The Python Library Reference
Release 3.11.3

Guido van Rossum and the Python development team

April 04, 2023

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Notesonavailability e 3
1.1.1 WebAssembly platforms L 4
Built-in Functions 5
Built-in Constants 31
3.1 Constants added by the sitemodule e 32
Built-in Types 33
4.1 Truth Value Testing o i e e e e e 33
4.2 Boolean Operations — and, O, NOT « . v v v v v v v v v e e e e e e e e e e e e e e e e 33
43 COMPAriSONS « v v v v v v e 34
4.4 Numeric Types — int, float, complexX v v v v i it i it e e e e e e 34
4.4.1 Bitwise Operations on Integer Types oo 36
4.4.2 Additional Methods on Integer Types v v v v v i v i e e e e 36
443 Additional Methodson Float 39
4.4.4 Hashingof numeric types e e e 40
4.5 Tterator Types o o L e e 41
4.5.1 Generator Types L. e e 42
4.6 Sequence Types — 1ist, tuple, range v v v v v vttt e 42
4.6.1 Common Sequence Operations v v v v v v v vt e e e e e e e e e e 42
4.6.2 Immutable Sequence Types« o o v i i i e e e e e e 44
4.6.3 Mutable Sequence Types e 44
4.6.4 LiStSo e e e e 45
4.6.5 Tuples e 46
4.6.6 RaNZES e e e e e e e e e 46
477 TextSequence Type — STT . . . o v v v v i i e e e e e e e e e e e e e e 48
47.1 StringMethods e 49
47.2 printf-style String Formatting oo oo 57
4.8 Binary Sequence Types — bytes, bytearray, memoryview 60
4.8.1 BytesODJECtS o i e e e e e e e e e e e e e 60
4.8.2 Bytearray ObJectS o v v e e e e e e e e e e e e e e e e e 61
4.8.3 Bytesand Bytearray Operations o 62
4.8.4 printf-style Bytes Formatting L 0., 73
4.8.5 Memory VIEWS o i e e e e e e 75
4.9 SetTypes — set, frozenseto i it e 82
410 Mapping Types — dicCt . . v v v v v i e 85
4.10.1 Dictionary VIew ODJECES v v v v e 88
4.11 Context Manager Types o e e 90

4.12 Type Annotation Types — Generic Alias, Union oo 91

4.12.1 Generic Alias Type« o v i i e e e e e e e e e 91
4122 Union Type . . . o v i i e e e e e e e e e e e e 95
4.13 Other Built-in Types o e 96
4.13.1 Modules e e e e e e e e e e 96
4.13.2 Classesand Class Instances o v v i v i i i e e e e e e e e e 97
4.13.3 FunctionsS v i v v it e e e e e e e e e e e e e e 97
4134 Methods e e e e 97
4135 Code ObJects o v v i e e e e e e e e e e 98
4.13.6 TypeObjects e 98
41377 TheNullObject e e e 98
4.13.8 The Ellipsis Object o o o e e e e e e e e e 98
4.13.9 The NotImplemented Object o i it e e e 98
4.13.10 Boolean Values e e e e 98
4.13.11 Internal Objects e e 99
4.14 Special Attributes L e e e e e e 99
4.15 Integer string conversion length limitation Lo 99
4.15.1 Affected APIS o e e e e e e 100
4.15.2 Configuring the limit L e e e 101
4.15.3 Recommended configuration oL oo 101
Built-in Exceptions 103
5.1 EXCEpPON CONLEXL . .« v v v v v it e 103
5.2 Inheriting from built-in exceptions L Lo e e e e e e e e e e 104
5.3 Baseclasses e e e e e e e e e e e e e e 104
5.4 Concrete €XCePLONS .« v v v v v v v v e 105
541 OSeXCeptions . . . v v v v v i e e e e e e e e e e e e e e e e e e e 110
5.5 Warningso e e e e e e e e e e e e e 112
5.6 EXCeption groups ot e e e e e e e e e e e e 113
5.7 Exception hierarchy e 115
Text Processing Services 117
6.1 string— Common String OPEerations v v vt e e e e e e e e e e e e e e e e 117
6.1.1 String constants L. e e e e e e e e e e e e 117
6.1.2 Custom String Formatting e 118
6.1.3 Format String Syntax e e e e e e e e e e e e e e e 119
6.1.4 Template Strings o v o v v e e e e e e e e e e e e e e e e e 126
6.1.5 Helper functions L e e e e e e e 128
6.2 re — Regular expression Operations v v vttt e e e e e e e e e e e e e e e e 128
6.2.1 Regular Expression Syntax 129
6.2.2 Module CONENtS v v v v v e 134
6.2.3 Regular Expression Objects i i e e e e e 140
6.2.4 Match Objects o e e e e e e e e 141
6.2.5 Regular Expression Examples L 144
6.3 difflib — Helpers for computingdeltas 150
6.3.1 SequenceMatcher Objects i e e e e e e e 154
6.3.2 SequenceMatcher Examples L e e e 157
6.3.3 Differ Objects o e e e e e e e e 158
6.3.4 DifferExample e 158
6.3.5 A command-line interface todifflib L Lo 159
6.4 textwrap —Textwrappingandfilling. 161
6.5 unicodedata—Unicode Database i e 164
6.6 stringprep — Internet String Preparation L Lo 166
6.7 readline —GNUreadlineinterface e 168

6.8

7.1

7.2

8 Data Types

8.1

8.2

8.3
8.4

6.7.1 Initfile e
6.7.2 Linebuffer. e
6.7.3 Historyfile. o L e e e e e
6.7.4 History list e
6.7.5 Startuphooks L. e e e e e e
6.7.6 Completion e e e e e e e
6.7.7 Example e e e e e e e e e e e e
rlcompleter — Completion function for GNU readline
6.8.1 Completer Objects e
7 Binary Data Services
struct — Interpret bytes as packed binarydata L o Lo
7.1.1 Functions and Exceptions e
7.1.2 Format Strings o v e e e e e e e e e e e e e e
7.1.3 Applicationso e e e e e e
T1d CIasSeS . . o v v v e e e e e e e e e e e e
codecs — Codec registry and base classes e
7.2.1 CodecBase Classes i i i it e
7.2.2 Encodingsand Unicode e e
7.2.3 Standard Encodings
7.2.4 Python Specific Encodings e e e
7.2.5 encodings.idna — Internationalized Domain Names in Applications
7.2.6 encodings.mbcs — Windows ANSIcodepage
7.2.77 encodings.utf_8_sig— UTF-8 codec with BOM signature
datetime — Basic date and time typeso i e e e e e e e e e e e
8.1.1 Aware and Naive Objects i i e e e
8.1.2 Constants e e e e e e e e e e e
8.1.3 Available Types i e e e e e e e e e e
8.1.4 timedelta ObJectS v v v i it e e e e e e e e e e
8.1.5 date ODbJects i i i e e e e e e e e e
8.1.6 datetime Objects L. e
8.1.7 time ObJeCtS v i e e e e
8.1.8 tzinfo ObJeCts o i i i e e e e
8.1.9 timezone Objects o i e e e e e e e e e
8.1.10 strftime () and strptime () Behavior
zoneinfo —IANA timezone support L. e
82.1 Using ZoneInfo i i i i i i e e e e e
8.2.2 DatasouUICes v v v v i e e e e e e e e e e e e e e e e
8.2.3 The ZoneInfoclass v v i i i i e e e e e e e
824 FunctionS e e e e
825 Globals e
8.2.6 Exceptions and warnings i et e e e e e e e e e e e e
calendar — General calendar-related functions
collections — Container datatypes v v v v i i e e e e e e e e e e
84.1 ChainMap obJeCtS v v v v v e i e e e e e e e e e e e e e e e e
84.2 Counter ObJeCtS v v v i i e e e e e e e e e e e e
843 dequeobjects e
844 defaultdict objects i it e e e e
8.4.5 namedtuple () Factory Function for Tuples with Named Fields
84.6 OrderedDict ODJECIS v v v v v i i e e e e e e e e e
847 UserDIcCL ODJECES . . v v v v i it e e e e e e e e e e e e e e e e
84.8 UserListT ObJECES . . o v v v v v v i i e e e e e e e e e e e e e e

175
175
176
176
180
181
182
185
192
193
196
198
199
199

201
201
201
202
202
203
207
212
223
227
233
234
238
238
239
240
242
243
243
243
248
249
251
254
258
260
263
266
266

9

849 UserStringobjects e 266

8.5 collections.abc — Abstract Base Classes for Containers 267
8.5.1 Collections Abstract Base Classes 268
8.5.2 Collections Abstract Base Classes — Detailed Descriptions 270
853 Examplesand Recipes 272
8.6 heapg—Heap queue algorithm 273
8.6.1 Basic Examples e e e e e e e e e 274
8.6.2 Priority Queue Implementation Notes i e e 275
8.6.3 Theory. o e e e e e e e e 276
8.7 Dbisect — Array bisectionalgorithmo o Lo 277
8.7.1 Performance NOtes i e 278
8.7.2 Searching Sorted Lists e e 278
8.7.3 Examples e e e e e e e e 279
8.8 array — Efficient arrays of numeric values oL oL 280
8.9 weakref —Weakreferences e e 283
8.9.1 Weak Reference Objects e 288
892 Example e e e 289
8.9.3 Finalizer Objects o v i e e e e e e e e e e e e 289
8.9.4 Comparing finalizers with __del__ () methods. 290
8.10 types — Dynamic type creation and names for built-in types 291
8.10.1 Dynamic Type Creation o v v i i v ittt it et e e e e e 292
8.10.2 Standard Interpreter Types e 292
8.10.3 Additional Utility Classes and Functions, 296
8.10.4 Coroutine Utility Functions o it e e 297
8.11 copy — Shallow and deep copy operations e 297
8.12 pprint — Datapretty printer e e e e 299
8.12.1 PrettyPrinter Objects e e e 301
8.12.2 Example L e e e 302
8.13 reprlib — Alternate repr () implementation e 305
8.13.1 ReprObjects o i i e e e e e e e e e 305
8.13.2 Subclassing Repr Objects e 306
8.14 enum— Support for enuUMerations L i e e e e e e e e 307
8.14.1 Module Contentsot iieeeeeeeeee 308
8.14.2 DataTypes . . . o v v i i e e e e e e e e e e e e e e e 309
8.14.3 Utilities and Decorators e 319
8.14.4 NoOtes e 320
8.15 graphlib — Functionality to operate with graph-like structures 321
8.15.1 EXCEptions o v e e e e e e e e 323
Numeric and Mathematical Modules 325
9.1 numbers — Numeric abstract base classes e 325
9.1.1 The numeric tOWEr ot ittt e e e e e e e e e e 325
9.1.2 Notes for type implementors v vt i e e e e e e e e e e e e 326
9.2 math— Mathematical functions L e 328
9.2.1 Number-theoretic and representation functions 328
9.2.2 Power and logarithmic functions o 332
9.2.3 Trigonometric functionso e e e e e 333
9.2.4 Angular CONVErsion v vttt e e e e e e e e e e e e 334
9.2.5 Hyperbolic functions e e e e e e 334
9.2.6 Special functions L. e e 335
927 COnStantS i e e e e e e e e e e e e e e e e e 335
9.3 cmath — Mathematical functions for complex numbers, 336
9.3.1 Conversions to and from polar coordinates 337
9.3.2 Power and logarithmic functions L e e e 337

10

11

9.3.3 Trigonometric functions it e e e e e e e e e e e
9.3.4 Hyperbolic functions e e e e e e e e e
9.3.5 Classification functions L e e e e
03.6 COonStantS it e e e e e e e e e e e e e e e
9.4 decimal — Decimal fixed point and floating point arithmetic
9.4.1 Quick-start Tutorial e e e e e
9.42 Decimal ObJECES v v v e e e e e e e e e e e e e e e
043 ConteXtObJECtS i e e e e e e e e e e e e
9.4.4 Constants i i e e e e e e e e e e
945 Roundingmodes. L e
9.4.6 Signals e
9.477 Floating POINt NOES v v v v ot e e e e e e e e e e e e
9.4.8 Workingwiththreads e e
949 RECIPES '« . v v v v e e e e e e e e e
9.4.10 Decimal FAQ e e e e e e e e e e
9.5 fractions—Rationalnumbers
9.6 random — Generate pseudo-random nUMbErS e e e e e e
9.6.1 Bookkeeping functions e e e e e e
9.6.2 Functions forbytes e e e
9.6.3 Functions for inte@ers e e e e
9.6.4 Functions for sequences e e e e e
9.6.5 Real-valued distributions e
9.6.6 Alternative Generator vttt e e e e e e e e e e
9.6.7 Noteson Reproducibility e
9.6.8 Examples e e e e
9.6.9 RecIpes e
9.7 statistics — Mathematical statistics functions Lo
9.7.1 Averages and measures of central location
9.7.2 Measuresof spread L e e e e e e e
9.7.3 Statistics for relations between twoinputs oL 0oL
9.74 Functiondetails L e e
9.7.5 EXCEPHiONS o i e e e e
9.7.6 NormalDist ObJeCtS i i i it e e e e e
Functional Programming Modules
10.1 itertools — Functions creating iterators for efficient looping
10.1.1 Ttertool functions e e e e e
10.1.2 Ttertools Recipes o o v i i e e e e e e e e e e
10.2 functools — Higher-order functions and operations on callable objects
10.2.1 partial Objects e e e
10.3 operator — Standard operators as functions
10.3.1 Mapping Operators to Functions e
10.3.2 In-place Operators v v v v v v e
File and Directory Access
11.1 pathlib — Object-oriented filesystem paths
I1.1.1 BasiCuse o o v e e e e e e e e e e
11.1.2 Purepaths o o e e e e e e
11.1.3 Concrete paths e
11.1.4 Correspondence to tools inthe os module
11.2 os.path — Common pathname manipulations
11.3 fileinput — Iterate over lines from multiple input streams
11.4 stat —Interpreting stat () results i e e e e
11.5 filecmp — File and Directory Comparisons

393
393
395
404
411
420
421
425
426

429
429
430
431
439
447
448
454
457
462

11.5.1 Thedircmpclass e e e e e e e e e e e 463

11.6 tempfile — Generate temporary files and directories 465
11.6.1 Examples 0 o e e e e e e e e e e e e e 468

11.6.2 Deprecated functions and variables oL oL, 469

11.7 glob — Unix style pathname pattern eXpansion v v vt v v v v v v v oo oo 469
11.8 fnmatch — Unix filename pattern matching o L. 471
119 linecache —Randomaccesstotextlines 472
11.10 shutil — High-level file operations e 473
11.10.1 Directory and files operations oo 473
11.10.2 Archiving operations i i e 479
11.10.3 Querying the size of the output terminal oo, 482

12 Data Persistence 485
12.1 pickle — Pythonobject serialization L 485
12.1.1 Relationship to other Pythonmodules oL, 485
12.1.2 Datastream format e e e e 486

12.1.3 Module Interface e 487
12.1.4 What can be pickled and unpickled? Lo oL, 491
12.1.5 Pickling Class Instances e 491
12.1.6 Custom Reduction for Types, Functions, and Other Objects 497
12.1.7 Out-of-band Buffers e 498

12.1.8 Restricting Globals e e e e e e e 500
12.1.9 Performance e e e e 501
12.1.10 Examples o e e 501

12.2 copyreg— Register pickle supportfunctions L. 502
122.1 Example o e 502

12.3 shelve — Python object persiStence o v v v v i i v e e e e e e e 503
12.3.1 Restrictions o o i e e e e e e e e e e e e e e 504

1232 Example e e e e e e e e e 505

12.4 marshal — Internal Python object serialization 505
12.5 dbm — Interfaces to Unix “databases” e 507
12.5.1 dbm.gnu— GNU’s reinterpretationof dbm 508
12.5.2 dbm.ndbm— Interface basedonndbm oL 510

12.5.3 dbm.dumb — Portable DBM implementation 510

12.6 sglite3 — DB-API 2.0 interface for SQLite databases 511
12.6.1 Tutorial o e e e 512
12.6.2 Reference e e 514

12.6.3 How-to guides o v i v e e e e e e e e e e e e e e e 533
12.6.4 Explanation L e e e e e e e e e e e e e e e 539

13 Data Compression and Archiving 541
13.1 zlib — Compression compatible withgzip 541
13.2 gzip—Supportforgzipfiles e 545
13.2.1 Examplesof usage oL e e e e e e e 547
13.2.2 Command Line Interface e 548

13.3 bz2 — Support for bzip2 compression oot e e e e e e 548
13.3.1 (De)compressionof files. e e e e 548
13.3.2 Incremental (de)compression v v i i e e e e e e e e e e e e e 550

13.3.3 One-shot (de)compression v v v v vt v e e e e e e e e e e e e 551

13.3.4 Examplesof usage 551

13.4 1lzma — Compression using the LZMA algorithm 552
13.4.1 Reading and writing compressed files L L e 553
13.4.2 Compressing and decompressing data inmemory o ..ot 554
13.4.3 Miscellaneous oL e e e e e e e e e e e e e 556

vi

13.4.4 Specifying custom filter chains e 556

13.4.5 Examples i e e e e e e e e e e e e e e 557

13.5 zipfile— WorkwithZIP archives e 558
13.5.1 ZipFile Objects o e e e e 559

13.52 PathObjects o e 564

13.5.3 PyZipFile Objects o e e e 565

13.54 ZipInfo ObJECtS o v i i e e e e e e e e e e e e e e e e e 566

13.5.5 Command-Line Interface e 568
13.5.6 Decompression pitfalls 568

13.6 tarfile —Readand write tar archive files L. 569
13.6.1 TarFile Objects e e e 572

13.6.2 TarInfo Objects o v i e e e e e e e e e e e e e 575

13.6.3 Command-Line Interface 576
13.6.4 Examples e e e e e e e e e e e 577

13.6.5 Supported tar formatso 579
13.6.6 UnicodeisSues v v v v i e e e e e e e 579

14 File Formats 581
14.1 csv—CSV File Readingand Writing 581
14.1.1 Module Contents v it e e e e e e 581

14.1.2 Dialects and Formatting Parameters o o vt i e e 585

14.1.3 Reader Objects o v v i e e e e e e e e e e e 586
14.1.4 Writer Objects o o e e e e e 586

14.1.5 Examples o e 587

142 configparser — Configuration file parser L 588
1421 Quick Start e e e e e e e e e e e e e 589
14.2.2 Supported Datatypes o o . e e e e e e e e e e e e e e 590

1423 Fallback Values e 591

14.2.4 Supported INI File Structure e 592
14.2.5 Interpolationof values 593
14.2.6 Mapping Protocol Access e e 594

14.2.7 Customizing Parser Behaviour e 595

14.2.8 Legacy APLExamples 0 i e e e e e e 599
1429 ConfigParser Objects e e 601
14.2.10 RawConfigParser Objects e 605
14.2.11 EXCEptions o o v vttt e e e e e e e e 606

143 tomllib—Parse TOMLAiles e 606
14.3.1 Examples i i e e e e e e e e e e e e e e 607

1432 ConversionTable e 608

144 netrc—mnetrcfileprocessing L. oL 608
14.4.1 netrc Objects« i e e e e e e e 609

145 plistlib — Generate and parse Apple .plistfiles 609
14.5.1 Examples o i e e e e e e e e e e e e e e e e e e e 611

15 Cryptographic Services 613
15.1 hashlib — Secure hashes and message digests i e 613
15.1.1 Hashalgorithms e e e e e e e e e e 613
15.1.2 SHAKE variable length digests 615

15.1.3 Filehashing e 616
15.1.4 Keyderivation L e e e e e 616

15.1.5 BLAKE2 e 617

15.2 hmac — Keyed-Hashing for Message Authentication 624
15.3 secrets — Generate secure random numbers for managing secrets 626
153.1 Randomnumbers L e 626

vii

15.3.2 Generating toKenS o . i e 627

15.3.3 Other functions i e e e e e e e 627
15.3.4 Recipesand best practices i L e e e e e e e e 628

16 Generic Operating System Services 629
16.1 os — Miscellaneous operating system interfaces o oo 629
16.1.1 File Names, Command Line Arguments, and Environment Variables 630
16.1.2 Python UTF-8 Mode e s e e 630
16.1.3 Process Parameters L 631
16.1.4 File Object Creation o v v v vttt ettt e e e e e 638
16.1.5 File Descriptor Operations v v v v v v e e e e e e e e e e e e e e e 638
16.1.6 Filesand Directories i e e e e e e e e 649
16.1.7 Process Management e e e e 672
16.1.8 Interface tothescheduler 685
16.1.9 Miscellaneous System Information Lo 687
16.1.10 Random numbers e e e e e e 689

16.2 io— Core tools for working with streams e 690
16.2.1 OVEIVIEW o i it e e e e e e e e e e 690

1622 TextEncoding e 691
16.2.3 High-level Module Interface 692
16.2.4 Classhierarchy 0 . o e e e e e e e e e e 693
1625 Performance e e e e 703

16.3 time — Time access and CONVETSIONS v v v v v v v v e et e e e e e e e e e e e e 704
16.3.1 Functions o i i e e e e e e e e e e e 705

16.3.2 Clock ID Constants o v v i it et e e e e e e e e e e e e e e 713
16.3.3 Timezone CONStants v v v v v vt v e e e e e e e e e e e 714

16.4 argparse — Parser for command-line options, arguments and sub-commands 715
16.4.1 Core Functionality e e e e e e e e e 715
16.4.2 Quick Links for add_argument() e 716
1643 Example L e 716
16.4.4 ArgumentParser objects e e e 718

16.4.5 The add_argument() method e e e 726
16.4.6 The parse_args)method e e e 737
16.4.7 Otherutilities L o e e e e e e e e e e e 740
16.4.8 Upgradingoptparse code e 748

16.5 getopt — C-style parser for command lineoptionso 749
16.6 logging — Logging facility for Python 751
16.6.1 Logger Objects o v i v e e e e e e e e e e e e 752
16.6.2 Logging Levels e e e e e 756
16.6.3 Handler Objects e 756
16.6.4 Formatter Objects i i i e e e e e e 758
16.6.5 Filter Objects o o i e e e e e e 760
16.6.6 LogRecord Objects v i i v i i e e e e e e e e e e e e 760
16.6.7 LogRecord attributes L e e e e e e e e e 761
16.6.8 LoggerAdapter Objects o e e e e e e e e 763
16.6.9 Thread Safety e 763
16.6.10 Module-Level Functions e 763
16.6.11 Module-Level Attributes e 768
16.6.12 Integration with the warningsmodule 768

16.7 logging.config— Logging configuration 769
16.7.1 Configuration functions oL e 769
16.7.2 Security considerations L. e e e e e 771

16.7.3 Configuration dictionary schema i i e e e 771
16.7.4 Configuration file format L e e e 777

viii

16.8 logging.handlers—Logginghandlers 780
16.8.1 StreamHandler e 780
16.8.2 FileHandler e 781
16.8.3 NullHandler e e e e e e 781
16.8.4 WatchedFileHandler 782
16.8.5 BaseRotatingHandler 782
16.8.6 RotatingFileHandler e e e 784
16.8.7 TimedRotatingFileHandler 784
16.8.8 SocketHandler L 786
16.8.9 DatagramHandler oL o 787
16.8.10 SysLogHandler e 787
16.8.11 NTEventLogHandler i i e e e i e e e e 789
16.8.12 SMTPHandler e e 790
16.8.13 MemoryHandler e 791
16.8.14 HTTPHandler e e e e e e e 791
16.8.15 QueueHandler e e e e 792
16.8.16 Queucluistener e e e e e e e e e e e e e e 793

16.9 getpass — Portable password input e e e e e 794

16.10 curses — Terminal handling for character-cell displays 795
16.10.1 Functions o o i it e e e e e e e e e e e e e e e e 795
16.10.2 Window Objects e 803
16.10.3 COonStants ¢ v v v v it e e e e e e e e e e e e e e e 809

16.11 curses.textpad — Text input widget for curses programs v v v v vt 814
16.11.1 TextboX ObJECtS . . . v v v v o o et e e e e e e e e e e e e e e e e e e 814

16.12 curses.ascii — Utilities for ASCII characters 815

16.13 curses.panel — A panel stack extension forcurses 818
16.13.1 Functions oo i e e e e e 818
16.13.2 Panel Objects o i i e e e e e e e e e e e e e e e e 818

16.14 plat form — Access to underlying platform’s identifyingdata 819
16.14.1 Cross Platform o e e 819
16.14.2 Java Platform L e e 821
16.14.3 Windows Platform L e 821
16.14.4 macOS Platform o e e e e e e e e e e 822
16.14.5 Unix Platforms L e 822
16.14.6 Linux Platforms e 822

16.15 errno — Standard errno system symbolso Lo 0oL 823

16.16 ctypes — A foreign function library for Python o000 830
16.16.1 ctypestutorial e e e e 830
16.16.2 ctypesreference o . i e e e e e e e e e e e e e e 848

