplit (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except for
splitting from the right, rsplit () behaves like sp1it () which is described in detail below.

4.7.

Text Sequence Type — str 47

The Python Library Reference, Release 3.7.4rc1

str.rstrip ([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:
>>> ! spacious '.rstrip()
! spacious'
>>> 'mississippi'.rstrip('ipz')
'mississ'

str.split (sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits
are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or —1, then there is
no limit on the number of splits (all possible splits are made).
If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for exam-
ple, '1,,2".split (', ") returns ['1', '', '2']). The sep argument may consist of multiple charac-
ters (for example, '1<>2<>3"' . split ('<>") returns ['1', '2', '3']). Splitting an empty string with
a specified separator returns [''].
For example:
>>> '1,2,3".split (', ")
[A 1 L} , Al 2 A , Al 3 A :|
>>> '1,2,3".split (', "', maxsplit=1)
[A\l 1 Al , A\l 2 , 3 |l j|
>>> vl721131"Split('l')
['1', '2|, ll, |3|, ll]
If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with
a None separator returns [].
For example:
>>> '1 2 3'.split ()
[A\l 1 |l , A\l 2 |l , A\l 3 A\l :|
>>> '1 2 3'.split (maxsplit=1)
[T , ' 3 1 J
>>> ! 1 2 3 '.split ()
[A} 1) , A} 2 L} , A} 3 A} j|

str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list
unless keepends is given and true.
This method splits on the following line boundaries. In particular, the boundaries are a superset of universal new-
lines.

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

Representation | Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\vor \x0b Line Tabulation

\f or \x0c Form Feed

\x1lc File Separator

\x1d Group Separator

\xle Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

Changed in version 3.2: \v and \ £ added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab ¢', "', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '"\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string, and
a terminal line break does not result in an extra line:

>>> "" splitlines ()

[]
>>> "One line\n".splitlines|()
['One line']

For comparison, split ('\n"') gives:

>>> "' .split('\n")

['']

>>> 'Two lines\n'.split('\n")
["Two lines', '']

str.startswith (preﬁx[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to look
for. With optional start, test string beginning at that position. With optional end, stop comparing string at that
position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’

>>> 'www.example.com'.strip('cmowz.")
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

4.7. Text Sequence Type — str 49

The Python Library Reference, Release 3.7.4rc1

str.

>>> comment_string = "#....... Section 3.2.1 Issue #32 !
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32'

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not
necessarily true that s. swapcase () . swapcase () == s.

str.title()

Return a titlecased version of the string where words start with an uppercase character and the remaining characters
are lowercase.

For example:

>>> 'Hello world'.title()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The defi-
nition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries,
which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za—2z]
lambda mo: mo.group (0
mo .group (0

n
’

)

+) 2

) [0] .upper () +
y[1:].lower (),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (table)

Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via ___getitem__ (), typically a mapping or sequence. When
indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode ordinal or
a string, to map the character to one or more other characters; return None, to delete the character from the return
string; or raise a LookupError exception, to map the character to itself.

You can use str.maketrans () to create a translation map from character-to-character mappings in different
formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()

str.

Return a copy of the string with all the cased characters* converted to uppercase. Note that s .upper () .
isupper () might be False if s contains uncased characters or if the Unicode category of the resulting char-
acter(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

z£ill (width)

Return a copy of the string left filled with ASCII ' 0 ' digits to make a string of length width. A leading sign prefix
("+'/"-") is handled by inserting the padding after the sign character rather than before. The original string is
returned if width is less than or equal to len (s) .

50

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

For example:

>>> "42" z£i11(5)
'00042"

>>> "—42" z£i11(5)
'-0042"

4.7.2 print£-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such
as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st r. format ()
interface, or femplate strings may help avoid these errors. Each of these alternatives provides their own trade-offs and
benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting
or interpolation operator. Given format % values (where format is a string), $ conversion specifications in format
are replaced with zero or more elements of values. The effect is similar to using the sprintf () in the C language.

If format requires a single argument, values may be a single non-tuple object.” Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this order:
1. The '%"' character, which marks the start of the specifier.
2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' * ' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a parenthesised
mapping key into that dictionary inserted immediately after the ' %' character. The mapping key selects the value to be
formatted from the mapping. For example:

°

>>> print (' has quote types.' %
ce {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

3 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 51

The Python Library Reference, Release 3.7.4rc1

Flag | Meaning
"#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.

"+' | Asign character ('+"' or '—") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. %$1d is identical

to %d.

The conversion types are:

Conver- | Meaning Notesg

sion

'd! Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. @))]

'u' Obsolete type — it is identical to 'd'. 6)

'x! Signed hexadecimal (lowercase). 2)

X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E’ Floating point exponential format (uppercase). 3)

'f£! Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

¢! Single character (accepts integer or single character string).

'r! String (converts any Python object using repr ()). &)

's' String (converts any Python object using st ()). 5)

'a' String (converts any Python object using ascii ()). (&)

Tyt No argument is converted, results ina ' %' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 0o ') to be inserted before the first digit.

(2) The alternate form causes a leading ' 0x "' or '0X' (depending on whether the 'x"' or 'X' format was used) to
be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they
would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

(6) See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that '\ 0" is the end of the string.

52

Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.7.4rc1

Changed in version 3.1: % £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g
conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are byt es and byt earray. They are supported by memoryview
which uses the buffer protocol to access the memory of other binary objects without needing to make a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII text
encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and are closely
related to string objects in a variety of other ways.

class bytes ([source[, encoding[, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:

* Single quotes: b'still allows embedded "double" quotes'
* Double quotes: b"still allows embedded 'single' quotes".
e Triple quoted: b' ' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any binary
values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See strings
for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger Va lueError). This is done deliberately to emphasise that while many binary formats
include ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not
generally the case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that
are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
* A zero-filled bytes object of a specified length: bytes (10)
* From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (ob7j)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format
for describing binary data. Accordingly, the bytes type has an additional class method to read data in that format:

classmethod fromhex (string)
This bytes class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1£f2 ")
b' A\xfO\xf1\xf2"

4.8. Binary Sequence Types — bytes, bytearray, memoryview 53

The Python Library Reference, Release 3.7.4rc1

Changed in version 3.7: bytes. fromhex () now skips all ASCII whitespace in the string, not just spaces.
A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex ()
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\x£f0\x£f1\x£f2' .hex ()
'fOf1f2"

New in version 3.5.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, whileb [0 : 1]
will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string
of length 1)

The representation of bytes objects uses the literal format (b ' . . . ') since it is often more useful thane.g. bytes ([46,
46, 461]). You can always convert a bytes object into a list of integers using 1ist (b).

Note: For Python 2.x users: In the Python 2.x series, a variety of implicit conversions between 8-bit strings (the closest
thing 2.x offers to a built-in binary data type) and Unicode strings were permitted. This was a backwards compatibility
workaround to account for the fact that Python originally only supported 8-bit text, and Unicode text was a later addition.
In Python 3.x, those implicit conversions are gone - conversions between 8-bit binary data and Unicode text must be
explicit, and bytes and string objects will always compare unequal.

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to by tes objects.

class bytearray ([source[, encoding[, errors]]])
There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor:

» Creating an empty instance: bytearray ()

* Creating a zero-filled instance with a given length: bytearray (10)

¢ From an iterable of integers: bytearray (range (20))

» Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common bytes
and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format
for describing binary data. Accordingly, the bytearray type has an additional class method to read data in that
format:

classmethod fromhex (string)
This bytearray class method returns bytearray object, decoding the given string object. The string must
contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex ('2Ef0 F1£2 ")
bytearray (b' . \xf0\xf1\xf2")

Changed in version 3.7: bytearray. fromhex () now skips all ASCII whitespace in the string, not just
spaces.

54 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

hex ()
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\x£f1\x£2"') .hex ()
'fOf1f£2"

New in version 3.5.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer, while
b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (bytearray (b'...")) since it is often more
useful than e.g. bytearray ([46, 46, 46]). You can always convert a bytearray object into a list of integers
using 1ist (b).

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands of
the same type, but with any byfes-like object. Due to this flexibility, they can be freely mixed in operations without causing
errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings
don’t accept bytes as their arguments. For example, you have to write:

a = "abc"

b = a.replace("a", "f")
and:

a = b"abc"

b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be avoided
when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may
lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count (sub[, start[, endE])
bytearray.count (sub[, start|, end]])
Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.decode (encoding="utf-8”, errors="strict”)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 55

The Python Library Reference, Release 3.7.4rc1

bytearray.decode (encoding="utf-8”, errors="strict”)
Return a string decoded from the given bytes. Default encoding is 'utf-8"'. errors may be given to set
a different error handling scheme. The default for errors is 'strict', meaning that encoding errors raise

a UnicodeError. Other possible values are 'ignore', 'replace’' and any other name registered via
codecs.register_error (), see section Error Handlers. For a list of possible encodings, see section Stan-
dard Encodings.

Note: Passing the encoding argument to st r allows decoding any bytes-like object directly, without needing to
make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

bytes.endswith (suﬁ‘ix[, start[, endE])
bytearray.endswith (su]ﬁx[, start|, end]])
Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

The suffix(es) to search for may be any bytes-like object.

bytes.find (sub[, start[, end]])

bytearray.find (sub[, start[, end]])
Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return —1 if sub is not
found.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> b'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.index (sub[, start[, end]])
bytearray.index (sub[, start[, end]])
Like find (), butraise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes. join (iterable)

bytearray.join (iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in iferable. A
TypeError will be raised if there are any values in iferable that are not bytes-like objects, including st r ob-
jects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans (from, to)

static bytearray.maketrans (from, t0)
This static method returns a translation table usable for bytes. translate () that will map each character in
from into the character at the same position in fo; from and fo must both be bytes-like objects and have the same
length.

New in version 3.1.

56 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

bytes.partition (sep)

bytearray.partition (sep)
Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple
containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace (0ld, new[, count])

bytearray.replace (old, new[, count])
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rfind (sub[, start[, endﬂ])
bytearray.rfind (sub[, start|, end]])
Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s[start :end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rindex (sub[, start[, end]])
bytearray.rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.rpartition (sep)

bytearray.rpartition (sep)
Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple
containing two empty bytes or bytearray objects, followed by a copy of the original sequence.

The separator to search for may be any bytes-like object.

bytes.startswith (preﬁx[, start[, endE])
bytearray.startswith (preﬁx[, start| , end]])
Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be a tuple
of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate (table, delete=b")

bytearray.translate (fable, delete=b")
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are removed,
and the remaining bytes have been mapped through the given translation table, which must be a bytes object of
length 256.

You can use the bytes.maket rans () method to create a translation table.

Set the fable argument to None for translations that only delete characters:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.7.4rc1

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compatible
binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that all of the
bytearray methods in this section do not operate in place, and instead produce new objects.

bytes.center (widih[, fillbyte |)

bytearray.center (width[, ﬁllbyte])
Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For byt es objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.ljust (width[, ﬁllbyte])

bytearray.ljust (width[, ﬁllbyte])
Return a copy of the object left justified in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.lstrip([charse)
bytearray.lstrip (chars])
Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII
characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars argument
is not a prefix; rather, all combinations of its values are stripped:

>>> pb' spacious '.lstrip()
b'spacious !

>>> b'www.example.com'.lstrip(b'cmowz.")
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rjust (width[, fillbyte])

bytearray.rjust (width[, ﬁllbyte])
Return a copy of the object right justified in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

no changes were made.

bytes.rsplit (sep=None, maxsplit=-1)

bytearray.rsplit (sep=None, maxsplit=-1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given,
at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence consisting
solely of ASCII whitespace is a separator. Except for splitting from the right, rsplit () behaves like split ()
which is described in detail below.

bytes.rstrip([chars])

bytearray.rstrip ([chars])
Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII
characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars argument
is not a suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.rstrip()

b’ spacious'

>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.split (sep=None, maxsplit=-1)

bytearray.split (sep=None, maxsplit=-1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given
and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1 elements). If
maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example,b'1,,2"'.split (b', ") returns [b'1', b'', b'2"']). The sep argument may consist of a
multibyte sequence (for example, b' 1<>2<>3".split (b'<>") returns [b'1', b'2"', b'3']). Split-
ting an empty sequence with a specified separator returns [b''] or [bytearray (b'"')] depending on the
type of object being split. The sep argument may be any byfes-like object.

For example:

>>> p'1,2,3".split(b', ")

[b'1l', b'2', b'3"]

>>> p'1,2,3".split(b', "', maxsplit=1)
[b'1l', b'2,3"']

>>> b'1,2,,3," " .split(b', ")

[b'1', b'2', "', b'3"', b'"]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence has
leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely of ASCII
whitespace without a specified separator returns [].

For example:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

The Python Library Reference, Release 3.7.4rc1

>>> b'l 2 3'.split ()

[b'1', b'2', b'3"]

>>> p'l 2 3'.split (maxsplit=1)
[b'1l', b'2 3']

>>> b 1 2 3 '.split ()
[bli', b|2|, bl3']

bytes.strip ([chars])
bytearray.strip([chars])

Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used
with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b spacious '.strip()
b'spacious'

>>> b'www.example.com'.strip(b'cmowz.")
b'example'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place, and

instead produce new objects.

bytes.capitalize ()
bytearray.capitalize ()

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized and
the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.expandtabs (tabsize=8)
bytearray.expandtabs (fabsize=8)

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces, depending
on the current column and the given tab size. Tab positions occur every tabsize bytes (default is 8, giving tab positions
at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to zero and the sequence is
examined byte by byte. If the byte is an ASCII tab character (b '\t '), one or more space characters are inserted
in the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the current byte is an ASCII newline (b'\n"') or carriage return (b ' \r '), it is copied and the current column is
reset to zero. Any other byte value is copied unchanged and the current column is incremented by one regardless
of how the byte value is represented when printed:

>>> b'01\t012\t0123\t01234" .expandtabs ()

b'01 012 0123 01234"
>>> b'01\t012\t0123\t01234"'.expandtabs (4)
b'01 012 0123 01234"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if

60

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

no changes were made.

bytes.isalnum ()

bytearray.isalnum/()
Return true if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, false otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal dig-
its are those byte values in the sequence b' 0123456789"'.

For example:

>>> b'ABCabcl'.isalnum/()
True
>>> p'ABC abcl'.isalnum()
False

bytes.isalpha ()

bytearray.isalpha/()
Return true if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, false otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.

For example:

>>> p'ABCabc'.isalpha ()
True
>>> b'ABCabcl'.isalpha()
False

bytes.isascii ()
bytearray.isascii ()

Return true if the sequence is empty or all bytes in the sequence are ASCII, false otherwise. ASCII bytes are in
the range 0-Ox7F.

New in version 3.7.

bytes.isdigit ()

bytearray.isdigit ()
Return true if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, false otherwise.
ASCII decimal digits are those byte values in the sequence b'0123456789"'.

For example:

>>> p'1234" .isdigit ()
True

>>> pb'1.23"'.isdigit ()
False

bytes.islower ()
bytearray.islower ()

Return true if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters,
false otherwise.

For example:

>>> b'hello world'.islower ()
True

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

>>> b'Hello world'.islower ()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.isspace ()

bytearray.isspace ()
Return true if all bytes in the sequence are ASCII whitespace and the sequence is not empty, false otherwise. ASCII
whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f' (space, tab, newline, carriage
return, vertical tab, form feed).

bytes.istitle ()

bytearray.istitle ()
Return true if the sequence is ASCII titlecase and the sequence is not empty, false otherwise. See bytes.
title () for more details on the definition of “titlecase”.

For example:

>>> pb'Hello World'.istitle()
True
>>> b'Hello world'.istitle ()
False

bytes.isupper ()

bytearray.isupper ()
Return true if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase ASCII
characters, false otherwise.

For example:

>>> Pp'HELLO WORLD'.isupper ()
True

>>> p'Hello world'.isupper ()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.lower ()

bytearray.lower ()
Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lowercase
counterpart.

For example:

>>> b'Hello World'.lower ()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz"'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.splitlines (keepends=False)

62 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

bytearray.splitlines (keepends=False)
Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the universal
newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and
true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines/()

[b'ab ¢', b''", b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string, and
a terminal line break does not result in an extra line:

>>> b"" . split(b'\n'), b"Two lines\n".split(b'\n")
([""], [b'Two lines', b''])

>>> b"" . splitlines (), b"One line\n".splitlines ()
([]1, [b'One line'])

bytes.swapcase ()

bytearray.swapcase ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase
counterpart and vice-versa.

For example:

>>> pb'Hello World'.swapcase ()
b'"hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ .

Unlike str.swapcase (), it is always the case that bin.swapcase () . swapcase () == bin for the
binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary
Unicode code points.

Note: The bytearray version of this method does rot operate in place - it always produces a new object, even if
no changes were made.

bytes.title()

bytearray.title()
Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the
remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz"'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The defi-
nition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries,
which may not be the desired result:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.7.4rc1

>>> p"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(rb" [A-Za-z]+ (' [A-Za-z]+)2",
lambda mo: mo.group (0) [0:1] .upper () +
mo.group (0) [1:].lower (),
s)

>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.upper ()
bytearray.upper ()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase
counterpart.

For example:

>>> pb'Hello World'.upper ()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz"'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ .

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.z£ill (width)
bytearray.z£ill (width)

Return a copy of the sequence left filled with ASCII b ' 0 ' digits to make a sequence of length width. A leading sign
prefix (b'+"'/b'-") is handled by inserting the padding after the sign character rather than before. For bytes
objects, the original sequence is returned if width is less than or equal to 1en (seq).

For example:

>>> p"42" . z£f1i11(5)
brooo4z2"
>>> p"-42" . z£fi11(5)
b'-0042"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

64

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

4.8.4 printf-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such
as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary, wrap it in a
tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also known as
the bytes formatting or interpolation operator. Given format % values (where format is a bytes object), $ conversion
specifications in format are replaced with zero or more elements of values. The effect is similar to using the sprintf ()
in the C language.

If format requires a single argument, values may be a single non-tuple object.’> Otherwise, values must be a tuple with
exactly the number of items specified by the format bytes object, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this order:
1. The '%"' character, which marks the start of the specifier.
2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' * ' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include a
parenthesised mapping key into that dictionary inserted immediately after the ' %' character. The mapping key selects
the value to be formatted from the mapping. For example:

>>> print (b’ has quote types.' %
ce {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
'#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

'=' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).
(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
'+' | Asigncharacter ('+"' or '-") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to 3d.

The conversion types are:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.7.4rc1

Conver- | Meaning Noteg

sion

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. €))]

'u! Obsolete type — it is identical to 'd"'. ®)

'x! Signed hexadecimal (lowercase). 2)

'X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'c! Single byte (accepts integer or single byte objects).

'b' Bytes (any object that follows the buffer protocol or has ___bytes__ ()). (®)]

's! 's' isan alias for 'b' and should only be used for Python2/3 code bases. 6)

'a' Bytes (converts any Python object using repr (obj).encode('ascii', | (5)
'backslashreplace)).

‘¢! 'r' isan alias for 'a' and should only be used for Python2/3 code bases. @)

'y No argument is converted, results in a ' %' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 00 ") to be inserted before the first digit.

(2) The alternate form causes a leading ' 0x ' or '0X' (depending on whether the 'x' or 'X' format was used) to
be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they
would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
(5) If precision is N, the output is truncated to N characters.
(6) b'%s" is deprecated, but will not be removed during the 3.x series.
(7) b'%x" is deprecated, but will not be removed during the 3.x series.

(8) See PEP 237.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if no
changes were made.

See also:
PEP 461 - Adding % formatting to bytes and bytearray

New in version 3.5.

66 Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0237
https://www.python.org/dev/peps/pep-0461

The Python Library Reference, Release 3.7.4rc1

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol without
copying.

class memoryview (obj)
Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that support the
buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating object
obj. For many simple types such as bytes and bytearray, an element is a single byte, but other types such as
array.array may have bigger elements.

len (view) is equal to the length of tolist. If view.ndim = O, the lengthis 1. If view.ndim = 1,
the length is equal to the number of elements in the view. For higher dimensions, the length is equal to the length
of the nested list representation of the view. The i t emsi ze attribute will give you the number of bytes in a single
element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a subview:

>>> v = memoryview (b'abcefg')
>>> v[1]

98

>>> v[-1]

103

>>> v[1:4]

<memory at 0x7£3ddc9£4350>
>>> bytes(v[1:4])

b'bce’

If format is one of the native format specifiers from the st ruct module, indexing with an integer or a tuple of
integers is also supported and returns a single element with the correct type. One-dimensional memoryviews can
be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with tuples of
exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can be indexed
with the empty tuple.

Here is an example with a non-byte format:

>>> import array

>>> a = array.array('l', [-11111111, 22222222, —-33333333, 444444447)
>>> m = memoryview(a)

>>> m[0]

-11111111

>>> m[-1]

44444444

>>> m[::2].tolist ()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is not
allowed:

>>> data = bytearray(b'abcefg')
>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 67

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

>>> v[1:4] = b'123"
>>> data
bytearray (b'z123fg")
>>> v[2:3] = b'spam'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview assignment: lvalue and rvalue have different structures
>>> v[2:6] = b'spam'
>>> data
bytearray (b'zlspam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The hash
is defined as hash (m) == hash (m.tobytes()):

>>> v = memoryview (b'abcefg')

>>> hash(v) == hash(b'abcefg')

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews with
formats ‘B’, ‘b’ or ‘¢’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc. Sequence
Changed in version 3.5: memoryviews can now be indexed with tuple of integers.
memoryview has several methods:

__eq__ (exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of struct format strings currently supported by tolist (), v and w are equal if v.

tolist () == w.tolist():

>>> import array

>>> a = array.array('1', [1, 2, 3, 4, 51])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.01])
>>> c = array.array('b', [5, 3, 1]

>>> x = memoryview(a)

>>> y = memoryview (b)

>>> x == a ==y ==D

True

>>> x.tolist () == a.tolist () == y.tolist() == b.tolist ()
True

>>> z = y[:1:-2]

>>> 7z == C

True

>>> z.tolist () == c.tolist()

True

If either format string is not supported by the st ruct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

68

Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.7.4rc1

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :
fields = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)

>>> b = memoryview (point)

>>> a == point

False

>>> g ==

False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and the
logical array structure.

tobytes ()
Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted to
bytes. tobytes () supports all format strings, including those that are not in st ruct module syntax.

hex ()
Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview (b"abc")
>>> m.hex ()
'616263"'

New in version 3.5.

tolist ()
Return the data in the buffer as a list of elements.

>>> memoryview(b'abc') .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.31)
>>> m = memoryview(a)

>>> m.tolist ()

(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
a view is held on them (for example, a bytearray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 69

The Python Library Reference, Release 3.7.4rc1

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview (b'abc')
>>> m.release ()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview (b'abc') as m:
m[0]

97

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast (format[, shape])
Cast a memoryview to a new format or shape. shape defaults to [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview, but the
buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in st ruct syntax. One of the formats
must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the original length.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array('l', [1,2,31)
>>> X = memoryview(a)

>>> x.format

'll

>>> x.itemsize

8

>>> len (x)

>>> x.nbytes
24
>>> = x.cast('B")
>>> y.format

IBI

>>> y.itemsize

1

>>> len(y)

24

>>> y.nbytes

24

=

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz")
>>> x = memoryview (b)
>>> x[0] = b'a'

(continues on next page)

70

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format "B"

>>> y = x.cast('c")
>>> y[0] = b'a'
>>> b

bytearray (b'ayz')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

>>> buf = struct.pack ("i"*12, *list (range(12)))
>>> x = memoryview (buf)
>>> y = x.cast('i', shape=[2,2,3])

>>> y.tolist ()
ceeo, 1, 21, 3, 4, 511, [[6, 7, 81, [9, 10, 11]]]
>>> y.format

[

i
>>> y.itemsize

>>> len(y)

>>> y.nbytes

48

>>> z = y.cast('b")
>>> z.format

b

>>> z.itemsize

>>> len(z)
48

>>> z.nbytes
48

Cast 1D/unsigned char to 2D/unsigned long:

>>> buf = struct.pack ("L"*6, *list (range(6)))
>>> x = memoryview (buf)

>>> y = x.cast('L', shape=[2,3])

>>> len(y)

2

>>> y.nbytes

48

>>> y.tolist ()

(ro, 1, 21, (3, 4, 51]

New in version 3.3.
Changed in version 3.5: The source format is no longer restricted when casting to a byte view.
There are also several readonly attributes available:

obj
The underlying object of the memoryview:

>>> b = bytearray(b'xyz')
>>> m = memoryview (b)

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 71

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

>>> m.obj is b
True

New in version 3.3.

nbytes

nbytes == product (shape) * itemsize == len (m.tobytes ()). This is the amount of
space in bytes that the array would use in a contiguous representation. It is not necessarily equal to 1en (m) :

>>> import array

>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)

>>> len (m)

5

>>> m.nbytes

20

>>> y = m[::2]

>>> len(y)

3

>>> y.nbytes

12

>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack ("d"*12, *[1.5*x for x in range(12)])

>>> x = memoryview (buf)

>>> y = x.cast('d', shape=[3,4])

>>> y.tolist ()

(.o, 1.5, 3.0, 4.51, [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)

3

>>> y.nbytes

96

New in version 3.3.

readonly

A bool indicating whether the memory is read only.

format

A string containing the format (in st ruct module style) for each element in the view. A memoryview can
be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are restricted
to native single element formats.

Changed in version 3.3: format 'B' is now handled according to the struct module syntax. This means that
memoryview (b'abc') [0] == b'abc'[0] == 97.

itemsize

The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview(array.array('H', [32000, 32001, 320021))
>>> m.itemsize

2

>>> m[0]

(continues on next page)

72

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

32000
>>> struct.calcsize('H') == m.itemsize
True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension of
the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.

New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous.

New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.

New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, removing
duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric
difference. (For other containers see the built-in dict, 1ist, and tuple classes, and the collect ions module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used as
either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its contents
cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for example:
{'"jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable])

4.9. Set Types — set, frozenset 73

The Python Library Reference, Release 3.7.4rc1

class frozenset ([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be hashable.
To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a new empty set
is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the number of elements in set s (cardinality of s).

X in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersection
is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, that is, set >= other and set != other.

union (*others)
set | other |
Return a new set with elements from the set and all others.

intersection (*others)
set & other &
Return a new set with elements common to the set and all others.

difference (*others)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set ~ other
Return a new set with elements in either the set or other but not both.

copy ()
Return a shallow copy of the set.

Note, the non-operator versions of wunion(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any iterable
as an argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes
error-prone constructions like set ('abc') & 'cbs' in favor of the more readable set ('abc') .
intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first

74

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if
the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For example, set ('abc')
== frozenset ('abc') returns True and so does set ('abc') in set ([frozenset ('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two nonempty
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b, or
a>b.

Since sets only define partial ordering (subset relationships), the output of the 11 st . sort () method is undefined
for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ('ab') | set ('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (*others)
set |= other |
Update the set, adding elements from all others.

intersection_update (*others)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (*others)
set —-= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update (), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept any it-
erable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set. To
support searching for an equivalent frozenset, a temporary one is created from elem.

4.9. Set Types — set, frozenset 75

The Python Library Reference, Release 3.7.4rc1

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only one
standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple classes, and the
collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictionaries
or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such as 1 and 1. 0)
then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{'jack': 4098, 'sjoerd': 4127} or {4098: 'jack', 4127: 'sjoerd'}, or by the dict con-
structor.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the
positional argument must be an iterable object. Each item in the iterable must itself be an iterable with exactly two
objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding
value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new
dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from
the positional argument. If a key being added is already present, the value from the keyword argument replaces the
value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2, "three":
3}

>>> a = dict (one=1, two=2, three=3)

>>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 3]))

>>> d = dict([('two', 2), ('one', 1), ('three', 3)1])

>>> e = dict({'three': 3, 'one': 1, 'two': 2})

>>> a == == c ==d == e

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers. Otherwise,
any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

len(d)
Return the number of items in the dictionary d.

dl[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__ () and key is not present, the d [key] operation calls
that method with the key key as argument. The d [key] operation then returns or raises whatever is returned
or raised by the __missing__ (key) call. No other operations or methods invoke __missing__ ().

76 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

If _ _missing__ () isnotdefined, KeyErrorisraised. _ missing__ () must be a method; it cannot
be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):

.. return 0
>>> ¢ = Counter ()
>>> c['red']

0

>>> c['red'] += 1
>>> c['red']

The example above shows part of the implementation of collections.Counter. A different
__missing__ methodisused by collections.defaultdict.

d[key] = value
Set d [key] to value.

del dlkeyl]

Remove d [key] from d. Raises a KeyError if key is not in the map.
key in d

Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (iterable[, value])
Create a new dictionary with keys from iferable and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None, so
that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view objects.

keys ()
Return a new view of the dictionary’s keys. See the documentation of view objects.

pop (key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and key is
not in the dictionary, a KeyError is raised.

popitem ()
Remove andreturna (key, wvalue) pair from the dictionary. Pairs are returned in LIFO (last-in, first-out)
order.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictio-
nary is empty, calling popitem () raises a KeyError.

4.10. Mapping Types — dict 77

The Python Library Reference, Release 3.7.4rc1

Changed in version 3.7: LIFO order is now guaranteed. In prior versions, popitem () would return an
arbitrary key/value pair.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default. default
defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other iter-
ables of length two). If keyword arguments are specified, the dictionary is then updated with those key/value
pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

Dictionaries compare equal if and only if they have the same (key, wvalue) pairs. Order comparisons (‘<’,
‘<=, >=, >") raise TypeError.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after deletion
are inserted at the end.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (d)
['one', '"two', 'three', 'four']
>>> list (d.values|())

(1, 2, 3, 41
>>> d["one"] = 42
>>> d

{'one': 42, 'two': 2, 'three': 3, 'four': 4}
>>> del d["two"]

>>> d["two"] = None
>>> d
{'one': 42, 'three': 3, 'four': 4, 'two': None}

Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implementation
detail of CPython from 3.6.

See also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict.keys (), dict.values () and dict.items () are view objects. They provide a
dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes.
Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, wvalue)) in the dictionary.

78 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

Keys and values are iterated over in insertion order. This allows the creation of (value, key) pairs using
zip(): pairs = zip(d.values (), d.keys()). Another way to create the same list is pairs =
[(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

Changed in version 3.7: Dictionary order is guaranteed to be insertion order.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since the entries
are generally not unique.) For set-like views, all of the operations defined for the abstract base class collections.
abc. Set are available (for example, ==, <, or *).

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys ()
>>> values = dishes.values|()

>>> # iteration

>> n = 0

>>> for val in values:
. n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order (insertion order)
>>> list (keys)

['eggs', 'sausage', 'bacon', 'spam']

>>> list (values)

[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes['eggs']

>>> del dishes|['sausage']

>>> list (keys)

['"bacon', 'spam']

>>> # set operations

>>> keys & {'eggs', 'bacon', 'salad'}
{'"bacon'}

>>> keys ©~ {'sausage', 'Jjuice'}
{'juice', 'sausage', 'bacon', 'spam'}

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is implemented
using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement
body is executed and exited when the statement ends:

contextmanager.__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The value

4.11. Context Manager Types 79

The Python Library Reference, Release 3.7.4rc1

returned by this method is bound to the identifier in the as clause of with statements using this context manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __enter__()
to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the with
statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body of the with statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues prop-
agating after this method has finished executing. Exceptions that occur during execution of this method will replace
any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code to easily detect whether ornotan ___exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other objects,
and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially beyond
their implementation of the context management protocol. See the context 11ib module for some examples.

Python’s generators and the context1ib. contextmanager decorator provide a convenient way to implement these
protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will return
a context manager implementing the necessary __enter__ () and __exit__ () methods, rather than the iterator
produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C API.
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

4.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather it
requires an (external) definition for a module named foo somewhere.)

A special attribute of every moduleis __dict__ . Thisis the dictionary containing the module’s symbol table. Modifying
this dictionary will actually change the module’s symbol table, but direct assignment to the __ dict__ attribute is not
possible (you can writem.__dict___['a'] = 1, which defines m.a to be 1, but you can’t writem.__dict__ =
{}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in) >. If loaded from a file, they
are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

80 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

4.12.2 Classes and Class Instances

See objects and class for these.

4.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a bound
method (also called instance method) object. When called, it will add the self argument to the argument list. Bound
methods have two special read-only attributes: m.__self__ is the object on which the method operates, and m.
___func___is the function implementing the method. Calling m (arg-1, arg-2, ..., arg-n) is completely
equivalent to callingm.__func__ (m.__self__, arg-1, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__ func__), setting method attributes on bound methods is
disallowed. Attempting to set an attribute on a method results in an At t ributeError being raised. In order to set a
method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self):
pass
>>> ¢ = C()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method. func__ .whoami = 'my name is method’
>>> c.method.whoami
'my name is method'

See types for more information.

4.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a function
body. They differ from function objects because they don’t contain a reference to their global execution environment.
Code objects are returned by the built-in compi Ie () function and can be extracted from function objects through their
___code___ attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval () built-in
functions.

4.12. Other Built-in Types 81

The Python Library Reference, Release 3.7.4rc1

See types for more information.

4.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There are
no special operations on types. The standard module ¢ ypes defines names for all standard built-in types.

Types are written like this: <class 'int'>.

4.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is exactly
one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

4.12.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named £E11ipsis (abuilt-in name). type (E11lipsis) () produces the £111ipsis singleton.

Itis writtenas El11lipsisor....

4.12.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types they
don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

4.12.10 Boolean Values
Boolean values are the two constant objects False and True. They are used to represent truth values (although other
values can also be considered false or true). In numeric contexts (for example when used as the argument to an arithmetic

operator), they behave like the integers O and 1, respectively. The built-in function booI () can be used to convert any
value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written as False and True, respectively.

4.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of these
are not reported by the dir () built-in function.

82 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.4rc1

object.__diect__
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class__
The class to which a class instance belongs.

class.__bases___
The tuple of base classes of a class object.

definition._ _name___
The name of the class, function, method, descriptor, or generator instance.

definition.__qualname___
The qualified name of the class, function, method, descriptor, or generator instance.

New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is called
at class instantiation, and its result is stored in ___mro___

class.__subclasses__ ()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. Example:

>>> int.__subclasses__ ()
[<class 'bool'>]

4.13. Special Attributes 83

The Python Library Reference, Release 3.7.4rc1

84 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that class
(but not exception classes from which i is derived). Two exception classes that are not related via subclassing are never
equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several items
of information (e.g., an error code and a string explaining the code). The associated value is usually passed as arguments
to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition “just
like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent user code
from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Except ion class or one of its subclasses, and not from BaseExcept i on. More information on
defining exceptions is available in the Python Tutorial under tut-userexceptions.

When raising (or re-raising) an exception in an except or finally clause __ context__ is automatically set to
the last exception caught; if the new exception is not handled the traceback that is eventually displayed will include the
originating exception(s) and the final exception.

When raising a new exception (rather than using a bare raise to re-raise the exception currently being handled), the
implicit exception context can be supplemented with an explicit cause by using f rom with raise:

raise new_exc from original_exc

The expression following £rom must be an exception or None. It will be set as ___cause___ on the raised exception.
Setting ___cause___ also implicitly sets the __suppress_context___ attribute to True, so that using raise
new_exc from None effectively replaces the old exception with the new one for display purposes (e.g. converting
KeyError to AttributeError), while leaving the old exception available in ___context___ for introspection
when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception itself.
An explicitly chained exception in ___cause___ is always shown when present. An implicitly chained exception in
__context___isshownonlyif _ _cause__is Noneand __suppress_context___is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the traceback
always shows the last exception that was raised.

5.1 Base classes

The following exceptions are used mostly as base classes for other exceptions.

85

The Python Library Reference, Release 3.7.4rc1

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for that,
use Exception). If str() is called on an instance of this class, the representation of the argument(s) to the
instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError) expect
a certain number of arguments and assign a special meaning to the elements of this tuple, while others are
usually called only with a single string giving an error message.

with_traceback (1h)
This method sets #b as the new traceback for the exception and returns the exception object. It is usually used
in exception handling code like this:

try:

except SomeException:
tb = sys.exc_info () [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also be
derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. Iookup ().

5.2 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not support
attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.: the
io.IOBase.read () and io.I0OBase.readline () methods return an empty string when they hit EOF.)

exception FloatingPointError
Not currently used.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close () and coroutine.close (). It
directly inherits from BaseException instead of Except ion since it is technically not an error.

86 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.7.4rc1

exception ImportError
Raised when the import statement has troubles trying to load a module. Also raised when the “from list” in £ rom
import has a name that cannot be found.

The name and path attributes can be set using keyword-only arguments to the constructor. When set they rep-
resent the name of the module that was attempted to be imported and the path to any file which triggered the
exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError
A subclass of TmportError which is raised by import when a module could not be located. It is also raised
when None is found in sys.modules.

New in version 3.6.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed range;
if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check for
interrupts is made regularly. The exception inherits from BaseExcept ion so as to not be accidentally caught
by code that catches Except ion and thus prevent the interpreter from exiting.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’s malloc () function), the interpreter may not always be
able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback can be
printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value is
an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise this
exception when they require derived classes to override the method, or while the class is being developed to indicate
that the real implementation still needs to be added.

Note: It should not be used to indicate that an operator or method is not meant to be supported at all — in that case
either leave the operator / method undefined or, if a subclass, set it to None.

Note: NotImplementedError and NotImplemented are not interchangeable, even though they have
similar names and purposes. See Not Implemented for details on when to use it.

exception OSError ([arg])

exception OSError (errno, strerror[, ﬁlename[, winerror[, ﬁlenameZ]]])
This exception is raised when a system function returns a system-related error, including I/O failures such as “file
not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default to
None if not specified. For backwards compatibility, if three arguments are passed, the a rgs attribute contains

5.2. Concrete exceptions 87

The Python Library Reference, Release 3.7.4rc1

only a 2-tuple of the first two constructor arguments.

The constructor often actually returns a subclass of OSErrozr, as described in OS exceptions below. The particular
subclass depends on the final errno value. This behaviour only occurs when constructing OSError directly or
via an alias, and is not inherited when subclassing.

errno
A numeric error code from the C variable errno.

winerror
Under Windows, this gives you the native Windows error code. The e rrno attribute is then an approximate
translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the e rrno attribute is determined from
the Windows error code, and the errno argument is ignored. On other platforms, the winerror argument is
ignored, and the winerror attribute does not exist.

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror () under POSIX, and FormatMessage () under Windows.

filename

filename2
For exceptions that involve a file system path (such as open () or os.unlink ()), filename is the file
name passed to the function. For functions that involve two file system paths (such as os. rename ()),
filenameZ2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error, select.
error and mmap . error have been merged into OSError, and the constructor may return a subclass.

Changed in version 3.4: The filename attribute is now the original file name passed to the function, instead
of the name encoded to or decoded from the filesystem encoding. Also, the filename2 constructor argument and
attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is some-
times raised for integers that are outside a required range. Because of the lack of standardization of floating point
exception handling in C, most floating point operations are not checked.

exception RecursionError
This exception is derived from RuntimeError. It is raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit ())is exceeded.

New in version 3.5: Previously, a plain Runt imeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weak ref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StopIteration
Raised by built-in function next () and an iterator’s __next__ () method to signal that there are no further
items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the exception,
and defaults to None.

88 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.7.4rc1

When a generator or coroutine function returns, anew St opIterat ion instance is raised, and the value returned
by the function is used as the value parameter to the constructor of the exception.

If a generator code directly or indirectly raises StopIteration, itis converted into a RuntimeError (re-
taining the StopIteration as the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a value.

Changed in version 3.5: Introduced the RuntimeError transformation via from __future__ import
generator_stop, see PEP 479.

Changed in version 3.7: Enable PEP 479 for all code by default: a StopIteration error raised in a generator
is transformed into a Runt imeError.

exception StopAsyncIteration
Must be raised by __anext___ () method of an asynchronous iterator object to stop the iteration.

New in version 3.5.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the built-in
functions exec () or eval (), or when reading the initial script or standard input (also interactively).

Instances of this class have attributes filename, 1ineno, of fset and text for easier access to the details.
str () of the exception instance returns only the message.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to abandon
all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of the
Python interpreter (sys . version;itis also printed at the start of an interactive Python session), the exact error
message (the exception’s associated value) and if possible the source of the program that triggered the error.

exception SystemExit
This exception is raised by the sys.exit () function. It inherits from BaseException instead of
Exception so that it is not accidentally caught by code that catches Except ion. This allows the exception to
properly propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits; no
stack traceback is printed. The constructor accepts the same optional argument passed to sys.exit (). If the
value is an integer, it specifies the system exit status (passed to C’s exit () function); if it is None, the exit status
is zero; if it has another type (such as a string), the object’s value is printed and the exit status is one.

Acallto sys.exit () is translated into an exception so that clean-up handlers (finally clauses of t ry state-
ments) can be executed, and so that a debugger can execute a script without running the risk of losing control. The
os._exit () function can be used if it is absolutely positively necessary to exit immediately (for example, in the
child process after a call to os. fork ()).

code
The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a string
giving details about the type mismatch.

5.2. Concrete exceptions 89

https://www.python.org/dev/peps/pep-0479
https://www.python.org/dev/peps/pep-0479

The Python Library Reference, Release 3.7.4rc1

This exception may be raised by user code to indicate that an attempted operation on an object is not supported, and
is not meant to be. If an object is meant to support a given operation but has not yet provided an implementation,
NotImplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passing a 1ist when an int is expected) should result in a
TypeError, but passing arguments with the wrong value (e.g. a number outside expected boundaries) should
resultina ValueError.

exception UnboundlLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError hasattributes that describe the encoding or decoding error. For example, err.object [err.
start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in ob ject.

end
The index after the last invalid data in ob ject.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when an operation or function receives an argument that has the right type but an inappropriate value, and
the situation is not described by a more precise exception such as TndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases of
OSError.

exception EnvironmentError
exception IOError

exception WindowsError
Only available on Windows.

90 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.7.4rc1

5.2.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds to
errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the i o module.

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError and
ConnectionResetError.

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been closed, or
trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE and ESHUTDOWN.

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds to
errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds to
errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError
Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal, except if the
signal handler raises an exception (see PEP 475 for the rationale), instead of raising TnterruptedError.

exception IsADirectoryError
Raised when a file operation (such as os.remove ()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError
Raised when a directory operation (such as os. 1istdir ()) is requested on something which is not a directory.
Corresponds to errno ENOTDIR.

exception PermissionError
Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES and EPERM.

5.2. Concrete exceptions 91

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.7.4rc1

exception ProcessLookupError
Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError
Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

New in version 3.3: All the above OSError subclasses were added.
See also:

PEP 3151 - Reworking the OS and IO exception hierarchy

5.3 Warnings

The following exceptions are used as warning categories; see the Warning Categories documentation for more details.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features when those warnings are intended for other Python developers.

exception PendingDeprecationWarning
Base class for warnings about features which are obsolete and expected to be deprecated in the future, but are not
deprecated at the moment.

This class is rarely used as emitting a warning about a possible upcoming deprecation is unusual, and
DeprecationlWarning is preferred for already active deprecations.

exception SyntaxWarning
Base class for warnings about dubious syntax.

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about deprecated features when those warnings are intended for end users of applications
that are written in Python.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception BytesWarning
Base class for warnings related to bytes and bytearray.

exception ResourceWarning
Base class for warnings related to resource usage. Ignored by the default warning filters.

New in version 3.2.

5.4 Exception hierarchy

The class hierarchy for built-in exceptions is:

92 Chapter 5. Built-in Exceptions

https://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.7.4rc1

BaseException
+-—— SystemExit
+—— KeyboardInterrupt
+-— GeneratorExit
+-— Exception
+-— StopIteration
+-— StopAsynclteration
+—— ArithmeticError
| +-— FloatingPointError

| +—— OverflowError
| +-— ZeroDivisionError
+-— AssertionError

+-— AttributeError
+—-— BufferError
+—— EOFError

+—— ImportError

\ +-— ModuleNotFoundError
+—— LookupError

\ +-- IndexError

\ +-— KeyError

+-—— MemoryError

+—— NameError

\ +-— UnboundLocalError
+—— OSError

| +-- BlockingIOError

+-— ChildProcessError

+-— ConnectionError

| +-— BrokenPipeError

| +-— ConnectionAbortedError
| +-— ConnectionRefusedError
| +—— ConnectionResetError

+-— FileExistsError
+-— FileNotFoundError

+—— InterruptedError
+-— IsADirectoryError
+-— NotADirectoryError
+—-— PermissionError
+—— ProcessLookupError
+-— TimeoutError

\
\
\
\
\
\
\
\
\
\
\
\
\
\
+-— ReferenceError
+-— RuntimeError
| +—— NotImplementedError
| +—— RecursionError
+-— SyntaxError
| +—-— IndentationError
| +—-— TabError
+-— SystemError
+—— TypeError
+-— ValueError
| +—-— UnicodeError
| +—— UnicodeDecodeError
| +—— UnicodeEncodeError
| +—— UnicodeTranslateError
+-— Warning
+-— DeprecationWarning
+-— PendingDeprecationWarning
+-— RuntimeWarning

(continues on next page)

5.4. Exception hierarchy

93

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

SyntaxWarning
UserWarning
FutureWarning
ImportWarning
UnicodeWarning
BytesWarning
ResourceWarning

94

Chapter 5. Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text processing
services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition, see the
documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:
Text Sequence Type — str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercaseand ascii_uppercase constants described below. This value
is not locale-dependent.

string.ascii_lowercase
The lowercase letters 'abcdefghijklmnopgrstuvwxyz'. This value is not locale-dependent and will not
change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. This value is not locale-dependent and will not
change.

string.digits
The string '0123456789".

string.hexdigits
The string ' 0123456789abcdefABCDEF'.

string.octdigits
The string '01234567".

95

https://github.com/python/cpython/tree/3.7/Lib/string.py

The Python Library Reference, Release 3.7.4rc1

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

string.printable
String of ASCII characters which are considered printable. This is a combinationof digits, ascii_letters,
punctuation,and whitespace.

string.whitespace
A string containing all ASCII characters that are considered whitespace. This includes the characters space, tab,
linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the format ()
method described in PEP 3101. The Formatter class in the st ring module allows you to create and customize
your own string formatting behaviors using the same implementation as the built-in format () method.

class string.Formatter
The Formatter class has the following public methods:

format (format_string, *args, **kwargs)
The primary API method. It takes a format string and an arbitrary set of positional and keyword arguments.
It is just a wrapper that calls vformat ().

Changed in version 3.7: A format string argument is now positional-only.

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using the *args and **kwargs syntax. vformat () does the work of breaking up
the format string into character data and replacement fields. It calls the various methods described below.

In addition, the Format ter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, conversion).
This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec and
conversion will be None.

get_field (field_name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns a
tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as “O[name]”
or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key has the same
meaning as the key parameter to get_value ().

get_value (key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer, it
represents the index of the positional argument in args; if it is a string, then it represents a named argument
in kwargs.

The args parameter is set to the list of positional arguments to viormat (), and the kwargs parameter is set
to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name; Subse-
quent components are handled through normal attribute and indexing operations.

96 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.7.4rc1

So for example, the field expression ‘0.name’ would cause get_value () to be called with a key argument
of 0. The name attribute will be looked up after get_ value () returns by calling the built-in getattr ()
function.

If the index or keyword refers to an item that does not exist, then an TndexError or KeyError should
be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all argument
keys that were actually referred to in the format string (integers for positional arguments, and strings for named
arguments), and a reference to the args and kwargs that was passed to vformat. The set of unused args can be
calculated from these parameters. check_unused_args () is assumed to raise an exception if the check
fails.

format_£field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that subclasses
can override it.

convert_f£field (value, conversion)
Converts the value (returned by get_field ()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), ‘t’ (repr) and ‘a’ (ascii) conversion types.

6.1.3 Format String Syntax

The str. format () method and the Format ter class share the same syntax for format strings (although in the case
of Formatter, subclasses can define their own format string syntax). The syntax is related to that of formatted string
literals, but there are differences.

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doubling: { { and }}.

The grammar for a replacement field is as follows:

"{" [field name] ["!" conversion] [":" format_spec] "}"
arg_name ("." attribute_name | "[" element_index "]")*
[identifier | digit+]

identifier

digit+ | index_string

<any source character except "]"> +

replacement_field
field_name
arg_name
attribute_name
element_index
index_string

conversion "r" | "s" | "a"
format_spec = <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ' ! ', and a format_spec, which is preceded by a colon ' : '.
These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to a
positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names in a format
string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers O, 1, 2, ... will be automatically
inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify arbitrary dictionary keys
(e.g., the strings '10"' or ':—] ') within a format string. The arg_name can be followed by any number of index or
attribute expressions. An expression of the form ' .name' selects the named attribute using getattr (), while an

6.1. string — Common string operations 97

The Python Library Reference, Release 3.7.4rc1

expression of the form ' [index] ' does an index lookup using __getitem__ ().

Changed in version 3.1: The positional argument specifiers can be omitted for str. format (), so '{} {}'.
format (a, b) isequivalentto '{0} {1}'.format (a, b).

Changed in version 3.4: The positional argument specifiers can be omitted for Formatter.

Some simple format string examples:

"First, thou shalt count to " # References first positional argument

=

"Bring me a " Implicitly references the first positional.
—argument

"From to " Same as "From {0} to {1}"
"My quest is " References keyword argument 'name'
"Weight in tons "

"Units destroyed: "

'weight' attribute of first positional arg

HH W H

First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format__ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling __format__ (),
the normal formatting logic is bypassed.

Three conversion flags are currently supported: ' ! s ' which calls st r () on the value, ' ! r' which calls repr () and
"la' whichcalls ascii ().

Some examples:

"Harold's a clever " # Calls str() on the argument first
"Bring out the holy " # Calls repr() on the argument first
"More " # Calls ascii () on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field width,
alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-language” or
interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields may contain
a field name, conversion flag and format specification, but deeper nesting is not allowed. The replacement fields within
the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to be
dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (see Format String Syntax and f-strings). They can also be passed directly to the built-in format ()
function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format string (" ") produces the same result as if you had called st~ () on the
value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec = [[filllalign] [sign] [#][0] [width] [grouping option] [.precision] [typel

98 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

fill = <any character>

align :: "<" | ">" | wn_mn | nAmn

Sign := "+" | nm_mn | n n

width = digit+

grouping_option = nmrmT

precision = digit+

type ::: "b" | "C" | "d" | "e" ‘ "E“ | "f" ‘ "F" | "g" | "G" | "n"

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a space if
omitted. It is not possible to use a literal curly brace (“{” or “}”) as the fill character in a formatted string literal or when
using the st r. format () method. However, it is possible to insert a curly brace with a nested replacement field. This
limitation doesn’t affect the format () function.

The meaning of the various alignment options is as follows:

Op- | Meaning
tion
'<' | Forces the field to be left-aligned within the available space (this is the default for most objects).
'>" | Forces the field to be right-aligned within the available space (this is the default for numbers).
'=" | Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing
fields in the form ‘+000000120’. This alignment option is only valid for numeric types. It becomes
the default when ‘0’ immediately precedes the field width.

'~ ' | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so that
the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning
tion
T4 indicates that a sign should be used for both positive as well as negative numbers.

- indicates that a sign should be used only for negative numbers (this is the default behavior).
space | indicates that a leading space should be used on positive numbers, and a minus sign on negative
numbers.