17 Concurrent Execution 865

17.1 threading — Thread-based parallelism 865
17.1.1 Thread-Local Data e 868
17.1.2 Thread Objects o v v i e e e e e e e e e e e e e e 868
17.1.3 Lock Objects o i i e e e e e e e e e e e e e 871
17.1.4 RLock Objects o o e e e e 872
17.1.5 Condition Objects v i i e e e e e e 873
17.1.6 Semaphore ObJects v v v v v it e e e e e e e e e e e e e e e e 875
17.1.7 Event Objects o v i i e e e e e e e e e e e e e e e e e 876
17.1.8 Timer Objects o o it e e e e e e e e 877
17.1.9 Barrier Objects e 877
17.1.10 Using locks, conditions, and semaphores in the with statement 879

17.2 multiprocessing — Process-based parallelism. 879
17.2.1 Introduction e e e e e e 879

17.2.2 Reference e e e e e e 886

17.2.3 Programming guidelines e e e e e e e 915
1724 Examples o i e e e e e e e e e e e e e e e 919
17.3 multiprocessing.shared_memory — Shared memory for direct access across processes . . . 924
17.4 The concurrent package e 930
17.5 concurrent.futures — Launching parallel tasks 930
17.5.1 Executor ObJects o v v v v i it e e e e e e e e e e e e e e e e e e 930
17.5.2 ThreadPoolExecutor e e 931
17.5.3 ProcessPOOIEXeCUtOr o i i e e e e e e e e e 933
1754 Future Objects o0 e 934
1755 Module Functions e e e 936
17.5.6 EXCeption Classes v v v v v i i e 936
17.6 subprocess — Subprocess management v v v v e e e e e e e e e e e 937
17.6.1 Using the subprocessModule oo 937
17.6.2 Security Considerations e e 946
17.6.3 Popen Objects« o e e e e e e e e e 946
17.6.4 Windows Popen Helpers e e e 948
17.6.5 Older high-level API e 951
17.6.6 Replacing Older Functions with the subprocessModule 952
17.6.7 Legacy Shell Invocation Functions 956
17.6.8 INOES o o e e e e e e e e 956
177 sched—Eventscheduler e 957
17.7.1 Scheduler Objects o v i i e e e e e e e e e e e e e 958
17.8 queue — A synchronized queue class L. 959
17.8.1 Queue ObJects v i i i e e e e e e e e e e e e 960
17.8.2 SimpleQueue Objects 962
179 contextvars — Context Variables o 962
17.9.1 Context Variables e e e 963
17.9.2 Manual Context Management v v v v v vt e e e e e e e e e e e e 964
1793 asyncio support e e e e e e e e e e 965
17.10 _thread — Low-level threading API 966
18 Networking and Interprocess Communication 969
18.1 asyncio—AsynchronousI/O L 969
I18. 1.1 Runners o e e e e e e e e e 970
18.1.2 Coroutines and Tasks L e 972
18.1.3 Streams e e e e e e 989
18.1.4 Synchronization Primitives e e e e 997
18.1.5 Subprocesses e e e e e 1003
18.1.6 QUEUES e 1008
I18.1.7 EXCeptions o o v it e e e e e e 1011
18.1.8 EventLoop i o i e e e e e e e e e e e e e 1012
18.1.9 Futures e e e e 1035
18.1.10 Transports and Protocols o e e e e 1039
I8.1.11 Policies o o e e e 1053
18.1.12 Platform Support e 1056
18.1.13 Extending o . L e e e 1058
18.1.14 High-level APTIndex @ @ i i i e e e e e e e e e 1059
18.1.15 Low-level APTIndex e 1062
18.1.16 Developingwithasyncio e 1068
18.2 socket — Low-level networking interface oo 0oL 1071
18.2.1 Socket families 1072
1822 Module CONteNts« v vttt e e e e e e e e e e e e e 1074
18.2.3 Socket ObJects o v v i o e e e e e e e e e e e e e e e e 1086

18.2.4 Notes on socket timeoutS v v v i e e e e e e e e e 1094

18.2.5 Example e e e e e e e e e e e e e 1094
18.3 ss1 — TLS/SSL wrapper for socketobjects e 1098
18.3.1 Functions, Constants, and Exceptions 1099
1832 SSLSockets o e 1112
18.3.3 SSLCONEXtS o v v v it e e e e e e e e e e 1116
18.3.4 Certificates i i e e e e e e e 1124
18.3.5 Examples i e e e e e e e e e e e 1126
18.3.6 Notes on non-blockingsockets oL 1129
1837 Memory BIO Support e 1130
18.3.8 SSLSESSION . . . v v v ittt e e e e e e e e e 1132
18.3.9 Security considerations L. e e e e e e e e e e e e e 1132
18.3.10 TLS 1.3 . . o o e e e e 1133
184 select — Waitingfor /O completion L 1134
18.4.1 /dev/poll PollingObjects i i e e 1136
18.4.2 Edge and Level Trigger Polling (epoll) Objects 1137
18.4.3 Polling Objects o o i e e 1138
18.4.4 Kqueue ObJECtS o v i i e e e e e e e e e e e e e e e e 1139
18.4.5 Kevent ObJects o v v i e e e e e e e e e e e e 1140
18.5 selectors — High-level /O multiplexing 1141
18.5.1 Introduction e 1142
1852 Classes . . . v v v v it i e e e e 1142
18.5.3 Examples o i e e e e e e e e e e e e e e e e 1144
18.6 signal — Set handlers for asynchronous events e 1145
18.6.1 Generalrules e e 1145
18.6.2 Module contents e e e e e e e e e e e 1146
18.6.3 Examples e e e 1153
18.6.4 NoteonSIGPIPE e 1154
18.6.5 Note on Signal Handlers and Exceptions 1154
18.7 mmap — Memory-mapped filesupport oL 1155
18.7.1 MADV_*Constants v v v v o e e e e e e e e e e e e e e e e 1159
18.7.2 MAP_* Constants v v v v e e e e e e e e e e e 1160
19 Internet Data Handling 1161
19.1 email — Anemail and MIME handling package 1161
19.1.1 email.message: Representing an email message 1162
19.1.2 email.parser: Parsingemail messageso oo 1170
19.1.3 email.generator: Generating MIME documents 1174
19.1.4 email.policy: Policy Objects o i i ittt i 1177
19.1.5 email.errors: Exception and Defectclasses 1184
19.1.6 email.headerregistry: Custom Header Objects 1185
19.1.7 email.contentmanager: Managing MIME Content 1191
19.1.8 email: Examples i i i i e e e e e e e e e e e e 1193
19.1.9 email.message.Message: Representing an email message using the compat32 API . 1200
19.1.10 email.mime: Creating email and MIME objects from scratch 1208
19.1.11 email.header: Internationalized headers 1211
19.1.12 email.charset: Representing charactersets 1213
19.1.13 email.encoders: Encoders. e 1215
19.1.14 email.utils: Miscellaneous utilities 1216
19.1.15 email.iterators:Iterators e 1219
19.2 json—IJSONencoder and decoder e 1220
19.2.1 BasicUsage o oo i e 1222
19.2.2 Encodersand Decoders e 1224
19.2.3 EXCEPHONS « & v v v v v o e 1226

Xi

20

19.2.4 Standard Compliance and Interoperability 1227

19.2.5 Command Line Interface 1228
19.3 mailbox — Manipulate mailboxes in various formats oL o 0oL 1230
193.1 Mailboxobjects e 1230
1932 Messageobjects e 1238
1933 EXCEptions v v v v it e e e e e e e e e 1246
1934 Examples e e e e e e e e e e e e e e e e e e 1247
19.4 mimetypes — Map filenames to MIME types e 1248
19.4.1 MimeTypes Objects o o o e e e e e 1250
19.5 baset64 — Basel6, Base32, Base64, Base85 Data Encodings 1251
19.5.1 Security Considerationsottt e e e e e e e 1254
19.6 binascii — Convert between binaryand ASCIT 1254
19.7 quopri — Encode and decode MIME quoted-printabledata 1257
Structured Markup Processing Tools 1259
20.1 html — HyperText Markup Language support« o v v i i vttt e e 1259
20.2 html.parser — Simple HTML and XHTML parser o v v v .. 1259
20.2.1 Example HTML Parser Application 1260
20.2.2 HTMLParser Methods e 1261
20.2.3 Examples e e e e 1262
20.3 html.entities — Definitions of HTML general entities 1264
20.4 XML Processing Moduleso e e e e e e e e e e 1265
20.4.1 XML vulnerabilities e 1265
20.4.2 The defusedxml Package o 1266
20.5 xml.etree.ElementTree — The ElementTree XML APT 1266
20.5.1 Tutorial 1267
20.5.2 XPath support o o v i e e e e e e e e e e e e e e e e 1272
20.53 Reference e e 1274
20.5.4 XlInclude support e e e e e e e e e e e e e 1277
20.5.5 Reference e e 1278
20.6 xml.dom— The Document Object Model APT 1286
20.6.1 Module Contents oLt e e e e e e e e e e 1287
20.6.2 Objectsinthe DOM e 1287
20.6.3 Conformance e e e 1296
20.7 xml.dom.minidom— Minimal DOM implementation 1297
20.7.1 DOMODbJECtS . . . o v vttt e e e e e e e 1298
20.7.2 DOMExample e e e 1299
20.7.3 minidom and the DOM standard 1301
20.8 xml.dom.pulldom— Support for building partial DOM trees 1301
20.8.1 DOMEventStream Objects e 1303
209 xml.sax — Support for SAX2 parsersl e e e e e e e 1303
20.9.1 SAXException Objects i i e e e e e e e 1305
20.10 xml.sax.handler — Base classes for SAX handlers 1305
20.10.1 ContentHandler Objects o i i e e e e e e e e e 1307
20.10.2 DTDHandler Objects o e e e e 1310
20.10.3 EntityResolver Objects o oot e 1310
20.10.4 ErrorHandler Objects o e e e e 1310
20.10.5 LexicalHandler Objects o v v i v i i e e e e e e e e e e e e e e 1310
20.11 xml.sax.saxutils —SAX Utilities e 1311
20.12 xml.sax.xmlreader — Interface for XML parsers 1312
20.12.1 XMLReader Objects e 1313
20.12.2 IncrementalParser Objects L e 1314
20.12.3 Locator ObJects o v v v i e e e e e e e e e e e e e e 1314
20.12.4 InputSource ODJECTS v v v v v i e e e e e e e e e e e e e e e e e e e 1315

xii

20.12.5 The AttributesInterface e 1315

20.12.6 The AttributesNSInterface 1316
20.13 xml.parsers.expat — Fast XML parsingusing Expat 1316
20.13.1 XMLParser Objects it e e e e e e e 1317
20.13.2 ExpatError Exceptions 1321
20133 Exampleo e e e e 1322
20.13.4 Content Model Descriptions v v v v v v e e e e e e e e e e e e 1322
20.13.5 EXpat error CONStANLS v v v v v e i e e e e e e e e e e e e e e e e e e 1323
21 Internet Protocols and Support 1327
21.1 webbrowser — Convenient web-browser controller, 1327
21.1.1 Browser Controller Objects i v i e e e e e e 1330
21.2 wsgiref — WSGI Utilities and Reference Implementation 1330
21.2.1 wsgiref.util — WSGI environment utilities 1330
21.2.2 wsgiref.headers— WSGIresponse headertools 1332
21.2.3 wsgiref.simple_server —asimple WSGIHTTPserver 1333
21.24 wsgiref.validate — WSGI conformance checker 1334
21.2.5 wsgiref.handlers —server/gateway base classes 1335
21.2.6 wsgiref.types — WSGI types for static type checking 1339
21.27 Examples e e 1339
21.3 urllib—URLhandlingmodules e 1341
21.4 urllib.request — Extensible library for opening URLs 1341
21.4.1 Request Objects o v i v i e e e e e e e e e e e e 1346
21.4.2 OpenerDirector Objects e 1348
21.4.3 BaseHandler Objects o o i ittt e 1349
21.4.4 HTTPRedirectHandler Objects i ittt et e et 1350
21.4.5 HTTPCookieProcessor Objects v v v v i it et et e e e e e e e e 1351
21.4.6 ProxyHandler Objects 0 e e e e e e e 1351
21.477 HTTPPasswordMgr Objects it e 1351
21.4.8 HTTPPasswordMgrWithPriorAuth Objects 1352
21.4.9 AbstractBasicAuthHandler Objects 1352
21.4.10 HTTPBasicAuthHandler Objects o v it e e e e e e oo 1352
21.4.11 ProxyBasicAuthHandler Objects 1352
21.4.12 AbstractDigestAuthHandler Objects 1352
21.4.13 HTTPDigestAuthHandler Objects, 1353
21.4.14 ProxyDigestAuthHandler Objects o i 1353
21.4.15 HTTPHandler Objects i i it e e et e e e e e e s e 1353
21.4.16 HTTPSHandler Objects i i i e e e e e e e e e e e e e e e 1353
21.4.17 FileHandler Objects o o o i i e e e e e e e e e 1353
21.4.18 DataHandler Objects e 1353
21.4.19 FTPHandler Objects o e 1353
21.4.20 CacheFTPHandler Objects o o o i i v ittt s e e e et e 1354
21.4.21 UnknownHandler Objects o o v i i e e e e e e e e e e e 1354
21.4.22 HTTPErrorProcessor Objects v i v v i e e e e e e e e e e e e 1354
21.4.23 Examples e e e e e e e e e e 1354
21424 Legacyinterface e 1357
21.425 urllib.request Restrictions o i i i e e e 1359
21.5 urllib.response — Response classesusedbyurllib 1360
21.6 urllib.parse — Parse URLsinto components v v v v v v v v v v u .. 1360
21.6.1 URLParsing e e e e e e e e 1361
21.6.2 Parsing ASCII Encoded Bytes 1365
21.6.3 Structured Parse Results oL 1366
21.6.4 URLQUOLING o ittt e e e e e e e e e e e 1367
21.7 urllib.error — Exception classes raised by urllib.request, 1369

21.8 urllib.robotparser —Parserforrobots.txt 1369

219 http—HTTPmodules e e e 1371
21.9.1 HTTPstatus codes o o v v it i e e e e e e e e e 1371
2192 HTTPmethods e e 1373

21.10 http.client — HTTP protocolclient 1374
21.10.1 HTTPConnection ObJeCts o v v v v v it e et et e e e e e e e e 1376
21.10.2 HTTPResponse Objects v v v v v i e 1379
21.10.3 Examples o e e e e e e e e e e e e e e 1380
21.10.4 HTTPMessage Objects i i i it e ettt e e e e e e e e 1381

21.11 ftplib —FTPprotocol client e 1381
21.11.1 FTPObjects o o o o e e e e e e e e e e e e e 1384
21112 FTP_TLS ODbJects o v o o it e e e e e e e e e e e e e e e e e s e 1386

21.12 poplib —POP3 protocol client e e e e 1387
21.12.1 POP3 ODbJeCts o v v oo i e e e e e e e e e e e e e e e 1388
21.12.2 POP3 Example e 1390

21.13 imaplib —IMAP4 protocol client 1390
21.13.1 IMAP4 Objects o v it e e e e e e e e e e 1392
21.13.2 IMAP4 Example o o e e e e e e e e e e e e e 1397

21.14 smtplib — SMTP protocol client e 1397
21.14.1 SMTP Objects o o o o e e e e e e e e e 1400
21.142 SMTP Exampleo 1403

21.15 uuid — UUID objects accordingto RFC 4122 1404
21.15.1 Example o e e e e e e e e e e e e e 1407

21.16 socketserver — A framework for network servers oL oL 1408
21.16.1 Server Creation NOtES i ittt e e e e e e e 1409
21.16.2 Server Objects e e e 1410
21.16.3 Request Handler Objects L e 1412
21.16.4 Examples e e e e e e e e e e e e e e e e e 1413

21.17 http.server — HTTPservers o i i e e e e e e e 1416
21.17.1 Security Considerations v v v it e e e e e e e e e e e e e 1422

21.18 http.cookies — HTTP state management 1423
21.18.1 Cookie ObJeCts o v vt e e e e e e 1423
21.18.2 Morsel ObJects o v it e e e e e e e e e e e e 1424
21183 Example e e e e e e e e e e e 1425

21.19 http.cookiejar — Cookie handling for HTTP clients 1426
21.19.1 CookielJar and FileCookieJar Objects 1428
21.19.2 FileCookieJar subclasses and co-operation with web browsers 1430
21.19.3 CookiePolicy Objects i it e e e e e 1430
21.19.4 DefaultCookiePolicy Objects o o i e e e e e e e e 1431
21.19.5 Cookie ObJECtS . . . v v v v i e e e e e e e e e e e e e e e 1433
21.19.6 Examples oL e e e e e e e e e e e e 1434

21.20 xmlrpc — XMLRPC server and client modules 1435

21.21 xmlrpc.client — XML-RPCclientaccess i ii it .. 1435
21.21.1 ServerProxy Objects o v v i e e e e e e e e e e e e e 1437
21.21.2 DateTime ObJects v v v i o e et e e e e e e e e e e e e e e e e 1438
21.21.3 Binary ObJects« o o o e e e e e e e e e 1439
21.21.4 Fault Objects o o ittt e e e e e e e e e e 1440
21.21.5 ProtocolError Objects e e e e 1440
21.21.6 MultiCall Objects o o o e e e e e e 1441
21.21.7 Convenience Functions e 1442
21.21.8 Example of Client Usage 0 o i i i et e e e e e e e 1442
21.21.9 Example of Client and Server Usage 1443

21.22 xmlrpc.server — Basic XML-RPCservers 1443
21.22.1 SimpleXMLRPCServer Objects o ot i ittt e e e 1444

Xiv

22

23

21.23

21.22.2 CGIXMLRPCRequestHandler i
21.22.3 Documenting XMLRPC server e
21.22.4 DocXMLRPCServer Objects o i it e
21.22.5 DocCGIXMLRPCRequestHandler
ipaddress — IPv4/IPv6 manipulation libraryo oo
21.23.1 Convenience factory functions L
21232 TP AdAIesses v vttt e e e e
21.23.3 IP Network definitions e
21.23.4 Interface objects L L. e
21.23.5 Other Module Level Functions e
21.23.6 Custom Exceptions e e

Multimedia Services

22.1

22.2

wave — Read and write WAV fileso
22.1.1 Wave_read Objects o i e e e e e e e e e
22.1.2 Wave_write ODJECES v v i o e e e e e e e e e e e e e
colorsys — Conversions between color Systems oo e e

Internationalization

23.1

232

gettext — Multilingual internationalization Services ot vt
23.1.1 GNUgettext API e e e
23.1.2 Class-based API e
23.1.3 Internationalizing your programs and modules oL Lo
23.1.4 Acknowledgementso e e e e e e
locale — Internationalization SErviceso
23.2.1 Background, details, hints, tipsand caveats Lo e
23.2.2 For extension writers and programs that embed Python
23.2.3 Accesstomessage catalogs oL oL e e e e e

24 Program Frameworks

25

24.1

242

243

turtle —Turtle graphics o L L e e e e e e e
24.1.1 IntroduCtion o o v it e e e e e e e e e e e e e e e e e
24.1.2 Overview of available Turtle and Screenmethods
24.1.3 Methods of RawTurtle/Turtle and corresponding functions
24.1.4 Methods of TurtleScreen/Screen and corresponding functions
2415 Publicclasses L e e e
24.1.6 Help and configuration e e e e
24177 turtledemo—DemoOsSCripts« o v it v ittt e e
24.1.8 Changessince Python 2.6 e e e
24.1.9 Changessince Python 3.0 e e e
cmd — Support for line-oriented command interpreters o L.
2421 CmdObjects e e
2422 CmdExample e e e e e e
shlex — Simple lexical analysis L
24.3.1 shlex ODJECtS v v v o e e e e e e e e e e e e e e e
2432 ParsingRules e e e e e e
24.3.3 Improved Compatibility with Shells L .

Graphical User Interfaces with Tk

25.1

tkinter — Pythoninterface to Tcl/Tk o oo e
25.1.1 Architecture i i e e e e e e e e e e e e
25.1.2 Tkinter Modules e e e e e e e e e e e e
25.1.3 Tkinter Life Preserver o e e e e e e e e e e e e
25.1.4 Threadingmodel L e e e e e e e
25.1.5 Handy Reference e e e e e

XV

25.1.6 FileHandlers e e 1545

25.2 tkinter.colorchooser — Colorchoosingdialog 1546
25.3 tkinter.font — Tkinter font wrapper 1546
254 Tkinter Dialogs L e 1548
254.1 tkinter.simpledialog— Standard Tkinter input dialogs 1548
2542 tkinter.filedialog—-Fileselectiondialogs 1548
25.4.3 tkinter.commondialog— Dialog window templates 1550
25.5 tkinter.messagebox — Tkinter message prompts o v vt e e e e . 1551
25.6 tkinter.scrolledtext — Scrolled Text Widget 1551
2577 tkinter.dnd—Draganddropsupport e 1552
25.8 tkinter.ttk —Tkthemedwidgets 1553
25.8.1 Using Ttk o o o e e e e e 1553
25.82 Ttk WIdgets o o o e e e e e e 1554
25.83 Widget. e e 1554
2584 CombobOXo e e e e e e e e e 1557
25.8.5 SpinboxX e e 1558
25.8.6 Notebook 1559
25.8.7 Progressbar e e e e e e e e e e e 1561
25.8.8 Separator e e e e e e e e e e 1562
25.8.9 Sizegrip e e 1562
25.8.10 Treeview v v v v i e e e e e e e e e e e e 1562
25.8.11 Ttk Styling o e e e e 1568
259 tkinter.tix —Extensionwidgetsfor Tk, 1571
25.9.1 Using TiX . . . o v vt it e e e e e e e e 1572
2592 Tix WIdgets o e e e 1572
2593 TixCommands i e e e e e e e e e 1575
25.10 IDLE . . .« o e 1576
25.10.1 Menus e e e 1577
25.10.2 Editing and Navigation 0 0 i e e e e e e e e e e e e 1580
25.10.3 Startupand Code Execution 1584
25.10.4 Helpand Preferences e 1587
25.10.5 idlelib .. .o 1588
26 Development Tools 1589
26.1 typing—Supportfortypehints Lo 1589
26.1.1 Relevant PEPs e 1590
26.1.2 Type aliases v v v i e e e e e e e e e e e e e e e e e e e 1590
26.1.3 NewType . . . o o v i e e e e e e e e e e e e 1591
26.1.4 Callable e e 1592
26.1.5 GEeNETICS . « . v v v v i e e e e e e e e e e e e e e e e e 1593
26.1.6 User-defined generic types o v v i it i e e e e e e 1593
20.1.7 The ANy tyPe . . . o v v i i i e e e e e e e e 1596
26.1.8 Nominal vs structural SUbtyping o 0 i e e e e e 1597
26.1.9 Modulecontents 1598
26.1.10 Deprecation Timeline of Major Features 1630
26.2 pydoc — Documentation generator and online helpsystem 0. .. 1631
26.3 Python Development Mode L 1632
26.4 Effects of the Python Development Mode, 1632
26.5 ResourceWarning Example oL e e e 1633
26.6 Badfile descriptorerrorexampleo e e 1634
26.7 doctest — Testinteractive Pythonexamples 0oL, 1635
26.7.1 Simple Usage: Checking Examples in Docstrings 1637
26.7.2 Simple Usage: Checking Examplesina TextFile 1638
2673 HowltWorks 1639

xvi

26.7.4 Basic APL
26.7.5 Unittest APL
26.7.6 Advanced API e
26.777 Debugging e e
26.7.8 S0apboX e e
26.8 unittest — Unittesting framework L e
26.8.1 Basicexample e e e e e e e e e e e e e e e e
26.8.2 Command-Line Interface
26.83 TestDiscovery o . L e e e e e e
26.8.4 Organizingtestcode e e e e e e e e e e
26.8.5 Re-usingoldtestcode
26.8.6 Skipping tests and expected failures oL L
26.8.7 Distinguishing test iterations using subtests oL e
26.8.8 Classesand functions L e
26.8.9 Classand Module Fixtures e
26.8.10 Signal Handling e e
269 unittest.mock —mockobjectlibrary oL o
269.1 Quick Guide e e e e
269.2 TheMock Class
2693 Thepatchers oL e
26.9.4 MagicMock and magic method support L
26.9.5 Helpers e
26.10 unittest.mock —gettingstarted e e e e
26.10.1 Using Mock o o e e e e e e
26.10.2 Patch Decorators e e
26.10.3 Further Examples o o e e e e e e e e
26.11 2to3 — Automated Python 2 to 3 code translation L.
20.11.1 Using 2t03 o o o e e e e e e e e
26.11.2 FIXEIS . . . o o v o i e
26.11.3 1ib2to3 —2to3’slibrary o e e e
26.12 test — Regression tests package for Python o 0oL
26.12.1 Writing Unit Tests for the test package
26.12.2 Running tests using the command-line interface
26.13 test.support — Utilities for the Python testsuite
26.14 test .support.socket_helper — Utilities for socket tests
26.15 test.support.script_helper — Utilities for the Python execution tests
26.16 test.support .bytecode_helper — Support tools for testing correct bytecode generation
26.17 test.support.threading_helper — Utilities for threading tests
26.18 test.support.os_helper — Utilitiesforostests
26.19 test.support.import_helper — Utilities for importtests
26.20 test.support.warnings_helper — Utilities for warnings tests