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined differently for
different types. This option is only valid for integer, float, complex and Decimal types. For integers, when binary, octal, or
hexadecimal output is used, this option adds the prefix respective '0b"', '0o', or '0x ' to the output value. For floats,
complex and Decimal the alternate form causes the result of the conversion to always contain a decimal-point character,
even if no digits follow it. Normally, a decimal-point character appears in the result of these conversions only if a digit
follows it. In addition, for 'g"' and 'G"' conversions, trailing zeros are not removed from the result.

The ', ' option signals the use of a comma for a thousands separator. For a locale aware separator, use the 'n' integer
presentation type instead.

Changed in version 3.1: Added the ', ' option (see also PEP 378).

The '_"' option signals the use of an underscore for a thousands separator for floating point presentation types and for
integer presentation type 'd'. For integer presentation types 'b', 'o', 'x', and 'X"', underscores will be inserted
every 4 digits. For other presentation types, specifying this option is an error.

Changed in version 3.6: Added the '_' option (see also PEP 515).

width is a decimal integer defining the minimum field width. If not specified, then the field width will be determined by
the content.

6.1. string — Common string operations 99

https://www.python.org/dev/peps/pep-0378
https://www.python.org/dev/peps/pep-0515

The Python Library Reference, Release 3.7.4rc1

When no explicit alignment is given, preceding the width field by a zero (' 0 ') character enables sign-aware zero-padding
for numeric types. This is equivalent to a fill character of ' 0' with an alignment type of '=".

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted with ' £' and 'F ', or before and after the decimal point for a floating point value formatted with
'g' or 'G'. For non-number types the field indicates the maximum field size - in other words, how many characters will
be used from the field content. The precision is not allowed for integer values.

Finally, the fype determines how the data should be presented.

The available string presentation types are:

Type | Meaning
's! String format. This is the default type for strings and may be omitted.
None | Thesameas 's'.

The available integer presentation types are:

Typel Meaning

'b' | Binary format. Outputs the number in base 2.

'c' | Character. Converts the integer to the corresponding unicode character before printing.

'd"' | Decimal Integer. Outputs the number in base 10.

'o' | Octal format. Outputs the number in base 8.

'x "' | Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.

'X"' | Hex format. Outputs the number in base 16, using upper-case letters for the digits above 9.

'n' | Number. This is the same as 'd', except that it uses the current locale setting to insert the
appropriate number separator characters.

None| The same as 'd"'.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed

below (except 'n' and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for floating point and decimal values are:

100 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

Type

Meaning

‘e'

Exponent notation. Prints the number in scientific notation using the letter ‘¢’ to indicate the
exponent. The default precision is 6.

|El

Exponent notation. Same as 'e ' except it uses an upper case ‘E’ as the separator character.

lf'

Fixed-point notation. Displays the number as a fixed-point number. The default precision is 6.

|F'

Fixed-point notation. Same as ' £ ', but converts nan to NAN and inf to INF.

General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on its
magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type 'e'
and precision p—1 would have exponent exp. Then if -4 <= exp < p, the number is for-
matted with presentation type ' £ ' and precision p—1—-exp. Otherwise, the number is formatted
with presentation type 'e' and precision p—1. In both cases insignificant trailing zeros are re-
moved from the significand, and the decimal point is also removed if there are no remaining digits
following it.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf, —inf,
0, —0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1. The default precision is 6.

General format. Same as 'g' except switches to 'E"' if the number gets too large. The repre-
sentations of infinity and NaN are uppercased, too.

Number. This is the same as 'g', except that it uses the current locale setting to insert the
appropriate number separator characters.

Percentage. Multiplies the number by 100 and displays in fixed (' £') format, followed by a
percent sign.

Similar to 'g', except that fixed-point notation, when used, has at least one digit past the decimal
point. The default precision is as high as needed to represent the particular value. The overall
effect is to match the output of st r () as altered by the other format modifiers.

Format examples

This section contains examples of the st r. format () syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %$-formatting, with the addition of the { } and with : used instead of
%. For example, '$03.2f" can be translated to ' { : 03.2f}'.

The new format syntax also supports new and different options, shown in the following examples.

Accessing arguments by position:

>>> ! , , '.format ('a', 'b', 'c')

'a, b, c'

>>> ! , , '.format ('a', 'b', 'c'") # 3.1+ only

'a, b, ¢’

>>> ! ' ' '.format ('a', 'b', 'c")

'e, b, a'

>>> ! ’ , '.format (*'abc") # unpacking argument sequence

'c, b, a'

>>> ! '.format ('abra', 'cad') # arguments' indices can be repeated
'abracadabra'

Accessing arguments by name:

6.1. string — Common string operations

101

The Python Library Reference, Release 3.7.4rc1

>>> 'Coordinates: {latitude}, {longitude}'.format (latitude='37.24N"', longitude='-115.
—81W")

'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: latitude}, {longitude}'.format (**coord)

'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
'and the imaginary part {0.imag}.').format (c)

'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.
‘—>0 . !
>>> class Point:
def _ _init__ (self, x, vy):
self.x, self.y = x, vy
def _ str_ (self):
return 'Point ({self.x}, {self.y})'.format (self=self)

>>> str(Point (4, 2))
'Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y. {0[1]}".format (coord)
'X: 3; Y: 5

Replacing %s and $r:

>>> "repr () shows quotes: {/r}; str() doesn't: {!/s}".format ('testl', 'test2')
"repr () shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> ' [:<30}".format ('left aligned')
'left aligned !
>>> ' {:>30}"'" . format ('right aligned')

v

right aligned'
>>> '/[:730}" . format ('centered")
! centered !

>>> ' /[:4730}" . format ('centered') # use '*' as a fill char
l***********centered***********l

Replacing $+f, $—f,and % £ and specifying a sign:

>>> "/:4f); {:+f}" . format (3.14, -3.14) # show it always

'+3.140000; -3.140000"

>>> "/ f}l; {: £} . format(3.14, -3.14) # show a space for positive numbers

' 3.140000; -3.140000"

>>> "[:-f); {:-f}" . format(3.14, -3.14) # show only the minus -- same as '{:f}; {:f}'

'3.140000; —-3.140000"

Replacing $x and %o and converting the value to different bases:

102 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format (42)
'int: 42; hex: 2a; oct: 52; bin: 101010"

>>> # with 0x, 0o, or 0Ob as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0}; bin: {0:#b}".format (42)
'int: 42; hex: 0Ox2a; oct: 0052; Dbin: 0b101010"'

Using the comma as a thousands separator:

>>> '/,)" . format (1234567890)
'1,234,567,890"

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> 'Correct answers: {:.2%}'.format (points/total)

'Correct answers: 86.36%"

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> '"{:%5Y-%Sm-%d $H:%M:%S}'.format (d)

'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<">', ['left', 'center', 'right']):
{1

"{O0:{fill}{align}l6}"'.format (text, fill=align, align=align)
'left<<<<<<<<!
'AMAANcenter AN
'>>>>>>>>>>>right’
>>>
>>> octets = [192, 168, 0, 1]
>>> "/ 02X 02X 02X} {:02X}" . format (*octets)
'COAB80001"
>>> int(_, 16)
3232235521
>>>

>>> width = 5
>>> for num in range(5,12):
for base in 'dXob':
print ('"{0:{width}{base}}"'.format (num, base=base, width=width), end=' ")

print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 121010
11 B 13 1011

6.1. string — Common string operations 103

The Python Library Reference, Release 3.7.4rc1

6.1.4 Template strings

Template strings provide simpler string substitutions as described in PEP 292. A primary use case for template strings is
for internationalization (i18n) since in that context, the simpler syntax and functionality makes it easier to translate than
other built-in string formatting facilities in Python. As an example of a library built on template strings for i18n, see the

flufl.i18n package.
Template strings support $-based substitutions, using the following rules:

e $$ is an escape; it is replaced with a single $.

e $identifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier"isrestricted to any case-insensitive ASCII alphanumeric string (including underscores) that starts
with an underscore or ASCII letter. The first non-identifier character after the $ character terminates this place-

holder specification.

e ${identifier} is equivalent to $identifier. It is required when valid identifier characters follow the

placeholder but are not part of the placeholder, such as "${noun}tification".

Any other appearance of $ in the string will result in a ValueError being raised.

The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (femplate)
The constructor takes a single argument which is the template string.

substitute (mapping, **kwds)

Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where the
keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the place-

holders from kwds take precedence.

safe_substitute (mapping, **kwds)

Like substitute (), except that if placeholders are missing from mapping and kwds, instead of raising
a KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because it always tries to return a usable
string instead of raising an exception. In another sense, safe_substitute () may be anything other than
safe, since it will silently ignore malformed templates containing dangling delimiters, unmatched braces, or

placeholders that are not valid Python identifiers.
Template instances also provide one public data attribute:

template

This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but

read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template ('Swho likes S$what')

>>> s.substitute (who="'tim', what='kung pao')
'tim likes kung pao'

>>> d = dict (who="tim")

>>> Template ('Give $who $100') .substitute (d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template ('Swho likes Swhat') .substitute (d)
Traceback (most recent call last):

(continues on next page)

104 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-0292
http://flufli18n.readthedocs.io/en/latest/

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

KeyError: 'what'
>>> Template ('Swho likes Swhat') .safe_substitute (d)
'tim likes S$what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character, or
the entire regular expression used to parse template strings. To do this, you can override these class attributes:

e delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $. Note that

this should not be a regular expression, as the implementation will call re. escape () on this string as needed.
Note further that you cannot change the delimiter after class creation (i.e. a different delimiter must be set in the
subclass’s class namespace).

idpattern — This is the regular expression describing the pattern for non-braced placeholders. The default value is
the regular expression (?a: [_a-z] [_a-z0-9]*). If this is given and braceidpattern is None this pattern will
also apply to braced placeholders.

Note: Since default flags is re . IGNORECASE, pattern [a—z] can match with some non-ASCII characters.
That’s why we use the local a flag here.

Changed in version 3.7: braceidpattern can be used to define separate patterns used inside and outside the braces.

braceidpattern — This is like idpattern but describes the pattern for braced placeholders. Defaults to None which
means to fall back to idpattern (i.e. the same pattern is used both inside and outside braces). If given, this allows
you to define different patterns for braced and unbraced placeholders.

New in version 3.7.

* flags — The regular expression flags that will be applied when compiling the regular expression used for recognizing

substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added to the flags,
so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.
* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or

braces in the capturing group.

e invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in

the regular expression.

6.1.5 Helper functions

string.capwords (s, sep=None)

Split the argument into words using str.split (), capitalize each word using str.capitalize (), and
join the capitalized words using str. join (). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

6.1.

string — Common string operations 105

The Python Library Reference, Release 3.7.4rc1

6.2 re — Regular expression operations

Source code: Lib/re.py

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings (st r) as well as 8-bit strings (by t e s). However, Unicode
strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string with a byte pattern or vice-versa;
similarly, when asking for a substitution, the replacement string must be of the same type as both the pattern and the
search string.

Regular expressions use the backslash character (' \ ') to indicate special forms or to allow special characters to be used
without invoking their special meaning. This collides with Python’s usage of the same character for the same purpose in
string literals; for example, to match a literal backslash, one might have to write ' \\\\ ' as the pattern string, because
the regular expression must be \ \, and each backslash must be expressed as \\ inside a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing '\ ' and 'n', while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and methods on
compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but miss
some fine-tuning parameters.

See also:

The third-party regex module, which has an API compatible with the standard library re module, but offers additional
functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions, then
AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string pg will
match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and B; or have
numbered group references. Thus, complex expressions can easily be constructed from simpler primitive expressions like
the ones described here. For details of the theory and implementation of regular expressions, consult the Friedl book
[Frie09], or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A', 'a',or '0',
are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so last
matches the string ' 1ast '. (In the rest of this section, we’ll write RE’sin this special style, usually without
quotes, and strings to be matched 'in single quotes'.)

Some characters, like ' | ' or ' (', are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

Repetition qualifiers (*, +, ?, {m, n}, etc) cannot be directly nested. This avoids ambiguity with the non-greedy modifier
suffix ?, and with other modifiers in other implementations. To apply a second repetition to an inner repetition, parentheses
may be used. For example, the expression (?:a{6}) * matches any multiple of six 'a' characters.

106 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.7/Lib/re.py
https://pypi.org/project/regex/

The Python Library Reference, Release 3.7.4rc1

The special characters are:

. (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified, this
matches any character including a newline.

~ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

$ Matches the end of the string or just before the newline at the end of the string, and in MUL T T L, TNE mode also matches
before a newline. £ oo matches both ‘foo’ and ‘foobar’, while the regular expression £ oo $ matches only ‘foo’. More
interestingly, searching for foo.$ in 'fool\nfoo2\n"' matches f002’ normally, but ‘fool’ in MULTILINE
mode; searching for a single $ in ' foo\n"' will find two (empty) matches: one just before the newline, and one
at the end of the string.

* Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible. ab*
will match ‘@’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

? Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

?,4+?,?2? The '', "+', and '?"' qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. *> is matched against '<a> b <c>"', it will match the entire string, and
not just '<a>"'. Adding ? after the qualifier makes it perform the match in non-greedy or minimal fashion; as few
characters as possible will be matched. Using the RE <. * 2> will match only '<a>".

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For example, a{ 6} will match exactly six 'a"' characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a {3, 5} will match from3to 5 'a"' characters. Omitting m specifies a lower
bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b will match 'aaaab"' or
a thousand 'a' characters followed by a 'b', but not 'aaab'. The comma may not be omitted or the modifier
would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string 'aaaaaa',a{3,5} willmatch 5 'a"' characters, while a{ 3, 5} ? will only match 3 characters.

\ Either escapes special characters (permitting you to match characters like ' *', ' 2 ', and so forth), or signals a special
sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an escape
sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and subsequent
character are included in the resulting string. However, if Python would recognize the resulting sequence, the
backslash should be repeated twice. This is complicated and hard to understand, so it’s highly recommended that
you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:
* Characters can be listed individually, e.g. [amk] willmatch 'a', 'm',or 'k"'.

» Ranges of characters can be indicated by giving two characters and separating them by a ' ', for example
[a—z] will match any lowercase ASCII letter, [0-5] [0-9] will match all the two-digits numbers from
00 to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If — is escaped (e.g. [a\-z]) or if it’s
placed as the first or last character (e.g. [-a] or [a—]), it will match a literal '—".

* Special characters lose their special meaning inside sets. For example, [(+*)] will match any of the literal
characters ' (', '+"', "*',or ') ".

 Character classes such as \w or \S (defined below) are also accepted inside a set, although the characters
they match depends on whether ASCT T or LOCALE mode is in force.

6.2. re — Regular expression operations 107

The Python Library Reference, Release 3.7.4rc1

* Characters that are not within a range can be matched by complementing the set. If the first character of the
set is '~ ', all the characters that are not in the set will be matched. For example, [~5] will match any
character except '5"', and [~] will match any character except ' ~'. ~ has no special meaning if it’s not
the first character in the set.

e To match a literal '] ' inside a set, precede it with a backslash, or place it at the beginning of the set. For
example, both [() [\]1{}] and [] () [{}] will both match a parenthesis.

* Support of nested sets and set operations as in Unicode Technical Standard #18 might be added in the future.
This would change the syntax, so to facilitate this change a FutureWarning will be raised in ambiguous
cases for the time being. That includes sets starting with a literal ' [' or containing literal character sequences
'——','&&", "~~",and ' | | '. To avoid a warning escape them with a backslash.

Changed in version 3.7: FutureWarning is raised if a character set contains constructs that will change seman-
tically in the future.

| A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary

number of REs can be separated by the ' | ' in this way. This can be used inside groups (see below) as well. As the
target string is scanned, REs separated by ' | ' are tried from left to right. When one pattern completely matches,
that branch is accepted. This means that once A matches, B will not be tested further, even if it would produce a
longer overall match. In other words, the ' | ' operator is never greedy. To match a literal ' | ', use \ |, or enclose

it inside a character class, asin [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string with
the \number special sequence, described below. To match the literals ' (' or ') ', use \ (or \), or enclose
them inside a character class: [(], [)].

(?...) This is an extension notation (a '?"' following a ' (' is not meaningful otherwise). The first character after
the '?' determines what the meaning and further syntax of the construct is. Extensions usually do not create a
new group; (?P<name>. . .) is the only exception to this rule. Following are the currently supported extensions.

(?ailmsux) (One or more letters fromtheset 'a', '1', 'L', 'm', 's', 'u', 'x'.) The group matches the empty
string; the letters set the corresponding flags: re.A (ASCII-only matching), re. I (ignore case), re. L (locale
dependent), re . M (multi-line), re . S (dot matches all), re . U (Unicode matching), and re . X (verbose), for the
entire regular expression. (The flags are described in Module Contents.) This is useful if you wish to include the
flags as part of the regular expression, instead of passing a flag argument to the re. compile () function. Flags
should be used first in the expression string.

(?:...) Anon-capturing version of regular parentheses. Matches whatever regular expression is inside the parenthe-
ses, but the substring matched by the group cannot be retrieved after performing a match or referenced later in the
pattern.

(?ailmsux—-imsx:...) (Zero or more letters from the set 'a', 'i', 'L', 'm', 's', 'u', 'x', optionally
followed by '—' followed by one or more letters from the '1', 'm', 's', "x'.) The letters set or remove the

corresponding flags: re. A (ASCII-only matching), re. I (ignore case), re. L (locale dependent), re . M (multi-
line), re. S (dot matches all), re .U (Unicode matching), and re. X (verbose), for the part of the expression.
(The flags are described in Module Contents.)

Theletters 'a', 'L' and 'u' are mutually exclusive when used as inline flags, so they can’t be combined or follow

' —'. Instead, when one of them appears in an inline group, it overrides the matching mode in the enclosing group.
In Unicode patterns (?a: .. .) switches to ASCII-only matching, and (?u: .. .) switches to Unicode matching
(default). In byte pattern (?L: .. .) switches to locale depending matching, and (?a: .. .) switches to ASCII-
only matching (default). This override is only in effect for the narrow inline group, and the original matching mode
is restored outside of the group.

New in version 3.6.

Changed in version 3.7: The letters 'a', 'L"' and 'u' also can be used in a group.

108 Chapter 6. Text Processing Services

https://unicode.org/reports/tr18/

The Python Library Reference, Release 3.7.4rc1

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible via the symbolic
group name name. Group names must be valid Python identifiers, and each group name must be defined only once
within a regular expression. A symbolic group is also a numbered group, just as if the group were not named.

Named groups can be referenced in three contexts. If the pattern is (?P<quote>['"]) .*? (?P=quote)
(i.e. matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it
in the same pattern itself

e (?P=quote) (as shown)
. \1

when processing match object m
* m.group ('quote")

e m.end ("'quote') (etc.)

in a string passed to the repl argument of re . sub ()
¢ \g<quote>

e \g<1>
° \:]_

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group named
name.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example, Isaac (?=Asimov) will match 'Isaac ' onlyif it’s followed by 'Asimov'.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!
8
Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...) Matches if the current position in the string is preceded by a match for . . . that ends at the current po-
sition. This is called a positive lookbehind assertion. (?<=abc) def will find a match in 'abcdef ', since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must only
match strings of some fixed length, meaning that abc or a | b are allowed, but a* and a{3, 4} are not. Note
that patterns which start with positive lookbehind assertions will not match at the beginning of the string being
searched; you will most likely want to use the search () function rather than the match () function:

>>> import re

>>> m = re.search (' (?<=abc)def', 'abcdef')
>>> m.group (0)
'def'

This example looks for a word following a hyphen:

>>> m = re.search(r' (?<=-)\w+', 'spam-egg')
>>> m.group (0)
leggV

Changed in version 3.5: Added support for group references of fixed length.

(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings of
some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of the
string being searched.

6.2. re — Regular expression operations 109

The Python Library Reference, Release 3.7.4rc1

(? (id/name) yes—pattern|no—-pattern) Will try to match with yes-pattern if the group with given
id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted. For
example, (<) ? (\w+@\w+ (?:\.\w+)+) (?(1)>|$) is a poor email matching pattern, which will match
with '<user@host.com>' as well as '"user@host.com', but not with '<user@host.com' nor
'user@host.com>".

The special sequences consist of '\ ' and a character from the list below. If the ordinary character is not an ASCII digit
or an ASCII letter, then the resulting RE will match the second character. For example, \ $ matches the character '$'.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1lmatches 'the the'or'55 55',butnot 'thethe"' (note the space after the group). This special
sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number is 3 octal
digits long, it will not be interpreted as a group match, but as the character with octal value number. Inside the ' [
and '] ' of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of word
characters. Note that formally, \b is defined as the boundary between a \w and a \W character (or vice versa),
or between \w and the beginning/end of the string. This means that r ' \bfoo\b' matches 'foo', 'foo."',
'(foo) ', '"bar foo baz' butnot 'foobar' or 'foo3"'.

By default Unicode alphanumerics are the ones used in Unicode patterns, but this can be changed by using the
ASCTIT flag. Word boundaries are determined by the current locale if the LOCALE flag is used. Inside a character
range, \b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that r 'py\B'
matches 'python', 'py3"', 'py2',butnot 'py"', 'py."',or 'py!"'. \Bis just the opposite of \b, so word
characters in Unicode patterns are Unicode alphanumerics or the underscore, although this can be changed by using
the ASCTT flag. Word boundaries are determined by the current locale if the ZLOCALE flag is used.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode character cat-
egory [Nd]). This includes [0-9], and also many other digit characters. If the ASCIT flag is used only
[0—-9] is matched.

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a decimal digit. This is the opposite of \ d. If the ASCT T flag is used this becomes
the equivalent of [~0-9].

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v], and
also many other characters, for example the non-breaking spaces mandated by typography rules in many
languages). If the ASCIT flagis used, only [\t\n\r\£f\v] is matched.

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is equiva-
lentto [\t\n\r\f\v].

\S Matches any character which is not a whitespace character. This is the opposite of \s. If the ASCTT flag is used
this becomes the equivalent of [~ \t\n\r\f\v].

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can be part
of a word in any language, as well as numbers and the underscore. If the ASCTT flag is used, only
[a-zA-Z0-9_] is matched.

110 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is equiv-
alent to [a—zA-Z0-9_]. If the LOCALE flag is used, matches characters considered alphanumeric in the
current locale and the underscore.

\W Matches any character which is not a word character. This is the opposite of \w. If the ASCTT flag is used this
becomes the equivalent of [~a-zA-720-9_]. If the LOCALE flag is used, matches characters considered al-
phanumeric in the current locale and the underscore.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \u \U
\v \x AR

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u' and '"\U"' escape sequences are only recognized in Unicode patterns. In bytes patterns they are errors. Unknown
escapes of ASCII letters are reserved for future use and treated as errors.

Octal escapes are included in a limited form. If the first digit is a O, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

Changed in version 3.3: The '\u"' and '\U" escape sequences have been added.

Changed in version 3.6: Unknown escapes consisting of '\ ' and an ASCII letter now are errors.

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of the
full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled form.

Changed in version 3.6: Flag constants are now instances of RegexF lag, which is a subclass of enum. IntFlag.

re.compile (pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match (), search () and other methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following variables,
combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re. compile () and saving the resulting regular expression object for reuse is more efficient when the
expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.compile () and the module-level
matching functions are cached, so programs that use only a few regular expressions at a time needn’t worry about
compiling regular expressions.

6.2. re — Regular expression operations 111

The Python Library Reference, Release 3.7.4rc1

re
re.

re.

re.
re.

re.
re.

re
re.

re.
re.

re.
re.

LA

ASCII
Make \w, \W, \b, \B, \d, \D, \'s and \ S perform ASCII-only matching instead of full Unicode matching. This
is only meaningful for Unicode patterns, and is ignored for byte patterns. Corresponds to the inline flag (?a).

Note that for backward compatibility, the re .U flag still exists (as well as its synonym re .UNICODE and its
embedded counterpart (2u)), but these are redundant in Python 3 since matches are Unicode by default for strings
(and Unicode matching isn’t allowed for bytes).

DEBUG
Display debug information about compiled expression. No corresponding inline flag.

I

IGNORECASE
Perform case-insensitive matching; expressions like [A-Z] will also match lowercase letters. Full Unicode match-
ing (such as U matching 1) also works unless the re.ASCIT flag is used to disable non-ASCII matches. The
current locale does not change the effect of this flag unless the re. LOCALE flag is also used. Corresponds to the
inline flag (?21).

Note that when the Unicode patterns [a—z] or [A-Z] are used in combination with the TGNORECASE flag,
they will match the 52 ASCII letters and 4 additional non-ASCII letters: ‘' (U+0130, Latin capital letter I with dot
above), ‘U’ (U+0131, Latin small letter dotless 1), ‘" (U+017F, Latin small letter long s) and ‘K’ (U+212A, Kelvin
sign). If the ASCT T flag is used, only letters ‘a’ to ‘z’ and ‘A’ to “Z’ are matched.

L

LOCALE
Make \w, \W, \b, \B and case-insensitive matching dependent on the current locale. This flag can be used only
with bytes patterns. The use of this flag is discouraged as the locale mechanism is very unreliable, it only handles
one “culture” at a time, and it only works with 8-bit locales. Unicode matching is already enabled by default in
Python 3 for Unicode (str) patterns, and it is able to handle different locales/languages. Corresponds to the inline
flag (?L).

Changed in version 3.6: re. LOCALE can be used only with bytes patterns and is not compatible with re . ASCTI.

Changed in version 3.7: Compiled regular expression objects with the re . LOCALE flag no longer depend on the
locale at compile time. Only the locale at matching time affects the result of matching.

.M

MULTILINE
When specified, the pattern character ' ~' matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ' $' matches at the end of the string and at
the end of each line (immediately preceding each newline). By default, ' ~ ' matches only at the beginning of the
string, and ' $ ' only at the end of the string and immediately before the newline (if any) at the end of the string.
Corresponds to the inline flag (?m) .

S

DOTALL
Make the ' . ' special character match any character at all, including a newline; without this flag, ' . ' will match
anything except a newline. Corresponds to the inline flag (?s).

X

VERBOSE
This flag allows you to write regular expressions that look nicer and are more readable by allowing you to visually
separate logical sections of the pattern and add comments. Whitespace within the pattern is ignored, except when
in a character class, or when preceded by an unescaped backslash, or within tokens like *?, (?: or (?P<...>.
When a line contains a # that is not in a character class and is not preceded by an unescaped backslash, all characters
from the leftmost such # through the end of the line are ignored.

This means that the two following regular expression objects that match a decimal number are functionally equal:

112

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)

b = re.compile (r"\d+\.\d*")

Corresponds to the inline flag (?x) .

re.search (pattern, string, flags=0)
Scan through string looking for the first location where the regular expression pattern produces a match, and return a
corresponding match object. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

re .match (pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not at the
beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re . fullmatch (pattern, string, flags=0)
If the whole sfring matches the regular expression pattern, return a corresponding match object. Return None if
the string does not match the pattern; note that this is different from a zero-length match.

New in version 3.4.

re.split (pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all groups in
the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits occur, and
the remainder of the string is returned as the final element of the list.

>>> re.split(r'\W+', 'Words, words, words.')
["Words', 'words', 'words', '']

>>> re.split(r' (\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']

>>> re.split (r'\W+', 'Words, words, words.',6 1)
['"Words', 'words, words.']

>>> re.split('[a-f]+"', '0a3B9', flags=re.IGNORECASE)
[ror, '3', '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will start with an
empty string. The same holds for the end of the string:

>>> re.split(r' (\W+)', '...words, words...")
[, '...", 'words', ', ', 'words', '...', '']

That way, separator components are always found at the same relative indices within the result list.

Empty matches for the pattern split the string only when not adjacent to a previous empty match.

>>> re.split(r'\b', 'Words, words, words.')
(', 'words', ', ', 'words', ', ', 'words', '.']

>>> re.split(r'\W*', '...words..."')

['l’ l', ‘W', 'O', lr|, ldl’ lsl’ l', l|:|

>>> re.split(r' (\W*)', '...words...")

[", l‘.‘V, Y" Vl, 'W', 'V’ VOY, l', VrV, Y" 'd" Vl, 'SI, ""I, 'V’ Y" V'J

6.2. re — Regular expression operations 113

The Python Library Reference, Release 3.7.4rc1

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.7: Added support of splitting on a pattern that could match an empty string.

re.findall (pattern, string, flags=0)

Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-right, and
matches are returned in the order found. If one or more groups are present in the pattern, return a list of groups;
this will be a list of tuples if the pattern has more than one group. Empty matches are included in the result.

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.finditer (pattern, string, flags=0)

Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The string
is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the result.

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re. sub (pattern, repl, string, count=0, flags=0)

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the replace-
ment repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if it is a string,
any backslash escapes in it are processed. That is, \ n is converted to a single newline character, \ r is converted to
a carriage return, and so forth. Unknown escapes of ASCII letters are reserved for future use and treated as errors.
Other unknown escapes such as \ & are left alone. Backreferences, such as \ 6, are replaced with the substring
matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+([a-zA-Z_] [a-2zA-Z_0-9]1*)\s*\ (\s*\):',
r'static PyObject*\npy_\1(void)\n{"',

C. 'def myfunc():")

'static PyObject*\npy_myfunc (void) \n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single match
object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == '-': return ' '
. else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro-———--gram-files')

'pro-—gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or a pattern object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a non-
negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are replaced
only when not adjacent to a previous empty match, so sub ('x*', '-', 'abxd') returns '-a-b--d-"'.

In string-type repl arguments, in addition to the character escapes and backreferences described above, \ g<name>
will use the substring matched by the group named name, as defined by the (?P<name>...) syntax.
\g<number> uses the corresponding group number; \g<2> is therefore equivalent to \2, but isn’t ambigu-
ous in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference
to group 2 followed by the literal character '0'. The backreference \ g<0> substitutes in the entire substring
matched by the RE.

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.
Changed in version 3.6: Unknown escapes in pattern consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.7: Unknown escapes in repl consisting of '\ ' and an ASCII letter now are errors.

114

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

Changed in version 3.7: Empty matches for the pattern are replaced when adjacent to a previous non-empty match.

re . subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

re.escape (pattern)
Escape special characters in pattern. This is useful if you want to match an arbitrary literal string that may have
regular expression metacharacters in it. For example:

>>> print (re.escape ('python.exe'))
python\.exe

>>> legal_chars = string.ascii_lowercase + string.digits + "!#$%&"*+—."_"[~:"
>>> print ('[2s]+"'" % re.escape(legal_chars))
[abcdefghijklmnopgrstuvwxyz0123456789 ! \#\S$2\& "\ *\+\=\.\"_"\[\~:]1+

>>> Operators = [|+Y’ |7|’ l*l, l/l, l**v]
>>> print ('|'.join(map (re.escape, sorted(operators, reverse=True))))

JIN=INHTNENF A

This functions must not be used for the replacement string in sub () and subn (), only backslashes should be
escaped. For example:

>>> digits_re = r'\d+'

>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'

>>> print (re.sub(digits_re, digits_re.replace('\\', r'\\'), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings

Changed in version 3.3: The '_"' character is no longer escaped.
Changed in version 3.7: Only characters that can have special meaning in a regular expression are escaped.

re.purge ()
Clear the regular expression cache.

exception re.error (msg, pattern=None, pos=None)
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern. The error instance has the following additional attributes:

msg
The unformatted error message.

pattern
The regular expression pattern.

pos
The index in pattern where compilation failed (may be None).

lineno
The line corresponding to pos (may be None).

colno
The column corresponding to pos (may be None).

Changed in version 3.5: Added additional attributes.

6.2. re — Regular expression operations 115

The Python Library Reference, Release 3.7.4rc1

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

Pattern.search (string[, pos[, endpos]])
Scan through string looking for the first location where this regular expression produces a match, and return a
corresponding match object. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0. This is
not completely equivalent to slicing the string; the ' ~ ' pattern character matches at the real beginning of the string
and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos
characters long, so only the characters from pos to endpos — 1 will be searched for a match. If endpos is less
than pos, no match will be found; otherwise, if rx is a compiled regular expression object, rx . search (string,
0, 50) isequivalentto rx.search (string[:50], 0).

>>> pattern re.compile ("d")

>>> pattern.search ("dog") # Match at index 0
<re.Match object; span=(0, 1), match='d'>
>>> pattern.search ("dog", 1) # No match; search doesn't include the "d"

Pattern.match (string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding match
object. Return None if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".

<re.Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

Pattern.fullmatch (string[, pos[, endpos]])
If the whole string matches this regular expression, return a corresponding match object. Return None if the string
does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.fullmatch("ogre") # No match as not the full string matches.

>>> pattern.fullmatch ("doggie", 1, 3) # Matches within given limits.

<re.Match object; span=(1, 3), match='og'>

New in version 3.4.

Pattern.split (string, maxsplit=0)
Identical to the split () function, using the compiled pattern.

Pattern.findall (string[, pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos param-
eters that limit the search region like for search ().

Pattern.finditer (string[, pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos pa-
rameters that limit the search region like for search ().

116 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

Pattern. sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

Pattern.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

Pattern.flags
The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline flags in
the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

Pattern.groups
The number of capturing groups in the pattern.

Pattern.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

Pattern.pattern
The pattern string from which the pattern object was compiled.

Changed in version 3.7: Added support of copy.copy () and copy.deepcopy (). Compiled regular expression
objects are considered atomic.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match () and search () return None when there is no
match, you can test whether there was a match with a simple i f statement:

match = re.search(pattern, string)
if match:
process (match)

Match objects support the following methods and attributes:

Match .expand (femplate)
Return the string obtained by doing backslash substitution on the template string template, as done by the sub ()
method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences (\1, \2)
and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding group.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Match.group ([group],])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there are
multiple arguments, the result is a tuple with one item per argument. Without arguments, group! defaults to zero
(the whole match is returned). If a groupN argument is zero, the corresponding return value is the entire matching
string; if it is in the inclusive range [1..99], it is the string matching the corresponding parenthesized group. If a
group number is negative or larger than the number of groups defined in the pattern, an TndexError exception
is raised. If a group is contained in a part of the pattern that did not match, the corresponding result is None. If a
group is contained in a part of the pattern that matched multiple times, the last match is returned.

>>> m = re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

'Isaac Newton'

>>> m.group (1) # The first parenthesized subgroup.
'Isaac’

>>> m.group (2) # The second parenthesized subgroup.
'Newton'

(continues on next page)

6.2. re — Regular expression operations 117

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

>>> m.group (1, 2) # Multiple arguments give us a tuple.
('"Isaac', 'Newton')

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings identifying
groups by their group name. If a string argument is not used as a group name in the pattern, an TndexError
exception is raised.

A moderately complicated example:

>>> m

re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group ('first_name')

'Malcolm'

>>> m.group ('last_name')

'Reynolds’

Named groups can also be referred to by their index:

>>> m.group (1)
'Malcolm'
>>> m.group (2)
'Reynolds'

If a group matches multiple times, only the last match is accessible:

>>> m re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
IC3|

Match.__getitem__ (g)

This is identical to m. group (g) . This allows easier access to an individual group from a match:

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0] # The entire match

'Isaac Newton'

>>> m[1] # The first parenthesized subgroup.

'Isaac’

>>> m[2] # The second parenthesized subgroup.
'Newton'

New in version 3.6.

Match.groups (default=None)

Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m = re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()
('24', '1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match. These
groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.? (\d+) 2", "24™")
>>> m.groups () # Second group defaults to None.
('24', None)

(continues on next page)

118

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

>>> m.groups('0") # Now, the second group defaults to '0'.
('24V, lOV)

Match.groupdict (default=None)
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m

re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

Match.start ([group])

Match.end ([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return —1 if group exists but did not contribute to the match. For a match object m,
and a group g that did contribute to the match, the substring matched by group g (equivalent to m.group (g)) is

’m. string[m.start (g) :m.end(qg)]

Note that m. start (group) will equal m.end (group) if group matched a null string. For example, after m
= re.search('b(c?)', 'cba'),m.start(0)isl,m.end(0) is2, m.start (1) andm.end (1)
are both 2, and m. start (2) raises an TndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m re.search ("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]
'tony@tiger.net'

Match.span ([group])
For a match m, return the 2-tuple (m.start (group), m.end(group)). Note that if group did not con-
tribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

Match.pos

The value of pos which was passed to the search () or match () method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

Match.endpos

The value of endpos which was passed to the search () or match () method of a regex object. This is the index
into the string beyond which the RE engine will not go.

Match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example, the
expressions (a)b, ((a) (b)),and ((ab)) willhave lastindex == 1 if applied to the string 'ab ', while
the expression (a) (b) will have lastindex == 2, if applied to the same string.

Match.lastgroup

The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was matched
at all.

Match.re
The regular expression object whose match () or search () method produced this match instance.

Match.string
The string passed to match () or search ().

6.2. re — Regular expression operations 119

The Python Library Reference, Release 3.7.4rc1

Changed in version 3.7: Added support of copy.copy () and copy.deepcopy (). Match objects are considered

atomic.

6.2.5 Regular Expression Examples

Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return '<Match: ,

groups=3%r>' %

(match.group (),

match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each character

@, 9

representing a card, “a” for ace, “k” for king, “q
card with that value.

for queen, “j

2314

for jack, “t” for 10, and “2” through “9” representing the

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r""[a2-9tjgk] S™M)
>>> displaymatch (valid.match ("aktb5g")) #
"<Match: 'aktb5qg', groups=()>"

>>> displaymatch(valid.match ("aktbe")) #
>>> displaymatch (valid.match("akt")) #
>>> displaymatch(valid.match ("727ak")) #
"<Match: '727ak', groups=()>"

Valid.

Invalid.
Invalid.
Valid.

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,

one could use backreferences as such:

>>> palr = re.compile (r".*(.).*\1")
>>> displaymatch (pair.match ("717ak"))
"<Match: '717', groups=('7',)>"

>>> displaymatch (pair.match ("718ak"))
>>> displaymatch (pair.match("354aa"))

Pair of 7s.

No pairs.
Pair of aces.

"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the group () method of the match object in the following
manner:

>>> pair.match("717ak") .group (1)

l7l

Error because re.match() returns None, method:
>>> pair.match("718ak") .group (1)

which doesn't have a group()

Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".*(.).*\1", "718ak") .group (1)

AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa") .group (1)
lal

120 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

Simulating scanf()

Python does not currently have an equivalent to scanf () . Regular expressions are generally more powerful, though also
more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings between
scanf () format tokens and regular expressions.

scanf () Token | Regular Expression
%C .
%5¢ .{5}
sd [—+]°?
%e, $E, %f, 39 [—+]7?
[—+]
+]

(\d+ (\.\d*) 2 [\ \d+) ([eE] [-+]2\d+) ?
(0[xX] [\dA-Fa-£]+|0[0-7]*|\d+)
[

o
sl

%0 [-
$s \S+
$u \d+
$x, $X [-+]1?2(0[xX])?[\dAa-Fa-f]+

To extract the filename and numbers from a string like

’/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

%$s — %d errors, %d warnings

The equivalent regular expression would be

’(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers two different primitive operations based on regular expressions: re.match () checks for a match only at
the beginning of the string, while re. search () checks for a match anywhere in the string (this is what Perl does by
default).

For example:

>>> re.match ("c", "abcdef") # No match
>>> re.search ("c", "abcdef™) # Match
<re.Match object; span=(2, 3), match='c'>

Regular expressions beginning with ' ~ ' can be used with search () to restrict the match at the beginning of the string:

>>> re.match("c", "abcdef™) # No match
>>> re.search(""c", "abcdef") # No match
>>> re.search(""a", "abcdef") # Match

<re.Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with ' ~ ' will match at the beginning of each line.

>>> re.match('X', 'A\nB\nX', re.MULTILINE) # No match
>>> re.search('"X', 'A\nB\nX', re.MULTILINE) # Match
<re.Match object; span=(4, 5), match='X"'>

6.2. re — Regular expression operations 121

The Python Library Reference, Release 3.7.4rc1

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual data
into data structures that can be easily read and modified by Python as demonstrated in the following example that creates
a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line having
its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['"Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. With a maxsplit of
4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['"Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates using
sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence except
for the first and last characters:

>>> def repl(m):
inner_word = list (m.group(2))
random.shuffle (inner_word)
R return m.group(l) + "".join(inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)

(continues on next page)

122 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if a writer
wanted to find all of the adverbs in some text, they might use £indall () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly", text)
['carefully', 'quickly']

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it provides
match objects instead of strings. Continuing with the previous example, if a writer wanted to find all of the adverbs and
their positions in some text, they would use finditer () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly", text):
print (' - : ' % (m.start (), m.end(), m.group(0)))

07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r "text ") keeps regular expressions sane. Without it, every backslash (' \ ') in a regular expression
would have to be prefixed with another one to escape it. For example, the two following lines of code are functionally
identical:

>>> re.match (r"\W(.)\1\w", " £f ")

<re.Match object; span=(0, 4), match=' ff '>
>>> re.match ("\\wW(.)\\1\\w", " ££ ")
<re.Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string notation, this
means r"\\". Without raw string notation, one must use "\\\\", making the following lines of code functionally
identical:

>>> re.match (r"\\", r"\\")

<re.Match object; span=(0, 1), match="\\"'>
>>> re.match ("\\\\", r"\\")

<re.Match object; span=(0, 1), match="\\"'>

Writing a Tokenizer

A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a compiler
or interpreter.

6.2. re — Regular expression operations 123

https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.7.4rc1

The text categories are specified with regular expressions. The technique is to combine those into a single master regular
expression and to loop over successive matches:

import collections
import re

Token = collections.namedtuple('Token', ['type', 'value', 'line', 'column'])

def tokenize (code) :
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}

token_specification = [
('"NUMBER', r'\d+(\.\d*)?"), # Integer or decimal number
('ASSIGN', r':="), # Assignment operator
("END', r';", # Statement terminator
('1ID"', r'[A-Za-z]+"), # Identifiers
('op', ' [+\=*/1"), # Arithmetic operators
("NEWLINE', <r'\n'"), # Line endings
('SKIP', r'[\tl+"), # Skip over spaces and tabs
("MISMATCH', r'."), # Any other character

]

tok_regex = '|'.join (' (?P<%s5>%s)' % pair for pair in token_specification)

line_num = 1

line_start = 0

for mo in re.finditer (tok_regex, code):
kind = mo.lastgroup
value = mo.group ()

column = mo.start () - line_start
if kind == 'NUMBER':
value = float (value) if '.' in value else int (value)
elif kind == 'ID' and value in keywords:
kind = value
elif kind == 'NEWLINE':

line_start = mo.end()
line_num += 1

continue

elif kind == 'SKIP':
continue

elif kind == 'MISMATCH':

raise RuntimeError (f'< r} unexpected on line

yield Token (kind, value, line_num, column)

statements = '"'
IF quantity THEN
total := total + price * quantity;
tax := price * 0.05;
ENDIF;

for token in tokenize (statements) :
print (token)

The tokenizer produces the following output:

Token (type="IF"', value='IF', line=2, column=4)

Token (type="'ID', value='quantity', line=2, column=7)
Token (type='THEN', value='THEN', line=2, column=16)
Token (type="'ID', value='total', line=3, column=8)
Token (type="ASSIGN', wvalue=':=', line=3, column=14)

(continues on next page)

124 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

Token (type="'ID', value='total', line=3, column=17)
Token (type='0OP', value='+', line=3, column=23)

Token (type="'ID', value='price', line=3, column=25)
Token (type='0OP', value='*', line=3, column=31)

Token (type="'ID', value='quantity', line=3, column=33)

Token (type="END',

value=';"', line=3, column=41)

Token (type="ID', value='tax', line=4, column=8)
Token (type="ASSIGN', wvalue=':=', line=4, column=12)
Token (type="'ID', value='price', line=4, column=15)
Token (type='0OP', value='*', line=4, column=21)

Token
Token
Token
Token

type="NUMBER', wvalue=0.05, line=4, column=23)
type="END', value=';', line=4, column=27)
type="ENDIF', value='ENDIF', line=5, column=4)
type="END', value=';', line=5, column=9)

6.3 difflib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for comparing files, and
can produce difference information in various formats, including HTML and context and unified diffs. For comparing

directories and files, see also, the 71 1 ecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are hashable.
The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by Ratcliff
and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest contiguous
matching subsequence that contains no “junk” elements; these “junk” elements are ones that are uninteresting
in some sense, such as blank lines or whitespace. (Handling junk is an extension to the Ratcliff and Obershelp
algorithm.) The same idea is then applied recursively to the pieces of the sequences to the left and to the right of
the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that “look
right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the expected
case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior dependent in a
complicated way on how many elements the sequences have in common; best case time is linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain sequence
items as junk. The heuristic counts how many times each individual item appears in the sequence. If an item’s
duplicates (after the first one) account for more than 1% of the sequence and the sequence is at least 200 items
long, this item is marked as “popular” and is treated as junk for the purpose of sequence matching. This heuristic
can be turned off by setting the aut o junk argument to False when creating the SequenceMatcher.

New in version 3.2: The autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas. Differ
uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters within
similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

6.3. difflib — Helpers for computing deltas 125

https://github.com/python/cpython/tree/3.7/Lib/difflib.py

The Python Library Reference, Release 3.7.4rc1

Code | Meaning
'— ' | line unique to sequence 1

'+ ' | line unique to sequence 2
v line common to both sequences
'2? ' | line not present in either input sequence

Lines beginning with ‘?” attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a side by
side, line by line comparison of text with inter-line and intra-line change highlights. The table can be generated in
either full or contextual difference mode.

The constructor for this class is:

__init__ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of Htm1Diff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped, defaults
to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndi £ () (used by Htm1Diff to gen-
erate the side by side HTML differences). See ndiff () documentation for argument default values and
descriptions.

The following methods are public:

make_file (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5, *, charset="utf-8’)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file containing
a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set confext to True when contextual differences
are to be shown, else the default is False to show the full files. numlines defaults to 5. When context is
True numlines controls the number of context lines which surround the difference highlights. When context
is False numlines controls the number of lines which are shown before a difference highlight when using
the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next difference highlight
at the top of the browser without any leading context).

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML document
changed from 'ISO-8859-1"to 'utf-8"'.

make_table (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table showing
line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.
Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its use.

difflib.context_diff (a, b, fromfile=", tofile=", fromfiledate="", tofiledate=", n=3, lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The changes
are shown in a before/after style. The number of context lines is set by n which defaults to three.

126 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

By default, the diff control lines (those with *** or ———) are created with a trailing newline. This is helpful so
that inputs created from i0. TOBase. readlines () resultin diffs that are suitable for use with 0. TOBase.
writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may be

specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally expressed
in the ISO 8601 format. If not specified, the strings default to blanks.

>>> sl
>>> 352

['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines (context_diff(sl, s2, fromfile='before.py', tofile=
—'after.py'))

*** before.py

-—— after.py

KAk kKAkhk kA kKA kKKK

* k% 1,4 * K Kk K
! bacon

! eggs
! ham

! eggy
! hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired (typically
a string), and possibilities is a list of sequences against which to match word (typically a list of strings).

Optional argument 7 (default 3) is the maximum number of close matches to return; n must be greater than 0.

Optional argument cufoff (default O . 6) is a float in the range [0, 1]. Possibilities that don’t score at least that similar
to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get_close_matches ('appel', ['ape', 'apple', 'peach', 'puppy'l])
["apple', 'ape']

>>> import keyword

>>> get_close_matches ('wheel', keyword.kwlist)

['while']

>>> get_close_matches ('pineapple', keyword.kwlist)

[l

>>> get_close_matches ('accept', keyword.kwlist)

["except']

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Compare a and b (lists of strings); return a Di £ fe r-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if not. The
default is None. There is also a module-level function 7S _I.TNE_JUNK (), which filters out lines without visible

6.3. difflib — Helpers for computing deltas 127

The Python Library Reference, Release 3.7.4rc1

characters, except for at most one pound character (' # ') — however the underlying SequenceMatcher class
does a dynamic analysis of which lines are so frequent as to constitute noise, and this usually works better than
using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level function 7.S_CHARACTER_JUNK (), which filters out whitespace characters (a
blank or tab; it’s a bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> print (''.join(diff), end="")

- one

s A

ore

- two
- three

)
|

+

tree
emu

+

difflib.restore (sequence, which)

Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
C.. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> diff = list(diff) # materialize the generated delta into a 1list
>>> print (''.join(restore(diff, 1)), end="")

one

two

three

>>> print (''.join(restore(diff, 2)), end="")

ore

tree

emu

difflib.unified_diff (a, b, fromfile=", tofile=", fromfiledate="", tofiledate=", n=3, lineterm="\n’)

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The changes
are shown in an inline style (instead of separate before/after blocks). The number of context lines is set by n which
defaults to three.

By default, the diff control lines (those with ———, +++, or @@) are created with a trailing newline. This is helpful so
that inputs created from i 0. TOBase. readlines () resultin diffs that are suitable for use with i 0. TOBase.
writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may be
specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally expressed
in the ISO 8601 format. If not specified, the strings default to blanks.

128

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> 32 ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> sys.stdout.writelines (unified_diff(sl, s2, fromfile='before.py', tofile=

—'after.py'))
—-—— before.py
+++ after.py
@@ -1,4 +1,4 Q@
—-bacon

-eggs

—ham

+python

+teggy
+hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.diff_bytes (dfunc, a, b, fromfile=b", tofile=b", fromfiledate=b", tofiledate=b", n=3,

lineterm=b"\n’)
Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the format

returned by dfunc. dfunc must be a callable, typically either unified diff () or context_diff ().

Allows you to compare data with unknown or inconsistent encoding. All inputs except n must be bytes objects,
not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc (a, b, fromfile,
tofile, fromfiledate, tofiledate, n, lineterm). The output of dfunc is then converted
back to bytes, so the delta lines that you receive have the same unknown/inconsistent encodings as a and b.

New in version 3.5.

difflib.IS_LINE_JUNK (line)
Return true for ignorable lines. The line line is ignorable if line is blank or contains a single ' # ', otherwise it is
not ignorable. Used as a default for parameter linejunk in ndi £ £ () in older versions.

difflib.IS_CHARACTER_JUNK (ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener.
This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMat cher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a=", b=", autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: 0;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of both
sequences must be hashable.

The optional argument aufojunk can be used to disable the automatic junk heuristic.

6.3. difflib — Helpers for computing deltas 129

http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
http://www.drdobbs.com/

The Python Library Reference, Release 3.7.4rc1

New in version 3.2: The autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is True;
bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled); b2; is a dict
mapping the remaining elements of b to a list of positions where they occur. All three are reset whenever b is reset
with set_seqgs () or set_seqg2 ().

New in version 3.2: The bjunk and bpopular attributes.
SequenceMat cher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_seqg2 () to set the commonly used sequence once and
call set_seql () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhi)
Find longest matching block in a [alo:ahi] and b [blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, Jj, k) suchthata[i:i+k]is
equaltob[j:j+k],wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. Forall
(1', J', k') meeting those conditions, the additional conditions k >= k', i <= i',andif 1 ==
i',j <= j' are also met. In other words, of all maximal matching blocks, return one that starts earliest
in a, and of all those maximal matching blocks that start earliest in a, return the one that starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional restric-
tion that no junk element appears in the block. Then that block is extended as far as possible by matching
(only) junk elements on both sides. So the resulting block never matches on junk except as identical junk
happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd' from matching
the ' abcd' at the tail end of the second sequence directly. Instead only the 'abcd' can match, and
matches the leftmost 'abcd' in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match (a, b, size).

get_matching_blocks ()
Return list of triples describing non-overlapping matching subsequences. Each triple is of the form (i, 3,
n),and means thata [1:i+n] == b[Jj:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (1en (a), len(b), O0). Itisthe only triple withn ==
If (i, j, n)and (i', J', n') are adjacent triples in the list, and the second is not the last triple in

130

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

the list, then i+n < i'or j+n < J';in other words, adjacent triples always describe non-adjacent equal
blocks.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, 12, 31,
j2). The first tuple has i1 == j1 == 0, and remaining tuples have i/ equal to the i2 from the preceding
tuple, and, likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning

'replace' | a[il:12] should be replaced byb[j1:32].