27 Debugging and Profiling

27.1 Auditeventstable
27.2 bdb —Debugger framework oL
273 faulthandler — Dump the Python traceback,
27.3.1 Dumpingthe traceback L
27.3.2 Faulthandlerstate
27.3.3 Dumping the tracebacks afteratimeout Lo
27.3.4 Dumping the traceback onausersignal oL
27.3.5 Issuewithfiledescriptors L
27.3.6 Example e
274 pdb —The Python Debugger e
27.4.1 Debugger Commands L e e e e e e e e e e e e

1693

27.5 The Python Profilers e e e e e e e e 1798
27.5.1 Introduction tothe profilers e e 1798
27.5.2 Instant User’s Manual e e e 1798
2753 profileand cProfile Module Reference 1800
2754 The Stats Class o o e e e 1802
27.5.5 WhatIs Deterministic Profiling? L 1804
27.5.6 LIMItations it e 1805
27577 Calibration. oL e e e e e e 1805
27.5.8 Usingacustom timer i i i it i i e e e e 1806

27.6 timeit — Measure execution time of small code snippets L. 1806
27.6.1 Basic Examples e 1806
27.6.2 PythonlInterface e e e e e e 1807
27.6.3 Command-Line Interface 1809
27.6.4 Examples e e e e e e e e e 1810

2777 trace — Trace or track Python statement execution 1811
27.7.1 Command-Line Usage ittt 1812
27.7.2 Programmatic Interface 1813

27.8 tracemalloc —Tracememoryallocations i vt 1814
27.8.1 Examples e e e e e e e e e e e 1815
27.82 APL . . . 1819

28 Software Packaging and Distribution 1827

28.1 distutils — Building and installing Python modules 1827

28.2 ensurepip — Bootstrapping the pipinstaller L L. 1828
28.2.1 Command lineinterface L 1828
2822 Module APT e 1829

28.3 venv — Creation of virtual environments e e 1829
28.3.1 Creating virtual environments oo e e e 1830
2832 Howvenvs work L e e e e e e e e e e 1832
2833 APL . . . e 1833
28.3.4 Anexample of extending EnvBuilder oL 1835

28.4 zipapp — Manage executable Python zip archives 1839
28.4.1 BasicExample e e e e e e e e e 1840
28.4.2 Command-Line Interface 1840
2843 Python APL e 1841
28.4.4 Examples e e e e 1842
28.4.5 Specifying the Interpreter o e e e e e e e e e e e 1842
28.4.6 Creating Standalone Applications with zipapp v o vt i i e 1843
28.4.7 The Python Zip Application Archive Format, 1845

29 Python Runtime Services 1847

29.1 sys — System-specific parameters and functions oo Lo 1847

29.2 sysconfig— Provide access to Python’s configuration information 1868
29.2.1 Configuration variables Lo e e e e 1869
29.2.2 Installation paths L. 1869
29.2.3 Other functions o i e e e e e e e e 1871
2924 Using sysconfigaSasCript v v v v v v v v it e e e e e e e e e e e 1872

293 builtins—Built-inobjects L e e 1873

294 _ _main___ — Top-level code environmento 1873
204.1 _ name_ == ' maln__ ' ... e e s 1874
2942 _ _main__.pyinPythonPackages o 1876
2043 import _ MAIN_ .. i e 1877

29.5 warnings —Warningcontrol L L e e e e e e e 1879
29.5.1 Warning Categories e e e e e e e e e e 1879

xviii

29.5.2
29.5.3
2954
29.5.5
29.5.6
29.5.7

The Warnings Filter e e e e
Temporarily Suppressing Warnings oL
Testing Warnings e e e e e e e
Updating Code For New Versions of Dependencies
Available Functions
Available Context Managers oo i i e e e e

20.6 dataclasses —DataClasses v v i it e e e e e e

29.6.1
29.6.2
29.6.3
29.6.4
29.6.5
29.6.6
29.6.7
29.6.8
29.6.9
29.6.10

Module contents e e e e e e e
PoSt-Init Processingot e e e e e e e e e e
Classvariables o e e e e
Init-only variables e
Frozeninstances L.
Inheritance
Re-ordering of keyword-only parametersin ___init__ ()
Default factory functionso
Mutable default values L e
Descriptor-typed fields

29.7 contextlib — Utilities for with-statement contexts v v v v v v i

29.7.1
29.7.2
29.7.3

Utilities
Examplesand Recipes L
Single use, reusable and reentrant context managerso e e e e ...

290.8 abc — Abstract Base Classes i i e e e e e e e e
2909 atexit —Exithandlers e e

29.9.1

atexit Example o e e e

29.10 traceback — Print or retrieve a stack traceback L oo

29.10.1
29.10.2
29.10.3
29.10.4

TracebackExceptionObjects o L e
StackSummary ObJects e e e e
FrameSummary ODbJects o o i it e e e e e e e e e e
Traceback Examples L e e e e e

29.11 __ future__ — Future statement definitions
29.12 gc — Garbage Collector interface L
29.13 inspect — Inspectliveobjects L. L

29.13.1
29.13.2
29.13.3
29.13.4
29.13.5
29.13.6
29.13.7
29.13.8
29.13.9

Typesand membersl e e e e e e
Retrieving source code L. e e e e e e e
Introspecting callables with the Signature object
Classes and functions L it i e e e e
The interpreter stack oL e e e
Fetching attributes statically L
Current State of Generators and Coroutines oo
Code Objects Bit Flags o o e e e
Command Line Interface e

29.14 site — Site-specific configurationhook oo 0oL

29.14.1
29.14.2
29.14.3

Readline configuration e
Module contents e e e e e e e e e
Command Line Interface e

30 Custom Python Interpreters
30.1 code — Interpreter base Classes o i . e e e e e e e e e e e e

30.1.1
30.1.2

Interactive Interpreter Objects i e e e e
Interactive Console Objects e

30.2 codeop — Compile Pythoncode L

31 Importing Modules
31.1 zipimport — Import modules from Zip archives

1886

Xix

31.1.1 zipimporter ODJECtS v v i e e e e e e e e e e e e e e e 1956

31.1.2 Examples e e e e e e e e e e e e e 1957
31.2 pkgutil — Package extension utility L o e 1957
31.3 modulefinder —Find modulesused by ascript 1961
31.3.1 Example usage of ModuleFindert 1961
31.4 runpy — Locating and executing Pythonmodules 1962
31.5 importlib — The implementation of import L., 1964
31.5.1 Introductionl 1964
31.52 Functions e e e 1965
31.53 importlib.abc — Abstract base classes related toimport. 1967
3154 importlib.machinery —Importersand pathhooks 1973
31.5.,5 dimportlib.util - Utility code for importers 1978
31.5.6 Examples e e e e e e e e e e e 1981
31.6 importlib.resources—Resources i i 1984
31.7 Deprecated functions Lo e 1985
31.8 importlib.resources.abc — Abstract base classes for resources 1987
31.9 Using importlib.metadata i 1989
31901 OVervIew e 1989
31.9.2 Functional APT e 1990
31.93 Distributionso e e e e e 1993
31.9.4 Distribution Discoveryo e 1993
31.9.5 Extending the search algorithm Lo 1994
31.10 The initialization of the sys.path module searchpath. 1994
31.10.1 Virtual environments o i it i e e e e e e e e e e e e 1995
31.10.2 _pthfiles o e e e e 1995
31.10.3 Embedded Python L 1995
32 Python Language Services 1997
32.1 ast — Abstract Syntax Trees e 1997
32.1.1 Abstract Grammaro e e e e e e e e e e e e e e e e e 1997
32.1.2 Nodeclasses v i it e e e e e 2000
32.1.3 ast Helpers. o . e e e e e e e 2028
32.1.4 Compiler Flags o 0 e e e e e e 2031
32.1.5 Command-Line Usage e 2032
32.2 symtable — Access to the compiler’s symbol tables L0000 L. 2032
32.2.1 Generating Symbol Tables 2033
32.2.2 Examining Symbol Tables e e e 2033
32.3 token — Constants used with Python parsetrees 2035
324 keyword— Testing for Pythonkeywords o L. 2039
32.5 tokenize — Tokenizer for Pythonsource Lo oL, 2039
32.5.1 Tokenizing Input e 2039
3252 Command-Line Usage o it v ittt e e e 2041
3253 Examples e e e e e e e e e e e e e e e 2041
32.6 tabnanny — Detection of ambiguous indentation oL 2043
3277 pyclbr — Python module browser support oo 2044
32.77.1 Function Objects e 2045
3272 Class ObJECtS . . . v v v i it e e e e e e e e e e 2045
32.8 py_compile — Compile Pythonsourcefiles 2046
32.8.1 Command-Line Interface 2047
32.9 compileall — Byte-compile Python libraries, 2048
32.9.1 Command-lin€ USE o v i i e e e e e e e e e e e e 2048
32.9.2 Publicfunctions e e e e 2049
32.10 dis — Disassembler for Python bytecode 2052
32.10.1 Bytecode analysis i e e e e e e e e e e e e e e e 2053

XX

32.10.2 Analysis functions
32.10.3 Python Bytecode Instructions
32.10.4 Opcode collections

32.11 pickletools — Tools for pickle developers

32.11.1 Command line usage
32.11.2 Programmatic Interface

33 MS Windows Specific Services
33.1 msvcrt — Useful routines from the MS VC++runtime o v v i v v v

33.1.1
33.1.2

File Operations
ConsoleI/O

33.1.3 Other Functions e e e e e e e e

33.2 winreg— Windows registry access
Functions
Constants
Registry Handle Objects

33.2.1
33.2.2
3323

33.3 winsound — Sound-playing interface for Windows oL oL

34 Unix Specific Services
34.1 posix — The most common POSIX systemcalls.

35

34.1.1
34.1.2

34.4.1

Large File Support
Notable Module Contents
34.2 pwd — The password database
34.3 grp — The group database
344 termios — POSIX style tty control
Example

345 tty—Terminal control functions L L e e

34.6 pty — Pseudo-terminal utilities
Example

34.6.1

3477 fcntl —The fentl and ioctlsystemcalls. o . o oo o e
34.8 resource — Resource usage information oL oL e e e

34.8.1
34.8.2

Resource Limits
Resource Usage

34.9 syslog — Unix syslog library routines

349.1 Examples e e e e e e e e e e e e e e
Superseded Modules
35.1 aifc—Readand write AIFFand AIFCfiles,
35.2 asynchat — Asynchronous socket command/response handler
35.2.1 asynchat Example e e e e e e
35.3 asyncore — Asynchronous sockethandler 0.
35.3.1 asyncore Example basic HTTP client
35.3.2 asyncore Example basicechoserver L L o
354 audioop — Manipulate raw audiodatao
35.5 cgi — Common Gateway Interface support e
35.5.1 Introductionl e
3552 Usingthecgimodule e
35.5.3 Higher Level Interface e
3554 Functions i e e e e e
35.5.5 Caring about SECUTILY v v v v v e e e e e e e e e e e e e e e e e e
35.5.6 Installing your CGI scriptona Unix system o v v v i vt v vt v oo o e o
35.5.7 Testingyour CGIsCript i e e
35.5.8 Debugging CGIsCripts o o i i i e e e e e e e e e e
35.5.9 Common problems and solutions L.

xxi

35.6 cgitb — Traceback manager for CGIscripts. o i i i it 2121

35.7 chunk —Read IFFchunkeddata 2122
35.8 crypt — Function to check Unix passwords oo v it i i 2123
35.8.1 Hashing Methods L e 2124
35.8.2 Module Attributes L. e e e e e e e e e e 2124
35.8.3 Module Functions e e e e 2124
35.8.4 Examples e e e e e e e e e e e 2125
359 imghdr — Determine the typeof animage Lo 2126
35.10 imp — Access the importinternals L. oL e 2127
35.10.1 Examples e 2131
35.11 mailcap — Mailcap file handling 2132
35.12 msilib — Read and write Microsoft Installer files 2133
35.12.1 Database Objects o v v i e e e e e e e e e e e e e 2134
35.12.2 View ODbjects o o oo e e e e e e e 2135
35.12.3 Summary Information Objects L 2135
35.12.4 Record Objects o o v i i e e e e 2136
35.12.5 EITOrS . . o o o i i e e e e e 2136
35.12.6 CABODJECtS o o i e e e e e e e e 2136
35.12.7 Directory ObJects v o v v i e e e e e e e e e e e e e e 2137
35.12.8 Features v v v v i e e e e e e e e e e e e e e e e e e 2137
35.12.9 GUICIasses o v v v e e e e e e e e e e e e 2138
35.12.10Precomputed tables L. e e 2139
35.13 nis — Interface to Sun’s NIS (Yellow Pages) 2139
35.14 nntplib — NNTP protocol client o i e 2140
35.14.1 NNTP Objects o o o o e e e e e e e e e e e e e e 2142
35.14.2 Utility functions oL e e e e e e e e e e e 2147
35.15 optparse — Parser for command lineoptions oL 2147
35.15.1 Background L e e e e e e e e e e e 2148
35.15.2 Tutorial L e e e e e e e 2150
35.15.3 Reference Guide e 2157
35.15.4 Option Callbacks e 2167
35.15.5 Extending optparse e e e e e e e 2171
35.16 ossaudiodev — Access to OSS-compatible audio devices 2174
35.16.1 Audio Device ObJECts o v v v v e e e e e e e e e e e e e e e e 2175
35.16.2 Mixer Device Objects o o v i i e e e e e e e e e e 2177
35.17 pipes — Interface toshell pipelines Lo L 2178
35.17.1 Template Objects e 2179
35.18 smtpd — SMTP Server e 2180
35.18.1 SMTPServer Objects o v v v v et e e e e e e e e e e e e e e e e e 2180
35.18.2 DebuggingServer Objects o o i i e e e e e e e e e e e 2181
35.18.3 PureProxy Objects e 2181
35.18.4 SMTPChannel Objects o o o e e e e 2181
35.19 sndhdr — Determine type of soundfile L. 2183
35.20 spwd — The shadow password database e 2184
35.21 sunau—Read and write Sun AUfiles e 2185
35.21.1 AU_read Objects o o i e e e e e 2186
3521.2 AU_write ObJeCts v o v v i e e e e e e e e e e e e e e e e 2187
3522 telnetlib—Telnetclient 2188
35.22.1 Telnet Objects o vt o e e e e e e e e e 2189
35.22.2 Telnet Example o e e e e e e e e e e e e 2191
35.23 uu — Encode and decode uuencode files oL Lo 2191
35.24 xdrlib — Encode and decode XDR data 2192
35.24.1 Packer Objects L e 2192
35.24.2 Unpacker Objects o i i e 2194

xxii

35.24.3 EXCEPLONS « . v v v v v o e 2195

36 Security Considerations 2197
A Glossary 2199
B About these documents 2213

B.1 Contributors to the Python Documentation e 2213
C History and License 2215

C.1 Historyof the software i i e e e e e e e e e e 2215

C.2 Terms and conditions for accessing or otherwise using Python 2216

C.2.1 PSFLICENSE AGREEMENT FOR PYTHON 3.11.3 2216

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 2217

C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 2218

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 2219

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.3 DOCUMENTATION2219

C.3 Licenses and Acknowledgements for Incorporated Software 2220

C.3.1 Mersenne TWISIET o v v i it e et e e e e e e e e e e e e e e e 2220

C.3.2 Sockets o e e e e 2221

C.3.3 Asynchronous soCKet SEIVICES v v v v v vt v ittt e e e e e e 2221

C.3.4 CooKie management v v v v v e 2222

C.3.5 EXecution traCing v v v v v i i e e e e e e e e e e e e e e e e 2222

C.3.6 UUencode and UUdecode functions oo v it v i e o 2223

C.3.7 XML Remote Procedure Calls e 2223

C3.8 test_epoll e e 2224

C.3.9 Selectkqueue e e e e e e e e e 2224

C.3.10 SipHash24 2225

C3.1 strtodand dtoa. L . oo e e e e e e e e e e e e e 2225

C3.12 OpenSSL o 2226

C3I3 eXPat. . . o o v o it e e e e e e 2228

C3.14 Ibfli . . . o e 2229

C3.15 zlib . . oo e e e 2229

C3.16 cfuhash e 2230

C3.17 HIbmpdec e e 2230

C3.18 W3CCIANTeSt SUIte v v vt e et e e e e e e e e e e e e e 2231

C3.19 Audioop v v i e e e 2232
D Copyright 2233
Bibliography 2235
Python Module Index 2237
Index 2241

xxiii

XXiv

The Python Library Reference, Release 3.11.3

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that are
commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents listed
below. The library contains built-in modules (written in C) that provide access to system functionality such as file I/O that
would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs by abstracting away platform-specifics into platform-neutral
APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so it
may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is an active collection of hundreds of thousands of components (from individual
programs and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

https://pypi.org
https://pypi.org

The Python Library Reference, Release 3.11.3

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists. For
these types, the Python language core defines the form of literals and places some constraints on their semantics, but does
not fully define the semantics. (On the other hand, the language core does define syntactic properties like the spelling and
priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection. Some
modules are written in C and built in to the Python interpreter; others are written in Python and imported in source form.
Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some provide interfaces
that are specific to particular operating systems, such as access to specific hardware; others provide interfaces that are
specific to a particular application domain, like the World Wide Web. Some modules are available in all versions and
ports of Python; others are only available when the underlying system supports or requires them; yet others are available
only when a particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you will
get a reasonable overview of the available modules and application areas that are supported by the Python library. Of
course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual), or
look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a section or two. Regardless of the order
in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the remainder of the
manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

¢ An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make any
claims about its existence on a specific operating system.

* If not separately noted, all functions that claim “Availability: Unix” are supported on macOS, which builds on a
Unix core.

« If an availability note contains both a minimum Kernel version and a minimum libc version, then both conditions
must hold. For example a feature with note Availability: Linux >= 3.17 with glibc >= 2.27 requires both Linux
3.17 or newer and glibc 2.27 or newer.

The Python Library Reference, Release 3.11.3

1.1.1 WebAssembly platforms

The WebAssembly platforms wasm32—-emscripten (Emscripten) and wasm32-wasi (WASI) provide a subset of
POSIX APIs. WebAssembly runtimes and browsers are sandboxed and have limited access to the host and external
resources. Any Python standard library module that uses processes, threading, networking, signals, or other forms of
inter-process communication (IPC), is either not available or may not work as on other Unix-like systems. File I/O,
file system, and Unix permission-related functions are restricted, too. Emscripten does not permit blocking I/0. Other
blocking operations like sIeep () block the browser event loop.

The properties and behavior of Python on WebAssembly platforms depend on the Emscripten-SDK or WASI-SDK ver-
sion, WASM runtimes (browser, NodeJS, wasmtime), and Python build time flags. WebAssembly, Emscripten, and
WASI are evolving standards; some features like networking may be supported in the future.

For Python in the browser, users should consider Pyodide or PyScript. PyScript is built on top of Pyodide, which itself
is built on top of CPython and Emscripten. Pyodide provides access to browsers’ JavaScript and DOM APIs as well as
limited networking capabilities with JavaScript’'s XMLHt t pRequest and Fetch APIs.

¢ Process-related APIs are not available or always fail with an error. That includes APIs that spawn new processes
(fork (), execve ()), wait for processes (waitpid()), send signals (kil1 ()), or otherwise interact with
processes. The subprocess is importable but does not work.

* The socket module is available, but is limited and behaves differently from other platforms. On Emscripten,
sockets are always non-blocking and require additional JavaScript code and helpers on the server to proxy TCP
through WebSockets; see Emscripten Networking for more information. WASI snapshot preview 1 only permits
sockets from an existing file descriptor.

* Some functions are stubs that either don’t do anything and always return hardcoded values.

* Functions related to file descriptors, file permissions, file ownership, and links are limited and don’t support some
operations. For example, WASI does not permit symlinks with absolute file names.

4 Chapter 1. Introduction

https://webassembly.org/
https://emscripten.org/
https://wasi.dev/
https://emscripten.org/
https://wasi.dev/
https://wasmtime.dev/
https://pyodide.org/
https://pyscript.net/
https://emscripten.org/docs/porting/networking.html>

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here in
alphabetical order.

Built-in Functions

A E L R
abs () enumerate () len() range ()
aiter/() eval () 1list () repr ()
all() exec () locals () reversed()
any () round ()
anext () F M
ascii() filter() map () S

float () max () set ()
B format () memoryview () setattr ()
bin{() frozenset () min () slice()
bool () sorted()
breakpoint () G N staticmethod ()
bytearray () getattr () next () str()
bytes () globals () sum ()

(0] super ()

C H object ()
callable () hasattr() oct () T
chr () hash () open () tuple ()
classmethod () help() ord () type ()
compile () hex ()
complex () P Vv

I pow () vars ()
D id() print ()
delattr () input () property () V/
dict () int () zip ()
dir() isinstance()
divmod () issubclass () _

iter () __import__ ()

The Python Library Reference, Release 3.11.3

abs (x)

Return the absolute value of a number. The argument may be an integer, a floating point number, or an object
implementing __abs__ (). If the argument is a complex number, its magnitude is returned.

aiter (async_iterable)

Return an asynchronous iterator for an asynchronous iterable. Equivalent to calling x . __aiter__ ().
Note: Unlike iter (), aiter () has no 2-argument variant.
New in version 3.10.

all (iterable)

Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

awaitable anext (async_iterator)

awaitable anext (async_iterator, default)
When awaited, return the next item from the given asynchronous iterator, or default if given and the iterator is
exhausted.

This is the async variant of the next () builtin, and behaves similarly.

This calls the __anext__ () method of async_iterator, returning an awaitable. Awaiting this returns the next
value of the iterator. If default is given, it is returned if the iterator is exhausted, otherwise St opAsyncIter—
ation is raised.

New in version 3.10.

any (iterable)

Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

ascii (object)

As repr (), return a string containing a printable representation of an object, but escape the non-ASCII characters
in the string returned by repr () using \x, \u, or \U escapes. This generates a string similar to that returned by
repr () in Python 2.

bin (x)

Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x is not
a Python int object, it has to define an ___index__ () method that returns an integer. Some examples:

>>> bin (3)
'Ob11"

>>> bin (-10)
'-0b1010"

If the prefix “Ob” is desired or not, you can use either of the following ways.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

>>> format (14, '#b'), format (14, 'b'")
('Ob1110', '1110")

>>> f'{14:4b}', £'{14:b}"'

('Ob1110', '1110")

See also format () for more information.

class bool (x=Fulse)

Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing procedure. If
x is false or omitted, this returns False; otherwise, it returns True. The bool class is a subclass of int (see
Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and True
(see Boolean Values).

Changed in version 3.7: x is now a positional-only parameter.

breakpoint (*args, **kws)

This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.set_trace ()
expecting no arguments. In this case, it is purely a convenience function so you don’t have to explicitly import pdb
or type as much code to enter the debugger. However, sys.breakpointhook () can be set to some other
function and breakpoint () will automatically call that, allowing you to drop into the debugger of choice. If
sys.breakpointhook () is not accessible, this function will raise Runt imeError.

Raises an auditing event builtins.breakpoint with argument breakpointhook.

New in version 3.7.

class bytearray (source=b")

class bytearray (source, encoding)

class bytearray (source, encoding, errors)

Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as most
methods that the byt es type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

 If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

« If it is an infeger, the array will have that size and will be initialized with null bytes.

« If it is an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

e If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.

See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes (source=b")
class bytes (source, encoding)

class bytes (source, encoding, errors)

Return a new “bytes” object which is an immutable sequence of integers in the range 0 <= x < 256. bytesis
an immutable version of bytearray — it has the same non-mutating methods and the same indexing and slicing

behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().

The Python Library Reference, Release 3.11.3

Bytes objects can also be created with literals, see strings.
See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Operations.

callable (object)

Return True if the object argument appears callable, a1 se if not. If this returns True, it is still possible that a
call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a class returns
a new instance); instances are callable if their classhasa _ call_ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)

Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a', while chr (8364) returns the string '€ "'. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

@classmethod

Transform a method into a class method.

A class method receives the class as an implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2):

The @classmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. f ()) or on an instance (such as C () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object is
passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in this
section. For more information on class methods, see types.

Changed in version 3.9: Class methods can now wrap other descriptors such as property ().

Changed in version 3.10: Class methods now inherit the method attributes (__module_ , _ name__,
__qualname__,__doc__and __annotations__)and have anew ___wrapped___ attribute.

Changed in version 3.11: Class methods can no longer wrap other descriptors such as property ().

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=- 1)

Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source can
either be a normal string, a byte string, or an AST object. Refer to the a st module documentation for information
on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it wasn’t
read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will be
printed).

The optional arguments flags and dont_inherit control which compiler options should be activated and which future
features should be allowed. If neither is present (or both are zero) the code is compiled with the same flags that
affect the code that is calling compile (). If the flags argument is given and dont_inherit is not (or is zero) then
the compiler options and the future statements specified by the flags argument are used in addition to those that

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the flags (future features
and compiler options) in the surrounding code are ignored.

Compiler options and future statements are specified by bits which can be bitwise ORed together to specify multiple
options. The bitfield required to specify a given future feature can be found as the compiler_ flag attribute on
the _Feature instance inthe __ future__ module. Compiler flags can be found in a st module, with PyCF_
prefix.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the opti-
mization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is
true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source contains
null bytes.

If you want to parse Python code into its AST representation, see ast . parse ().

Raises an auditing event compi le with arguments source and £ilename. This event may also be raised by
implicit compilation.