"delete' a[i1:12] should be deleted. Note that j1 == 72 in this case.

'insert' b[j1:732] should be insertedat a[i1:11]. Note that i1 == 12 in this case.
'equal' a[il:12] == b[jl:]j2] (the sub-sequences are equal).

For example:

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, Db)
>>> for tag, il, i2, j1, j2 in s.get_opcodes|():
print (' al : 1 ——> bl :] -——> ".format (
. tag, 11, i2, 31, j2, alil:1i2], b[jl1:321))
delete af[0:1] ——> b[0:0] 'q' > !
equal all:3] ——> b[0:2] 'ab' ——> 'ab'
replace af3:4] ——> b[2:3] x> Ty
equal afd4:6] ——> b[3:5] 'ed' ——> 'cd!
insert al6:6] ——> b[5:6] Yo > T f!

get_grouped_opcodes (n=3)
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M /
T. Note that this is 1. 0 if the sequences are identical, and 0 . O if they have nothing in common.

This is expensive to compute if get_matching_blocks () or get_opcodes () hasn’t already been
called, in which case you may want to try quick_ratio () or real_quick_ratio () first to get an
upper bound.

quick_ratio ()
Return an upper bound on ratio () relatively quickly.

real_quick_ratio ()
Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, although quick_ratio () and real_quick_ratio () are always at least as large as ratio ():

6.3. difflib — Helpers for computing deltas 131

The Python Library Reference, Release 3.7.4rc1

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value over
0.6 means the sequences are close matches:

>>> print (round(s.ratio(), 3))
0.866

If you’re only interested in where the sequences match, get _matching_blocks () is handy:

>>> for block in s.get_matching_blocks():
.. print ("al] and b] match for elements" % block)
al0] and b[0] match for 8 elements
al[8] and b[17] match for 21 elements
al29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b), 0),
and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes() :
.. print (" al : 1 bl : 1" % opcode)
equal a[0:8] b[0:8]

insert al[8:8] b[8:17]
equal al[8:29] b[17:38]

See also:

e The get_close _matches () function in this module which shows how simple code building on
SequenceMat cher can be used to do useful work.

« Simple version control recipe for a small application built with SequenceMatcher.

6.3.3 Differ Objects

Note that Di f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often counter-
intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restricting synch
points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer diff.

The Differ class has this constructor:

132 Chapter 6. Text Processing Services

https://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.7.4rc1

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the character
is junk. The default is None, meaning that no character is considered junk.

These junk-filtering functions speed up matching to find differences and do not cause any differing lines or char-
acters to be ignored. Read the description of the find_ Ilongest_match () method’s isjunk parameter for an
explanation.

Dif fer objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can be ob-
tained from the readlines () method of file-like objects. The delta generated also consists of newline-
terminated strings, ready to be printed as-is via the writelines () method of a file-like object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with newlines
(such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = ''' 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
. """ .splitlines (keepends=True)
>>> len (textl)
4
>>> textl1[0][-1]
l\nl
>>> text2 = "''! 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
""" .splitlines (keepends=True)

Next we instantiate a Differ object:

>>> d = Differ ()

Note that when instantiating a D1 ffer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:

>>> result = list (d.compare (textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint (result)
[1. Beautiful is better than ugly.\n',

(continues on next page)

6.3. difflib — Helpers for computing deltas 133

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

' 2. Explicit is better than implicit.\n',
'— 3. Simple is better than complex.\n',

'+ 3. Simple is better than complex.\n',

' ++\n',

' - 4. Complex is better than complicated.\n',
' ~ -———= "\n',
'+ 4. Complicated is better than complex.\n',
' +++4+ 2 “\n',

'+ 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys

>>> sys.stdout.writelines (result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.
3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
2 ~ A
+ 4. Complicated is better than complex.
? ++++ ~
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a di f £-like utility. It is also contained in the Python source distribution,
as Tools/scripts/diff.py.

#!/usr/bin/env python3
""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mrn

import sys, os, difflib, argparse
from datetime import datetime, timezone

def file_mtime (path):
t = datetime.fromtimestamp (os.stat (path) .st_mtime,
timezone.utc)
return t.astimezone () .isoformat ()

def main () :

parser = argparse.ArgumentParser ()

parser.add_argument ('-c', action='store_true', default=False,
help='Produce a context format diff (default)"')

parser.add_argument ('-u', action='store_ _true', default=False,
help='Produce a unified format diff')

(continues on next page)

134 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

parser.add_argument ('-m', action='store_true', default=False,
help='Produce HTML side by side diff '
'(can use -c and -1 in conjunction) ')
parser.add_argument ('-n', action='store_true', default=False,
help='Produce a ndiff format diff')
parser.add_argument ('-1', '--lines', type=int, default=3,
help='Set number of context lines (default 3)")
parser.add_argument ('fromfile')
parser.add_argument ('tofile')
options = parser.parse_args()

n = options.lines
fromfile = options.fromfile
tofile = options.tofile

fromdate = file_mtime (fromfile)
todate = file_mtime (tofile)
with open (fromfile) as ff:
fromlines = ff.readlines|()
with open(tofile) as tf:
tolines = tf.readlines|()

if options.u:
diff = difflib.unified_diff (fromlines, tolines, fromfile, tofile, fromdate, .
—~todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file (fromlines,tolines, fromfile,tofile,
—context=options.c,numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile, fromdate, .
—todate, n=n)

sys.stdout.writelines (diff)

if _name_ == '_ main__ ':

main ()

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The t ext wrap module provides some convenience functions, as well as Text Wrapper, the class that does all the work.
If you're just wrapping or filling one or two text strings, the convenience functions should be good enough; otherwise, you
should use an instance of TextWrapper for efficiency.

textwrap.wrap (fext, width=70, **kwargs)
Wraps the single paragraph in zext (a string) so every line is at most width characters long. Returns a list of output
lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. width
defaults to 70.

6.4. textwrap — Text wrapping and filling 135

https://github.com/python/cpython/tree/3.7/Lib/textwrap.py

The Python Library Reference, Release 3.7.4rc1

See the TextWrapper.wrap () method for additional details on how wrap () behaves.

textwrap.£ill (text, width=70, **kwargs)
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph. £il11 () is
shorthand for

"\n".Jjoin (wrap (text, ...))

In particular, £i11 () accepts exactly the same keyword arguments as wrap ().

textwrap.shorten (fext, width, **kwargs)
Collapse and truncate the given fext to fit in the given width.

First the whitespace in fext is collapsed (all whitespace is replaced by single spaces). If the result fits in the width, it is
returned. Otherwise, enough words are dropped from the end so that the remaining words plus the placeholder
fit within width:

>>> textwrap.shorten("Hello world!", width=12)

'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)

'Hello [...]"

>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. Note
that the whitespace is collapsed before the text is passed to the TextWrapper £i11 () function, so changing the
value of tabsize, expand_tabs, drop whitespace,and replace whitespace will have no effect.

New in version 3.4.

textwrap.dedent (fext)
Remove any common leading whitespace from every line in zext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting them
in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace.

For example:

def test():
end first line with \ to avoid the empty line!
s = """\
hello
world
print (repr(s)) # prints ' hello\n world\n !
print (repr (dedent (s))) # prints 'hello\n world\n'

textwrap.indent (fext, prefix, predicate=None)
Add prefix to the beginning of selected lines in fext.

Lines are separated by calling text .splitlines (True).
By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).

For example:

136 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

>>> s = 'hello\n\n \nworld'
>>> indent (s, ' ")
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to add
prefix to even empty and whitespace-only lines:

>>> print (indent (s, '+ ', lambda line: True))
+ hello

+

+

+ world

New in version 3.3.

wrap (), fi11 () and shorten () work by creating a TextWrapper instance and calling a single method on it.
That instance is not reused, so for applications that process many text strings using wrap () and/or £i11 (), it may be
more efficient to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words be
broken if necessary, unless TextWrapper.break_long_words is set to false.

class textwrap.TextWrapper (**kwargs)
The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument cor-

responds to an instance attribute, so for example

wrapper = TextWrapper (initial_indent="* ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "*

You can re-use the same TextWrapper object many times, and you can change any of its options through direct
assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the input text
longer than width, TextWrapper guarantees that no output line will be longer than widt h characters.

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the expandtabs ()

method of fext.

tabsize
(default: 8) If expand_tabs is true, then all tab characters in text will be expanded to zero or more spaces,

depending on the current column and the given tab size.
New in version 3.3.

replace_whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return (' \t\n\v\£f\r").

Note: If expand_tabsisfalseand replace_whitespace istrue, each tab character will be replaced

6.4. textwrap — Text wrapping and filling 137

The Python Library Reference, Release 3.7.4rc1

by a single space, which is not the same as tab expansion.

Note: If replace whitespace is false, newlines may appear in the middle of a line and cause strange
output. For this reason, text should be split into paragraphs (using str. splitlines () or similar) which
are wrapped separately.

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before in-
denting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-whitespace
follows it. If whitespace being dropped takes up an entire line, the whole line is dropped.

initial_indent
(default: ' ') String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line. The empty string is not indented.

subsequent_indent
(default: ' ') String that will be prepended to all lines of wrapped output except the first. Counts towards the
length of each line except the first.

fix_sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase letter
followed by one of '. ', "! ' or '?", possibly followed by one of '" ' or "' ", followed by a space. One
problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

’[...] Dr. Frankenstein's monster [...]

and “Spot.” in

’[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long_words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines are
longer than width. If it is false, long words will not be broken, and some lines may be longer than width.
(Long words will be put on a line by themselves, in order to minimize the amount by which width is ex-
ceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in compound
words, as it is customary in English. If false, only whitespaces will be considered as potentially good places
for line breaks, but you need to set break_ 1ong_words to false if you want truly insecable words. Default
behaviour in previous versions was to always allow breaking hyphenated words.

max_lines
(default: None) If not None, then the output will contain at most max_lines lines, with placeholder appearing
at the end of the output.

New in version 3.4.

138 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

placeholder
(default: ' [...]") String that will appear at the end of the output text if it has been truncated.

New in version 3.4.
TextWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all Unicode
characters. The data contained in this database is compiled from the UCD version 11.0.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character Database”.
It defines the following functions:

unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding character. If not
found, KeyError is raised.

Changed in version 3.3: Support for name aliases' and named sequences” has been added.

unicodedata.name (chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned, or,
if not given, ValueError is raised.

unicodedata.numeric (chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned, or,
if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty string
is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining class is
defined.

! http://www.unicode.org/Public/11.0.0/ucd/NameAliases. txt
2 http://www.unicode.org/Public/11.0.0/ucd/NamedSequences. txt

6.5. unicodedata — Unicode Database 139

http://www.unicode.org/Public/11.0.0/ucd
http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt
http://www.unicode.org/Public/11.0.0/ucd/NamedSequences.txt

The

Python Library Reference, Release 3.7.4rc1

unicodedata.east_asian_width (chr)

Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)

Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been identified
as a “mirrored” character in bidirectional text, O otherwise.

unicodedata.decomposition (chr)

Returns the character decomposition mapping assigned to the character chr as string. An empty string is returned
in case no such mapping is defined.

unicodedata.normalize (form, unistr)

Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’, and
‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canonical
equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way. For
example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as the
sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form C
(NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I). How-
ever, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility characters
with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed by the
canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining characters
and the other doesn’t, they may not compare equal.

In addition, the module exposes the following constant:

unicodedata.unidata_version

The version of the Unicode database used in this module.

unicodedata.ued_3_2_0

This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2 instead,
for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>>
>>>
' { '

>>>

import unicodedata
unicodedata.lookup ('LEFT CURLY BRACKET")

unicodedata.name ('/")

'SOLIDUS'

>>>
9
>>>

unicodedata.decimal ('9")

unicodedata.decimal ('a"')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: not a decimal

>>> unicodedata.category('A') # 'L'etter, 'u'ppercase
Al Lu A\l

(continues on next page)
140 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

>>> unicodedata.bidirectional ('\u0660') # 'A'rabic, 'N'umber
lAN'

6.6 stringprep — Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the wire,
they are processed with the preparation procedure, after which they have a certain normalized form. The RFC defines a
set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what other optional
parts of the st ringprep procedure are part of the profile. One example of a stringprep profile is nameprep,
which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

stringprep.in_table_c1l1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_c12 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cll_c12 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

6.6. stringprep — Internet String Preparation 141

https://github.com/python/cpython/tree/3.7/Lib/stringprep.py
https://tools.ietf.org/html/rfc3454.html
https://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 3.7.4rc1

stringprep.in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1 (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readl i ne module defines a number of functions to facilitate completion and reading/writing of history files from the
Python interpreter. This module can be used directly, or via the 1 completer module, which supports completion of
Python identifiers at the interactive prompt. Settings made using this module affect the behaviour of both the interpreter’s
interactive prompt and the prompts offered by the built-in i nput () function.

Readline keybindings may be configured via an initialization file, typically . inputrc in your home directory. See
Readline Init File in the GNU Readline manual for information about the format and allowable constructs of that file, and
the capabilities of the Readline library in general.

Note: The underlying Readline library API may be implemented by the 1ibedit library instead of GNU readline.
On macOS the readline module detects which library is being used at run time.

The configuration file for 1ibedit is different from that of GNU readline. If you programmatically load configuration
strings you can check for the text “libedit” in readline.___doc___ to differentiate between GNU readline and libedit.

If you use editline/1ibedit readline emulation on macOS, the initialization file located in your home directory is named
.editrc. For example, the following content in ~/ . edit rc will turn ON vi keybindings and TAB completion:

python:bind -v
python:bind "I rl_complete

6.7.1 Init file

The following functions relate to the init file and user configuration:

142 Chapter 6. Text Processing Services

https://tiswww.cwru.edu/php/chet/readline/rluserman.html#SEC9

The Python Library Reference, Release 3.7.4rc1

readline.parse_and_bind (string)
Execute the init line provided in the string argument. This calls r1_parse_and_bind () in the underlying
library.

readline.read_init_file([ﬁlename])
Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file () in the underlying library.

6.7.2 Line buffer

The following functions operate on the line buffer:

readline.get_line_buffer ()
Return the current contents of the line buffer (r1_1line_buf fer in the underlying library).

readline.insert_text (string)
Insert text into the line buffer at the cursor position. This calls r1_insert_text () in the underlying library,
but ignores the return value.

readline.redisplay ()
Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay () in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history_file([ﬁlename])
Load a readline history file, and append it to the history list. The default filename is ~/ . history. This calls
read_history () in the underlying library.

readline.write_history_ file ([ﬁlename])
Save the history list to a readline history file, overwriting any existing file. The default filename is ~/ .history.
This calls write_history () in the underlying library.

readline.append_history file (nelements[, ﬁlename])
Append the last nelements items of history to a file. The default filename is ~/ . history. The file must already
exist. This calls append_history () inthe underlying library. This function only exists if Python was compiled
for a version of the library that supports it.

New in version 3.5.

readline.get_history_length(()

readline.set_history_length (length)
Set or return the desired number of lines to save in the history file. The write history_ file () function
uses this value to truncate the history file, by calling history_truncate_file () in the underlying library.
Negative values imply unlimited history file size.

6.7.4 History list

The following functions operate on a global history list:

readline.clear_history ()
Clear the current history. This calls clear_history () in the underlying library. The Python function only
exists if Python was compiled for a version of the library that supports it.

6.7. readline — GNU readline interface 143

The Python Library Reference, Release 3.7.4rc1

readline.get_current_history_length ()
Return the number of items currently in the history. (This is different from get_history_length (), which
returns the maximum number of lines that will be written to a history file.)

readline.get_history_item (index)
Return the current contents of history item at index. The item index is one-based. This calls history_get ()
in the underlying library.

readline.remove_history_item (pos)
Remove history item specified by its position from the history. The position is zero-based. This calls
remove_history () in the underlying library.

readline.replace_history_item (pos, line)
Replace history item specified by its position with line. = The position is zero-based. This calls
replace_history_entry () inthe underlying library.

readline.add_history (line)
Append line to the history buffer, as if it was the last line typed. This calls add_history () in the underlying
library.

readline.set_auto_history (enabled)
Enable or disable automatic calls to add_history () when reading input via readline. The enabled argument
should be a Boolean value that when true, enables auto history, and that when false, disables auto history.

New in version 3.6.

CPython implementation detail: Auto history is enabled by default, and changes to this do not persist across
multiple sessions.

6.7.5 Startup hooks

readline.set_startup_hook ([function])
Set or remove the function invoked by the r1_startup_hook callback of the underlying library. If function is
specified, it will be used as the new hook function; if omitted or None, any function already installed is removed.
The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook ([function])
Set or remove the function invoked by the r1_pre_input_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is removed.
The hook is called with no arguments after the first prompt has been printed and just before readline starts reading
input characters. This function only exists if Python was compiled for a version of the library that supports it.

6.7.6 Completion

The following functions relate to implementing a custom word completion function. This is typically operated by the
Tab key, and can suggest and automatically complete a word being typed. By default, Readline is set up to be used by
rlcompleter to complete Python identifiers for the interactive interpreter. If the readline module is to be used
with a custom completer, a different set of word delimiters should be set.

readline.set_completer ([function])
Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called as
function (text, state),forstatein 0, 1, 2, ..., until it returns a non-string value. It should return the next
possible completion starting with zext.

144 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.7.4rc1

The installed completer function is invoked by the entry_func callback passed to
rl_completion_matches () in the underlying library. The fext string comes from the first parame-
tertothe r1_attempted_completion_function callback of the underlying library.

readline.get_completer ()
Get the completer function, or None if no completer function has been set.

readline.get_completion_type ()
Get the type of completion being attempted. This returns the r1_completion_type variable in the underlying
library as an integer.

readline.get_begidx ()

readline.get_endidx ()
Get the beginning or ending index of the completion scope. These indexes are the start and end arguments passed
tothe r1_attempted_completion_function callback of the underlying library.

readline.set_completer_delims (string)

readline.get_completer_delims ()
Set or get the word delimiters for completion. These determine the start of the word to be considered for completion
(the completion scope). These functions access the r1_completer_word_break_characters variable
in the underlying library.

readline.set_completion_display matches_hook ([function])
Set or remove the completion display function. If function is specified, it will be used as the new completion
display function; if omitted or None, any completion display function already installed is removed. This sets or
clears the r1_completion_display_matches_hook callback in the underlying library. The completion
display function is called as function (substitution, [matches], longest_match_length)
once each time matches need to be displayed.

6.7.7 Example

The following example demonstrates how to use the readline module’s history reading and writing functions to au-
tomatically load and save a history file named .python_history from the user’s home directory. The code below
would normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser("~"), ".python_history")
try:
readline.read_history_file(histfile)
default history len is -1 (infinite), which may grow unruly
readline.set_history_length(1000)
except FileNotFoundError:
pass

atexit.register (readline.write_history_file, histfile)

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending the new
history.

import atexit
import os
import readline

(continues on next page)

6.7. readline — GNU readline interface 145

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

histfile = os.path.join(os.path.expanduser ("~"), ".python_history")

try:

readline.read_history_file(histfile)

h_len = readline.get_current_history_length()
except FileNotFoundError:

open (histfile, 'wb').close()

h_len = 0

def save(prev_h_len, histfile):

new_h_len = readline.get_current_history_length ()
readline.set_history_length(1000)
readline.append_history_file(new_h_len - prev_h_len, histfile)

atexit.register(save, h_len, histfile)

The following example extends the code. InteractiveConsole class to support history save/restore.

import atexit
import code
import os
import readline

class HistoryConsole (code.InteractiveConsole) :

def _ init_ (self, locals=None, filename="<console>",
histfile=os.path.expanduser ("~/.console-history")):
code.InteractiveConsole._ _init__ (self, locals, filename)

self.init_history(histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete")
if hasattr(readline, "read_ history_file"):
try:
readline.read_history_file(histfile)
except FileNotFoundError:
pass
atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.set_history_length(1000)
readline.write_history_file(histfile)

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The rlcompleter module defines a completion function suitable for the readline module by completing valid
Python identifiers and keywords.

When this module is imported on a Unix platform with the readl i ne module available, an instance of the Completer
class is automatically created and its complete () method is set as the readline completer.

Example:

146 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.7/Lib/rlcompleter.py

The Python Library Reference, Release 3.7.4rc1

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete™)
>>> readline. <TAB PRESSED>

readline._ _doc_ readline.get_line_buffer(readline.read_init_file(
readline._ file_ readline.insert_text (readline.set_completer (
readline.__ _name___ readline.parse_and_bind(

>>> readline.

The r1completer module is designed for use with Python’s interactive mode. Unless Python is run with the —S option,
the module is automatically imported and configured (see Readline configuration).

On platforms without readl ine, the Completer class defined by this module can still be used for custom purposes.

6.8.1 Completer Objects

Completer objects have the following method:

Completer.complete (fext, state)
Return the stateth completion for zext.

If called for fext that doesn’t include a period character (' . '), it will complete from names currently defined in
__main__,builtins and keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not be
evaluated, but it can generate calls to___getattr__ ()) up to the last part, and find matches for the rest via the
dir () function. Any exception raised during the evaluation of the expression is caught, silenced and None is
returned.

6.8. rlcompleter — Completion function for GNU readline 147

The Python Library Reference, Release 3.7.4rc1

148 Chapter 6. Text Processing Services

CHAPTER
SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary data. Other
operations on binary data, specifically in relation to file formats and network protocols, are described in the relevant
sections.

Some libraries described under 7Text Processing Services also work with either ASCII-compatible binary formats (for
example, re) or all binary data (for example, di f£11ib).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types — bytes, bytearray,
memoryview.

7.1 struct — Interpret bytes as packed binary data

Source code: Lib/struct.py

This module performs conversions between Python values and C structs represented as Python byt es objects. This can
be used in handling binary data stored in files or from network connections, among other sources. It uses Format Strings
as compact descriptions of the layout of the C structs and the intended conversion to/from Python values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment for the
C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so that the bytes of a
packed struct correspond exactly to the layout in memory of the corresponding C struct. To handle platform-independent
data formats or omit implicit pad bytes, use st andard size and alignment instead of nat ive size and alignment: see
Byte Order, Size, and Alignment for details.

Several st ruct functions (and methods of St ruct) take a buffer argument. This refers to objects that implement the
bufferobjects and provide either a readable or read-writable buffer. The most common types used for that purpose are
bytes and bytearray, but many other types that can be viewed as an array of bytes implement the buffer protocol,
so that they can be read/filled without additional copying from a byt es object.

7.1.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error
Exception raised on various occasions; argument is a string describing what is wrong.

149

https://github.com/python/cpython/tree/3.7/Lib/struct.py

The Python Library Reference, Release 3.7.4rc1

struct .pack (format, vi, v2, ...)
Return a bytes object containing the values v/, v2, ... packed according to the format string format. The arguments
must match the values required by the format exactly.

struct .pack_into (format, buffer, offset, vi, v2, ...)
Pack the values v/, v2, ... according to the format string format and write the packed bytes into the writable buffer
buffer starting at position offset. Note that offset is a required argument.

struct .unpack (format, buffer)
Unpack from the buffer buffer (presumably packed by pack (format, ...)) according to the format string
format. The result is a tuple even if it contains exactly one item. The buffer’s size in bytes must match the size
required by the format, as reflected by calcsize ().

struct .unpack_£from (format, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string format. The result is a tuple even if it
contains exactly one item. The buffer’s size in bytes, minus offset, must be at least the size required by the format,
as reflected by calcsize ().

struct.iter_unpack (format, buffer)
Iteratively unpack from the buffer buffer according to the format string format. This function returns an iterator
which will read equally-sized chunks from the buffer until all its contents have been consumed. The buffer’s size in
bytes must be a multiple of the size required by the format, as reflected by calcsize ().

Each iteration yields a tuple as specified by the format string.
New in version 3.4.

struct.calecsize (format)
Return the size of the struct (and hence of the bytes object produced by pack (format, ...)) corresponding
to the format string format.

7.1.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They are built up
from Format Characters, which specify the type of data being packed/unpacked. In addition, there are special characters
for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping pad
bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, '@ "' is assumed.

150 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.4rc1

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMD64
(x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature switchable
endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between '@' and '=": both use native byte order, but the size and alignment of the latter is stan-
dardized.
The form ' ! ' is available for those poor souls who claim they can’t remember whether network byte order is big-endian

or little-endian.
There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<' or '>"'.
Notes:

(1) Padding is only automatically added between successive structure members. No padding is added at the beginning
or the end of the encoded struct.

v o

(2) No padding is added when using non-native size and alignment, e.g. with ‘<’, >, ‘=", and ‘!’.

(3) To align the end of a structure to the alignment requirement of a particular type, end the format with the code for
that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given their
types. The “Standard size’ column refers to the size of the packed value in bytes when using standard size; that is, when
the format string starts with one of '<', '>', "!'' or '="'. When using native size, the size of the packed value is
platform-dependent.

Format | C Type Python type Standard size | Notes
X pad byte no value

c char bytes of length 1 | 1

b signed char integer 1 (DH),3)
B unsigned char integer 1 3)

? _Bool bool 1 (D

h short integer 2 3)

H unsigned short integer 2 3)

i int integer 4 3)

I unsigned int integer 4 3)

1 long integer 4 3)

L unsigned long integer 4 3)

q long long integer 8 2),(3)
0 unsigned long long | integer 8), (3)
n ssize_t integer @)

N size_t integer 4)

e @) float 2 (®)]

f float float 4 5)

d double float 8 (®)]

s char[] bytes

P char[] bytes

P void * integer (6)

7.1. struct — Interpret bytes as packed binary data 151

The Python Library Reference, Release 3.7.4rc1

Changed in version 3.3: Added support for the 'n"' and 'N' formats.
Changed in version 3.6: Added support for the 'e ' format.
Notes:

(1) The ' 2 ' conversion code corresponds to the _Boo1l type defined by C99. If this type is not available, it is simulated
using a char. In standard mode, it is always represented by one byte.

(2) The "g' and 'Q"' conversion codes are available in native mode only if the platform C compiler supports C 1ong
long, or, on Windows, __int 64. They are always available in standard modes.

(3) When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__ () method then that method is called to convert the argument to an integer before packing.

Changed in version 3.2: Use of the __index___ () method for non-integers is new in 3.2.

(4) The 'n' and 'N"' conversion codes are only available for the native size (selected as the default or with the '@
byte order character). For the standard size, you can use whichever of the other integer formats fits your application.

(5) Forthe 'f£', 'd"' and 'e' conversion codes, the packed representation uses the IEEE 754 binary32, binary64 or
binary16 format (for '£', 'd"' or 'e' respectively), regardless of the floating-point format used by the platform.

(6) The 'P' format character is only available for the native byte ordering (selected as the default or with the '@
byte order character). The byte order character '=" chooses to use little- or big-endian ordering based on the host
system. The struct module does not interpret this as native ordering, so the 'P ' format is not available.

(7) The IEEE 754 binary16 “half precision” type was introduced in the 2008 revision of the IEEE 754 standard. It has
a sign bit, a 5-bit exponent and 11-bit precision (with 10 bits explicitly stored), and can represent numbers between
approximately 6.1e—-05 and 6. 5e+04 at full precision. This type is not widely supported by C compilers: on a
typical machine, an unsigned short can be used for storage, but not for math operations. See the Wikipedia page
on the half-precision floating-point format for more information.

A format character may be preceded by an integral repeat count. For example, the format string ' 4h ' means exactly the
same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 's' format character, the count is interpreted as the length of the bytes, not a repeat count like for the other
format characters; for example, ' 10s ' means a single 10-byte string, while ' 10c' means 10 characters. If a count is
not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as appropriate to make it fit. For
unpacking, the resulting bytes object always has exactly the specified number of bytes. As a special case, ' 0s ' means a
single, empty string (while ' Oc ' means 0 characters).

When packing a value x using one of the integer formats ('b', 'B', 'h', 'H', "i', 'I', '1', 'L"', 'q', 'Q"),if
% is outside the valid range for that format then st ruct . error is raised.

Changed in version 3.1: In 3.0, some of the integer formats wrapped out-of-range values and raised
DeprecationWarning instead of st ruct.error.

The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number of
bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is smaller. The bytes of the
string follow. If the string passed in to pack () is too long (longer than the count minus 1), only the leading count -1
bytes of the string are stored. If the string is shorter than count—1, it is padded with null bytes so that exactly count
bytes in all are used. Note that for unpack (), the 'p' format character consumes count bytes, but that the string
returned can never contain more than 255 bytes.

For the ' ? ' format character, the return value is either True or False. When packing, the truth value of the argument
object is used. Either O or 1 in the native or standard bool representation will be packed, and any non-zero value will be
True when unpacking.

152 Chapter 7. Binary Data Services

https://en.wikipedia.org/wiki/IEEE_floating_point#IEEE_754-2008
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

The Python Library Reference, Release 3.7.4rc1

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import *

>>> pack('hhl', 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize('hhl")

8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = b'raymond \x32\x12\x08\x01\x08"'
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple

>>> Student = namedtuple ('Student', 'name serialnum school gradelevel')
>>> Student._make (unpack ('<10sHHb', record))
Student (name=b'raymond ', serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment requirements
is different:

>>> pack('ci', b'*', 0x12131415)
b'*\x00\x00\x00\x12\x13\x14\x15"
>>> pack('ic', 0x12131415, b'*")
b'\x12\x13\x14\x15*"'

>>> calcsize('ci'")

8

>>> calcsize('ic')

5

The following format ' 11h01 "' specifies two pad bytes at the end, assuming longs are aligned on 4-byte boundaries:

>>> pack ('11h01', 1, 2, 3)
b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

This only works when native size and alignment are in effect; standard size and alignment does not enforce any alignment.
See also:
Module array Packed binary storage of homogeneous data.

Module xdrl1ib Packing and unpacking of XDR data.

7.1.3 Classes

The st ruct module also defines the following type:

class struct.Struct (format)
Return a new Struct object which writes and reads binary data according to the format string format. Creating a

7.1. struct — Interpret bytes as packed binary data 153

The Python Library Reference, Release 3.7.4rc1

Struct object once and calling its methods is more efficient than calling the st ruct functions with the same format
since the format string only needs to be compiled once.

Note: The compiled versions of the most recent format strings passed to St ruct and the module-level functions
are cached, so programs that use only a few format strings needn’t worry about reusing a single St ruct instance.

Compiled Struct objects support the following methods and attributes:

pack (vl,v2,...)
Identical to the pack () function, using the compiled format. (1len (result) will equal size.)

pack_into (buffer, offset, vi, v2, ...)
Identical to the pack_into () function, using the compiled format.

unpack (buffer)
Identical to the unpack () function, using the compiled format. The buffer’s size in bytes must equal size.

unpack_£from (buffer, offset=0)
Identical to the unpack_from () function, using the compiled format. The buffer’s size in bytes, minus
offset, must be at least size.

iter_unpack (buffer)
Identical to the i ter_unpack () function, using the compiled format. The buffer’s size in bytes must be a
multiple of size.

New in version 3.4.

format
The format string used to construct this Struct object.

Changed in version 3.7: The format string type is now st r instead of bytes.

size
The calculated size of the struct (and hence of the bytes object produced by the pack () method) corre-
sponding to format.

7.2 codecs — Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the internal
Python codec registry, which manages the codec and error handling lookup process. Most standard codecs are rext
encodings, which encode text to bytes, but there are also codecs provided that encode text to text, and bytes to bytes.
Custom codecs may encode and decode between arbitrary types, but some module features are restricted to use specifically
with text encodings, or with codecs that encode to bytes.

The module defines the following functions for encoding and decoding with any codec:

codecs . encode (0bj, encoding= utf-8’, errors="strict’)

Encodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is ' strict ' meaning
that encoding errors raise ValueError (or amore codec specific subclass, such as UnicodeEncodeError).
Refer to Codec Base Classes for more information on codec error handling.

154

Chapter 7. Binary Data Services

https://github.com/python/cpython/tree/3.7/Lib/codecs.py

The Python Library Reference, Release 3.7.4rc1

codecs .decode (0bj, encoding= utf-8’, errors="strict’)
Decodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is 'strict ' meaning
that decoding errors raise Va_lueError (or a more codec specific subclass, such as UnicodeDecodeError).
Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

codecs . lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is scanned.
If no CodecInfo objectis found, a LookupError is raised. Otherwise, the CodecInfo object is stored in
the cache and returned to the caller.

class codecs.CodecInfo (encode, decode, streamreader=None, streamwriter=None, incrementalen-

coder=None, incrementaldecoder=None, name=None)
Codec details when looking up the codec registry. The constructor arguments are stored in attributes of the same

name:

name
The name of the encoding.

encode

decode
The stateless encoding and decoding functions. These must be functions or methods which have the same in-
terface as the encode () and decode () methods of Codec instances (see Codec Interface). The functions
or methods are expected to work in a stateless mode.

incrementalencoder

incrementaldecoder
Incremental encoder and decoder classes or factory functions. These have to provide the interface defined
by the base classes TncrementalEncoder and IncrementalDecoder, respectively. Incremental
codecs can maintain state.

streamwriter

streamreader
Stream writer and reader classes or factory functions. These have to provide the interface defined by the base
classes St reamiriter and St reamReader, respectively. Stream codecs can maintain state.

To simplify access to the various codec components, the module provides these additional functions which use 1 ookup ()
for the codec lookup:

codecs.getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs .getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental encoder.

codecs.getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupErrorin case the encoding cannot be found or the codec doesn’t support an incremental decoder.

7.2. codecs — Codec registry and base classes 155

The Python Library Reference, Release 3.7.4rc1

codecs .getreader (encoding)

Look up the codec for the given encoding and return its St reamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)

Look up the codec for the given encoding and return its St reamiriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

Custom codecs are made available by registering a suitable codec search function:

codecs.register (search_function)

Register a codec search function. Search functions are expected to take one argument, being the encoding name in
all lower case letters, and return a CodecInfo object. In case a search function cannot find a given encoding, it
should return None.

Note: Search function registration is not currently reversible, which may cause problems in some cases, such as
unit testing or module reloading.

While the builtin open () and the associated i o module are the recommended approach for working with encoded text
files, this module provides additional utility functions and classes that allow the use of a wider range of codecs when
working with binary files:

codecs . open (filename, mode="r’, encoding=None, errors=strict’, buffering=1)

Open an encoded file using the given mode and return an instance of St reamReaderiWriter, providing trans-
parent encoding/decoding. The default file mode is ' r ', meaning to open the file in read mode.

Note: Underlying encoded files are always opened in binary mode. No automatic conversion of '\n"' is done on
reading and writing. The mode argument may be any binary mode acceptable to the built-in open () function; the
'b' is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and decodes from
bytes is allowed, and the data types supported by the file methods depend on the codec used.

errors may be given to define the error handling. It defaults to 'strict' which causes a ValueError to be
raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to line buffered.

codecs .EncodedFile (file, data_encoding, file_encoding=None, errors=strict’)

Return a St reamRecoder instance, a wrapped version of file which provides transparent transcoding. The
original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data_encoding and then written to the original
file as bytes using file_encoding. Bytes read from the original file are decoded according to file_encoding, and the
result is encoded using data_encoding.

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to 'strict ', which causes ValueError to be
raised in case an encoding error occurs.

codecs.iterencode (iterator, encoding, errors=strict’, **kwargs)

Uses an incremental encoder to iteratively encode the input provided by iferator. This function is a generator. The
errors argument (as well as any other keyword argument) is passed through to the incremental encoder.

This function requires that the codec accept text st r objects to encode. Therefore it does not support bytes-to-bytes
encoders such as base64_codec.

156

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.4rc1

codecs.iterdecode (iterator, encoding, errors=strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a generator. The
errors argument (as well as any other keyword argument) is passed through to the incremental decoder.

This function requires that the codec accept byt es objects to decode. Therefore it does not support text-to-text
encoders such as rot__13, although rot_ 13 may be used equivalently with i terencode ().

The module also provides the following constants which are useful for reading and writing to platform dependent files:

codecs .BOM

codecs .BOM_BE

codecs .BOM_LE

codecs .BOM_UTF8

codecs .BOM_UTF16

codecs.BOM_UTF16_BE

codecs.BOM_UTF16_LE

codecs.BOM_UTF32

codecs .BOM_UTF32_BE

codecs.BOM_UTF32_LE
These constants define various byte sequences, being Unicode byte order marks (BOMs) for several encodings.
They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and in UTF-8 as a Unicode
signature. BOM_UTF16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte
order, BOM is an alias for BOM_UTF16, BOM_LE for BOM _UTF16_LEand BOM BE for BOM_UTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecs module defines a set of base classes which define the interfaces for working with codec objects, and can
also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder, stream
reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to implement the
file protocols. Codec authors also need to define how the codec will handle encoding and decoding errors.

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by accepting the
errors string argument. The following string values are defined and implemented by all standard Python codecs:

Value Meaning

'strict' | Raise UnicodeError (or a subclass); this is the default. Implemented in st rict_errors ().

'ignore' | Ignore the malformed data and continue without further notice. Implemented in
ignore_errors ().

The following error handlers are only applicable to text encodings:

7.2. codecs — Codec registry and base classes 157

The Python Library Reference, Release 3.7.4rc1

Value Meaning

'replace | Replace with a suitable replacement marker; Python will use the official U+FFFD REPLACE-
MENT CHARACTER for the built-in codecs on decoding, and ‘? on encoding. Implemented in
replace_errors ().

'xmlcharr<Replgee awith the appropriate XML character reference (only for encoding). Implemented in
xmlcharrefreplace_errors ().

'backslasReptdace sath backslashed escape sequences. Implemented in backslashreplace _errors ().
'namereplaReplace with \N{...} escape sequences (only for encoding). Implemented in
namereplace_errors ().

' surrogat €@ degoeling, replace byte with individual surrogate code ranging from U+DC80 to U+DCFF. This
code will then be turned back into the same byte when the ' surrogateescape' error handler is
used when encoding the data. (See PEP 383 for more.)

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning
'surrogatepds 'utf-16, utf-32, utf-16-be, | Allow encoding and decoding of surrogate codes. These codecs
utf-16-le, utf-32-be, utf-32-le normally treat the presence of surrogates as an error.

New in version 3.1: The 'surrogateescape' and 'surrogatepass"' error handlers.

Changed in version 3.4: The ' surrogatepass' error handlers now works with utf-16* and utf-32* codecs.
New in version 3.5: The 'namereplace’' error handler.

Changed in version 3.5: The 'backslashreplace' error handlers now works with decoding and translating.
The set of allowed values can be extended by registering a new named error handler:

codecs.register_error (name, error_handler)
Register the error handling function error_handler under the name name. The error_handler argument will be
called during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding, error_handler will be called with a UnicodeEncodeError instance, which contains information
about the location of the error. The error handler must either raise this or a different exception, or return a tuple
with a replacement for the unencodable part of the input and a position where encoding should continue. The
replacement may be either st r or bytes. If the replacement is bytes, the encoder will simply copy them into
the output buffer. If the replacement is a string, the encoder will encode the replacement. Encoding continues on
original input at the specified position. Negative position values will be treated as being relative to the end of the
input string. If the resulting position is out of bound an TndexError will be raised.

Decoding and translating works similarly, except UnicodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

Previously registered error handlers (including the standard error handlers) can be looked up by name:

codecs.lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.
The following standard error handlers are also made available as module level functions:

codecs.strict_errors (exception)
Implements the 'strict ' error handling: each encoding or decoding error raises a UnicodeError.

codecs.replace_errors (exception)
Implements the 'replace' error handling (for fext encodings only): substitutes ' ? ' for encoding errors (to be
encoded by the codec), and ' \uff£fd' (the Unicode replacement character) for decoding errors.

158 Chapter 7. Binary Data Services

https://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.7.4rc1

codecs.ignore_errors (exception)
Implements the 'ignore' error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

codecs.xmlcharrefreplace_errors (exception)
Implements the 'xmlcharrefreplace' error handling (for encoding with fext encodings only): the unencod-
able character is replaced by an appropriate XML character reference.

codecs .backslashreplace_errors (exception)
Implements the 'backslashreplace’ error handling (for fext encodings only): malformed data is replaced
by a backslashed escape sequence.

codecs.namereplace_errors (exception)
Implements the ' namereplace’ error handling (for encoding with fext encodings only): the unencodable char-
acter is replaced by a \N{ . . . } escape sequence.

New in version 3.5.

Stateless Encoding and Decoding

The base Codec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

Codec.encode (input[, ermrs])
Encodes the object input and returns a tuple (output object, length consumed). For instance, fext encoding converts
a string object to a bytes object using a particular character set encoding (e.g., cp1252 or is0-8859-1).

The errors argument defines the error handling to apply. It defaults to 'strict ' handling.

The method may not store state in the Codec instance. Use St reamlvr it er for codecs which have to keep state
in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

Codec.decode (input[, ermrs])
Decodes the object input and returns a tuple (output object, length consumed). For instance, for a text encoding,
decoding converts a bytes object encoded using a particular character set encoding to a string object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the read-only
buffer interface — for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to 'strict ' handling.

The method may not store state in the Codec instance. Use St reamReader for codecs which have to keep state
in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

Incremental Encoding and Decoding

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental en-
coding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder function,
but with multiple calls to the encode ()/decode () method of the incremental encoder/decoder. The incremental
encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode ()/decode () method is the same as if all the single inputs were joined into
one, and this input was encoded/decoded with the stateless encoder/decoder.

7.2. codecs — Codec registry and base classes 159

The Python Library Reference, Release 3.7.4rc1

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following methods
which every incremental encoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalEncoder (errors=strict’)

Constructor for an TncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it possible
to switch between different error handling strategies during the lifetime of the TncrementalEncoder object.

encode (object[, final])
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded object.
If this is the last call to encode () final must be true (the default is false).

reset ()
Reset the encoder to the initial state. The output is discarded: call .encode (object, final=True),
passing an empty byte or text string if necessary, to reset the encoder and to get the output.

getstate ()
Return the current state of the encoder which must be an integer. The implementation should make sure that
0 is the most common state. (States that are more complicated than integers can be converted into an integer
by marshaling/pickling the state and encoding the bytes of the resulting string into an integer).

setstate (swate)
Set the state of the encoder to state. state must be an encoder state returned by getstate ().

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder (errors=strict’)

Constructor for an TncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it possible
to switch between different error handling strategies during the lifetime of the TncrementalDecoder object.

decode (object[, final])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded object.
If this is the last call to decode () final must be true (the default is false). If final is true the decoder must
decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of incomplete byte
sequences at the end of the input) it must initiate error handling just like in the stateless case (which might
raise an exception).

reset ()
Reset the decoder to the initial state.

160

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.4rc1

getstate ()

Return the current state of the decoder. This must be a tuple with two items, the first must be the buffer
containing the still undecoded input. The second must be an integer and can be additional state info. (The
implementation should make sure that O is the most common additional state info.) If this additional state
info is O it must be possible to set the decoder to the state which has no input buffered and 0 as the additional
state info, so that feeding the previously buffered input to the decoder returns it to the previous state without
producing any output. (Additional state info that is more complicated than integers can be converted into an
integer by marshaling/pickling the info and encoding the bytes of the resulting string into an integer.)

setstate (state)
Set the state of the decoder to state. state must be a decoder state returned by getstate ().

Stream Encoding and Decoding

The St reamiiriterand St reamReader classes provide generic working interfaces which can be used to implement
new encoding submodules very easily. See encodings.ut f_8 for an example of how this is done.

StreamWriter Objects

The St reamiriter class is a subclass of Codec and defines the following methods which every stream writer must
define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream, errors=strict’)
Constructor for a St reamliiriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments, but
only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate for the specific
codec.

The St reamwriter may implement different error handling schemes by providing the errors keyword argument.
See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it possible
to switch between different error handling strategies during the lifetime of the St reamiriter object.

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the wri te () method). The standard
bytes-to-bytes codecs do not support this method.

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamiriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The St reamReader class is a subclass of Codec and defines the following methods which every stream reader must
define in order to be compatible with the Python codec registry.

7.2. codecs — Codec registry and base classes 161

The Python Library Reference, Release 3.7.4rc1

class codecs.StreamReader (stream, errors=strict’)
Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments, but
only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate for the specific
codec.

The St reamReade r may implement different error handling schemes by providing the errors keyword argument.
See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it possible
to switch between different error handling strategies during the lifetime of the St reamReader object.

The set of allowed values for the errors argument can be extended with register _error ().

read ([size[, chars[, ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read () method
will never return more data than requested, but it might return less, if there is not enough available.

The size argument indicates the approximate maximum number of encoded bytes or code points to read for
decoding. The decoder can modify this setting as appropriate. The default value -1 indicates to read and
decode as much as possible. This parameter is intended to prevent having to decode huge files in one step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are decoding errors
on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within the
definition of the encoding and the given size, e.g. if optional encoding endings or state markers are available
on the stream, these should be read too.

readline ([size[, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s read () method.
If keepends is false line-endings will be stripped from the lines returned.

readlines ([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if keepends
is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

StreamReaderWriter Objects

The St reamReadeririter is a convenience class that allows wrapping streams which work in both read and write
modes.

162 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.4rc1

The design is such that one can use the factory functions returned by the 1 ookup () function to construct the instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors=strict’)
Creates a St reamReadeririter instance. stream must be a file-like object. Reader and Writer must be factory
functions or classes providing the St reamReader and St reamiriter interface resp. Error handling is done
in the same way as defined for the stream readers and writers.

StreamReadeririter instances define the combined interfaces of St reamReader and St reamiWriter classes.
They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The St reamRecoder translates data from one encoding to another, which is sometimes useful when dealing with
different encoding environments.

The design is such that one can use the factory functions returned by the 1 ookup () function to construct the instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors="strict’)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work on the
frontend — the data visible to code calling read () and write (), while Reader and Writer work on the back-
end — the data in stream.

You can use these objects to do transparent transcodings from e.g. Latin-1 to UTF-8 and back.
The stream argument must be a file-like object.

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must be factory functions
or classes providing objects of the St reamReader and St reamiriter interface respectively.

Error handling is done in the same way as defined for the stream readers and writers.

St reamRecoder instances define the combined interfaces of St reamReader and St reamiriter classes. They
inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range 0x0—-0x10FFFF. (See PEP 393 for more details about
the implementation.) Once a string object is used outside of CPU and memory, endianness and how these arrays are
stored as bytes become an issue. As with other codecs, serialising a string into a sequence of bytes is known as encoding,
and recreating the string from the sequence of bytes is known as decoding. There are a variety of different text serialisation
codecs, which are collectivity referred to as text encodings.

The simplest text encoding (called ' latin—-1"' or '1s0-8859-1") maps the code points 0-255 to the bytes 0x0—
Oxff, which means that a string object that contains code points above U+00FF can’t be encoded with this codec.
Doing so will raise a UnicodeEncodeError that looks like the following (although the details of the error message
may differ): UnicodeEncodeError: 'latin-1' codec can't encode character '\ul234' in
position 3: ordinal not in range(256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these code points are mapped to the bytes 0x0-0xff. To see how this is done simply open e.g.
encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string constant with
256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and straightfor-
ward way that can store each Unicode code point, is to store each code point as four consecutive bytes. There are two
possibilities: store the bytes in big endian or in little endian order. These two encodings are called UTF-32-BE and
UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE on a little endian machine you will

7.2. codecs — Codec registry and base classes 163

https://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.7.4rc1

always have to swap bytes on encoding and decoding. UTF—32 avoids this problem: bytes will always be in natural endi-
anness. When these bytes are read by a CPU with a different endianness, then bytes have to be swapped though. To be
able to detect the endianness of a UTF-16 or UTF—-32 byte sequence, there’s the so called BOM (“Byte Order Mark”).
This is the Unicode character U+FEFF. This character can be prepended to every UTF—-16 or UTF-32 byte sequence.
The byte swapped version of this character (OxFFFE) is an illegal character that may not appear in a Unicode text. So
when the first character in an UTF-16 or UTF-32 byte sequence appears to be a U+FFFE the bytes have to be swapped
on decoding. Unfortunately the character U+FEFF had a second purpose as a ZERO WIDTH NO-BREAK SPACE:a
character that has no width and doesn’t allow a word to be split. It can e.g. be used to give hints to a ligature algorithm.
With Unicode 4.0 using U+FEFF asa ZERO WIDTH NO-BREAK SPACE has been deprecated (with U+2060 (WORD
JOINER) assuming this role). Nevertheless Unicode software still must be able to handle U+FEFF in both roles: as a
BOM it’s a device to determine the storage layout of the encoded bytes, and vanishes once the byte sequence has been
decoded into a string; as a ZERO WIDTH NO-BREAK SPACE it’s a normal character that will be decoded like any
other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit encoding,
which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists of two parts:
marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to four 1 bits followed by
a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when concatenated give the Unicode
character):

Range Encoding
U-00000000 ... U-0000007F | OXXXXXXX

U-00000080 ... U-000007FF | 110xxxxx 10XXXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10XXXXXX
U-00010000 ... U-0010FFFF | 11110xxx 10xxxxxx 10xxxxxXx 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s the first
character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string. Each
charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-8 byte
sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which a UTF-8
encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls "ut £-8-sig") for its Notepad
program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM (which looks like this as a
byte sequence: Oxef, Oxbb, Oxbf) is written. As it’s rather improbable that any charmap encoded file starts with these
byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in is0-8859-1), this increases the probability that a ut £-8-sig encoding can be correctly guessed from the byte se-
quence. So here the BOM is not used to be able to determine the byte order used for generating the byte sequence, but
as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write Oxe £, Oxbb, Oxbf as the
first three bytes to the file. On decoding ut £-8-s1ig will skip those three bytes if they appear as the first three bytes in
the file. In UTF-8, the use of the BOM is discouraged and should generally be avoided.

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that

164 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.4rc1

spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore, e.g.
'ut £-8"' is a valid alias for the 'ut£_8"' codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to improve per-
formance. These optimization opportunities are only recognized by CPython for a limited set of (case insensitive) aliases:
utf-8, utf8, latin-1, latin1, is0-8859-1, is08859-1, mbcs (Windows only), ascii, us-ascii, utf-16, utf16, utf-32, utf32, and
the same using underscores instead of dashes. Using alternative aliases for these encodings may result in slower execution.