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in the code
module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string when compiling
to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also, input in 'exec' mode does not have
to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

New in version 3.8: ast .PyCF_ALLOW_TOP_LEVEL_AWATIT can now be passed in flags to enable support for
top-level await, async for,and async with.

class complex (real=0, imag=0)
class complex (string)

Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without a
second parameter. The second parameter can never be a string. Each argument may be any numeric type (including
complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion like int and
float. If both arguments are omitted, returns 0.

For a general Python object x, complex (x) delegates to x.___complex__ (). If __complex__ () is not
defined then it falls back to _ float_ (). If _ float__ () is not defined then it falls back to __ in-
dex__ ().

Note: When converting from a string, the string must not contain whitespace around the central + or — operator.
For example, complex ('1+273") isfine, but complex ('l + 23') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

The Python Library Reference, Release 3.11.3

Changed in version 3.8: Fallsbackto __index__ () if __complex__ () and__float__ () arenotdefined.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, 'foobar') isequivalentto del x.foobar. name need not be a Python identifier (see
setattr()).

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.
For other containers see the built-in 11 st, set, and tuple classes, as well as the collect ions module.

dir ()

dir (object)
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes. This
allows objects that implement a custom __getattr__ () or __getattribute__ () function to customize
the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
___dict___ attribute, if defined, and from its type object. The resulting list is not necessarily complete and may
be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

« If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

¢ Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace

['"__builtins__ ', '_ _name_ ', 'struct']

>>> dir (struct) # show the names in the struct module

['Struct', '__all__ ', '_ builtins__', '__ _cached__', '__doc__', '_ file_ "',
' initializing__', '__loader__', '__name__', '_ package_ ',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_from']
>>> class Shape:

def _ dir_ (self):

C return ['area', 'perimeter', 'location']
>>> s = Shape ()
>>> dir(s)
["area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

detailed behavior may change across releases. For example, metaclass attributes are not in the result list when the
argument is a class.

divmod (a, b)

Take two (non-complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators apply.
For integers, the result is the same as (a // b, a % b). For floating point numbers the resultis (g, a %
b), where g is usually math.floor (a / b) but may be 1 less than that. Inanycaseg * b + a % bis

very close to a, if a % b is non-zero it has the same sign as b,and 0 <= abs(a % b) < abs(b).

enumerate (iterable, start=0)

Return an enumerate object. iferable must be a sequence, an iterator, or some other object which supports iteration.
The __next__ () method of the iterator returned by enumerate () returns a tuple containing a count (from
start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (iterable, start=0):
n = start
for elem in iterable:
yield n, elem
n += 1

eval (expression, globals=None, locals=None)

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and does
not contain a value for the key __builtins__, areference to the dictionary of the built-in module builtins
is inserted under that key before expression is parsed. That way you can control what builtins are available to the
executed code by inserting your own __builtins___ dictionary into globals before passing it to eval (). If the
locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are omitted, the expression is
executed with the globals and locals in the environment where eval () is called. Note, eval() does not have access
to the nested scopes (non-locals) in the enclosing environment.

The return value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> eval
2

>>> x =1
("x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In this
case, pass a code object instead of a string. If the code object has been compiled with 'exec' as the mode
argument, eval ()'s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and 1ocals ()
functions return the current global and local dictionary, respectively, which may be useful to pass around for use
by eval () or exec ().

If the given source is a string, then leading and trailing spaces and tabs are stripped.

11

The Python Library Reference, Release 3.11.3

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing only
literals.

Raises an auditing event e xec with the code object as the argument. Code compilation events may also be raised.

exec (object, globals=None, locals=None, /, *, closure=None)

This function supports dynamic execution of Python code. object must be either a string or a code object. If it is a
string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error occurs).' If
it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be valid as file input (see
the section file-input in the Reference Manual). Be aware that the nonlocal, yield, and return statements
may not be used outside of function definitions even within the context of code passed to the exec () function.
The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is provided,
it must be a dictionary (and not a subclass of dictionary), which will be used for both the global and the local
variables. If globals and locals are given, they are used for the global and local variables, respectively. If provided,
locals can be any mapping object. Remember that at the module level, globals and locals are the same dictionary.
If exec gets two separate objects as globals and locals, the code will be executed as if it were embedded in a class
definition.

If the globals dictionary does not contain a value for the key ___builtins__, areference to the dictionary of the
built-in module builtins isinserted under that key. That way you can control what builtins are available to the
executed code by inserting your own ___builtins__ dictionary into globals before passing it to exec ().

The closure argument specifies a closure—a tuple of cellvars. It’s only valid when the object is a code object containing
free variables. The length of the tuple must exactly match the number of free variables referenced by the code object.

Raises an auditing event e xe c with the code object as the argument. Code compilation events may also be raised.

Note: The built-in functions gZlobals () and Iocals () return the current global and local dictionary, respec-
tively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on locals
after function exec () returns.

Changed in version 3.11: Added the closure parameter.

filter (function, iterable)

Construct an iterator from those elements of iterable for which function is true. iterable may be either a sequence,
a container which supports iteration, or an iterator. If function is None, the identity function is assumed, that is,
all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for item
in iterable if function (item)) if functionis not None and (item for item in iterable
if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for which
function is false.

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline conversion
mode to convert Windows or Mac-style newlines.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

clas

s float (x=0.0)

Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+"' or '—"';a '+"' sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or positive or negative infinity. More
precisely, the input must conform to the £1oatvalue production rule in the following grammar, after leading
and trailing whitespace characters are removed:

sign = A

infinity = "Infinity" | "inf"

nan = "nan"

digitpart = digit (["_"] digit)*

number = [digitpart] "." digitpart | digitpart ["."]
exponent RES ("e" | "E") ["+"™ | "-"] digitpart
floatnumber = number [exponent]

floatvalue = [sign] (floatnumber | infinity | nan)

Here digit is a Unicode decimal digit (character in the Unicode general category Nd). Case is not significant,
so0, for example, “inf”, “Inf”, “INFINITY”, and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an
OverflowError will be raised.

For a general Python object x, float (x) delegates to x.___float__ (). If __float__ () is not defined
then it falls back to __index__ ().

If no argument is given, 0. O is returned.

Examples:

>>> float ('+1.23")

1.23

>>> float (' -12345\n")
-12345.0

>>> float ('1e-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity")
—-inf

The float type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.8: Falls back to __index__ () if __float__ () is not defined.

format (value, format_spec="")

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument; however, there is a standard formatting syntax that is used by most
built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st (value).

13

The Python Library Reference, Release 3.11.3

A call to format (value, format_spec) is translated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s ___format__ ()
method. A TypeError exception is raised if the method search reaches ob ject and the format_spec is non-
empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec is
not an empty string.

class frozenset (iterable=sel())

Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in class.
See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name)

getattr (object, name, default)

Return the value of the named attribute of object. name must be a string. If the string is the name of one of the ob-
ject’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar') isequivalent to
x . foobar. If the named attribute does not exist, default is returned if provided, otherwise At t ributeError
is raised. name need not be a Python identifier (see setattr ()).

Note: Since private name mangling happens at compilation time, one must manually mangle a private attribute’s
(attributes with two leading underscores) name in order to retrieve it with getattr ().

globals ()

Return the dictionary implementing the current module namespace. For code within functions, this is set when the
function is defined and remains the same regardless of where the function is called.

hasattr (object, name)

The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an At t ributeError or not.)

hash (object)

Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even if
they are of different types, as is the case for 1 and 1.0).

Note: For objects with custom __hash___ () methods, note that hash () truncates the return value based on
the bit width of the host machine. See __hash__ () for details.

help ()
help (request)

Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the inter-
active help system starts on the interpreter console. If the argument is a string, then the string is looked up as the
name of a module, function, class, method, keyword, or documentation topic, and a help page is printed on the
console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function when invoking help (), it means that the param-
eters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only parameters.

This function is added to the built-in namespace by the s it e module.

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are now
more comprehensive and consistent.
hex (x)

Convert an integer number to a lowercase hexadecimal string prefixed with “Ox”. If x is not a Python int object,
it has to define an __index___ () method that returns an integer. Some examples:

>>> hex (255)
'Oxff!

>>> hex (-42)
'-0x2a'’

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you can
use either of the following ways:

>>> ! "% 255, ! ''% 255, ! "% 255

('oxff', 'f£f', 'FEF')

>>> format (255, '#x'), format (255, 'x'), format (255, 'X'")
('oxff', 'ff', 'FE'")

>>> f£'{255:4#x}"', £'{255:x}"', f£'{255:X}"'

('oxff', 'ff', 'FF'")

o\

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.
CPython implementation detail: This is the address of the object in memory.
Raises an auditing event builtins.id with argument id.
input ()
input (prompt)
If the prompt argument is present, it is written to standard output without a trailing newline. The function then

reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = input('-—> ")

—-—> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

Raises an auditing event builtins . input with argument prompt before reading input

Raises an auditing event builtins.input/result with the result after successfully reading input.

class int (x=0)

15

The Python Library Reference, Release 3.11.3

class int (x, base=10)

Return an integer object constructed from a number or string x, or return 0O if no arguments are given. If x defines
int (),int(x) returns x.___int__ (). Ifxdefines ___index__ (),itreturns x.__index__ (). If
x defines __trunc__ (), itreturns x.__trunc__ (). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer in radix base. Optionally, the string can be preceded by + or — (with no space in between), have leading
zeros, be surrounded by whitespace, and have single underscores interspersed between digits.

A base-n integer string contains digits, each representing a value from 0 to n-1. The values 0-9 can be represented
by any Unicode decimal digit. The values 10-35 can be represented by a to z (or A to Z). The default base is 10.
The allowed bases are 0 and 2-36. Base-2, -8, and -16 strings can be optionally prefixed with 0b/0B, 00/00, or
0x/0X, as with integer literals in code. For base 0, the string is interpreted in a similar way to an integer literal
in code, in that the actual base is 2, 8, 10, or 16 as determined by the prefix. Base 0 also disallows leading zeros:
int ('010', O0) isnotlegal, while int ('010') and int ('010"', 8) are.

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index__ method,
that method is called to obtain an integer for the base. Previous versions used base.___int__ instead of base.
__index_ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.8: Falls back to __index__ () if __int__ () is not defined.
Changed in version 3.11: The delegation to __trunc__ () is deprecated.

Changed in version 3.11: int string inputs and string representations can be limited to help avoid denial of ser-
vice attacks. A ValueError is raised when the limit is exceeded while converting a string x to an int or
when converting an int into a string would exceed the limit. See the integer string conversion length limitation
documentation.

isinstance (object, classinfo)

Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect, or virfual)
subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo is a
tuple of type objects (or recursively, other such tuples) or a Union Type of multiple types, return True if object is
an instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError exception
is raised. TypeError may not be raised for an invalid type if an earlier check succeeds.

Changed in version 3.10: classinfo can be a Union Type.

issubclass (class, classinfo)

Return True if class is a subclass (direct, indirect, or virfual) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects (or recursively, other such tuples) or a Union Type, in which case return
True if class is a subclass of any entry in classinfo. In any other case, a TypeError exception is raised.

Changed in version 3.10: classinfo can be a Union Type.

iter (object)

iter (object, sentinel)

Return an iferator object. The first argument is interpreted very differently depending on the presence of the sec-
ond argument. Without a second argument, object must be a collection object which supports the iterable protocol
(the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method with in-
teger arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If the
second argument, sentinel, is given, then object must be a callable object. The iterator created in this case will
call object with no arguments for each call toits ___next__ () method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned.

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

See also Iterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-width
blocks from a binary database file until the end of file is reached:

from functools import partial
with open('mydata.db', 'rb') as f:
for block in iter (partial (f.read, 64), b'"):
process_block (block)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

CPython implementation detail: 1en raises OverflowError on lengths larger than sys.maxsize, such
as range (2 ** 100).

class list

class list (iterable)
Rather than being a function, 1 i st is actually a mutable sequence type, as documented in Lists and Sequence Types
— list, tuple, range.

locals ()

Update and return a dictionary representing the current local symbol table. Free variables are returned by 1o-
cals () when it is called in function blocks, but not in class blocks. Note that at the module level, 1ocals ()
and globals () are the same dictionary.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and free
variables used by the interpreter.

map (function, iterable, *iterables)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iferables arguments
are passed, function must take that many arguments and is applied to the items from all iterables in parallel. With
multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the function inputs are
already arranged into argument tuples, see 1 tertools.starmap ().

max (iterable, *, key=None)

max (iterable, *, default, key=None)

max (argl, arg2, *args, key=None)
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If two
or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function like
that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable is empty.
If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0] and
heapg.nlargest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

Changed in version 3.8: The key can be None.

17

The Python Library Reference, Release 3.11.3

class memoryview (object)

Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *, key=None)

min (iterable, *, default, key=None)

min (argl, arg2, *args, key=None)

Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned. If two
or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function like
that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable is empty.
If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with other sort-
stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapg.nsmallest (1,
iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

Changed in version 3.8: The key can be None.

next (iterator)

next (iterator, default)

Retrieve the next item from the iterator by calling its __next__ () method. If default is given, it is returned if
the iterator is exhausted, otherwise St opTterat ion is raised.

class object

Return a new featureless object. object is a base for all classes. It has methods that are common to all instances
of Python classes. This function does not accept any arguments.

Note: object doesnothavea__ dict___,soyou can’t assign arbitrary attributes to an instance of the object
class.

oct (x)

Convert an integer number to an octal string prefixed with “00”. The result is a valid Python expression. If x is not
a Python int object, it has to define an ___index__ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (-56)
'-0070"

If you want to convert an integer number to an octal string either with the prefix “0o” or not, you can use either of
the following ways.

>>> ! ''% 10, ' ''% 10

('"Ool1l2', "12")

>>> format (10, '#o0'), format (10, 'o')
('"0o12', "12")

>>> f'{10:40}', £'{10:0}"'

('"Ool2', "12")

See also format () for more information.

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

open (file, mode="r", buffering=- 1, encoding=None, errors=None, newline=None, closefd="True, opener=None)

Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised. See tut-files
for more examples of how to use this function.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file to be
opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when the
returned I/O object is closed unless closefd is setto False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ' r ' which means open
for reading in text mode. Other common values are 'w ' for writing (truncating the file if it already exists), 'x ' for
exclusive creation, and 'a' for appending (which on some Unix systems, means that all writes append to the end
of the file regardless of the current seek position). In text mode, if encoding is not specified the encoding used is
platform-dependent: locale.getencoding () is called to get the current locale encoding. (For reading and
writing raw bytes use binary mode and leave encoding unspecified.) The available modes are:

Character | Meaning

‘¢! open for reading (default)

'w' open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of file if it exists
'b' binary mode

e text mode (default)

T4 open for updating (reading and writing)

The default mode is ' r ' (open for reading text, a synonym of ' rt '). Modes 'w+"' and 'w+b ' open and truncate
the file. Modes 'r+' and 'r+b' open the file with no truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b"' in the mode argument) return contents as byt es objects without any decoding. In text mode (the
default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the bytes
having been first decoded using a platform-dependent encoding or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is done
by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass O to switch buffering off (only allowed in binary
mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size in bytes of a fixed-
size chunk buffer. Note that specifying a buffer size this way applies for binary buffered I/O, but Text IOWrapper
(i.e., files opened with mode="r+") would have another buffering. To disable buffering in Text IOWrapper,
consider using the write_through flag for i0. Text IOWrapper.reconfigure (). When no buffering
argument is given, the default buffering policy works as follows:

* Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT BUFFER_SIZE. On
many systems, the buffer will typically be 4096 or 8192 bytes long.

¢ “Interactive” text files (files for which i satty () returns True) use line buffering. Other text files use the
policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode. The
default encoding is platform dependent (whatever 1ocale.getencoding () returns), but any fext encoding
supported by Python can be used. See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be used
in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though any error

19

The Python Library Reference, Release 3.11.3

handling name that has been registered with codecs. register_error () is also valid. The standard names
include:

* 'strict' toraisea ValueError exception if there is an encoding error. The default value of None has
the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
e 'replace' causes a replacement marker (such as ' ? ') to be inserted where there is malformed data.

* 'surrogateescape' will represent any incorrect bytes as low surrogate code units ranging from
U+DC80 to U+DCFF. These surrogate code units will then be turned back into the same bytes when the
surrogateescape error handler is used when writing data. This is useful for processing files in an un-
known encoding.

e 'xmlcharrefreplace’ is only supported when writing to a file. Characters not supported by the en-
coding are replaced with the appropriate XML character reference & #nnn; .

e 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

* 'namereplace' (also only supported when writing) replaces unsupported characters with \N{ . . . } es-
cape sequences.

newline determines how to parse newline characters from the stream. It can be None, '', '\n"', '"\r', and
"\r\n"'. It works as follows:

* When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in the
inputcanendin '\n', "\r',or '"\r\n', and these are translated into ' \n"' before being returned to the
caller. If itis ' ', universal newlines mode is enabled, but line endings are returned to the caller untranslated.
If it has any of the other legal values, input lines are only terminated by the given string, and the line ending
is returned to the caller untranslated.

* When writing output to the stream, if newline is None, any ' \n' characters written are translated to the
system default line separator, os. I inesep. If newlineis ' ' or ' \n', no translation takes place. If newline
is any of the other legal values, any ' \n"' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be kept
open when the file is closed. If a filename is given closefd must be True (the default); otherwise, an error will be
raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open as
opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os. open () function to open a file relative to a given
directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open (path, flags, dir_fd=dir_f£fd)

>>> with open('spamspam.txt', 'w', opener=opener) as f:
print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used to open a
fileinatextmode ('w', 'r', 'wt', 'rt"', etc.), it returns a subclass of io. Text TOBase (specifically io.
Text IOWrapper). When used to open a file in a binary mode with buffering, the returned class is a subclass of

20

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

io.BufferedIOBase. The exact class varies: in read binary mode, it returns an io.BufferedReader;in
write binary and append binary modes, it returns an io.BufferedWriter, and in read/write mode, it returns
an io.BufferedRandom. When buffering is disabled, the raw stream, a subclass of io0.RawIOBase, i0.
FileIO,isreturned.

See also the file handling modules, such as i leinput, io(where open () is declared), os, os.path, temp—
file,and shutil.

Raises an auditing event open with arguments £ile, mode, flags.
The mode and f1lags arguments may have been modified or inferred from the original call.
Changed in version 3.3:
e The opener parameter was added.
e The 'x' mode was added.
e TOError used to be raised, it is now an alias of OSError.
e FileExistsError is now raised if the file opened in exclusive creation mode (' x ') already exists.
Changed in version 3.4:
* The file is now non-inheritable.
Changed in version 3.5:

* If the system call is interrupted and the signal handler does not raise an exception, the function now retries
the system call instead of raising an TnterruptedError exception (see PEP 475 for the rationale).

e The 'namereplace"' error handler was added.
Changed in version 3.6:

* Support added to accept objects implementing os . PathLike.

* On Windows, opening a console buffer may return a subclass of 10. RawIOBase otherthan io.FileTIO.
Changed in version 3.11: The 'U' mode has been removed.

ord (c)
Given a string representing one Unicode character, return an integer representing the Unicode code point of that
character. For example, ord ('a"') returns the integer 97 and ord ('€") (Euro sign) returns 8 364. This is the
inverse of chr ().

pow (base, exp, mod=None)

Return base to the power exp; if mod is present, return base to the power exp, modulo mod (computed more
efficiently than pow (base, exp) % mod). The two-argument form pow (base, exp) is equivalent to
using the power operator: base* *exp.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the second
argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example,
pow (10, 2) returns 100, but pow (10, -2) returns 0.01. For a negative base of type int or f1oat and
a non-integral exponent, a complex result is delivered. For example, pow (-9, 0.5) returns a value close to 3.

For int operands base and exp, if mod is present, mod must also be of integer type and mod must be nonzero. If
mod is present and exp is negative, base must be relatively prime to mod. In that case, pow (inv_base, -exp,
mod) is returned, where inv_base is an inverse to base modulo mod.

Here’s an example of computing an inverse for 38 modulo 97:

21

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.11.3

>>> pow (38, -1, mod=97)
23

>>> 23 * 38 % 97 ==
True

Changed in version 3.8: For int operands, the three-argument form of pow now allows the second argument to
be negative, permitting computation of modular inverses.

Changed in version 3.8: Allow keyword arguments. Formerly, only positional arguments were supported.

print (*objects, sep="", end="\n', file=None, flush=False)

Print objects to the text stream file, separated by sep and followed by end. sep, end, file, and flush, if present, must
be given as keyword arguments.

All non-keyword arguments are converted to strings like st = () does and written to the stream, separated by sep
and followed by end. Both sep and end must be strings; they can also be None, which means to use the default
values. If no objects are given, print () will just write end.

The file argument must be an object withawrite (string) method;if it is not present or None, sys. stdout
will be used. Since printed arguments are converted to text strings, print () cannot be used with binary mode
file objects. For these, use file.write (...) instead.

Whether the output is buffered is usually determined by file, but if the flush keyword argument is true, the stream
is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function for
deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init__ (self):
self._x = None

def getx(self):
return self._x

def setx(self, wvalue):
self._x = value

def delx (self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If ¢ is an instance of C, c.x will invoke the getter, c.x = wvalue will invoke the setter, and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fger’s docstring (if it
exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def init__ (self):
self._voltage = 100000

(continues on next page)

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

(continued from previous page)

@property

def voltage(self):
"""Get the current voltage.'"""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the same
name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C:
def _ init_ (self):
self._x = None

@property

def x(self):
"”"I 'm the 'XY property' mrrn
return self._x

@x.setter
def x(self, wvalue):

self._x = value
@x.deleter
def x(self):

del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as the
original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

class range (stop)
class range (start, stop, step=1)

Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and Se-
quence Types — list, tuple, range.

repr (object)

Return a string containing a printable representation of an object. For many types, this function makes an attempt to
return a string that would yield an object with the same value when passed to eva 1 () ; otherwise, the representation
is a string enclosed in angle brackets that contains the name of the type of the object together with additional
information often including the name and address of the object. A class can control what this function returns for
its instances by defininga __repr__ () method. If sys.displayhook () isnot accessible, this function will
raise Runt imeError.

reversed (seq)

Return a reverse iterator. seq must be an object whichhasa ___reversed__ () method or supports the sequence
protocol (the __len__ () method and the __getitem__ () method with integer arguments starting at 0).

23

The Python Library Reference, Release 3.11.3

round (number, ndigits=None)

Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns the
nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power mi-
nus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round (0.5) and round (-0.5) are 0, and round (1.5) is 2). Any integer value is valid for ndigits (pos-
itive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise, the return value
has the same type as number.

For a general Python object number, round delegates to number.__round__.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives 2.
67 instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be
represented exactly as a float. See tut-fp-issues for more information.

class set

class set (iterable)

Return a new set object, optionally with elements taken from iferable. set is a built-in class. See set and Ser
Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, 1ist, tuple, and dict classes, as well as the collec—
t 1ons module.

setattr (object, name, value)

This is the counterpart of getattr (). The arguments are an object, a string, and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, 'foobar', 123) isequivalentto x.foobar = 123.

name need not be a Python identifier as defined in identifiers unless the object chooses to enforce that, for example
inacustom __getattribute_ () orvia__slots__. An attribute whose name is not an identifier will not
be accessible using the dot notation, but is accessible through getattr () etc..

Note: Since private name mangling happens at compilation time, one must manually mangle a private attribute’s
(attributes with two leading underscores) name in order to set it with setattr ().

class slice (stop)

class slice (start, stop, step=1)

Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop, and step which
merely return the argument values (or their default). They have no other explicit functionality; however, they are
used by NumPy and other third-party packages. Slice objects are also generated when extended indexing syntax is
used. For example: a [start:stop:step] or a[start:stop, 1i]. See itertools.islice () for
an alternate version that returns an iterator.

sorted (iterable, /, *, key=None, reverse=False)

Return a new sorted list from the items in iterable.
Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable (for
example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

24

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

The sort algorithm uses only < comparisons between items. While definingan __1t__ () method will suffice for
sorting, PEP 8 recommends that all six rich comparisons be implemented. This will help avoid bugs when using
the same data with other ordering tools such as max () that rely on a different underlying method. Implementing
all six comparisons also helps avoid confusion for mixed type comparisons which can call reflected the __gt___ ()
method.

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod

Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f (argl, arg2, ...):

The @staticmethod form is a function decorator — see function for details.

A static method can be called either on the class (such as C. £ ()) or on an instance (suchas C () . £ ()). Moreover,
they can be called as regular functions (such as £ ()).

Static methods in Python are similar to those found in Java or C++. Also, see classmethod () for a variant that
is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want to
avoid the automatic transformation to instance method. For these cases, use this idiom:

def regular_function() :

class C:
method = staticmethod(regular_function)

For more information on static methods, see types.

Changed in version 3.10: Static methods now inherit the method attributes (__module_ , _ name__ ,
__qualname_ , __doc__and _ _annotations__), have a new __wrapped___ attribute, and are now
callable as regular functions.

class str (object=")
class str (object=b", encoding="utf-8', errors='strict’)

Return a st r version of object. See st r () for details.
str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum (iterable, /, start=0)

Sums start and the items of an iterable from left to right and returns the total. The iterable’s items are normally
numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence of
strings is by calling ' ' . Join (sequence). To add floating point values with extended precision, see math.
fsum (). To concatenate a series of iterables, consider using i tertools.chain ().