Changed in version 3.6: Optimization opportunity recognized for us-ascii.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO SIGN
is supported or not), and in the assignment of characters to code positions. For the European languages in particular, the
following variants typically exist:

e an ISO 8859 codeset

* a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control characters
with additional graphic characters

* an IBM EBCDIC code page
 an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
big5Shkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp273 273, 1IBM273, csIBM273 German

New in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP- | Western Europe

CH, IBM500

cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedo-

nian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese

Continued on next page

7.2. codecs — Codec registry and base classes

165

The Python Library Reference, Release 3.7.4rc1

Table 1 - continued from previous page

Codec Aliases Languages
cp949 949, ms949, uhc Korean

cp950 950, ms950 Traditional Chinese
cpl1006 Urdu

cpl026 ibm1026 Turkish

cpll25 1125, ibm1125, cp866u, ruscii Ukrainian

New in version 3.4.
cpl140 ibm1140 Western Europe
cpl250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Macedo-

nian, Russian, Serbian
cpl252 windows-1252 Western Europe
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic languages
cpl258 windows-1258 Vietnamese
cp65001 Windows only: Windows UTF-8

(CP_UTFS8)

New in version 3.3.
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c-5601, | Korean

ks_c-5601-1987, ksx1001, ks_x-
1001
gb2312 chinese, csis058gb231280, euc-cn, | Simplified Chinese
euccn, eucgb2312-cn, gb2312-
1980, gb2312-80, iso-ir-58
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
i502022_jp ¢sis02022jp, 1s02022jp, is0-2022- | Japanese
Jp
1502022 _jp_1 1502022jp-1, is0-2022-jp-1 Japanese

1502022_jp_2

1502022 jp-2, is0-2022-jp-2

Japanese, Korean, Simplified Chi-
nese, Western Europe, Greek

1502022_jp_2004 | is02022jp-2004, is0-2022-jp-2004 | Japanese
1502022_jp_3 1502022jp-3, is0-2022-jp-3 Japanese
i502022_jp_ext 1502022 jp-ext, is0-2022-jp-ext Japanese
1502022_kr ¢sis02022kr, is02022kr, is0-2022- | Korean
kr
latin_1 is0-8859-1, is08859-1, 8859, | West Europe
cp819, latin, latinl, L1
1508859_2 1s0-8859-2, latin2, L2 Central and Eastern Europe
1508859_3 1s0-8859-3, latin3, L3 Esperanto, Maltese
1s08859_4 1s0-8859-4, latin4, L4 Baltic languages
1508859_5 150-8859-5, cyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
1508859_6 150-8859-6, arabic Arabic

Continued on next page

166

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.7.4rc1

Table 1 - continued from previous page

Codec Aliases Languages
1s08859_7 150-8859-7, greek, greek8 Greek
1508859_8 150-8859-8, hebrew Hebrew
1508859_9 1s0-8859-9, latin5, L5 Turkish
1508859_10 150-8859-10, latin6, L6 Nordic languages
1508859_11 1s0-8859-11, thai Thai languages
1508859_13 1s0-8859-13, latin7, L7 Baltic languages
1s08859_14 1s0-8859-14, latin8, L8 Celtic languages
1508859_15 1s0-8859-15, latin9, L9 Western Europe
1508859 _16 1s0-8859-16, latin10, L10 South-Eastern Europe
johab cpl361, ms1361 Korean
koi8_r Russian
koi8_t Tajik

New in version 3.5.
koi8_u Ukrainian
kz1048 kz_1048, strk1048_2002, rk1048 Kazakh

New in version 3.5.

mac_cyrillic maccyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian

mac_greek macgreek Greek

mac_iceland maciceland Icelandic

mac_latin2 maclatin2, maccentraleurope Central and Eastern Europe

mac_roman

macroman, macintosh

Western Europe

mac_turkish macturkish Turkish
ptcpl54 csptepl54, ptl54, cpl54, cyrillic- | Kazakh
asian

shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift jisx0213 shiftjisx0213, sjisx0213, s_jisx0213 | Japanese
utf_32 U32, utf32 all languages
utf_32_be UTF-32BE all languages
utf_32_le UTF-32LE all languages
utf_16 Ul6, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8 all languages
utf_8_sig all languages

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points (U+D800-U+DFFF)
to be encoded. The utf-32* decoders no longer decode byte sequences that correspond to surrogate code points.

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python. These
are listed in the tables below based on the expected input and output types (note that while text encodings are the most
common use case for codecs, the underlying codec infrastructure supports arbitrary data transforms rather than just text
encodings). For asymmetric codecs, the stated purpose describes the encoding direction.

7.2. codecs — Codec registry and base classes 167

The Python Library Reference, Release 3.7.4rc1

Text Encodings

The following codecs provide st r to bytes encoding and bytes-like object to st r decoding, similar to the Unicode text
encodings.

Codec Aliases Purpose

idna Implements RFC 3490, see
also encodings.idna. Only
errors='strict' is sup-
ported.

mbcs ansi, dbcs Windows only: Encode operand
according to the ANSI codepage
(CP_ACP)

oem Windows only: Encode operand
according to the OEM codepage
(CP_OEMCP)
New in version 3.6.

palmos Encoding of PalmOS 3.5

punycode Implements RFC 3492. Stateful
codecs are not supported.

raw_unicode_escape Latin-1 encoding with \uXXXX

and \UXXXXXXXX for other code
points. Existing backslashes are not
escaped in any way. It is used in the
Python pickle protocol.

undefined Raise an exception for all conver-
sions, even empty strings. The error
handler is ignored.

unicode_escape Encoding suitable as the contents of
a Unicode literal in ASCII-encoded
Python source code, except that
quotes are not escaped. Decodes
from Latin-1 source code. Beware
that Python source code actually
uses UTF-8 by default.
unicode_internal Return the internal representation of
the operand. Stateful codecs are not
supported.

Deprecated since version 3.3: This
representation is obsoleted by PEP
393.

Binary Transforms

The following codecs provide binary transforms: bytes-like object to bytes mappings. They are not supported by
bytes.decode () (which only produces st r output).

168 Chapter 7. Binary Data Services

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html
https://www.python.org/dev/peps/pep-0393
https://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.7.4rc1

Codec Aliases Purpose Encoder / decoder
base64_codec” | base64, Convert operand to multiline MIME base64 (the result | base64.
base_64 always includes a trailing '\n"') encodebytes () /
Changed in version 3.4: accepts any bytes-like object as | base64.
input for encoding and decoding decodebytes ()
bz2_codec bz2 Compress the operand using bz2 bz2.compress () /
bz2.
decompress ()
hex_codec hex Convert operand to hexadecimal representation, with binascii.
two digits per byte b2a_hex () /
binascii.
a’b_hex ()
quopri_codec quopri, quot- | Convert operand to MIME quoted printable quopri.encode ()
edprintable, with
quoted_printable quotetabs=True /
quopri.decode ()
uu_codec uu Convert the operand using uuencode uu.encode () /
uu.decode ()
zlib_codec zip, zlib Compress the operand using gzip zlib.compress ()
/z1ib.
decompress ()

New in version 3.2: Restoration of the binary transforms.
Changed in version 3.4: Restoration of the aliases for the binary transforms.
Text Transforms

The following codec provides a text transform: a st r to st r mapping. It is not supported by st r. encode () (which
only produces byt es output).

Codec | Aliases | Purpose
rot_13 | rotl3 Returns the Caesar-cypher encryption of the operand

New in version 3.2: Restoration of the rot_ 13 text transform.

Changed in version 3.4: Restoration of the rot 13 alias.

7.2.5 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and
stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name containing
non-ASCII characters (such as www.Alliancefrangaise.nu) is converted into an ASCII-compatible encoding
(ACE, such as www.xn—-—alliancefranaise-npb.nu). The ACE form of the domain name is then used in all
places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host fields, and so on.
This conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them to
the user.

! In addition to bytes-like objects, 'base64_codec" also accepts ASCII-only instances of st r for decoding

7.2. codecs — Codec registry and base classes 169

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 3.7.4rc1

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and ACE,
separating an input string into labels based on the separator characters defined in section 3.1 of RFC 3490 and converting
each label to ACE as required, and conversely separating an input byte string into labels based on the . separator and
converting any ACE labels found into unicode. Furthermore, the socket module transparently converts Unicode host
names to ACE, so that applications need not be concerned about converting host names themselves when they pass them
to the socket module. On top of that, modules that have host names as function parameters, such as http. client and
ftplib, accept Unicode host names (http.client then also transparently sends an IDNA hostname in the Host
field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: Applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

encodings.idna.nameprep (label)
Return the nameprepped version of label. The implementation currently assumes query strings, so
AllowUnassigned is true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs — Windows ANSI codepage

Encode operand according to the ANSI codepage (CP_ACP).
Availability: Windows only.
Changed in version 3.3: Support any error handler.

Changed in version 3.2: Before 3.2, the errors argument was ignored; 'replace’' was always used to encode, and
'ignore"' to decode.

7.2.7 encodings.utf_8_sig— UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will be prepended to the
UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream). For decoding
an optional UTF-8 encoded BOM at the start of the data will be skipped.

170 Chapter 7. Binary Data Services

https://tools.ietf.org/html/rfc3490.html#section-3.1
https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3490.html

CHAPTER
EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, 1ist, set and frozenset, and tuple. The
str class is used to hold Unicode strings, and the by tes class is used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

Source code: Lib/datetime.py

The datet ime module supplies classes for manipulating dates and times in both simple and complex ways. While date
and time arithmetic is supported, the focus of the implementation is on efficient attribute extraction for output formatting
and manipulation. For related functionality, see also the t ime and calendar modules.

There are two kinds of date and time objects: “naive” and “aware”.

An aware object has sufficient knowledge of applicable algorithmic and political time adjustments, such as time zone and
daylight saving time information, to locate itself relative to other aware objects. An aware object is used to represent a
specific moment in time that is not open to interpretation'.

A naive object does not contain enough information to unambiguously locate itself relative to other date/time objects.
Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some other timezone is
purely up to the program, just like it is up to the program whether a particular number represents metres, miles, or mass.
Naive objects are easy to understand and to work with, at the cost of ignoring some aspects of reality.

For applications requiring aware objects, datet ime and t ime objects have an optional time zone information attribute,
tzinfo, that can be set to an instance of a subclass of the abstract t zinfo class. These tzinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect. Note
that only one concrete t zinfo class, the t imezone class, is supplied by the datet ime module. The t imezone
class can represent simple timezones with fixed offset from UTC, such as UTC itself or North American EST and EDT
timezones. Supporting timezones at deeper levels of detail is up to the application. The rules for time adjustment across
the world are more political than rational, change frequently, and there is no standard suitable for every application aside
from UTC.

The datet ime module exports the following constants:

datetime.MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEARIS 1.

LIf, that is, we ignore the effects of Relativity

171

https://github.com/python/cpython/tree/3.7/Lib/datetime.py

The Python Library Reference, Release 3.7.4rc1

datetime.MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEARis 9999.

See also:
Module calendar General calendar related functions.

Module time Time access and conversions.

8.1.1 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect. At-
tributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds (there
is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond,and tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond,and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, t ime, or datet ime instances to microsecond resolu-
tion.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datet ime and t ime classes to
provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight saving
time).

class datetime.timezone
A class that implements the t z1nfo abstract base class as a fixed offset from the UTC.

New in version 3.2.
Objects of these types are immutable.
Objects of the date type are always naive.

An object of type t ime or datet ime may be naive or aware. A datet ime object d is aware if d.tzinfo is not
Noneandd.tzinfo.utcoffset (d) doesnotreturn None. If d.tzinfoisNone,orif d.tzinfoisnotNone
butd.tzinfo.utcoffset (d) returns None, d is naive. A t ime object ¢ is aware if t . t zinfo is not None and
t.tzinfo.utcoffset (None) does not return None. Otherwise, ¢ is naive.

The distinction between naive and aware doesn’t apply to t imede 1t a objects.

Subclass relationships:

object
timedelta
tzinfo
timezone
time
date
datetime

172 Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

8.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0,

weeks=0)
All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:
* A millisecond is converted to 1000 microseconds.
* A minute is converted to 60 seconds.
* An hour is converted to 3600 seconds.
* A week is converted to 7 days.
and days, seconds and microseconds are then normalized so that the representation is unique, with
¢ 0 <= microseconds < 1000000
e 0 <= seconds < 3600%*24 (the number of seconds in one day)
* -999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from all
arguments are combined and their sum is rounded to the nearest microsecond using round-half-to-even tiebreaker.
If no argument is a float, the conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example,

>>> from datetime import timedelta

>>> d = timedelta (microseconds=-1)

>>> (d.days, d.seconds, d.microseconds)
(=1, 86399, 999999)

Class attributes are:

timedelta.min
The most negative t imedelta object, timedelta (-999999999).

timedelta.max
The most positive t imedelta object, timedelta (days=999999999, hours=23, minutes=59,
seconds=59, microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal t imede1ta objects, timedelta (microseconds=1).

Note that, because of normalization, timedelta.max > -timedelta.min. -timedelta.max is not repre-
sentable as a t imedelta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between 0 and 999999 inclusive

Supported operations:

8.1. datetime — Basic date and time types 173

The Python Library Reference, Release 3.7.4rc1

Operation Result
tl = t2 + t3 Sum of £2 and £3. Afterwards #/-12 == 13 and t1-13 == 12 are true. (1)
tl = t2 - t3 Difference of 12 and 3. Afterwards ¢t/ == 2 - 3 and 12 == tI + 13 are true. (1)(6)
tl = t2 * 1 or tl1 | Deltamultiplied by an integer. Afterwards ¢/ // i ==12 is true, provided 1 != 0.
=1 * t2
In general, 1 *i==1¢1 * (i-1) + ¢1 is true. (1)
tl = t2 * £ or t1 | Delta multiplied by a float. The result is rounded to the nearest multiple of

= f * t2 timedelta.resolution using round-half-to-even.
f=1t2 / t3 Division (3) of overall duration #2 by interval unit 3. Returns a f1oat object.
tl = t2 / £ or tl | Delta divided by a float or an int. The result is rounded to the nearest multiple of

=t2 /i

timedelta.resolution using round-half-to-even.

tl = t2 // 1 or t1 | The floor is computed and the remainder (if any) is thrown away. In the second case,

=t2 // t3 an integer is returned. (3)

tl = t2 % t3 The remainder is computed as a t imedelta object. (3)

q, r = divmod(tl, Computes the quotient and the remainder: g = t1 // t2(3)andr = tl1 % t2.

t2) qis an integer and r is a t imede 1t a object.

+t1 Returns a t imede 1t a object with the same value. (2)

-t1 equivalent to timedelta(-tl.days, -tl.seconds, -tl.microseconds), and to tI* -1.
A

abs (t) equivalent to +# when t . days >= 0, and to -t when t .days < 0. (2)

str(t) Returns a string in the form [D day([s], 1[H]H:MM:SS[.UUUUUU], where D
is negative for negative t. (5)

repr (t) Returns a string representation of the t imedelta object as a constructor call with
canonical attribute values.

Notes:

(1) This is exact, but may overflow.

(2) This is exact, and cannot overflow.

(3) Division by O raises ZeroDivisionError

(4) -timedelta.max is not representable as a t imede 1 ta object.

(5) String representations of t imedelta objects are normalized similarly to their internal representation. This leads
to somewhat unusual results for negative timedeltas. For example:

>>> timedelta (hours=-5)
datetime.timedelta (days=-1,
>>> print (_)

-1 day, 19:00:00

seconds=68400)

(6) The expression t2 - t3 will always be equal to the expression t2 + (-t3) except when t3 is equal to
timedelta.max;in that case the former will produce a result while the latter will overflow.

In addition to the operations listed above t imede 1t a objects support certain additions and subtractions with date and
datet ime objects (see below).

Changed in version 3.2: Floor division and true division of a t i mede 1 t a object by another ¢t i mede 1t a object are now
supported, as are remainder operations and the divmod () function. True division and multiplication of a t imedelta
object by a 1 oat object are now supported.

Comparisons of timedelta objects are supported with the ¢ imedelt a object representing the smaller duration con-
sidered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the default comparison
by object address, when a t imede 1 t a object is compared to an object of a different type, TypeError is raised unless
the comparison is == or ! =. The latter cases return F'alse or True, respectively.

174 Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts, a
t imedelta object is considered to be true if and only if it isn’t equal to timedelta (0).

Instance methods:

timedelta.total_seconds ()
Return the total number of seconds contained in the duration. Equivalent to td /
timedelta (seconds=1). For interval units other than seconds, use the division form directly (e.g.
td / timedelta (microseconds=1)).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose microsecond
accuracy.

New in version 3.2.

Example usage:

>>> from datetime import timedelta

>>> year = timedelta (days=365)

>>> another_year = timedelta (weeks=40, days=84, hours=23,

C minutes=50, seconds=600) # adds up to 365 days
>>> year.total_seconds ()

31536000.0

>>> year == another_year
True

>>> ten_years = 10 * year

>>> ten_years, ten_years.days // 365

(datetime.timedelta (days=3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, nine_years.days // 365

(datetime.timedelta (days=3285), 9)

>>> three_years = nine_years // 3

>>> three_years, three_years.days // 365
(datetime.timedelta (days=1095), 3)

>>> abs (three_years - ten_years) == 2 * three_years + year
True

8.1.3 date Objects

A dat e object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar indefinitely
extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called day number 2, and
so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s book Calendrical
Calculations, where it’s the base calendar for all computations. See the book for algorithms for converting between
proleptic Gregorian ordinals and many other calendar systems.

class datetime.date (year, month, day)
All arguments are required. Arguments may be integers, in the following ranges:

* MINYEAR <= year <= MAXYEAR
* 1 <= month <= 12
¢ 1 <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date. This is equivalent to date . fromtimestamp (time.time ()).

8.1. datetime — Basic date and time types 175

The Python Library Reference, Release 3.7.4rc1

classmethod date.fromtimestamp (fimestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by time.time (). This
may raise OverflowError, if the timestamp is out of the range of values supported by the platform C
localtime () function, and OSError on localtime () failure. It’'s common for this to be restricted to
years from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a
timestamp, leap seconds are ignored by fromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C localtime () function. Raise OSError instead of ValueError on
localtime () failure.

classmethod date.fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.
ValueFError israised unless 1 <= ordinal <= date.max.toordinal (). For any date d, date.
fromordinal (d.toordinal()) ==

classmethod date.fromisoformat (date_string)
Return a date corresponding to a date_string in the format emitted by date. isoformat (). Specifically, this
function supports strings in the format(s) YYYY-MM-DD.

Caution: This does not support parsing arbitrary ISO 8601 strings - it is only intended as the inverse operation
of date.isoformat ().

New in version 3.7.
Class attributes:

date.min
The earliest representable date, date (MINYEAR, 1, 1).

date.max
The latest representable date, date (MAXYEAR, 12, 31).

date.resolution
The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year
Between MINYEAR and MAXYEAR inclusive.

date.month
Between 1 and 12 inclusive.

date.day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = datel + timedelta | date?is timedelta.days days removed from datel. (1)

date2 = datel - timedelta | Computes date? such that date2 + timedelta == datel. (2)

timedelta = datel - date2 | (3)

datel < date?2 datel is considered less than date2 when datel precedes date2 in time. (4)
Notes:

176 Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

(1) date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days <
0. Afterward date2 - datel == timedelta.days. timedelta.seconds and timedelta.
microseconds are ignored. OverflowError is raised if date2.year would be smaller than MINYEAR
or larger than MAXYEAR.

(2) timedelta.seconds and timedelta.microseconds are ignored.

(3) This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta ==
datel after.

(4) In other words, datel < date2 if and only if datel.toordinal () < date2.toordinal (). Date
comparison raises TypeError if the other comparand isn’t also a dat e object. However, Not Implemented
is returned instead if the other comparand has a t imetuple () attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, when a date object is compared to an object
of a different type, TypeError is raised unless the comparison is == or ! =. The latter cases return False or
True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all dat e objects are considered to be true.
Instance methods:

date.replace (year=self.year, month=self.month, day=self.day)
Return a date with the same value, except for those parameters given new values by whichever keyword ar-
guments are specified. For example, if d == date (2002, 12, 31), then d.replace (day=26) ==
date (2002, 12, 26).

date.timetuple ()
Returna t ime. st ruct_timesuchasreturnedby t ime. localtime (). The hours, minutes and seconds are
0, and the DST flagis -1. d.timetuple () isequivalentto time.struct_time ((d.year, d.month,

d.day, 0, 0, 0, d.weekday(), yday, -1)),whereyday = d.toordinal() - date(d.
year, 1, 1).toordinal () + 1 is the day number within the current year starting with 1 for January
Ist.

date.toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any dat e object
d,date.fromordinal (d.toordinal ()) == d.

date.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002, 12,
4) .weekday () == 2,a Wednesday. See also i soweekday ().

date.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002, 12,
4) .isoweekday () == 3, a Wednesday. See also weekday (), isocalendar ().

date.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See https://www.staff.science.uu.nl/
~gent0113/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The first
week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called week
number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003 and
ends on Sunday, 4 Jan 2004, so that date (2003, 12, 29) .isocalendar() == (2004, 1, 1) and
date (2004, 1, 4).isocalendar () == (2004, 1, 7).

date.isoformat ()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD'. For example, date (2002, 12,

8.1. datetime — Basic date and time types 177

https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm
https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.7.4rc1

4) .isoformat () == '2002-12-04".

date.__str__ ()
For adate d, str (d) is equivalent to d.isoformat ().

date.ctime ()
Return a string representing the date, for example date (2002, 12, 4).ctime() == 'Wed Dec 4
00:00:00 2002'.d.ctime () isequivalenttotime.ctime (time.mktime (d.timetuple())) on
platforms where the native C ctime () function (which t ime.ctime () invokes, but which date.ctime ()
does not invoke) conforms to the C standard.

date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. For a complete list of formatting directives, see strftime() and strptime()
Behavior.

date.__format__ (format)
Same as date. stritime (). This makes it possible to specify a format string for a dat e object in formatted
string literals and when using st r. format (). For a complete list of formatting directives, see strftime() and
strptime() Behavior.

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today ()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp (time.time ())
True

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

. my_birthday = my_birthday.replace(year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)
>>> time_to_birthday.days

202

Example of working with date:

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> t = d.timetuple ()

>>> for i in t:

C print (i)

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> jc = d.isocalendar ()

>>> for i in ic:

(continues on next page)

178 Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

C print (1)

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)
>>> d.isoformat ()

'2002-03-11"

>>> d.strftime ("2d/sm/%y")

'11/03/02"

>>> d.strftime ("%$A . %B %Y")

'Monday 11. March 2002'

>>> 'The is {0: }, the is {0:%B}.".format (d, "day", "month")

'The day is 11, the month is March.'

8.1.4 datetime Objects

A datet ime object is a single object containing all the information from a dat e objectand a t i me object. Likea date
object, datet ime assumes the current Gregorian calendar extended in both directions; like a time object, datet ime
assumes there are exactly 3600*24 seconds in every day.

Constructor:

class datetime.datetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tz-
info=None, *, fold=0)
The year, month and day arguments are required. #zinfo may be None, or an instance of a t z1info subclass. The
remaining arguments may be integers, in the following ranges:

e MINYEAR <= year <= MAXYEAR,

e 1 <= month <= 12,

¢ 1 <= day <= number of days in the given month and year,
<= hour < 24,

<= minute < 60,

<= second < 60,

o o o O

<= microsecond < 1000000,
e fold in [0, 1].
If an argument outside those ranges is given, ValueError is raised.
New in version 3.6: Added the fold argument.
Other constructors, all class methods:

classmethod datetime.today ()
Return the current local datetime, with tzinfo None. This is equivalent to datetime.
fromtimestamp (time.time ()). See also now (), fromtimestamp ().

classmethod datetime.now (z=None)
Return the current local date and time. If optional argument ¢z is None or not specified, this is like today (),
but, if possible, supplies more precision than can be gotten from going through a t ime. t ime () timestamp (for
example, this may be possible on platforms supplying the C gettimeofday () function).

If #z is not None, it must be an instance of a tzinfo subclass, and the current date and time are con-
verted to 7z’s time zone. In this case the result is equivalent to tz.fromutc (datetime.utcnow() .
replace (tzinfo=tz)). Seealso today (), utcnow /().

8.1. datetime — Basic date and time types 179

The Python Library Reference, Release 3.7.4rc1

classmethod datetime.utcnow ()

Return the current UTC date and time, with £ zinfo None. This is like now (), but returns the current UTC date
and time, as a naive dat et ime object. An aware current UTC datetime can be obtained by calling datetime.
now (timezone.utc). See also now ().

classmethod datetime.fromtimestamp (timestamp, tz=None)

Return the local date and time corresponding to the POSIX timestamp, such as is returned by t ime. time ().
If optional argument #z is None or not specified, the timestamp is converted to the platform’s local date and time,
and the returned dat et ime object is naive.

If 7z is not None, it must be an instance of a t zinfo subclass, and the timestamp is converted to 7z’s time zone.
In this case the result is equivalent to tz.fromutc (datetime.utcfromtimestamp (timestamp) .
replace (tzinfo=tz)).

fromtimestamp () may raise OverflowError, if the timestamp is out of the range of values supported
by the platform C localtime () or gmtime () functions, and OSError on localtime () or gmtime ()
failure. It’'s common for this to be restricted to years in 1970 through 2038. Note that on non-POSIX systems
that include leap seconds in their notion of a timestamp, leap seconds are ignored by fromtimestamp (), and
then it’s possible to have two timestamps differing by a second that yield identical datet ime objects. See also
utcfromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C localtime () or gmtime () functions. Raise OSError instead of
ValueErroron localtime () or gmtime () failure.

Changed in version 3.6: fromtimestamp () may return instances with fold setto 1.

classmethod datetime.utcfromtimestamp (tfimestamp)

Return the UTC datetime corresponding to the POSIX timestamp, with tzinfo None. This may raise
OverflowError, if the timestamp is out of the range of values supported by the platform C gmtime ()
function, and OSError on gmtime () failure. It’s common for this to be restricted to years in 1970 through
2038.

To get an aware datet ime object, call fromtimestamp ():

’ datetime.fromtimestamp (timestamp, timezone.utc)

On the POSIX compliant platforms, it is equivalent to the following expression:

’datetime(i970, 1, 1, tzinfo=timezone.utc) + timedelta (seconds=timestamp)

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR inclusive.