25

https://peps.python.org/pep-0008/

The Python Library Reference, Release 3.11.3

Changed in version 3.8: The start parameter can be specified as a keyword argument.

class super
class super (type, object_or_type=None)

Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class.

The object_or_type determines the method resolution order to be searched. The search starts from the class right
after the type.

For example, if __mro___ of object_or_typeisD -> B -> C —-> A -> object and the value of type is B,
then super () searchesC —> A —-> object.

The ___mro___ attribute of the object_or_type lists the method resolution search order used by both getattr ()
and super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) mustbe true. If the second argument is a type, issubclass (type2, type)
must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer to
parent classes without naming them explicitly, thus making the code more maintainable. This use closely parallels
the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single
inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that such implementations have the same calling signature in every case
(because the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy,
and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:
super (C, self).method(arg)

In addition to method lookups, super () also works for attribute lookups. One possible use case for this is calling
descriptors in a parent or sibling class.

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such as
super () .__getitem__ (name). It does so by implementing its own __getattribute__ () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly, super ()
is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class being
defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

class tuple

class tuple (iterable)
Rather than being a function, t up 1 e is actually an immutable sequence type, as documented in Tuples and Sequence
Types — list, tuple, range.

class type (object)

26 Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.11.3

class type (name, bases, dict, **kwds)

With one argument, return the type of an object. The return value is a type object and generally the same object as
returned by object.__class__.

The i sinstance () built-in function is recommended for testing the type of an object, because it takes subclasses
into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement. The
name string is the class name and becomes the ___name___ attribute. The bases tuple contains the base classes
and becomes the __bases___ attribute; if empty, object, the ultimate base of all classes, is added. The dict
dictionary contains attribute and method definitions for the class body; it may be copied or wrapped before becoming
the dict___ attribute. The following two statements create identical t ype objects:

>>> class X:
a =1

>>> X = type('X', (), dict(a=1))

See also Type Objects.

Keyword arguments provided to the three argument form are passed to the appropriate metaclass machinery (usually
__init_subclass__ ()) in the same way that keywords in a class definition (besides metaclass) would.

See also class-customization.

Changed in version 3.6: Subclasses of ¢ ype which don’t override type.__new___ may no longer use the one-
argument form to get the type of an object.

vars ()
vars (object)

Return the __ dict__ attribute for a module, class, instance, or any other object witha __ dict_ attribute.

Objects such as modules and instances have an updateable ___dict___ attribute; however, other objects may have
write restrictions on their ___dict__ attributes (for example, classes use a t ypes.MappingProxyType to
prevent direct dictionary updates).

Without an argument, vars () acts like Iocals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

A TypeError exception is raised if an object is specified but it doesn’thave a___dict___ attribute (for example,
if its class defines the __slots__ attribute).

zip (*iterables, strict=False)

Iterate over several iterables in parallel, producing tuples with an item from each one.

Example:

>>> for item in zip([1, 2, 3], ['sugar', 'spice', 'everything nice']):
print (item)

(1, 'sugar')
(2, 'spice')
(3, 'everything nice')

More formally: zip () returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the
argument iterables.

Another way to think of zip () is that it turns rows into columns, and columns into rows. This is similar to
transposing a matrix.

27

https://en.wikipedia.org/wiki/Transpose

The Python Library Reference, Release 3.11.3

zip () islazy: The elements won’t be processed until the iterable is iterated on, e.g. by a for loop or by wrapping

inalist.

One thing to consider is that the iterables passed to zip () could have different lengths; sometimes by design, and
sometimes because of a bug in the code that prepared these iterables. Python offers three different approaches to

dealing with this issue:

e By default, zip () stops when the shortest iterable is exhausted. It will ignore the remaining items in the

longer iterables, cutting off the result to the length of the shortest iterable:

>>> list(zip(range(3), ['fee', 'fi', 'fo', 'fum']))

[(0, "fee'), (1, "fi'), (2, 'fo")]

e zip () is often used in cases where the iterables are assumed to be of equal length. In such cases, it’s
recommended to use the st rict=True option. Its output is the same as regular zip ():

>>> list (zip(('a', 'b', 'c¢"), (1, 2, 3), strict=True))
[(ta', 1), ('b', 2), ('c', 3)]

Unlike the default behavior, it raises a ValueError if one iterable is exhausted before the others:

>>> for item in zip(range(3), ['fee', 'fi', 'fo',
print (item)

(0, 'fee')
(1, 'fi")
(2, 'fo')
T

raceback (most recent call last):

'fum'],

strict=True) :

ValueError: zip() argument 2 is longer than argument 1

Without the st ri ct=True argument, any bug that results in iterables of different lengths will be silenced,
possibly manifesting as a hard-to-find bug in another part of the program.

« Shorter iterables can be padded with a constant value to make all the iterables have the same length. This is
done by itertools.zip_longest ().

Edge cases: With a single iterable argument, zip () returns an iterator of 1-tuples. With no arguments, it returns

an empty iterator.

Tips and tricks:

¢ The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering
a data series into n-length groups using zip (* [iter (s)] *n, strict=True). This repeats the same
iterator n times so that each output tuple has the result of n calls to the iterator. This has the effect of dividing

the input into n-length chunks.

e zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> y = [4, 5, 6]

>>> list (zip(x, V))

(1, 4), (2, 5, (3, 6)]

>>> %2, y2 = zip(*zip(x, Vy))

>>> x == list(x2) and y == list (y2)
True

Changed in version 3.10: Added the st rict argument.

28 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.3

__import__ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike importlib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the builtins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but doing
so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same goals
and does not cause issues with code which assumes the default import implementation is in use. Direct use of
___import__ () isalso discouraged in favor of importlib. import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to interpret
the name in a package context. The fromlist gives the names of objects or submodules that should be imported
from the module given by name. The standard implementation does not use its locals argument at all and uses its
globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the module
calling__import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up till the
first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is given, the
module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__ ('spam', globals(), locals(), [1, 0)

The statement import spam.ham results in this call:

spam = __import__ ('spam.ham', globals (), locals(), [], 0)

Note how ___import___ () returns the toplevel module here because this is the object that is bound to a name by
the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from __ import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value to
0).

Changed in version 3.9: When the command line options —E or —I are being used, the environment variable
PYTHONCASEOK is now ignored.

29

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0328/

The Python Library Reference, Release 3.11.3

30 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:
False

The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.
True

The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None

An object frequently used to represent the absence of a value, as when default arguments are not passed to a function.
Assignments to None are illegal and raise a SyntaxError. None is the sole instance of the NoneType type.

NotImplemented
A special value which should be returned by the binary special methods (e.g. __eq (), 1t (),
__add__ (), rsub__ (), etc.) to indicate that the operation is not implemented with respect to the other

type; may be returned by the in-place binary special methods (e.g. __imul__ (), __iand__ (), etc.) for the
same purpose. It should not be evaluated in a boolean context. Not Implemented is the sole instance of the
types.NotImplementedType type.

Note: When a binary (or in-place) method returns Not Implemented the interpreter will try the reflected
operation on the other type (or some other fallback, depending on the operator). If all attempts return Not Im—
plemented, the interpreter will raise an appropriate exception. Incorrectly returning Not Implemented will
result in a misleading error message or the Not Implemented value being returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and NotImplemented are not interchangeable, even though they have
similar names and purposes. See Not ImplementedError for details on when to use it.

Changed in version 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.
Ellipsis
The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax for
user-defined container data types. E11ipsis is the sole instance of the t ypes.EI11ipsisType type.
__debug__

This constant is true if Python was not started with an —O option. See also the assert statement.

31

The Python Library Reference, Release 3.11.3

Note: The names None, False, True and __debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given) adds
several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be used in
programs.
quit (code=None)
exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemEx1it with the specified exit code.
copyright
credits

Objects that when printed or called, print the text of copyright or credits, respectively.

license

Object that when printed, prints the message “Type license() to see the full license text”, and when called, displays
the full license text in a pager-like fashion (one screen at a time).

32 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared for equality,
tested for truth value, and converted to a string (with the repr () function or the slightly different st r () function).
The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or while condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a __bool__ () method that returns False or a
__len__ () method that returns zero, when called with the object.' Here are most of the built-in objects considered
false:

¢ constants defined to be false: None and False.
e zero of any numeric type: 0, 0.0, 0J, Decimal (0),Fraction (0, 1)
e empty sequences and collections: ' ', (), [], {}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for true,
unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X Or y if x is true, then x, else y €))]
x and y | if xis false, then x, else y 2)
not x if x is false, then True, else False | (3)

! Additional information on these special methods may be found in the Python Reference Manual (customization).

33

The Python Library Reference, Release 3.11.3

Notes:
(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.
(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == Db is interpreted as not (a == b),and
a == not b isa syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the Boolean
operations). Comparisons can be chained arbitrarily; for example, x < y <= zisequivalenttox < y and y <=
z, except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. The == operator is always defined but for
some object types (for example, class objects) is equivalent to is. The <, <=, > and >= operators are only defined where
they make sense; for example, they raise a TypeError exception when one of the arguments is a complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object, unless the
class defines enough of the methods __1t__ (), __le_ (), _gt__(),and __ge__ () (ingeneral, __ 1t__ ()
and __eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects and
never raise an exception.

Two more operations with the same syntactic priority, in and not 1in, are supported by types that are iterable or
implement the __contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition, Booleans are a
subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using double
in C; information about the precision and internal representation of floating point numbers for the machine on which your
program is running is available in sys. float_info. Complex numbers have a real and imaginary part, which are
each a floating point number. To extract these parts from a complex number z, use z . real and z . imag. (The standard
library includes the additional numeric types fractions.Fraction, for rationals, and decimal.Decimal, for
floating-point numbers with user-definable precision.)

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appending ' 5 ' or 'J"' to a numeric literal yields an imaginary number (a complex number
with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types, the
operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point, which is
narrower than complex. A comparison between numbers of different types behaves as though the exact values of those
numbers were being compared.’

The constructors int (), float (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-
summary):

Operation Result Notes| Full documenta-
tion
X +y sum of x and y
X -y difference of x and y
X *y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y (1
X %y remainder of x / y 2)
-X X negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)®6) | int ()
float (x) x converted to floating point @) 6) | float ()
complex (re, a complex number with real part re, imaginary part im. im de- | (6) complex ()
im) faults to zero.
C. conjugate of the complex number ¢
conjugate ()
divmod (x, V) the pair (x // vy, x % y) 2) divmod ()
pow (X, V) x to the power y (@) pow ()
X ** oy x to the power y)
Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily
int. The result is always rounded towards minus infinity: 1//2 is 0, (-1) //2is =1, 1// (-2) is -1, and
(=1)//(-2) is 0.

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

(3) Conversion from float to int truncates, discarding the fractional part. See functions math. floor () and
math.ceil () for alternative conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and positive
or negative infinity.

(5) Python defines pow (0, 0) and O ** 0 to be 1, as is common for programming languages.
(6) The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd property).

See https://www.unicode.org/Public/14.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

2 As a consequence, the list [1, 2] is considered equalto [1.0, 2.0],and similarly for tuples.

4.4. Numeric Types — int, float, complex 35

https://www.unicode.org/Public/14.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.11.3

All numbers.Real types (int and £1loat) also include the following operations:

Operation

Result

math.trunc (x)

x truncated to Tntegral

round(x[, n]J)

x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.

math.floor (x)

the greatest Tntegral <=x

math.ceil (x)

the least Tntegral >=x

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out in
two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the comparisons;
the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bitwise operations sorted in ascending priority:

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.

Operation | Result Notes
x |y bitwise or of x and y @)

x Ny bitwise exclusive or of x and y | (4)

X &y bitwise and of x and y @)

x << n x shifted left by n bits (D)
X >> n x shifted right by » bits (H@A3)
~X the bits of x inverted

(2) A left shift by n bits is equivalent to multiplication by pow (2, n).

(3) A right shift by » bits is equivalent to floor division by pow (2, n).

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representation
(a working bit-widthof 1 + max (x.bit_length(), y.bit_length ()) ormore) is sufficient to get the
same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length(()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = -37
>>> bin (n)
'-0b100101"

6

>>> n.bit_length()

36

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

More precisely, if x is nonzero, then x .bit_length () is the unique positive integer k such that 2** (k-1)
<= abs (x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm, then
k = 1 + int(log(abs(x), 2)).If xiszero,then x.bit_length () returns 0.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len (s) # len('100101') ——> 6

New in version 3.1.

int.bit_count ()

Return the number of ones in the binary representation of the absolute value of the integer. This is also known as
the population count. Example:

>> n = 19

>>> pbin (n)

'0b10011"

>>> n.bit_count ()

3

>>> (-n) .bit_count ()
3

Equivalent to:

def bit_count (self):
return bin(self) .count ("1")

New in version 3.10.

int .to_bytes (length=1, byteorder="big’, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"'

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)

b \XfA\XEA\XFA\XEA\XEF\XEE\XEE\xEff\xfc\x00"'

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"

The integer is represented using length bytes, and defaults to 1. An OverflowError is raised if the integer is
not representable with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to "big". If byteorder
is "big", the most significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most
significant byte is at the end of the byte array.

The signed argument determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

The default values can be used to conveniently turn an integer into a single byte object:

>>> (65) .to_bytes /()
b'A'

4.4. Numeric Types — int, float, complex 37

The Python Library Reference, Release 3.11.3

However, when using the default arguments, don’t try to convert a value greater than 255 or you'll get an Over—
flowError

Equivalent to:

def to_bytes(n, length=1, byteorder='big', signed=False):
if byteorder == 'little':
order = range (length)
elif byteorder == 'big':
order = reversed(range (length))
else:
raise ValueError ("byteorder must be either 'little' or 'big'")

return bytes((n >> i*8) & O0xff for i in order)

New in version 3.2.

Changed in version 3.11: Added default argument values for 1ength and byteorder.

classmethod int.from_bytes (bytes, byteorder="big', *, signed=False)

Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big'")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little")

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big'")

16711680

The argument bytes must either be a byfes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to "big". If byteorder
is "big", the most significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most
significant byte is at the end of the byte array. To request the native byte order of the host system, use sys.
byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

Equivalent to:

def from_bytes (bytes, byteorder='big', signed=False) :
if byteorder == 'little':
little_ordered = list (bytes)
elif byteorder == 'big':
little_ordered = list (reversed(bytes))
else:
raise ValueError ("byteorder must be either 'little' or 'big'")

n = sum(b << i*8 for i, b in enumerate (little_ordered))

if signed and little_ordered and (little_ordered[-1] & 0x80):
n —= 1 << 8*len(little_ordered)

return n

New in version 3.2.

Changed in version 3.11: Added default argument value for byteorder.

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

int.as_integer_ratio()

Return a pair of integers whose ratio is exactly equal to the original integer and with a positive denominator. The
integer ratio of integers (whole numbers) is always the integer as the numerator and 1 as the denominator.

New in version 3.8.

4.4.3 Additional Methods on Float

The float type implements the numbers. Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()

Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0) .is_integer()
True

>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as binary
numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast, hexadecimal
strings allow exact representation and specification of floating-point numbers. This can be useful when debugging, and in
numerical work.

float.hex ()

Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers, this
representation will always include a leading Ox and a trailing p and exponent.

classmethod float.fromhex (s)

Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and ex—
ponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2 of
the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of f1oat . hex () is usable
as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format character
or Java’'s Double.toHexString are accepted by f1oat . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to multiply
the coefficient. For example, the hexadecimal string 0x3 . a7p1 0 represents the floating-point number (3 + 10./16
+ 7./16**2) * 2_.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl10")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

4.4. Numeric Types — int, float, complex 39

The Python Library Reference, Release 3.11.3

>>> float.hex (3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x ==
y (see the __hash__ () method documentation for more details). For ease of implementation and efficiency across a
variety of numeric types (including int, float, decimal.Decimaland fractions.Fraction)Python’s hash
for numeric types is based on a single mathematical function that’s defined for any rational number, and hence applies
to all instances of int and fractions.Fraction, and all finite instances of fl1oat and decimal.Decimal.
Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P is made available to Python
as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedisP = 2**31 - 1 on machines with 32-bit C longs and
P = 2**61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / nisanonnegative rational number and n is not divisible by P, define hash (x) asm * invmod (n,
P) P, where invmod (n, P) gives the inverse of n modulo P.

o

e If x = m / nisanonnegative rational number and n is divisible by P (but m is not) then n has no inverse modulo P
and the rule above doesn’t apply; in this case define hash (x) to be the constant value sys.hash_info.inf.

e If x = m / nisanegative rational number define hash (x) as —~hash (-x) . If the resulting hash is -1, replace
it with —2.

 The particular values sys.hash_info.infand -sys.hash_info.inf are used as hash values for positive
infinity or negative infinity (respectively).

e For a complex number z, the hash values of the real and imaginary parts are combined by computing hash (z.
real) + sys.hash_info.imag * hash(z.imag),reduced modulo 2**sys.hash_info.width
so that it lies in range (-2** (sys.hash_info.width - 1), 2**(sys.hash_info.width -
1)). Again, if the result is —1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash of a
rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):
"nrncompute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary 1if m and n already coprime.)

while m $ P == n % P ==
m, n=m// P, n//P

if n % P == 0:
hash_value = sys.hash_info.inf

else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

(continues on next page)

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

(continued from previous page)

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:

hash_value = -hash_value
if hash_value == -1:

hash_value = -2

return hash_value

def hash_float (x):
"""Compute the hash of a float x."""

if math.isnan (x):

return object.__hash__ (x)
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""

hash_value = hash_float (z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2

return hash_value

4.5 lterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are used
to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the iteration
methods.

One method needs to be defined for container objects to provide iterable support:

container.__iter__ ()

Return an iferator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C APL

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:
iterator.__iter__ ()

Return the iferator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in the
Python/C APL

iterator.__next__ ()

Return the next item from the iferator. If there are no further items, raise the StopIteration exception. This
method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C API.

4.5. Iterator Types 41

The Python Library Reference, Release 3.11.3

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries, and other
more specialized forms. The specific types are not important beyond their implementation of the iterator protocol.

Once an iterator’s __next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__ ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter_ () and _ _next__ () methods. More information about generators can be found in the
documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for processing
of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABCis provided to make it easier to correctly implement these operations on custom
sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and # are sequences of the same type,
n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and *
(repetition) operations have the same priority as the corresponding numeric operations.’

Operation Result Notes
X in s True if an item of s is equal to x, else False @))
x not in s False if anitem of s is equal to x, else True @))
s + t the concatenation of s and ¢ ©)(7)
S * norn * s equivalent to adding s to itself # times)7
s[i] ith item of s, origin 0 3)
s[i:J] slice of s from i to j 3)4)
s[i:7:k] slice of s from i to j with step k 3)(5)
len(s) length of s
min (s) smallest item of s
max (s) largest item of s
s.index (x[, 1[, j11) | index of the first occurrence of x in s (at or after index i and before index | (8)

Nl
s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically by
comparing corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full details see comparisons in the language reference.)

3 They must have since the parser can’t tell the type of the operands.

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to march
forward (or backward) even if the underlying sequence is mutated. The iterator terminates only when an TndexError
ora StopIteration isencountered (or when the index drops below zero).

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> llgg" in lleggsﬂ
True

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that items
in the sequence s are not copied; they are referenced multiple times. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists

(1, 1, 111

>>> lists[0].append(3)
>>> lists

[e31, 31, 311

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]] *
3 are references to this single empty list. Modifying any of the elements of 1ists modifies this single list. You
can create a list of different lists this way:

>>> lists = [[] for 1 in range(3)]
>>> lists[0].append(3)

>>> lists([1].append(5)

>>> lists[2].append(7)

>>> lists

[e31, 51, [711]

Further explanation is available in the FAQ entry fag-multidimensional-list.

(3) If i or j is negative, the index is relative to the end of sequence s: len(s) + iorlen(s) + j issubstituted.
But note that —0 is still 0.

(4) The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. Ifiorjis greater
than len (s),use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If i is greater
than or equal to j, the slice is empty.

(5) The slice of s from i to j with step k is defined as the sequence of items withindex x = 1 + n*ksuchthat0 <=
n < (j-1i) /k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping when j is reached
(but never including j). When £ is positive, i and j are reduced to 1en (s) if they are greater. When £ is negative,
iand jare reduced to len (s) - 1 if they are greater. If i or j are omitted or None, they become “end” values
(which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated like 1.

(6) Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime cost,
you must switch to one of the alternatives below:

« if concatenating st r objects, you can build a list and use st r. join () at the end or else write to an io.
StringIO instance and retrieve its value when complete

« if concatenating bytes objects, you can similarly use bytes. join () or io.BytesIO, or you can do
in-place concatenation with a bytearray object. bytearray objects are mutable and have an efficient
overallocation mechanism

4.6. Sequence Types — list, tuple, range 43

The Python Library Reference, Release 3.11.3

* if concatenating t uple objects, extend a 1 i st instead

« for other types, investigate the relevant class documentation

(7) Some sequence types (such as range) only support item sequences that follow specific patterns, and hence don’t
support sequence concatenation or repetition.

(8) index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra ar-
guments is roughly equivalent tousing s [1: j] . index (x) , only without copying any data and with the returned
index being relative to the start of the sequence rather than the start of the slice.

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable sequence
types is support for the hash () built-in.

This support allows immutable sequences, such as tuple instances, to be used as dict keys and stored in set and

frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types.

The collections.abc.

MutableSequence ABC is provided to make it easier to correctly implement these operations on custom sequence

types.

In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object that meets any
type and value restrictions imposed by s (for example, byt earray only accepts integers that meet the value restriction

0 <= x <= 255).

Operation Result Notes
s[i] = x item i of s is replaced by x

s[i:j] =t slice of s from i to j is replaced by the contents of the iterable ¢

del s[i:7j] sameas s[i:3] = []

s[i:j:k] =t the elements of s [1:7:k] are replaced by those of ¢ (D
del s[i:7:k] removes the elements of s [1:7j:k] from the list

s.append (x) appends x to the end of the sequence (sameas s [len (s) :len(s)] = [x])
s.clear () removes all items from s (same as del s[:]) 5
s.copy () creates a shallow copy of s (same as s[:]) ®))
s.extend(t) or s | extends s with the contents of ¢ (for the most part the same as

+= t s[len(s):len(s)] = t)

S *=n updates s with its contents repeated n times 6)
s.insert (i, x) inserts x into s at the index given by i (same as s [1:1] = [x])

s.pop () or retrieves the item at i and also removes it from s)
pop (1)

s.remove (x) remove the first item from s where s [1] is equal to x 3)
s.reverse () reverses the items of s in place @)

Notes:

(1) r must have the same length as the slice it is replacing.

(2) The optional argument i defaults to -1, so that by default the last item is removed and returned.

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

(3) remove () raises ValueError when x is not found in s.

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large sequence.
To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear () and copy () are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set). copy () is not part of the collections.abc.
MutableSequence ABC, but most concrete mutable sequence classes provide it.

New in version 3.3: clear () and copy () methods.

(6) The value n is an integer, or an object implementing __index__ (). Zero and negative values of n clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n under
Common Sequence Operations.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of sim-
ilarity will vary by application).
class list ([iterable])

Lists may be constructed in several ways:

 Using a pair of square brackets to denote the empty list: []

» Using square brackets, separating items with commas: [a], [a, b, c]
e Using a list comprehension: [x for x in iterable]

» Using the type constructor: 1ist () or 1ist (iterable)

The constructor builds a list whose items are the same and in the same order as iferable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similar to iterable [:]. For example, 1ist ('abc') returns ['a', 'b', 'c'] and
list((1, 2, 3)) returns [1, 2, 3].If noargument is given, the constructor creates a new empty list,
1.

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (*, key=None, reverse=False)

This method sorts the list in place, using only < comparisons between items. Exceptions are not suppressed -
if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a partially
modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element (for
example, key=str.lower). The key corresponding to each item in the list is calculated once and then used
for the entire sorting process. The default value of None means that list items are sorted directly without
calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To remind
users that it operates by side effect, it does not return the sorted sequence (use sorted () to explicitly request
a new sorted list instance).

4.6. Sequence Types — list, tuple, range 45

The Python Library Reference, Release 3.11.3

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration,
and raises ValueError if it can detect that the list has been mutated during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples produced
by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous data is
needed (such as allowing storage in a set or dict instance).

class tuple([iterable])
Tuples may be constructed in a number of ways:

» Using a pair of parentheses to denote the empty tuple: ()

 Using a trailing comma for a singleton tuple: a, or (a,)
 Separating items with commas: a, b, cor (a, b, c)

e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iferable is already a tuple, it is returned
unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') andtuple([1, 2, 3]) returns
(1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional, except
in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, £ (a, b, c) isa
function call with three arguments, while £ ((a, b, c¢)) is a function call with a 3-tuple as the sole argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number of
times in for loops.

class range (stop)

class range (start, stop[, step])

The arguments to the range constructor must be integers (either built-in int or any object that implements the
__index__ () special method). If the step argument is omitted, it defaults to 1. If the start argument is omitted,
it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formular [i] = start + step*i where
i >= O0andr[i] < stop.

For a negative step, the contents of the range are still determined by the formula r [i] = start + step*i,
but the constraintsare i >= Oandr[i] > stop.

46 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices, but
these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as Zen ())

may raise OverflowError.

Range examples:

>>> list (range (10))

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

o, -1, -2, -3, -4, -5, -6, -7, -8,
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact that
range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually

violate that pattern).

start

The value of the start parameter (or O if the parameter was not supplied)

stop

The value of the sfop parameter

step

The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over a regular 1ist or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step
values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment tests,

element index lookup, slicing and support for negative indices (see Sequence Types

list, tuple, range):

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

4.6. Sequence Types — list, tuple, range

47

The Python Library Reference, Release 3.11.3

Testing range objects for equality with == and ! = compares them as sequences. That is, two range objects are considered
equal if they represent the same sequence of values. (Note that two range objects that compare equal might have different
start, stop and step attributes, for example range (0) == range (2, 1, 3) orrange(0, 3, 2) ==
range (0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘!="to compare range objects based on the sequence of values they define (instead
of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.
See also:

 The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code points.
String literals are written in a variety of ways:

 Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes"
e Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted to
a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty string
s,s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct strings
from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted on
string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object=")
class str (object=b", encoding=utf-8', errors='strict’)

Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior of
str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns type (object) .__str__ (object), which
is the “informal” or nicely printable string representation of object. For string objects, this is the string itself. If
object does nothavea __str__ () method, then st () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or bytearray).
In this case, if object is a bytes (or bytearray) object, then str (bytes, encoding, errors) is
equivalent to bytes.decode (encoding, errors). Otherwise, the bytes object underlying the buffer
object is obtained before calling bytes . decode (). See Binary Sequence Types — bytes, bytearray, memoryview
and bufferobjects for information on buffer objects.

48 Chapter 4. Built-in Types

https://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.11.3

Passing a bytes object to st r () without the encoding or errors arguments falls under the first case of returning
the informal string representation (see also the —b command-line option to Python). For example:

>>> str(b'Zoot!")
"b'Zoot!""

For more information on the str class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition, see the
Text Processing Services section.

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see st .
format (), Format String Syntax and Custom String Formatting) and the other based on C print £ style formatting that
handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle
(printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various text
related utilities (including regular expression support in the re module).

str.capitalize ()

Return a copy of the string with its first character capitalized and the rest lowercased.

Changed in version 3.8: The first character is now put into titlecase rather than uppercase. This means that char-
acters like digraphs will only have their first letter capitalized, instead of the full character.

str.casefold ()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in
a string. For example, the German lowercase letter 'R ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to 'B"'; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

str.center (width[, ﬁllchar])

Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII space).
The original string is returned if width is less than or equal to 1en (s).

str.count (sub[, start[, end]])

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

If sub is empty, returns the number of empty strings between characters which is the length of the string plus one.

str.encode (encoding="utf-8', errors='strict’)

Return the string encoded to by tes.
encoding defaults to 'ut £-8"; see Standard Encodings for possible values.

errors controls how encoding errors are handled. If 'strict' (the default), a UnicodeError exception is
raised. Other possible values are 'ignore', 'replace', 'xmlcharrefreplace’', 'backslashre-
place’ and any other name registered via codecs. register_error (). See Error Handlers for details.

For performance reasons, the value of errors is not checked for validity unless an encoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

4.7. Text Sequence Type — str 49

The Python Library Reference, Release 3.11.3

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

str.endswith (suﬂix[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that
position.

str.expandtabs (fabsize=8)
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. Tab positions occur every fabsize characters (default is 8, giving tab positions at
columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string is examined
character by character. If the character is a tab (\ t), one or more space characters are inserted in the result until the
current column is equal to the next tab position. (The tab character itself is not copied.) If the character is a newline
(\n) or return (\ r), it is copied and the current column is reset to zero. Any other character is copied unchanged
and the current column is incremented by one regardless of how the character is represented when printed.
>>> '01\t012\t0123\t01234"' .expandtabs ()
'01 012 0123 01234"
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

str.find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found within the slice s [start:end]. Optional
arguments start and end are interpreted as in slice notation. Return —1 if sub is not found.
Note: The find () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:
>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or re-
placement fields delimited by braces { }. Each replacement field contains either the numeric index of a positional
argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced
with the string value of the corresponding argument.
>>> "The sum of 1 + 2 1is ".format (1+2)
'The sum of 1 + 2 is 3'
See Format String Syntax for a description of the various formatting options that can be specified in format strings.
Note: When formatting a number (int, float, complex, decimal.Decimal and subclasses) with the n
type (ex: '{:n}"'.format (1234)), the function temporarily sets the LC_CTYPE locale to the LC_NUMERIC
locale to decode decimal_point and thousands_sep fields of localeconv () if they are non-ASCII or
longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE locale. This temporary change
affects other threads.
Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the LC_CTYPE
locale to the LC_NUMERIC locale in some cases.

50 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

str.

str

str.

str.

str.

str.

str.

str.

format_map (mapping)

Similar to str. format (**mapping), except that mapping is used directly and not copied to a dict. This
is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> ! was born in '.format_map (Default (name="'Guido"))
'Guido was born in country'

New in version 3.2.

.index (sub[, start[, end]])

Like find (), butraise ValueError when the substring is not found.

isalnum ()

Return True if all characters in the string are alphanumeric and there is at least one character, False otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha(), c.isdecimal (), c.
isdigit (),orc.isnumeric ().

isalpha ()

Return True if all characters in the string are alphabetic and there is at least one character, False otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those with
general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different from the “Al-
phabetic” property defined in the Unicode Standard.

isascii ()

Return True if the string is empty or all characters in the string are ASCII, False otherwise. ASCII characters
have code points in the range U+0000-U+007F.

New in version 3.7.

isdecimal ()

Return True if all characters in the string are decimal characters and there is at least one character, False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.
isdigit ()

Return True if all characters in the string are digits and there is at least one character, False otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits. This
covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a
character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()

Return True if the string is a valid identifier according to the language definition, section identifiers.
Call keyword. iskeyword () to test whether string s is a reserved identifier, such as def and class.

Example:

>>> from keyword import iskeyword

>>> 'hello'.isidentifier (), iskeyword('hello")
(True, False)

>>> 'def'.isidentifier (), iskeyword('def")
(True, True)

4.7. Text Sequence Type — str 51

The Python Library Reference, Release 3.11.3

str.

str.

str.

str.

str.

str.

str.

str.

str.

islower ()

Return True if all cased characters® in the string are lowercase and there is at least one cased character, False
otherwise.

isnumeric ()

Return True if all characters in the string are numeric characters, and there is at least one character, False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()

Return True if all characters in the string are printable or the string is empty, False otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting the
ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those which
should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings written to
sys.stdout or sys.stderr.)

isspace ()
Return True if there are only whitespace characters in the string and there is at least one character, False

otherwise.

A character is whitespace if in the Unicode character database (see unicodedat a), either its general category is
Zs (“Separator, space”), or its bidirectional class is one of WS, B, or S.

istitle ()

Return True if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return False otherwise.
isupper ()

Return True if all cased characters* in the string are uppercase and there is at least one cased character, False
otherwise.

>>> 'BANANA'.isupper ()
True

>>> 'banana'.isupper /()
False

>>> 'baNana'.isupper ()
False

>>> ' ' isupper ()
False

join (iterable)

Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if there are any
non-string values in iferable, including byt e s objects. The separator between elements is the string providing this
method.

ljust (width[, Sfillchar])

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is an
ASCII space). The original string is returned if width is less than or equal to len (s).

lower ()

Return a copy of the string with all the cased characters* converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter, titlecase).

52

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

str.lstrip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious '.lstrip()
'spacious !

>>> 'www.example.com'.lstrip('cmowz.")
'example.com'

See str.removeprefix () for a method that will remove a single prefix string rather than all of a set of
characters. For example:

>>> 'Arthur: three!'.lstrip('Arthur: ')

'ee!!
>>> '"Arthur: three!'.removeprefix ('Arthur: ")
'three!'

static str.maketrans (x[, y[, z]])
This static method returns a translation table usable for st r.translate ().
If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings

of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted to
ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in
x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose
characters will be mapped to None in the result.

str.partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string
itself, followed by two empty strings.

str.removeprefix (prefix, /)

If the string starts with the prefix string, return string[len (prefix) :]. Otherwise, return a copy of the
original string:

>>> 'TestHook'.removeprefix('Test')
'Hook'

>>> 'BaseTestCase'.removeprefix ('Test')
'BaseTestCase'

New in version 3.9.

str.removesuffix (suffix, /)

If the string ends with the suffix string and that suffix is not empty, return string[:-len (suffix)]. Oth-
erwise, return a copy of the original string:

>>> 'MiscTests'.removesuffix('Tests')
'Misc'

>>> '"TmpDirMixin'.removesuffix ('Tests')
'TmpDirMixin'

New in version 3.9.

4.7. Text Sequence Type — str 53

The Python Library Reference, Release 3.11.3

str.

str.

str

str.

str.

str.

str

str

replace (old, new[, count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

.rindex (sub[, start[, end]])

Like rfind () but raises ValueError when the substring sub is not found.

rjust (width|, fillchar |)

Return the string right justified in a string of length width. Padding is done using the specified fillchar (default is
an ASCII space). The original string is returned if width is less than or equal to 1en (s).

rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

rsplit (sep=None, maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except for
splitting from the right, rsplit () behaves like split () which is described in detail below.

.rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.rstrip()

! spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ'

See str.removesuffix () for a method that will remove a single suffix string rather than all of a set of
characters. For example:

>>> 'Monty Python'.rstrip(' Python')

IMI
>>> 'Monty Python'.removesuffix (' Python')
'Monty'

.split (sep=None, maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits
are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or —1, then there is
no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for exam-
ple,'1,,2".split (', ")returns ['1', '', '2']). The sep argument may consist of multiple characters
(for example, '1<>2<>3" .split ('<>") returns ['1', '2', '3']). Splitting an empty string with a
specified separator returns [''].

For example:

54

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

>>> '1,2,3".split (', ")

['1', '2" '3'1

>>> '1,2,3".split (', "', maxsplit=1)
[lll’ '2,3'}

>>> '1,2,,3,"'.split (', ")

['1', '2|, ll, |3|, ll]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with
a None separator returns [].

For example:

>>> '1 2 3'.split ()

['1', '2', '3'}

>>> '1 2 3'.split (maxsplit=1)
['1!, '2 3']

>>> ! 1 2 3 '.split ()
['1', '2" V3'j|

str.splitlines (keepends=False)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list
unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal new-

lines.
Representation | Description
\n Line Feed
\r Carriage Return
\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation
\f or \x0c Form Feed
\xlc File Separator
\x1d Group Separator
\xle Record Separator
\x85 Next Line (C1 Control Code)
\u2028 Line Separator
\u2029 Paragraph Separator

Changed in version 3.2: \'v and \ f added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab ¢', ''", 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string, and
a terminal line break does not result in an extra line:

>>> "" splitlines ()

L]

(continues on next page)

4.7. Text Sequence Type — str 55

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> "One line\n".splitlines/()
['One line']

For comparison, split ('\n"') gives:

>>> "' . split ('\n")

['"1

>>> 'Two lines\n'.split('\n")
['"Two lines', '']

str.startswith (preﬁx[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to look
for. With optional start, test string beginning at that position. With optional end, stop comparing string at that
position.

str.strip([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’

>>> 'www.example.com'.strip('cmowz.")
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

>>> comment_string oL Section 3.2.1 Issue #32 !
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32'

str.swapcase ()

Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not
necessarily true that s. swapcase () . swapcase () == s.

str.title()

Return a titlecased version of the string where words start with an uppercase character and the remaining characters
are lowercase.

For example:

>>> 'Hello world'.title ()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The defi-
nition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries,
which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

The string.capwords () function does not have this problem, as it splits words on spaces only.

Alternatively, a workaround for apostrophes can be constructed using regular expressions:

56

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za—-z]+)?",
lambda mo: mo.group(0) .capitalize(),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (fable)

Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via ___getitem__ (), typically a mapping or sequence. When
indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode ordinal or
a string, to map the character to one or more other characters; return None, to delete the character from the return
string; or raise a LookupError exception, to map the character to itself.

You can use st r.maketrans () to create a translation map from character-to-character mappings in different
formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()

Return a copy of the string with all the cased characters”° 3% # converted to uppercase. Note that s . upper () .

isupper () might be False if s contains uncased characters or if the Unicode category of the resulting char-
acter(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.z£fill (width)

Return a copy of the string left filled with ASCII ' 0 ' digits to make a string of length width. A leading sign prefix
("+'/"-") is handled by inserting the padding after the sign character rather than before. The original string is
returned if width is less than or equal to 1len (s).

For example:

>>> "42" z£i11(5)
'00042"

>>> "—42" zfill (5)
'-0042"

4.7.2 printf-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such
as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st r. format ()
interface, or femplate strings may help avoid these errors. Each of these alternatives provides their own trade-offs and
benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting or

interpolation operator. Given format % values (where format is a string), $ conversion specifications in format are
replaced with zero or more elements of values. The effect is similar to using the sprint £ () in the C language.

If format requires a single argument, values may be a single non-tuple object.” Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 57

The Python Library Reference, Release 3.11.3

A conversion specifier contains two or more characters and has the following components, which must occur in this order:
1. The '%' character, which marks the start of the specifier.
2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' * ' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a parenthesised
mapping key into that dictionary inserted immediately after the ' %' character. The mapping key selects the value to be
formatted from the mapping. For example:

>>> print (' has quote types.' %
Ce {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
"#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

A})

- The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).
' ' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
'+' | Asign character ('+"' or '—") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to sd.

The conversion types are:

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

Conver- | Meaning Noteg

sion

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. €))]

'u! Obsolete type — it is identical to 'd"'. 6)

'x! Signed hexadecimal (lowercase). 2)

'X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'c! Single character (accepts integer or single character string).

'r' String (converts any Python object using repr ()). 5)

's! String (converts any Python object using st = ()). 5)

'a' String (converts any Python object using ascii ()). &)

' No argument is converted, results in a ' %' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 0o ') to be inserted before the first digit.

(2) The alternate form causes a leading ' 0x ' or '0X' (depending on whether the 'x' or 'X' format was used) to
be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they
would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

(6) See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that '\ 0" is the end of the string.

Changed in version 3.1: %£ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g

conversions.

4.7. Text Sequence Type — str

59

https://peps.python.org/pep-0237/

The Python Library Reference, Release 3.11.3

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are byt es and byt earray. They are supported by memoryview
which uses the buffer protocol to access the memory of other binary objects without needing to make a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII text
encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and are closely
related to string objects in a variety of other ways.

class bytes ([source[, encoding[, errors]]])

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:
» Single quotes: b'still allows embedded "double" quotes'
* Double quotes: b"still allows embedded 'single' quotes"
e Triple quoted: b' ' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any binary
values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See strings
for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger ValueError). This is done deliberately to emphasise that while many binary formats
include ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not
generally the case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that
are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
* A zero-filled bytes object of a specified length: bytes (10)
¢ From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (ob3Jj)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format
for describing binary data. Accordingly, the bytes type has an additional class method to read data in that format:
classmethod fromhex (string)

This bytes class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1£f2 ")
b' AxfO\xfI\xf2'

Changed in version 3.7: bytes. fromhex () now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

60

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\x£f0\x£f1\x£f2' .hex ()
'fOfl1f2"

If you want to make the hex string easier to read, you can specify a single character separator sep parameter
to include in the output. By default, this separator will be included between each byte. A second optional
bytes_per_sep parameter controls the spacing. Positive values calculate the separator position from the right,
negative values from the left.

>>> value = b'\xf0\xfl\x£f2'
>>> value.hex ('-")

'fO0-f1-f2"

>>> value.hex('_', 2)
'fO_f1£2"

>>> b'UUDDLRLRAB' .hex (' ', -4)

'55554444 4c524c52 4142°

New in version 3.5.

Changed in version 3.8: bytes. hex () now supports optional sep and bytes_per_sep parameters to insert
separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while b [0 : 1]

will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string
of length 1)

The representation of bytes objects uses the literal format (b ' . . . ') since it is often more useful thane.g. bytes ([46,
46, 461]). You can always convert a bytes object into a list of integers using 1ist (b).

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to byt es objects.

class bytearray ([source[, encoding[, errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor:
¢ Creating an empty instance: bytearray ()
* Creating a zero-filled instance with a given length: bytearray (10)
¢ From an iterable of integers: bytearray (range (20))
» Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common bytes
and bytearray operations described in Bytes and Bytearray Operations.

Also see the byrearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format
for describing binary data. Accordingly, the bytearray type has an additional class method to read data in that
format:

classmethod fromhex (string)

This bytearray class method returns bytearray object, decoding the given string object. The string must
contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.11.3

>>> bytearray.fromhex ('2Ef0 F1£f2 ")
bytearray (b' . \xf0\xf1\xf2")

Changed in version 3.7: bytearray.fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\x£f1\x£f2') .hex ()
'fOf1£2"

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), bytearray.hex () now supports optional sep and
bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer, while
b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (bytearray (b'...")) since it is often more
useful thane.g. bytearray ([46, 46, 46]). Youcan always convert a bytearray object into a list of integers using
list (b).

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands of
the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without causing
errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings
don’t accept bytes as their arguments. For example, you have to write:

a = "abc"

b = a.replace("a", "f")
and:

a = b"abc"

b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be avoided
when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may
lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count (sub[, start[, end]])

62 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

bytearray.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.
The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object plus
one.

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.
bytes.removeprefix (prefix, /)

bytearray.removeprefix (prefix, /)

If the binary data starts with the prefix string, return bytes [len (prefix) :]. Otherwise, return a copy of the
original binary data:

>>> p'TestHook'.removeprefix (b'Test')
b'Hook'

>>> p'BaseTestCase'.removeprefix(b'Test")
b'BaseTestCase'

The prefix may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

New in version 3.9.

bytes.removesuffix (suffix, /)
bytearray.removesuffix (suffix, /)

If the binary data ends with the suffix string and that suffix is not empty, return bytes[:-len (suffix)].
Otherwise, return a copy of the original binary data:

>>> pb'MiscTests'.removesuffix(b'Tests")
b'Misc'

>>> pb'TmpDirMixin'.removesuffix (b'Tests")
b'TmpDirMixin'

The suffix may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

New in version 3.9.
bytes.decode (encoding="utf-8', errors='strict’)
bytearray.decode (encoding='utf-8', errors='strict")
Return the bytes decoded to a st r.

encoding defaults to 'ut £-8"'; see Standard Encodings for possible values.

errors controls how decoding errors are handled. If 'strict' (the default), a UnicodeError exception
is raised. Other possible values are 'ignore', 'replace’', and any other name registered via codecs.
register_error (). See Error Handlers for details.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.11.3

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

Note: Passing the encoding argument to st r allows decoding any bytes-like object directly, without needing to
make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

bytes.endswith (suﬁix[, start[, end]])
bytearray.endswith (su]ﬁx[, start[, end]])

Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

The suffix(es) to search for may be any bytes-like object.
bytes.find (sub[, start[, end]])
bytearray.find (sub[, start[, end]])

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> pb'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.
bytes.index (sub[, start[, end]])

bytearray.index (sub[, start[, end]])
Like find (), but raise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.
bytes. join (iterable)
bytearray.join (iterable)

Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A Type—
Error will be raised if there are any values in iterable that are not bytes-like objects, including st r objects. The
separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans (from, to)
static bytearray.maketrans (from, t0)

This static method returns a translation table usable for bytes. translate () that will map each character in
from into the character at the same position in to; from and fo must both be byfes-like objects and have the same
length.

64 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

New in version 3.1.
bytes.partition (sep)
bytearray.partition (sep)

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple
containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.
bytes.replace (old, new[, count])

bytearray.replace (old, new[, count])

Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rfind (sub[, start[, end]])
bytearray.rfind (sub[, start[, end]])

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s [start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.
bytes.rindex (sub[, start[, end]])
bytearray.rindex (sub[, start[, end]])
Like rfind () but raises ValueError when the subsequence sub is not found.
The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.
bytes.rpartition (sep)
bytearray.rpartition (sep)

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple
containing two empty bytes or bytearray objects, followed by a copy of the original sequence.

The separator to search for may be any bytes-like object.
bytes.startswith (preﬁx[, start[, end]])

bytearray.startswith (preﬁx[, start[, end]])

Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be a tuple
of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate (table, /, delete=b")

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.11.3

bytearray.translate (table, /, delete=b")

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are removed,
and the remaining bytes have been mapped through the given translation table, which must be a bytes object of
length 256.

You can use the bytes.maket rans () method to create a translation table.

Set the table argument to None for translations that only delete characters:

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compatible
binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that all of the
bytearray methods in this section do not operate in place, and instead produce new objects.

bytes.center (width[,ﬁllbyte])

bytearray.center (width[, ﬁllbyte])

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.1ljust (widih|, fillbyte])
bytearray.ljust (width[, ﬁllbyte])

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.lstrip([chars])
bytearray.lstrip([chars])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII
characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars argument
is not a prefix; rather, all combinations of its values are stripped:

>>> b spacious '.lstrip()
b'spacious !
>>> b'www.example.com'.lstrip(b'cmowz.")

b'example.com'

The binary sequence of byte values to remove may be any byfes-like object. See removeprefix () for a method
that will remove a single prefix string rather than all of a set of characters. For example:

66 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

>>> b'Arthur: three!'.lstrip(b'Arthur: ')
b'ee!!

>>> pb'Arthur: three!'.removeprefix(b'Arthur: ")
b'three!’

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rjust (width[,ﬁllbyte])
bytearray.rjust (width[, ﬁllbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rsplit (sep=None, maxsplit=- 1)

bytearray.rsplit (sep=None, maxsplit=- 1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given,
at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence consisting
solely of ASCII whitespace is a separator. Except for splitting from the right, rsplit () behaves like split ()
which is described in detail below.

bytes.rstrip([chars])

bytearray.rstrip ([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII
characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars argument
is not a suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.rstrip()

b’ spacious'

>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any bytes-like object. See removesuffix () for a method
that will remove a single suffix string rather than all of a set of characters. For example:

>>> pb'Monty Python'.rstrip(b' Python')

b'M'

>>> p'Monty Python'.removesuffix(b' Python')
b'Monty'

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.split (sep=None, maxsplit=- 1)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 67

The Python Library Reference, Release 3.11.3

bytearray.split (sep=None, maxsplit=- 1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given
and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1 elements). If
maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example, b'1,,2"'.split (b', ') returns [b'1', b'', Db'2']). The sep argument may consist
of a multibyte sequence (for example, b'1<>2<>3"'.split (b'<>") returns [b'1l', b'2', b'3']).
Splitting an empty sequence with a specified separator returns [b''] or [bytearray (b'')] depending on
the type of object being split. The sep argument may be any bytes-like object.

For example:

>>> pb'1,2,3".split(b',")

[b'1l', b'2', b'3"']

>>> b'1,2,3".split(b', "', maxsplit=1)
[b'1l', b'2,3"']

>>> pb'1,2,,3,".split(b', ")

[b’lV’ blzl, b’l, bY3V, b"]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence has
leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely of ASCII
whitespace without a specified separator returns [].

For example:

>>> pb'l 2 3'.split ()

[b'1l', b'2', b'3"']

>>> p'l 2 3'.split (maxsplit=1)
[b'1', b'2 3']

>>> b 1 2 3 '.split ()
[b'1', b'2', b'3"]

bytes.strip([chars])

bytearray.strip([chars])

Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used
with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b spacious '.strip()
b'spacious'

>>> b'www.example.com'.strip(b'cmowz.")
b'example'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place, and
instead produce new objects.

bytes.capitalize ()

68 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

bytearray.capitalize ()

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized and
the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.expandtabs (fabsize=8)
bytearray.expandtabs (fabsize=8)

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces, depending
on the current column and the given tab size. Tab positions occur every tabsize bytes (default is 8, giving tab positions
at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to zero and the sequence is
examined byte by byte. If the byte is an ASCII tab character (b '\t '), one or more space characters are inserted
in the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the current byte is an ASCII newline (b ' \n ") or carriage return (b ' \r "), it is copied and the current column is
reset to zero. Any other byte value is copied unchanged and the current column is incremented by one regardless
of how the byte value is represented when printed:

>>> b'01\t012\t0123\t01234"'.expandtabs ()

b'ol 012 0123 01234"
>>> p'0I\t012\t0123\t01234"' .expandtabs (4)
b'01 012 0123 01234"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.isalnum ()
bytearray.isalnum/()

Return True if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, False otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal dig-
its are those byte values in the sequence b' 0123456789"'.

For example:

>>> pb'ABCabcl'.isalnum/()
True
>>> P'ABC abcl'.isalnum()
False

bytes.isalpha ()
bytearray.isalpha ()

Return True if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"'.

For example:

>>> pb'ABCabc'.isalpha()
True

>>> p'ABCabcl'.isalpha ()
False

4.8. Binary Sequence Types — bytes, bytearray, memoryview 69

The Python Library Reference, Release 3.11.3

bytes.isascii ()

bytearray.isascii ()

Return True if the sequence is empty or all bytes in the sequence are ASCII, False otherwise. ASCII bytes are
in the range 0-Ox7F.