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C gmtime () function. Raise OSError instead of ValueError on
gmtime () failure.

classmethod datetime.fromordinal (ordinal)

Return the datet ime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.
ValueError is raised unless 1 <= ordinal <= datetime.max.toordinal (). The hour, minute,
second and microsecond of the result are all 0, and t zinfois None.

classmethod datetime.combine (date, time, tzinfo=self.tzinfo)

Return a new datet ime object whose date components are equal to the given date object’s, and whose time
components are equal to the given time object’s. If the tzinfo argument is provided, its value is used to set the
t zinfo attribute of the result, otherwise the t zinfo attribute of the time argument is used.

For any datetime object d, d == datetime.combine (d.date(), d.time(), d.tzinfo). If
date is a datet ime object, its time components and t z i n fo attributes are ignored.

Changed in version 3.6: Added the #zinfo argument.

180

Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

classmethod datetime.fromisoformat (date_string)
Return a datetime corresponding to a date_string in one of the formats emitted by date.
isoformat () and datetime.isoformat (). Specifically, this function supports strings in the format(s)
YYYY-MM-DD [*HH[:MM[:SS[.f££[£££]]1] [+HH:MM[:SS[.£f£££££]]1], where * can match any
single character.

Caution: This does not support parsing arbitrary ISO 8601 strings - it is only intended as the inverse operation
of datetime.isoformat ().

New in version 3.7.

classmethod datetime.strptime (date_string, format)
Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime (* (time.strptime (date_string, format) [0:6])). ValueError is raised if the
date_string and format can’t be parsed by time. strptime () or if it returns a value which isn’t a time tuple.
For a complete list of formatting directives, see strftime() and strptime() Behavior.

Class attributes:

datetime.min
The earliest representable datet ime, datetime (MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datet ime objects, t imedelta (microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month
Between 1 and 12 inclusive.

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour
In range (24).

datetime.minute
In range (60).

datetime.second
In range (60).

datetime.microsecond
In range (1000000).

datetime.tzinfo
The object passed as the tzinfo argument to the datet ime constructor, or None if none was passed.

datetime. fold
In [0, 17]. Used todisambiguate wall times during a repeated interval. (A repeated interval occurs when clocks
are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased for
political reasons.) The value 0 (1) represents the earlier (later) of the two moments with the same wall time
representation.

8.1. datetime — Basic date and time types 181

The Python Library Reference, Release 3.7.4rc1

New in version 3.6.

Supported operations:

(D

2

3)

“4)

Operation Result
datetime2 = datetimel + timedelta | (1)

datetime2 = datetimel - timedelta | (2)
timedelta = datetimel - datetime2 | (3)
datetimel < datetime?2 Compares datetime to datetime. (4)

datetime?2 is a duration of timedelta removed from datetimel, moving forward in time if timedelta.days >
0, or backward if t imedelta.days < 0. The result has the same t zinfo attribute as the input datetime, and
datetime? - datetimel == timedelta after. OverflowError is raised if datetime2.year would be smaller than
MINYEAR or larger than MAXYEAR. Note that no time zone adjustments are done even if the input is an aware
object.

Computes the datetime?2 such that datetime?2 + timedelta == datetimel. As for addition, the result has the same
t zinfo attribute as the input datetime, and no time zone adjustments are done even if the input is aware.

Subtraction of a datet ime from a datet ime is defined only if both operands are naive, or if both are aware.
If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same ¢ zinfo attribute, the t zinfo attributes are ignored, and
the result is a t imedelta object t such that datetime2 + t == datetimel. No time zone adjustments
are done in this case.

If both are aware and have different tzinfo attributes, a—b acts as if a and b were first converted to
naive UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset()) - (b.
replace (tzinfo=None) - b.utcoffset ()) except that the implementation never overflows.

datetimel is considered less than datetime2 when datetimel precedes datetime?2 in time.

If one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted. For
equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same ¢ zinfo attribute, the common ¢t zinfo attribute is ignored
and the base datetimes are compared. If both comparands are aware and have different t zinfo attributes, the
comparands are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()).

Changed in version 3.3: Equality comparisons between naive and aware datetime instances don’t raise
TypeError.

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses, date-
time comparison normally raises TypeError if the other comparand isn’t also a datet ime object. However,
Not Implemented is returned instead if the other comparand has a t imetuple () attribute. This hook gives
other kinds of date objects a chance at implementing mixed-type comparison. If not, when a datet ime object
is compared to an object of a different type, TypeError is raised unless the comparison is == or !=. The latter
cases return F'alse or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all datet ime objects are considered to be

true.

Instance methods:

datetime.date ()

Return dat e object with same year, month and day.

182

Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

datetime.time ()
Return t ime object with same hour, minute, second, microsecond and fold. tzinfo is None. See also method
timetz ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.timetz ()
Return t ime object with same hour, minute, second, microsecond, fold, and tzinfo attributes. See also method
time ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.replace (year=self.year, month=self.month, day=self.day, hour=self.hour, minute=self.minute,
second=self.second, microsecond=self.microsecond, tzinfo=self.tzinfo, * fold=0)
Return a datetime with the same attributes, except for those attributes given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time data.

New in version 3.6: Added the fold argument.

datetime.astimezone (1z=None)
Return a datet ime object with new t zinfo attribute 7z, adjusting the date and time data so the result is the
same UTC time as self, but in #7’s local time.

If provided, #z must be an instance of a t zinfo subclass, and its ut coffset () and dst () methods must not
return None. If self is naive, it is presumed to represent time in the system timezone.

If called without arguments (or with t z=None) the system local timezone is assumed for the target timezone. The
. tzinfo attribute of the converted datetime instance will be set to an instance of ¢ ime zone with the zone name
and offset obtained from the OS.

If self.tzinfoistz, self.astimezone (tz) is equal to self: no adjustment of date or time data is per-
formed. Flse the result is local time in the timezone #z, representing the same UTC time as self: after astz
= dt.astimezone(tz),astz - astz.utcoffset () will have the same date and time data as dt -
dt.utcoffset ().

If you merely want to attach a time zone object #z to a datetime df without adjustment of date and time data, use
dt.replace (tzinfo=tz). If you merely want to remove the time zone object from an aware datetime dt
without conversion of date and time data, use dt . replace (tzinfo=None).

Note that the default t zinfo. fromutc () method can be overridden in a t z1nfo subclass to affect the result
returned by astimezone (). Ignoring error cases, ast imezone () acts like:

def astimezone (self, tz):
if self.tzinfo is tz:
return self
Convert self to UIC, and attach the new time zone object.
utc = (self - self.utcoffset()) .replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc (utc)

Changed in version 3.3: #z now can be omitted.

Changed in version 3.6: The ast imezone () method can now be called on naive instances that are presumed to
represent system local time.

datetime.utcoffset ()
If tzinfoisNone, returns None, else returns self.tzinfo.utcoffset (self), and raises an exception
if the latter doesn’t return None or a t imede1ta object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

8.1. datetime — Basic date and time types 183

The Python Library Reference, Release 3.7.4rc1

datetime.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (self), and raises an exception if the
latter doesn’t return None or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

datetime.tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (self), raises an exception if the
latter doesn’t return None or a string object,

datetime.timetuple ()

Return a time.struct_time such as returned by time.localtime (). d.timetuple ()
is equivalent to time.struct_time ((d.year, d.month, d.day, d.hour, d.minute, d.
second, d.weekday (), yday, dst)), where yday = d.toordinal () - date(d.year,
1, 1) .toordinal() + 1 is the day number within the current year starting with 1 for January Ist. The
tm_1isdst flag of the result is set according to the dst () method: tzinfois None or dst () returns None,
tm_isdst issetto —1;elseif dst () returns a non-zero value, tm_isdst is setto 1;else tm_isdst is set
to 0.

datetime.utctimetuple ()
If datetime instance d is naive, this is the same as d.timetuple () except that tm_1isdst is forced to 0
regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (),anda time. struct_time for
the normalized time is returned. tm_1isdst is forced to 0. Note that an OverflowError may be raised if
d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

datetime.toordinal ()
Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.timestamp ()
Return POSIX timestamp corresponding to the datet ime instance. The return value is a £1oat similar to that
returned by time.time ().

Naive datetime instances are assumed to represent local time and this method relies on the platform C
mktime () function to perform the conversion. Since datetime supports wider range of values than
mktime () on many platforms, this method may raise OverflowError for times far in the past or far in
the future.

For aware datet ime instances, the return value is computed as:

(dt - datetime (1970, 1, 1, tzinfo=timezone.utc)).total_seconds ()

New in version 3.3.

Changed in version 3.6: The t imestamp () method uses the fo1d attribute to disambiguate the times during a
repeated interval.

Note: There is no method to obtain the POSIX timestamp directly from a naive dat et ime instance representing
UTC time. If your application uses this convention and your system timezone is not set to UTC, you can obtain the
POSIX timestamp by supplying t zinfo=t imezone.utc:

’timestamp = dt.replace(tzinfo=timezone.utc) .timestamp ()

or by calculating the timestamp directly:

’timestamp = (dt - datetime (1970, 1, 1)) / timedelta (seconds=1)

184 Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

datetime.weekday ()
Return the day of the week as an integer, where Monday is O and Sunday is 6. The same as self.date () .
weekday (). See also i soweekday ().

datetime.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date () .
isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The sameas self.date () .isocalendar ().

datetime.isoformat (sep="T", timespec=auto’)
Return a string representing the date and time in ISO 8601 format, YYYY-MM-DDTHH:MM:SS ittt or, if
microsecondis0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not return None, a string is appended, giving the UTC offset:
YYYY-MM-DDTHH:MM:SS fiffff+HH:MM[:SS[.fffff]] or, if microsecond is 0 YYYY-MM-
DDTHH:MM:SS+HH:MM[:SS[.fffff]].

The optional argument sep (default ' T ') is a one-character separator, placed between the date and time portions
of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ (tzinfo) :
def utcoffset (self, dt): return timedelta (minutes=-399)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (' ')
'2002-12-25 00:00:00-06:39"

The optional argument fimespec specifies the number of additional components of the time to include (the default
is "auto'). It can be one of the following:

e 'auto': Same as 'seconds' if microsecondis(, same as 'microseconds' otherwise.
e 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH:MM format.

e '"seconds': Include hour, minute, and second in HH:MM:SS format.

* 'milliseconds': Include full time, but truncate fractional second part to milliseconds. HH:MM:SS.sss
format.

e 'microseconds': Include full time in HH:MM:SS ffffff format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid fimespec argument.

>>> from datetime import datetime

>>> datetime.now () .isoformat (timespec="minutes") # doctest: +SKIP
'2002-12-25T00:00"

>>> dt = datetime (2015, 1, 1, 12, 30, 59, 0)

>>> dt.isoformat (timespec="microseconds"')
'2015-01-01T12:30:59.000000"

New in version 3.6: Added the fimespec argument.

datetime.__str__ ()
For a datetime instance d, str (d) is equivalentto d.isoformat (' ').

8.1. datetime — Basic date and time types 185

The Python Library Reference, Release 3.7.4rc1

datetime.ctime ()
Return a string representing the date and time, for example datetime (2002,

12, 4, 20, 30, 40).

ctime () == 'Wed Dec 4 20:30:40 2002'. d.ctime () is equivalent to time.ctime (time.
mktime (d.timetuple ())) on platforms where the native C ct ime () function (which time.ctime ()
invokes, but which datetime.ctime () does not invoke) conforms to the C standard.

datetime.strftime (format)

Return a string representing the date and time, controlled by an explicit format string. For a complete list of

formatting directives, see strftime() and strptime() Behavior.

datetime._ format__ (format)

Same as datetime.strftime (). This makes it possible to specify a format string for a datet ime object
in formatted string literals and when using str. format (). For a complete list of formatting directives, see

strftime() and strptime() Behavior.

Examples of working with datetime objects:

>>> from datetime import datetime, date, time

>>> # Using datetime.combine ()

>>> d = date (2005, 7, 14)

>>> t time (12, 30)

>>> datetime.combine (d, t)

datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now() or datetime.utcnow()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow ()

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060)

>>> # Using datetime.strptime ()

>>> dt = datetime.strptime("21/11/06 16:30", "2d/%m/%y SH:%M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple () to get tuple of all attributes
>>> tt = dt.timetuple ()

>>> for it in tt:

print (it)
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since lst January
-1 # dst - method tzinfo.dst () returned None

>>> # Date in ISO format
>>> ic = dt.isocalendar ()
>>> for it in ic:

print (it)
2006 # ISO year
47 # ISO week
2 # ISO weekday
>>> # Formatting datetime
>>> dt.strftime ("%A, 2%d. %B %Y $I:%M%p")
'Tuesday, 21. November 2006 04:30PM'
>>> 'The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:%I:%M%p}

—"month", "time")

.'.format (dt, "day",

(continues on next page)

186

Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

'The day is 21, the month is November, the time is 04:30PM.'

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo, timezone
>>> class KabulTz (tzinfo) :
Kabul used +4 until 1945, when they moved to +4:30
UTC_MOVE_DATE = datetime (1944, 12, 31, 20, tzinfo=timezone.utc)
def utcoffset (self, dt):
if dt.year < 1945:
return timedelta (hours=4)
elif (1945, 1, 1, 0, 0) <= dt.timetuple()[:5] < (1945, 1, 1, 0, 30):
If dt falls in the imaginary range, use fold to decide how
to resolve. See PEP495
return timedelta (hours=4, minutes=(30 if dt.fold else 0))
else:
return timedelta (hours=4, minutes=30)

def fromutc(self, dt):
A custom implementation is required for fromutc as
the input to this function is a datetime with utc values
but with a tzinfo set to self
See datetime.astimezone or fromtimestamp

Follow same validations as in datetime.tzinfo
if not isinstance(dt, datetime):

raise TypeError ("fromutc () requires a datetime argument")
if dt.tzinfo is not self:

raise ValueError ("dt.tzinfo is not self")

if dt.replace(tzinfo=timezone.utc) >= self.UTC_MOVE_DATE:
return dt + timedelta (hours=4, minutes=30)

else:
return dt + timedelta (hours=4)

def dst (self, dt):
return timedelta (0)

def tzname (self, dt):
if dt >= self.UTC_MOVE_DATE:
return "+04:30"
else:
return "+04"

def _ repr_ (self):

r

return f"{self. class . __name__ } ()"

>>> tzl = KabulTz ()

>>> # Datetime before the change

>>> dtl = datetime (1900, 11, 21, 16, 30, tzinfo=tzl)
>>> print (dtl.utcoffset())

4:00:00

>>> # Datetime after the change

>>> dt2 = datetime (2006, 6, 14, 13, 0, tzinfo=tzl)
>>> print (dt2.utcoffset())

4:30:00

>>> # Convert datetime to another time zone

(continues on next page)

8.1. datetime — Basic date and time types 187

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

>>> dt3 = dt2.astimezone (timezone.utc)

>>> dt3

datetime.datetime (2006, 6, 14, 8, 30, tzinfo=datetime.timezone.utc)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=KabulTz())

>>> dt2.utctimetuple () == dt3.utctimetuple ()

True

8.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment viaa t zinfo
object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0)
All arguments are optional. #zinfo may be None, or an instance of a t zinfo subclass. The remaining arguments
may be integers, in the following ranges:

e 0 <= hour < 24,

e 0 <= minute < 60,

e 0 <= second < 60,

e 0 <= microsecond < 1000000,
e fold in [0, 1].

If an argument outside those ranges is given, Va lueError is raised. All default to 0 except #zinfo, which defaults
to None.

Class attributes:

time.min
The earliest representable ¢ ime, time (0, 0, 0, 0).

time.max
The latest representable t ime, time (23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal t i me objects, t imedelta (microseconds=1), although
note that arithmetic on ¢ ime objects is not supported.

Instance attributes (read-only):

time.hour
In range (24).

time.minute
In range (60).

time.second
In range (60).

time.microsecond
In range (1000000).

time.tzinfo
The object passed as the tzinfo argument to the ¢ ime constructor, or None if none was passed.

188 Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

time.fold
In [0, 17]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when clocks
are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased for
political reasons.) The value 0 (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.
Supported operations:

» comparison of time to t ime, where a is considered less than b when a precedes b in time. If one comparand is
naive and the other is aware, TypeError is raised if an order comparison is attempted. For equality comparisons,
naive instances are never equal to aware instances.

If both comparands are aware, and have the same t z i n fo attribute, the common t z i n o attribute is ignored and
the base times are compared. If both comparands are aware and have different ¢ z i n fo attributes, the comparands
are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()). In order to stop mixed-
type comparisons from falling back to the default comparison by object address, when a t i me object is compared
to an object of a different type, TypeError is raised unless the comparison is == or ! =. The latter cases return
False or True, respectively.

Changed in version 3.3: Equality comparisons between naive and aware ¢ ime instances don’t raise TypeError.
* hash, use as dict key
« efficient pickling
In boolean contexts, a t ime object is always considered to be true.

Changed in version 3.5: Before Python 3.5, a t ime object was considered to be false if it represented midnight in UTC.
This behavior was considered obscure and error-prone and has been removed in Python 3.5. See bpo-13936 for full
details.

Other constructor:

classmethod time.fromisoformat (fime_string)
Return a time corresponding to a fime_string in one of the formats emitted by time.isoformat ().
Specifically, this function supports strings in the format(s) HH[:MM[:SS[.££f£[£££]1]]1] [+HH:MM[:SS[.
ffffff]]].

Caution: This does not support parsing arbitrary ISO 8601 strings - it is only intended as the inverse operation
of time.isoformat ().

New in version 3.7.
Instance methods:

time.replace (hour=self.hour, minute=self.minute, second=self.second, microsecond=self.microsecond, tz-
info=self.tzinfo, * fold=0)
Return a t i me with the same value, except for those attributes given new values by whichever keyword arguments
are specified. Note that t zinfo=None can be specified to create a naive ¢ ime from an aware t ime, without
conversion of the time data.

New in version 3.6: Added the fold argument.

time.isoformat (fimespec="auto’)
Return a string representing the time in ISO 8601 format, HH:MM:SSAIftff or, if microsecond is
0, HH:MM:SS If utcoffset () does not return None, a string is appended, giving the UTC offset:
HH:MM.:SS.fifftf +HH:MM]| :SS| .fHfff]] or, if self.microsecond is 0, HH:MM:SS+HH:MM[:SS[fffttt]].

8.1. datetime — Basic date and time types 189

https://bugs.python.org/issue13936

The Python Library Reference, Release 3.7.4rc1

The optional argument fimespec specifies the number of additional components of the time to include (the default
is "auto'). It can be one of the following:

e 'auto': Same as 'seconds' if microsecondis 0, same as 'microseconds' otherwise.
e 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH:MM format.

e '"seconds': Include hour, minute, and second in HH:MM:SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds. HH:MM:SS.sss
format.

e 'microseconds': Include full time in HH:MM:SS ffffff format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid fimespec argument.

>>> from datetime import time

>>> time (hour=12, minute=34, second=56, microsecond=123456) .isoformat (timespec=
—'minutes')

'12:34"

>>> dt = time (hour=12, minute=34, second=56, microsecond=0)

>>> dt.isoformat (timespec="microseconds")

'12:34:56.000000"

>>> dt.isoformat (timespec="auto')

'12:34:56"

New in version 3.6: Added the fimespec argument.

time.__str__ ()
For atime?, str (t) isequivalentto t.isoformat ().

time.strftime (format)
Return a string representing the time, controlled by an explicit format string. For a complete list of formatting
directives, see strftime() and strptime() Behavior.

time.__format__ (format)
Same as time.strftime (). This makes it possible to specify a format string for a t i me object in formatted
string literals and when using st r. format (). For a complete list of formatting directives, see strftime() and
strptime() Behavior.

time.utcoffset ()
If tzinfois None, returns None, else returns self.tzinfo.utcoffset (None), and raises an exception
if the latter doesn’t return None or a t imede1ta object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

time.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (None), and raises an exception if the
latter doesn’t return None, or a t imede t a object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

time.tzname ()

If tzinfois None, returns None, else returns self.tzinfo.tzname (None), or raises an exception if the
latter doesn’t return None or a string object.

Example:

190 Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

>>> from datetime import time, tzinfo, timedelta
>>> class TZ1l(tzinfo):
def utcoffset (self, dt):
return timedelta (hours=1)
def dst(self, dt):
return timedelta (0)
def tzname (self,dt):
return "+01:00"
def _ repr__ (self):
return f" o"

>>> t = time (12, 10, 30, tzinfo=TZ1())
>>> t

datetime.time (12, 10, 30, tzinfo=TZ1())
>>> t.isoformat ()

'12:10:30+01:00"

>>> t.dst ()

datetime.timedelta (0)

>>> t.tzname ()

'+01:00'"

>>> t.strftime ("$SH:SM:%S %72")

'12:10:30 +01:00"

>>> 'The is {:%H:%M}."'.format ("time", t)
'The time is 12:10."

8.1.6 tzinfo Objects

class datetime.tzinfo

This is an abstract base class, meaning that this class should not be instantiated directly. You need to derive a con-
crete subclass, and (at least) supply implementations of the standard t z i n fo methods needed by the datet ime
methods you use. The datet ime module supplies a simple concrete subclass of t zinfo, t imezone, which

can represent timezones with fixed offset from UTC such as UTC itself or North American EST and EDT.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their attributes as being in local time, and the t zinfo object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time

object passed to them.

Special requirement for pickling: A tzinfosubclass musthavean ___init__ () method that can be called with
no arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that may be

relaxed in the future.

A concrete subclass of ¢ z1info may need to implement the following methods. Exactly which methods are needed

depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

tzinfo.utcoffset (dt)

Return offset of local time from UTC, as a t imede1ta object that is positive east of UTC. If local time is west
of UTC, this should be negative. Note that this is intended to be the total offset from UTC; for example, if a
tzinfo object represents both time zone and DST adjustments, utcoffset () should return their sum. If
the UTC offset isn’t known, return None. Else the value returned must be a t imede 1t a object strictly between
-timedelta (hours=24) and timedelta (hours=24) (the magnitude of the offset must be less than one

day). Most implementations of utcoffset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst (dt) # daylight-aware class

8.1. datetime — Basic date and time types

191

The Python Library Reference, Release 3.7.4rc1

If utcofrfset () does not return None, dst () should not return None either.
The default implementation of utcoffset () raises Not ImplementedError.
Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

tzinfo.dst (dt)

Return the daylight saving time (DST) adjustment, as a t imedelta object or None if DST information isn’t
known. Return timedelta (0) if DST is not in effect. If DST is in effect, return the offset as a t imedelta
object (see utcoffset () for details). Note that DST offset, if applicable, has already been added to the UTC
offset returned by utcoffset (), so there’s no need to consult dst () unless youre interested in obtaining
DST info separately. For example, datetime.timetuple () callsits t zinfo attribute’s dst () method to
determine how the tm_isdst flag should be set, and t zinfo. fromutc () calls dst () to account for DST
changes when crossing time zones.

An instance 7z of a t z1nfo subclass that models both standard and daylight times must be consistent in this sense:
tz.utcoffset (dt) - tz.dst(dt)

must return the same result for every datetime dtf with dt .tzinfo == tz For sane tzinfo subclasses,
this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but only
on geographic location. The implementation of datetime.astimezone () relies on this, but cannot detect
violations; it’s the programmer’s responsibility to ensure it. If a t z1info subclass cannot guarantee this, it may be
able to override the default implementation of tzinfo. fromutc () to work correctly with ast imezone ()
regardless.

Most implementations of dst () will probably look like one of these two:

def dst(self, dt):
a fixed-offset class: doesn't account for DST
return timedelta (0)

or

def dst(self, dt):
Code to set dston and dstoff to the time zone's DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.
Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

tzinfo.tzname (dt)
Return the time zone name corresponding to the datet ime object dt, as a string. Nothing about string names is
defined by the datet ime module, and there’s no requirement that it mean anything in particular. For example,
“GMT”, “UTC”, “-5007, “-5:00”, “EDT”, “US/Eastern”, “America/New York” are all valid replies. Return None
if a string name isn’t known. Note that this is a method rather than a fixed string primarily because some t zinfo
subclasses will wish to return different names depending on the specific value of dt passed, especially if the t zinfo
class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

These methods are called by a datetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a t i me object passes None as the argument. A t zinfo subclass’s
methods should therefore be prepared to accept a df argument of None, or of class datet ime.

192 Chapter 8. Data Types

The Python Library Reference, Release 3.7.4rc1

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is appro-
priate if the class wishes to say that time objects don’t participate in the t zinfo protocols. It may be more useful for
utcoffset (None) to return the standard UTC offset, as there is no other convention for discovering the standard
offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as self.
t zinfo methods can rely on this, unless user code calls tzinfo methods directly. The intent is that the tzinfo
methods interpret df as being in local time, and not need worry about objects in other timezones.

There is one more t zinfo method that a subclass may wish to override:

tzinfo.fromutec (df)
This is called from the default datetime.astimezone () implementation. When called from that, dt .
tzinfo is self, and df's date and time data are to be viewed as expressing a UTC time. The purpose of
fromutc () is to adjust the date and time data, returning an equivalent datetime in self’s local time.

Most t z in fo subclasses should be able to inherit the default fromutc () implementation without problems. It’s
strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight time,
and the latter even if the DST transition times differ in different years. An example of a time zone the default
fromutc () implementation may not handle correctly in all cases is one where the standard offset (from UTC)
depends on the specific date and time passed, which can happen for political reasons. The default implementations
of astimezone () and fromutc () may not produce the result you want if the result is one of the hours
straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError 1if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst()
raise ValueError 1if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

In the following t zinfo_examples . py file there are some examples of ¢ z1info classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta (0)
HOUR = timedelta (hours=1)
SECOND = timedelta (seconds=1)

A class capturing the platform's idea of local time.
(May result in wrong values on historical times in

timezones where UIC offset and/or the DST rules had
changed in the past.)

import time as _time

STDOFFSET = timedelta (seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = —_time.altzone)
else:

(continues on next page)

8.1. datetime — Basic date and time types 193

The Python Library Reference, Release 3.7.4rc1

(continued from previous page)

DSTOFFSET = STDOFFSET
DSTDIFF = DSTO