New in version 3.7.

bytes.isdigit ()

bytearray.isdigit ()

Return True if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, False otherwise.
ASCII decimal digits are those byte values in the sequence b'0123456789"'.

For example:

>>> b'1234" .isdigit ()
True
>>> p'1.23"'.isdigit ()
False

bytes.islower ()

bytearray.islower ()

Return True if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters,
False otherwise.

For example:

>>> b'hello world'.islower ()
True
>>> b'Hello world'.islower ()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.isspace ()

bytearray.isspace ()

Return True if all bytes in the sequence are ASCII whitespace and the sequence is not empty, False otherwise.
ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f' (space, tab, newline,
carriage return, vertical tab, form feed).

bytes.istitle()

bytearray.istitle(()

Return True if the sequence is ASCII titlecase and the sequence is not empty, False otherwise. See bytes.
title () for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle ()
True

>>> p'Hello world'.istitle()
False

bytes.isupper ()

bytearray.isupper ()

Return True if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase ASCII
characters, False otherwise.

70

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

For example:

>>> Pp'HELLO WORLD'.isupper ()
True

>>> b'Hello world'.isupper ()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
bytes.lower ()
bytearray.lower ()
Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lowercase
counterpart.

For example:

>>> b'Hello World'.lower ()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.splitlines (keepends=False)
bytearray.splitlines (keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the universal
newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and
true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines/()

[b'ab c¢', b''", b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string, and
a terminal line break does not result in an extra line:

>>> b"" . split(b'\n'), b"Two lines\n".split (b'\n")
([b""], [b'Two lines', b''])

>>> b"" . splitlines (), b"One line\n".splitlines()
([], [L'One line'])

bytes.swapcase ()

bytearray.swapcase ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase
counterpart and vice-versa.

For example:

>>> p'Hello World'.swapcase ()
b'hELLO wORLD'

4.8. Binary Sequence Types — bytes, bytearray, memoryview 71

The Python Library Reference, Release 3.11.3

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Unlike str.swapcase (), it is always the case that bin.swapcase () . swapcase () == Dbin for the
binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary
Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.title ()
bytearray.title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the
remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The defi-
nition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries,
which may not be the desired result:

>>> p"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(rb" [A-Za-z]+ (' [A-Za-z]+)2",
lambda mo: mo.group (0) [0:1] .upper () +
mo.group (0) [1:].lower (),
s)

>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.upper ()

bytearray.upper ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase
counterpart.

For example:

72 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

>>> pb'Hello World'.upper ()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.z£ill (width)
bytearray.z£fill (width)

Return a copy of the sequence left filled with ASCII b ' 0 ' digits to make a sequence of length width. A leading sign
prefix (b'+'/b'-")is handled by inserting the padding after the sign character rather than before. For bytes
objects, the original sequence is returned if width is less than or equal to len (seq) .

For example:

>>> p"42" . z£f1i11 (5)
b'oo042"
>>> p"-42" . z£f111(5)
b'-0042"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

4.8.4 print£-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such
as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary, wrap it in a
tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also known as
the bytes formatting or interpolation operator. Given format % values (Where format is a bytes object), $ conversion
specifications in format are replaced with zero or more elements of values. The effect is similar to using the sprint £ ()
in the C language.

If format requires a single argument, values may be a single non-tuple object.”¢37-3 QOtherwise, values must be a

tuple with exactly the number of items specified by the format bytes object, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this order:
1. The '% "' character, which marks the start of the specifier.
2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 73

The Python Library Reference, Release 3.11.3

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' * ' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include a
parenthesised mapping key into that dictionary inserted immediately after the ' %' character. The mapping key selects
the value to be formatted from the mapping. For example:

>>> print (b’ has quote types.' %
R {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
'#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).
' ' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
'+' | Asign character ('+"' or '-") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to sd.

The conversion types are:

Conver- | Meaning Notes

sion

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. @)

'u' Obsolete type — it is identical to 'd"'. ®)

'x! Signed hexadecimal (lowercase). 2)

X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B! Floating point decimal format. 3)

‘g’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

‘¢! Single byte (accepts integer or single byte objects).

'b! Bytes (any object that follows the buffer protocol or has __bytes__ ()). 5)

's'! 's' isan alias for 'b' and should only be used for Python2/3 code bases. 6)

'a' Bytes (converts any Python object using repr (obj) .encode ('ascii', '"back- | (5)
slashreplace')).

‘¢! 'r' isan alias for 'a' and should only be used for Python2/3 code bases. @)

'yt No argument is converted, results in a ' %' character in the result.

74 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

Notes:
(1) The alternate form causes a leading octal specifier (' 00 ") to be inserted before the first digit.

(2) The alternate form causes a leading ' 0x "' or ' 0X' (depending on whether the 'x"' or 'X' format was used) to
be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they
would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
(5) If precision is N, the output is truncated to N characters.
(6) b'%s" is deprecated, but will not be removed during the 3.x series.
(7) b'%x" is deprecated, but will not be removed during the 3.x series.

(8) See PEP 237.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if no
changes were made.

See also:
PEP 461 - Adding % formatting to bytes and bytearray

New in version 3.5.

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol without
copying.
class memoryview (object)

Create a memoryview that references object. object must support the buffer protocol. Built-in objects that support
the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating object.
For many simple types such as bytes and bytearray, an element is a single byte, but other types such as
array.array may have bigger elements.

len (view) isequal tothelengthof tolist. If view.ndim = O, thelengthis 1. If view.ndim = 1,the
length is equal to the number of elements in the view. For higher dimensions, the length is equal to the length of
the nested list representation of the view. The itemsize attribute will give you the number of bytes in a single
element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a subview:

>>> v = memoryview (b'abcefg')
>>> v[1]

98

>>> v[-1]

103

>>> v[1:4]

<memory at 0x7£3ddc9f4350>

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 75

https://peps.python.org/pep-0237/
https://peps.python.org/pep-0461/

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> bytes(v[1:4])
b'bce’

If format is one of the native format specifiers from the st ruct module, indexing with an integer or a tuple of
integers is also supported and returns a single element with the correct type. One-dimensional memoryviews can
be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with tuples of
exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can be indexed
with the empty tuple.

Here is an example with a non-byte format:

>>> import array

>>> a = array.array('l', [-11111111, 22222222, —-33333333, 444444447)
>>> m = memoryview(a)

>>> m[0]

-11111111

>>> m[-1]

44444444

>>> m[::2].tolist ()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is not
allowed:

>>> data = bytearray(b'abcefg')

>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

>>> v[l:4] = b'123"

>>> data

bytearray (b'z123fg")

>>> v[2:3] = b'spamn'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview assignment: lvalue and rvalue have different structures

>>> v[2:6] = b'spam'

>>> data

bytearray (b'zlspam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The hash
is defined as hash (m) == hash (m.tobytes()):

>>> v = memoryview (b'abcefg')

>>> hash(v) == hash(b'abcefg'")

True

>>> hash(v([2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews with
formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc. Sequence

76

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

Changed in version 3.5: memoryviews can now be indexed with tuple of integers.
memoryview has several methods:

__eq __ (exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of struct format strings currently supported by tolist (), v and w are equal if v.

tolist () == w.tolist ():

>>> import array

>>> a = array.array('l', [1, 2, 3, 4, 51])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> c = array.array('b', [5, 3, 1]

>>> x = memoryview(a)

>>> y = memoryview (b)

>>> x == g ==y == Db

True

>>> x.tolist () == a.tolist() == y.tolist() == b.tolist ()
True

>>> z = y[::-2]

>>> z == C

True

>>> z.tolist () == c.tolist ()

True

If either format string is not supported by the st ruct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :
fields = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)

>>> b = memoryview (point)

>>> a == point

False

>>> g ==

False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and the
logical array structure.
tobytes (order='C")

Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted to
bytes. tobytes () supports all format strings, including those that are not in st ruct module syntax.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 77

https://peps.python.org/pep-3118/

The Python Library Reference, Release 3.11.3

New in version 3.8: order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is
converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory. In
particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to C first.
order=None is the same as order="C".

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview (b"abc")
>>> m.hex ()
'616263"

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), memoryview. hex () now supports optional sep and
bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist ()
Return the data in the buffer as a list of elements.

>>> memoryview(b'abc') .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.31)
>>> m = memoryview(a)

>>> m.tolist ()

(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

toreadonly ()

Return a readonly version of the memoryview object. The original memoryview object is unchanged.

>>> m = memoryview (bytearray (b'abc'))

>>> mm = m.toreadonly ()

>>> mm.tolist ()

[89, 98, 99]

>>> mm[0] = 42

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot modify read-only memory

>>> m[0] = 43

>>> mm.tolist ()

[43, 98, 99]

New in version 3.8.

release ()

Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
a view is held on them (for example, a bytearray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except re—
lease () itself which can be called multiple times):

>>> m = memoryview (b'abc')
>>> m.release ()

(continues on next page)

78 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview (b'abc') as m:
m[0]

97

>>> m([0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast (format[, shape])

Cast a memoryview to a new format or shape. shape defaults to [byte_length//new_itemsizel],
which means that the result view will be one-dimensional. The return value is a new memoryview, but the
buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in st ruct syntax. One of the formats
must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the original length.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array('l', [1,2,31])
>>> x = memoryview(a)

>>> x.format

R

>>> x.itemsize

8

>>> len (x)

>>> x.nbytes
24
>>> = x.cast('B")
>>> y.format

"B

>>> y.itemsize

=

>>> len(y)
24

>>> y.nbytes
24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz")
>>> x = memoryview (b)
>>> x[0] = Db'a'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format "B"

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 79

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> y = x.cast('c")
>>> y[0] = b'a'
>>> b

bytearray (b'ayz')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

>>> buf = struct.pack("i"*12, *1list (range(12)))
>>> x = memoryview (buf)
>>> y = x.cast('i', shape=[2,2,3])

>>> y.tolist ()
cceo, 1, 21, (3, 4, 511, (6, 7, 8], [9, 10, 11]]]
>>> y.format

[

i
>>> y.itemsize

>>> len(y)
>>> y.nbytes

48
>>>

N

= y.cast('b")
>>> z.format

b

>>> z.itemsize

1

>>> len(z)

48

>>> z.nbytes

48

Cast 1D/unsigned long to 2D/unsigned long:

>>> buf = struct.pack ("L"*6, *list (range(6)))
>>> x = memoryview (buf)

>>> y = x.cast('L', shape=[2,3])

>>> len(y)

2

>>> y.nbytes

48

>>> y.tolist ()

(ro, 1, 21, (3, 4, 511

New in version 3.3.

Changed in version 3.5: The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available:

obj
The underlying object of the memoryview:

>>> b = bytearray(b'xyz"')
>>> m = memoryview (b)

>>> m.obj is b

True

New in version 3.3.

80

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

nbytes

nbytes == product (shape) * itemsize == len (m.tobytes ()). Thisis the amount of
space in bytes that the array would use in a contiguous representation. It is not necessarily equal to len (m) :

>>> import array

>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)

>>> len (m)

5

>>> m.nbytes

20

>>> y = m[::2]

>>> len(y)

3

>>> y.nbytes

12

>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack ("d"*12, *[1.5*x for x in range(12)])
>>> x = memoryview (buf)
>>> y = x.cast('d', shape=[3,4])

>>> y.tolist ()

(fo.o, 1.5, 3.0, 4.51, [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]1]
>>> len(y)

3

>>> y.nbytes

96

New in version 3.3.

readonly
A bool indicating whether the memory is read only.

format

A string containing the format (in st ruct module style) for each element in the view. A memoryview can
be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are restricted
to native single element formats.

Changed in version 3.3: format 'B' is now handled according to the struct module syntax. This means that
memoryview (b'abc') [0] == b'abc'[0] == 97.

itemsize

The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview (array.array ('H', [32000, 32001, 320021))
>>> m.itemsize

2

>>> m([0]

32000

>>> struct.calcsize('H') == m.itemsize

True

4.8. Binary Sequence Types — bytes, bytearray, memoryview 81

The Python Library Reference, Release 3.11.3

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides

A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension of
the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets

Used internally for PIL-style arrays. The value is informational only.

c_contiguous

A bool indicating whether the memory is C-contiguous.
New in version 3.3.

f_contiguous

A bool indicating whether the memory is Fortran contiguous.
New in version 3.3.

contiguous

A bool indicating whether the memory is contiguous.

New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct rashable objects. Common uses include membership testing, removing
duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric
difference. (For other containers see the built-in dict, 1ist,and tuple classes, and the col lect ions module.)

Like other collections, sets support x in set, len(set),and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used as
either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its contents
cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for example:
{'jack', 'sJjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set ([itemble])

class frozenset ([iterable])

Return a new set or frozenset object whose elements are taken from iferable. The elements of a set must be hashable.
To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a new empty set
is returned.

Sets can be created by several means:

82

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

» Use a comma-separated list of elements within braces: { ' jack', 'sjoerd'}
e Use a set comprehension: {c for ¢ in 'abracadabra' if c¢ not in 'abc'}
* Use the type constructor: set (), set (' foobar'),set(['a', 'b', 'foo'l)
Instances of set and frozenset provide the following operations:
len(s)
Return the number of elements in set s (cardinality of s).
x in s
Test x for membership in s.
x not in s

Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersection
is the empty set.

issubset (other)

set <= other

Test whether every element in the set is in other.

set < other

Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other

Test whether every element in other is in the set.

set > other

Test whether the set is a proper superset of other, that is, set >= other and set != other.

union (*others)
set | other |

Return a new set with elements from the set and all others.

intersection (*others)
set & other &

Return a new set with elements common to the set and all others.

difference (*others)
set - other -

Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set * other

Return a new set with elements in either the set or other but not both.

copy ()
Return a shallow copy of the set.

Note, the non-operator versions of union(), intersection(), difference(), symmet-—
ric_difference(), issubset (), and issuperset () methods will accept any iterable as an
argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes

4.9.

Set Types — set, frozenset 83

The Python Library Reference, Release 3.11.3

error-prone constructions like set ('abc') & 'cbs' in favor of the more readable set ('abc') .
intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first
set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if
the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For example, set ('abc')
== frozenset ('abc') returns True and so does set ('abc') in set ([frozenset ('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two nonempty
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==Db, or
a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist . sort () method is undefined
for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ('ab') | set ('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (*others)
set |= other |

Update the set, adding elements from all others.

intersection_update (*others)
set &= other &

Update the set, keeping only elements found in it and all others.

difference_update (*others)
set —= other |
Update the set, removing elements found in others.
symmetric_difference_update (other)
set “= other

Update the set, keeping only elements found in either set, but not in both.

add (elem)

Add element elem to the set.

remove (elem)

Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.
pop ()
Remove and return an arbitrary element from the set. Raises Ke yError if the set is empty.
clear ()
Remove all elements from the set.
Note, the non-operator versions of the update(), intersection_update(), differ-—

ence_update (), and symmetric_difference_update () methods will accept any iterable as
an argument.

84

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

Note, the elem argument to the ___contains__ (), remove (), and discard () methods may be a set. To
support searching for an equivalent frozenset, a temporary one is created from elem.

4.10 Mapping Types —dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only one
standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple classes, and the
collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictionaries
or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Values that
compare equal (such as 1, 1.0, and True) can be used interchangeably to index the same dictionary entry.

class dict (**kwargs)

class dict (mapping, **kwargs)

class dict (iterable, **kwargs)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

Dictionaries can be created by several means:

e Use a comma-separated list of key: value pairs within braces: {'jack': 4098, 'sjoerd':
4127} or {4098: 'jack', 4127: 'sjoerd'}

e Use a dict comprehension: { }, {x: x ** 2 for x in range (10)}

¢ Use the type constructor: dict (),dict ([('foo', 100), ('bar', 200)]),dict (foo=100,
bar=200)

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the
positional argument must be an iterable object. Each item in the iterable must itself be an iterable with exactly two
objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding
value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new
dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from
the positional argument. If a key being added is already present, the value from the keyword argument replaces the
value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2, "three":
3}

>>> a = dict (one=1, two=2, three=3)

>>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 31))

>>> d = dict([('two', 2), ('one', 1), ('three', 3)1)

>>> e = dict ({'three': 3, 'one': 1, 'two': 2})

>>> f = dict({'one': 1, 'three': 3}, two=2)

>>> a == b == ¢ == == e ==

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers. Otherwise,
any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

4.10. Mapping Types — dict 85

The Python Library Reference, Release 3.11.3

list (d)
Return a list of all the keys used in the dictionary d.

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.
If a subclass of dict defines a method __missing__ () and key is not present, the d [key] operation calls
that method with the key key as argument. The d [key] operation then returns or raises whatever is returned
or raised by the __missing__ (key) call. No other operations or methods invoke __missing__ ().

If _ _missing__ () isnotdefined, KeyErrorisraised. _ missing__ () must be a method; it cannot
be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):
return 0

>>> ¢ = Counter ()
>>> c['red']

0

>>> c['red'] += 1
>>> c['red']

1

The example above shows part of the implementation of collections.Counter. Adifferent __miss—
ing__ methodisused by collections.defaultdict.

d[key] = value
Set d[key] to value.
del d[key]
Remove d [key] from d. Raises a KeyError if key is not in the map.
key in d
Return True if d has a key key, else False.
key not in d
Equivalent to not key in d.
iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (iterable[, value])
Create a new dictionary with keys from iterable and values set to value.
fromkeys () is a class method that returns a new dictionary. value defaults to None. All of the values
refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as an
empty list. To get distinct values, use a dict comprehension instead.

get (key[, default])

Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None, so
that this method never raises a KeyError.

86

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

items ()

Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view objects.
keys ()

Return a new view of the dictionary’s keys. See the documentation of view objects.
pop (key[, default])

If key is in the dictionary, remove it and return its value, else return default. If default is not given and key is
not in the dictionary, a KeyError is raised.

popitem ()

Remove andreturna (key, value) pair from the dictionary. Pairs are returned in LIFO (last-in, first-out)
order.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictio-
nary is empty, calling popitem () raises a KeyError.

Changed in version 3.7: LIFO order is now guaranteed. In prior versions, popitem () would return an
arbitrary key/value pair.

reversed (d)
Return a reverse iterator over the keys of the dictionary. This is a shortcut for reversed (d.keys ()).
New in version 3.8.

setdefault (key[, default])

If key is in the dictionary, return its value. If not, insert key with a value of default and return default. default
defaults to None.

update ([other])

Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other iter-
ables of length two). If keyword arguments are specified, the dictionary is then updated with those key/value
pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

An equality comparison between one dict .values () view and another will always return False. This
also applies when comparing dict .values () to itself:

>>> d = {'a': 1}
>>> d.values () == d.values()
False

d | other

Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries.
The values of other take priority when d and other share keys.

New in version 3.9.

d |= other

Update the dictionary d with keys and values from other, which may be either a mapping or an iterable of
key/value pairs. The values of other take priority when d and other share keys.

New in version 3.9.

4.10. Mapping Types — dict 87

The Python Library Reference, Release 3.11.3

Dictionaries compare equal if and only if they have the same (key, wvalue) pairs (regardless of ordering).
Order comparisons (‘<’, ‘<=", >=’, *>") raise TypeError.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after deletion
are inserted at the end.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (d)

['one', 'two', 'three', 'four']

>>> list (d.values())

[1! 2’ 3/ 4}
>>> d["one"] = 42
>>> d

{'one': 42, 'two': 2, 'three': 3, 'four': 4}
>>> del d["two"]

>>> d["two"] = None
>>> d
{'one': 42, 'three': 3, 'four': 4, 'two': None}

Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implementation
detail of CPython from 3.6.

Dictionaries and dictionary views are reversible.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (reversed(d))

['four', 'three', 'two', 'one']

>>> list (reversed(d.values()))

(4, 3, 2, 1]

>>> list (reversed(d.items()))

[("four', 4), ('three', 3), ('two', 2), ('one', 1)]

Changed in version 3.8: Dictionaries are now reversible.
See also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict.keys (), dict.values () and dict.items () are view objects. They provide a
dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes.
Dictionary views can be iterated over to yield their respective data, and support membership tests:

len(dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, wvalue)) in the dictionary.
Keys and values are iterated over in insertion order. This allows the creation of (value, key) pairs using

zip(): pairs zip (d.values (), d.keys()). Another way to create the same list is pairs =
[(v, k) for (k, v) in d.items()].

88 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

Changed in version 3.7: Dictionary order is guaranteed to be insertion order.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

reversed (dictview)
Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse order
of the insertion.

Changed in version 3.8: Dictionary views are now reversible.
dictview.mapping
Return a t ypes. MappingProxyType that wraps the original dictionary to which the view refers.

New in version 3.10.

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since the entries
are generally not unique.) For set-like views, all of the operations defined for the abstract base class collections.
abc. Set are available (for example, ==, <, or).

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys ()
>>> values dishes.values ()

>>> # iteration

>>n = 0

>>> for val in values:
.. n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order (insertion order)
>>> list (keys)

['eggs', 'sausage', 'bacon', 'spam']

>>> list (values)

[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes|['eggs']

>>> del dishes|['sausage']

>>> list (keys)

['bacon', 'spam']

>>> # set operations

>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}

>>> keys ~ {'sausage', 'juice'}
{'juice', 'sausage', 'bacon', 'spam'}

>>> # get back a read-only proxy for the original dictionary
>>> values.mapping
mappingproxy ({'bacon': 1, 'spam': 500})

(continues on next page)

4.10. Mapping Types — dict 89

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> values.mapping['spam']
500

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is implemented
using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement
body is executed and exited when the statement ends:

contextmanager.__enter__ ()

Enter the runtime context and return either this object or another object related to the runtime context. The value
returned by this method is bound to the identifier in the as clause of with statements using this context manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __enter__ ()
to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the with
statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)

Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body of the with statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues prop-
agating after this method has finished executing. Exceptions that occur during execution of this method will replace
any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code to easily detect whether ornotan ___exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other objects,
and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially beyond
their implementation of the context management protocol. See the context 11ib module for some examples.

Python’s generators and the context1ib. contextmanager decorator provide a convenient way to implement these
protocols. If a generator function is decorated with the contextl1ib.contextmanager decorator, it will return
a context manager implementing the necessary __enter () and __exit__ () methods, rather than the iterator
produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C APIL
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

920 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

4.12 Type Annotation Types — Generic Alias, Union

The core built-in types for type annotations are Generic Alias and Union.

4.12.1 Generic Alias Type

GenericAlias objects are generally created by subscripting a class. They are most often used with container classes,
suchas 1istor dict. Forexample, 1ist [int] isaGenericAlias object created by subscripting the 11 st class
with the argument int. GenericAlias objects are intended primarily for use with type annotations.

Note: It is generally only possible to subscript a class if the class implements the special method
__class_getitem__ ().

A GenericAlias object acts as a proxy for a generic type, implementing parameterized generics.

For a container class, the argument(s) supplied to a subscription of the class may indicate the type(s) of the elements an
object contains. For example, set [bytes] can be used in type annotations to signify a set in which all the elements
are of type bytes.

For a class which defines __class_getitem__ () butis not a container, the argument(s) supplied to a subscription
of the class will often indicate the return type(s) of one or more methods defined on an object. For example, reqular
expressions can be used on both the st r data type and the byt es data type:

e Ifx = re.search('foo', 'foo'), x will be are.Match object where the return values of x . group (0)
and x [0] will both be of type st r. We can represent this kind of object in type annotations with the Generi-
cAlias re.Match[str].

e Ify = re.search(b'bar', b'bar'), (note the b for bytes), y will also be an instance of re .Match,
but the return values of y.group (0) and y [0] will both be of type bytes. In type annotations, we would
represent this variety of re. Match objects with re .Match [bytes].

GenericAlias objects are instances of the class types.GenericAlias, which can also be used to create
GenericAlias objects directly.

TIX, Y, ...]

Creates a GenericAlias representing a type T parameterized by types X, Y, and more depending on the T used.
For example, a function expecting a 1 i st containing f1oat elements:

def average(values: list[float]) -> float:
return sum(values) / len(values)

Another example for mapping objects, using a dict, which is a generic type expecting two type parameters rep-
resenting the key type and the value type. In this example, the function expects a dict with keys of type st r and
values of type int:

def send_post_request (url: str, body: dict[str, int]) -> None:

The builtin functions i sinstance () and issubclass () do not accept GenericAlias types for their second
argument:

>>> isinstance([1, 2], list[str])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance () argument 2 cannot be a parameterized generic

4.12. Type Annotation Types — Generic Alias, Union 91

The Python Library Reference, Release 3.11.3

The Python runtime does not enforce type annotations. This extends to generic types and their type parameters. When
creating a container object from a GenericAlias, the elements in the container are not checked against their type.
For example, the following code is discouraged, but will run without errors:

>>> t = list[str]
>>> t([1, 2, 3])
[1, 2, 3]

Furthermore, parameterized generics erase type parameters during object creation:

>>> t = list[str]
>>> type (t)
<class 'types.GenericAlias'>

>>> 1 = t ()
>>> type (1)
<class 'list'>

Calling repr () or str () on a generic shows the parameterized type:

>>> repr(list[int])
'list[int]"

>>> str(list[int])
'list[int]"

The __ _getitem__ () method of generic containers will raise an exception to disallow mistakes like
dict[str] [str]:

>>> dict[str] [str]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: There are no type variables left in dict[str]

However, such expressions are valid when type variables are used. The index must have as many elements as there are
type variable items in the GenericAlias object’s __args_ .

>>> from typing import TypeVar
>>> Y = TypeVar('y'")

>>> dict[str, Y] [int]
dict[str, int]

Standard Generic Classes

The following standard library classes support parameterized generics. This list is non-exhaustive.
e tuple
e list
e dict
e set
* frozenset
* type

* collections.deque

92 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

collections.defaultdict
collections.OrderedDict
collections.Counter
collections.ChainMap
collections.abc.Awaitable
collections.abc.Coroutine
collections.abc.Asynclterable
collections.abc.AsyncIterator
collections.abc.AsyncGenerator
collections.abc.Iterable
collections.abc.Iterator
collections.abc.Generator
collections.abc.Reversible
collections.abc.Container
collections.abc.Collection
collections.abc.Callable
collections.abc. Set
collections.abc.MutableSet
collections.abc.Mapping
collections.abc.MutableMapping
collections.abc.Sequence
collections.abc.MutableSequence
collections.abc.ByteString
collections.abc.MappingView
collections.abc.KeysView
collections.abc.ItemsView
collections.abc.ValuesView
contextlib.AbstractContextManager
contextlib.AbstractAsyncContextManager
dataclasses.Field
functools.cached_property
functools.partialmethod
os.PathLike

queue.LifoQueue

queue.Queue

queue.PriorityQueue

4.12

. Type Annotation Types — Generic Alias, Union

93

The Python Library Reference, Release 3.11.3

* queue.SimpleQueue

* re.Pattern

e re.Match

* shelve.BsdDbShelf

e shelve.DbfilenameShelf

* shelve.Shelf

e types.MappingProxyType

* weakref.WeakKeyDictionary
* weakref.WeakMethod

* weakref.WeakSet

e weakref.WeakValueDictionary

Special Attributes of GenericAlias objects

All parameterized generics implement special read-only attributes.

genericalias.__origin

This attribute points at the non-parameterized generic class:

>>> list[int].__origin___
<class 'list'>

genericalias.__args

This attribute isa t up 1 e (possibly of length 1) of generic types passed to the original __class_getitem__ ()
of the generic class:

>>> dict[str, list[int]].__args__
(<class 'str'>, list[int])

genericalias.__parameters_

This attribute is a lazily computed tuple (possibly empty) of unique type variables found in __args__:

>>> from typing import TypeVar

>>> T = TypeVar ('T")
>>> 1ist[T].__parameters___
(NTI)

Note: A GenericAlias object with typing.ParamSpec parameters may not have correct __parame-—
ters___ after substitution because t yping.ParamSpec is intended primarily for static type checking.

genericalias.__unpacked__

A boolean that is true if the alias has been unpacked using the * operator (see TypeVarTuple).
New in version 3.11.
See also:

PEP 484 - Type Hints Introducing Python’s framework for type annotations.

94 Chapter 4. Built-in Types

https://peps.python.org/pep-0484/

The Python Library Reference, Release 3.11.3

PEP 585 - Type Hinting Generics In Standard Collections Introducing the ability to natively parameterize standard-
library classes, provided they implement the special class method __class_getitem__ ().

Generics, user-defined generics and typing.Generic Documentation on how to implement generic classes that can
be parameterized at runtime and understood by static type-checkers.

New in version 3.9.

4.12.2 Union Type

A union object holds the value of the | (bitwise or) operation on multiple rype objects. These types are intended primarily
for type annotations. The union type expression enables cleaner type hinting syntax compared to t yping. Union.

X | Y|

Defines a union object which holds types X, Y, and so forth. X | Y means either X or Y. It is equivalent to
typing.Union[X, Y].Forexample, the following function expects an argument of type int or float:

def square (number: int | float) —-> int | float:
return number ** 2

union_object == other
Union objects can be tested for equality with other union objects. Details:

¢ Unions of unions are flattened:

’(int | str) | float == int | str | float

¢ Redundant types are removed:

int | str | int == int | str

* When comparing unions, the order is ignored:

int | str == str | int

e It is compatible with t yping. Union:

int | str == typing.Union[int, str]

* Optional types can be spelled as a union with None:

str | None == typing.Optionall[str]

isinstance (obj, union_object)

issubclass (obj, union_object)

Callsto isinstance () and issubclass () are also supported with a union object:

>>> isinstance("", int | str)
True

However, union objects containing parameterized generics cannot be used:

>>> isinstance (1, int | list[int])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance () argument 2 cannot contain a parameterized generic

4.12. Type Annotation Types — Generic Alias, Union 95

https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.11.3

The user-exposed type for the union object can be accessed from t ypes. UnionType and used for i sinstance ()
checks. An object cannot be instantiated from the type:

>>> import types
>>> isinstance (int | str, types.UnionType)
True
>>> types.UnionType ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot create 'types.UnionType' instances

Note: The __or__ () method for type objects was added to support the syntax X | Y. If a metaclass implements
__or__ (), the Union may override it:

>>> class M (type) :
def _ or_ (self, other):
return "Hello"

>>> class C(metaclass=M) :
pass

>>> C | int

'Hello'

>>> int | C
int | __main__.C

See also:
PEP 604 — PEP proposing the X | Y syntax and the Union type.

New in version 3.10.

4.13 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.13.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather it
requires an (external) definition for a module named foo somewhere.)

A special attribute of every moduleis __dict__ . Thisis the dictionary containing the module’s symbol table. Modifying
this dictionary will actually change the module’s symbol table, but direct assignment to the __ dict__ attribute is not
possible (you can writem.__dict__['a'] = 1, which defines m.a to be 1, but you can’t writem.__dict__ =
{}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in) >. If loaded from a file, they
are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

96 Chapter 4. Built-in Types

https://peps.python.org/pep-0604/

The Python Library Reference, Release 3.11.3

4.13.2 Classes and Class Instances

See objects and class for these.

4.13.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.13.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a bound
method (also called instance method) object. When called, it will add the self argument to the argument list. Bound
methods have two special read-only attributes: m.__self__ is the object on which the method operates, and m.
___func___is the function implementing the method. Calling m (arg-1, arg-2, ..., arg-n) iscompletely
equivalent to callingm.__func__ (m.__self__, arg-1, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__ func__), setting method attributes on bound methods is
disallowed. Attempting to set an attribute on a method results in an At t ributeError being raised. In order to set a
method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self):
pass
>>> ¢ = C()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method. func__ .whoami = 'my name is method’

>>> c.method.whoami
'my name is method'

See types for more information.

4.13. Other Built-in Types 97

The Python Library Reference, Release 3.11.3

4.13.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a function
body. They differ from function objects because they don’t contain a reference to their global execution environment.
Code objects are returned by the built-in compile () function and can be extracted from function objects through their
___code___ attribute. See also the code module.

Accessing ___code___raises an auditing event object .__getattr___ with arguments obj and "__code__".

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval () built-in
functions.

See types for more information.

4.13.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There are
no special operations on types. The standard module ¢ ype s defines names for all standard built-in types.

Types are written like this: <class 'int'>.

4.13.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is exactly
one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

4.13.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named E11ipsis (abuilt-in name). type (E11ipsis) () produces the E111ipsis singleton.

Itiswrittenas El1lipsisor.. ..

4.13.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types they
don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

4.13.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although other
values can also be considered false or true). In numeric contexts (for example when used as the argument to an arithmetic
operator), they behave like the integers O and 1, respectively. The built-in function hool () can be used to convert any
value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written as False and True, respectively.

98 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

4.13.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.14 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of these
are not reported by the dir () built-in function.
object.__dict__

A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class__
The class to which a class instance belongs.

class.__bases__

The tuple of base classes of a class object.

definition._ _name

The name of the class, function, method, descriptor, or generator instance.

definition.__qualname___

The qualified name of the class, function, method, descriptor, or generator instance.
New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is called
at class instantiation, and its result is stored in __mro

class.__subclasses__ ()

Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. The list is in definition order. Example:

>>> int._ subclasses__ ()
[<class 'bool'>]

4.15 Integer string conversion length limitation

CPython has a global limit for converting between int and str to mitigate denial of service attacks. This limit only
applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are unlimited.
The limit can be configured.

The int type in CPython is an arbitrary length number stored in binary form (commonly known as a “bignum”). There
exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless the base
is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a large value
suchas int ('1' * 500_000) can take over a second on a fast CPU.

Limiting conversion size offers a practical way to avoid CVE-2020-10735.

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion algorithm
would be involved. Underscores and the sign are not counted towards the limit.

4.14. Special Attributes 99

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735

The Python Library Reference, Release 3.11.3

When an operation would exceed the limit, a ValueError is raised:

>>> import sys

>>> sys.set_int_max_str_digits (4300) # Illustrative, this is the default.
>>> _ = int ('2' * 5432)

Traceback (most recent call last):

ValueError: Exceeds the limit (4300 digits) for integer string conversion: value has.
—5432 digits; use sys.set_int_max_str_digits() to increase the limit.

>>> 1 = int ('2' * 4300)

>>> len(str(i))

4300

>>> i_squared = i*i

>>> len(str (i_squared))

Traceback (most recent call last):

ValueError: Exceeds the limit (4300 digits) for integer string conversion: value has.

—8599 digits; use sys.set_int_max_str_digits() to increase the limit.

>>> len (hex (i_squared))

7144

>>> assert int (hex (i_squared), base=16) == i*i # Hexadecimal is unlimited.

The default limit is 4300 digits as provided in sys.int_info.default_max_str_digits. The lowest limit
that can be configured is 640 digits as provided in sys.int_info.str_digits_check_threshold.

Verification:

>>> import sys

>>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info

>>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info

>>> msg = int ('578966293710682886880994035146873798396722250538762761564"'
'9252925514383915483333812743580549779436104706260696366600"
'571186405732") .to_bytes (53, 'big')

New in version 3.11.

4.15.1 Affected APIs

The limitation only applies to potentially slow conversions between int and str or bytes:
e int (string) with default base 10.
e int (string, base) for all bases that are not a power of 2.
* str(integer).
* repr (integer).

* any other string conversion to base 10, for example £"{integer}", "{}".format (integer),orb"sd"

Q

% integer.

The limitations do not apply to functions with a linear algorithm:
e int (string, base) withbase 2,4, 8, 16, or 32.
e int.from bytes () and int.to_bytes().
e hex(),oct(),bin().

» Format Specification Mini-Language for hex, octal, and binary numbers.

100 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.3

e strto float.

e strtodecimal.Decimal.

4.15.2 Configuring the limit

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the limit:

e PYTHONINTMAXSTRDIGITS, e.g. PYTHONINTMAXSTRDIGITS=640 python3 to set the limit to 640 or
PYTHONINTMAXSTRDIGITS=0 python3 to disable the limitation.

e —X int_max_str_digits,e.g python3 -X int_max_str_digits=640

e sys.flags.int_max_str_digits contains the value of PYTHONINTMAXSTRDIGITS or -X
int_max_str_digits. If both the env var and the —X option are set, the —X option takes precedence. A
value of -/ indicates that both were unset, thus a value of sys.int_info.default_max_str_digits
was used during initialization.

From code, you can inspect the current limit and set a new one using these sy s APIs:

* sys.get_int_max_str_digits() and sys.set_int_max_str_digits () are a getter and setter
for the interpreter-wide limit. Subinterpreters have their own limit.

Information about the default and minimum can be found in sys. int_info:
e sys.int_info.default_max_str_digits isthe compiled-in default limit.

e sys.int_info.str_digits_check_threshold isthe lowest accepted value for the limit (other than O
which disables it).

New in version 3.11.

Caution: Setting a low limit can lead to problems. While rare, code exists that contains integer constants in decimal
in their source that exceed the minimum threshold. A consequence of setting the limit is that Python source code
containing decimal integer literals longer than the limit will encounter an error during parsing, usually at startup time
or import time or even at installation time - anytime an up to date .pyc does not already exist for the code. A
workaround for source that contains such large constants is to convert them to 0x hexadecimal form as it has no limit.

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the environment
or flag so that it applies during startup and even during any installation step that may invoke Python to precompile
. py sources to . pyc files.

4.15.3 Recommended configuration

The default sys.int_info.default_max_str_digits is expected to be reasonable for most applications. If
your application requires a different limit, set it from your main entry point using Python version agnostic code as these
APIs were added in security patch releases in versions before 3.11.

Example:

>>> import sys
>>> if hasattr(sys, "set_int_max_str_digits"):
upper_bound = 68000
lower_bound = 4004
current_limit = sys.get_int_max_str_digits()
if current_limit == 0 or current_limit > upper_bound:
sys.set_int_max_str_digits (upper_bound)

(continues on next page)

4.15. Integer string conversion length limitation 101

The Python Library Reference, Release 3.11.3

(continued from previous page)

elif current_limit < lower_bound:
sys.set_int_max_str_digits (lower_bound)

If you need to disable it entirely, set it to O.

102 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that class
(but not exception classes from which i is derived). Two exception classes that are not related via subclassing are never
equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several items
of information (e.g., an error code and a string explaining the code). The associated value is usually passed as arguments
to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition “just
like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent user code
from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Except ion class or one of its subclasses, and not from BaseExcept i on. More information on
defining exceptions is available in the Python Tutorial under tut-userexceptions.

5.1 Exception context

When raising a new exception while another exception is already being handled, the new exception’s ___context___
attribute is automatically set to the handled exception. An exception may be handled when an except or finally
clause, or a with statement, is used.

This implicit exception context can be supplemented with an explicit cause by using £ rom with raise:

raise new_exc from original_exc

The expression following from must be an exception or None. It will be set as __cause___ on the raised exception.
Setting ___cause___ also implicitly sets the __suppress_context___ attribute to True, so that using raise
new_exc from None effectively replaces the old exception with the new one for display purposes (e.g. converting
KeyError to AttributeError), while leaving the old exception available in __context___ for introspection
when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception itself.
An explicitly chained exception in ___cause___ is always shown when present. An implicitly chained exception in
__context__isshownonlyif _ cause__is Noneand __suppress_context__ is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the traceback
always shows the last exception that was raised.

103

The Python Library Reference, Release 3.11.3

5.2 Inheriting from built-in exceptions

User code can create subclasses that inherit from an exception type. It’s recommended to only subclass one exception
type at a time to avoid any possible conflicts between how the bases handle the args attribute, as well as due to possible
memory layout incompatibilities.

CPython implementation detail: Most built-in exceptions are implemented in C for efficiency, see: Ob-
jects/exceptions.c. Some have custom memory layouts which makes it impossible to create a subclass that inherits from
multiple exception types. The memory layout of a type is an implementation detail and might change between Python
versions, leading to new conflicts in the future. Therefore, it’s recommended to avoid subclassing multiple exception types
altogether.

5.3 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException

The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for that,
use Exception). If str() is called on an instance of this class, the representation of the argument(s) to the
instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError) expect
a certain number of arguments and assign a special meaning to the elements of this tuple, while others are
usually called only with a single string giving an error message.

with_traceback (1)

This method sets tb as the new traceback for the exception and returns the exception object. It was more com-
monly used before the exception chaining features of PEP 3134 became available. The following example
shows how we can convert an instance of SomeExcept ion into an instance of OtherException while
preserving the traceback. Once raised, the current frame is pushed onto the traceback of the OtherEx—
ception, as would have happened to the traceback of the original SomeExcept ion had we allowed it to
propagate to the caller.

try:

except SomeException:
tb = sys.exception().__traceback__
raise OtherException(...).with_traceback (tb)

add_note (note)
Add the string note to the exception’s notes which appear in the standard traceback after the exception
string. A TypeError is raised if note is not a string.

New in version 3.11.

__notes___
A list of the notes of this exception, which were added with add_note (). This attribute is created when
add_note () is called.

New in version 3.11.

exception Exception

All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also be
derived from this class.

104 Chapter 5. Built-in Exceptions

https://github.com/python/cpython/tree/3.11/Objects/exceptions.c
https://github.com/python/cpython/tree/3.11/Objects/exceptions.c
https://peps.python.org/pep-3134/

The Python Library Reference, Release 3.11.3

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError, Ze—
roDivisionError, FloatingPointError.

exception BufferError

Raised when a buffer related operation cannot be performed.

exception LookupError

The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. lookup ().

5.4 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError

Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not support
attribute references or attribute assignments at all, TypeError is raised.)

The name and ob7j attributes can be set using keyword-only arguments to the constructor. When set they represent
the name of the attribute that was attempted to be accessed and the object that was accessed for said attribute,
respectively.

Changed in version 3.10: Added the name and ob 7 attributes.

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.: the
io.IOBase.read () and io.IOBase.readline () methods return an empty string when they hit EOF.)
exception FloatingPointError

Not currently used.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close () and coroutine.close (). It
directly inherits from BaseException instead of Except ion since it is technically not an error.
exception ImportError
Raised when the import statement has troubles trying to load a module. Also raised when the “from list” in from
import has a name that cannot be found.

The name and path attributes can be set using keyword-only arguments to the constructor. When set they rep-
resent the name of the module that was attempted to be imported and the path to any file which triggered the
exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError

A subclass of TmportError which is raised by import when a module could not be located. It is also raised
when None is found in sys.modules.

New in version 3.6.

5.4. Concrete exceptions 105

The Python Library Reference, Release 3.11.3

exception IndexError

Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed range;
if an index is not an integer, TypeError is raised.)

exception KeyError

Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt

Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check for
interrupts is made regularly. The exception inherits from BaseException so as to not be accidentally caught
by code that catches Except ion and thus prevent the interpreter from exiting.

Note: Catching a KeyboardInterrupt requires special consideration. Because it can be raised at unpre-
dictable points, it may, in some circumstances, leave the running program in an inconsistent state. It is generally
best to allow KeyboardInterrupt to end the program as quickly as possible or avoid raising it entirely. (See
Note on Signal Handlers and Exceptions.)

exception MemoryError

Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’s malloc () function), the interpreter may not always be
able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback can be
printed, in case a run-away program was the cause.

exception NameError

Raised when a local or global name is not found. This applies only to unqualified names. The associated value is
an error message that includes the name that could not be found.

The name attribute can be set using a keyword-only argument to the constructor. When set it represent the name
of the variable that was attempted to be accessed.

Changed in version 3.10: Added the name attribute.

exception NotImplementedError

This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise this
exception when they require derived classes to override the method, or while the class is being developed to indicate
that the real implementation still needs to be added.

Note: It should not be used to indicate that an operator or method is not meant to be supported at all — in that case
either leave the operator / method undefined or, if a subclass, set it to None.

Note: NotImplementedError and NotImplemented are not interchangeable, even though they have
similar names and purposes. See Not Implemented for details on when to use it.

exception OSError ([arg])

exception OSError (errno, strerror[, ﬁlename[, winerror[, ﬁlenameZ]]])

This exception is raised when a system function returns a system-related error, including I/O failures such as “file
not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default to
None if not specified. For backwards compatibility, if three arguments are passed, the a rgs attribute contains
only a 2-tuple of the first two constructor arguments.

106

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.11.3

The constructor often actually returns a subclass of OSErrozr, as described in OS exceptions below. The particular
subclass depends on the final errno value. This behaviour only occurs when constructing OSError directly or
via an alias, and is not inherited when subclassing.

errno

A numeric error code from the C variable errno.

winerror
Under Windows, this gives you the native Windows error code. The e rrno attribute is then an approximate
translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the e rrno attribute is determined from
the Windows error code, and the errno argument is ignored. On other platforms, the winerror argument is
ignored, and the winerror attribute does not exist.

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror () under POSIX, and FormatMessage () under Windows.

filename

filename2

For exceptions that involve a file system path (such as open () or os.unlink ()), £ilename is the file
name passed to the function. For functions that involve two file system paths (such as os. rename ()),
filenameZ2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error, select.
error and mmap . error have been merged into OSError, and the constructor may return a subclass.

Changed in version 3.4: The £ilename attribute is now the original file name passed to the function, instead of
the name encoded to or decoded from the filesystem encoding and error handler. Also, the filename2 constructor
argument and attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is some-
times raised for integers that are outside a required range. Because of the lack of standardization of floating point
exception handling in C, most floating point operations are not checked.

exception RecursionError
This exception is derived from RuntimeError. It is raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit ()) is exceeded.
New in version 3.5: Previously, a plain Runt imeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weak ref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StopIteration
Raised by built-in function next () and an iterator's __next__ () method to signal that there are no further
items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the exception,
and defaults to None.

5.4. Concrete exceptions 107

The Python Library Reference, Release 3.11.3

When a generator or coroutine function returns, anew St opIterat ion instance is raised, and the value returned
by the function is used as the value parameter to the constructor of the exception.

If a generator code directly or indirectly raises StopIteration, itis converted into a RuntimeError (re-
taining the StopIteration as the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a value.

Changed in version 3.5: Introduced the RuntimeError transformation via from ___future__ import gen-
erator_stop, see PEP 479.

Changed in version 3.7: Enable PEP 479 for all code by default: a StopIteration error raised in a generator
is transformed into a Runt imeError.

exception StopAsyncIteration

Must be raised by ___anext___ () method of an asynchronous iterator object to stop the iteration.

New in version 3.5.

exception SyntaxError (message, details)

Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions compile (), exec (), or eval (), or when reading the initial script or standard input (also
interactively).

The str () of the exception instance returns only the error message. Details is a tuple whose members are also
available as separate attributes.
filename

The name of the file the syntax error occurred in.

lineno
Which line number in the file the error occurred in. This is 1-indexed: the first line in the file hasa 1ineno
of 1.

offset
The column in the line where the error occurred. This is 1-indexed: the first character in the line has an
offset of 1.

text
The source code text involved in the error.

end_lineno
Which line number in the file the error occurred ends in. This is 1-indexed: the first line in the file has a
linenoof 1.

end_offset
The column in the end line where the error occurred finishes. This is 1-indexed: the first character in the line
has an of fset of 1.

For errors in f-string fields, the message is prefixed by “f-string: ” and the offsets are offsets in a text constructed
from the replacement expression. For example, compiling f'Bad {a b} field’ results in this args attribute: (‘f-string:
5002, @b 1,)5)).

Changed in version 3.10: Added the end_I1inenoand end_offset attributes.

exception IndentationError

Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError

Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of Tndentation-—
Error.

108

Chapter 5. Built-in Exceptions

https://peps.python.org/pep-0479/
https://peps.python.org/pep-0479/

The Python Library Reference, Release 3.11.3

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to abandon
all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of the

Python interpreter (sys . version;itis also printed at the start of an interactive Python session), the exact error

message (the exception’s associated value) and if possible the source of the program that triggered the error.
exception SystemExit

This exception is raised by the sys.exit () function. It inherits from BaseException instead of Excep—
t ion so that it is not accidentally caught by code that catches Except i on. This allows the exception to properly
propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits; no stack trace-
back is printed. The constructor accepts the same optional argument passed to sys.exit (). If the value is an
integer, it specifies the system exit status (passed to C’s exit () function); if it is None, the exit status is zero; if
it has another type (such as a string), the object’s value is printed and the exit status is one.

Acallto sys.exit () is translated into an exception so that clean-up handlers (finally clauses of t ry state-
ments) can be executed, and so that a debugger can execute a script without running the risk of losing control. The
os._exit () function can be used if it is absolutely positively necessary to exit immediately (for example, in the
child process after a call to os. fork ()).

code

The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a string
giving details about the type mismatch.

This exception may be raised by user code to indicate that an attempted operation on an object is not supported, and
is not meant to be. If an object is meant to support a given operation but has not yet provided an implementation,
NotImplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passinga 1ist when an int is expected) should resultin a TypeEr—
ror, but passing arguments with the wrong value (e.g. a number outside expected boundaries) should result in a
ValueError.

exception UnboundlLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.
UnicodeError hasattributes that describe the encoding or decoding error. For example, err.object [err.
start:err.end] gives the particular invalid input that the codec failed on.
encoding

The name of the encoding that raised the error.
reason

A string describing the specific codec error.
object

The object the codec was attempting to encode or decode.
start

The first index of invalid data in object.

5.4. Concrete exceptions 109

The Python Library Reference, Release 3.11.3

end

The index after the last invalid data in ob ject.

exception UnicodeEncodeError

Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError

Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError

Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError

Raised when an operation or function receives an argument that has the right type but an inappropriate value, and
the situation is not described by a more precise exception such as TndexError.

exception ZeroDivisionError

Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases of
OSError.

exception EnvironmentError
exception IOError

exception WindowsError

Only available on Windows.

5.4.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds to
errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the i o module.
exception ChildProcessError

Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.
Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError and
ConnectionResetError.

exception BrokenPipeError

A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been closed, or
trying to write on a socket which has been shutdown for writing. Corresponds to errno EPTPE and ESHUTDOWN.

110 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.11.3

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds to
errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds to
errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.
exception InterruptedError

Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal, except if the
signal handler raises an exception (see PEP 475 for the rationale), instead of raising TnterruptedError.

exception IsADirectoryError

Raised when a file operation (such as os. remove ()) is requested on a directory. Corresponds to errno EIS—
DIR.

exception NotADirectoryError

Raised when a directory operation (such as os. 1istdir ()) is requested on something which is not a directory.
On most POSIX platforms, it may also be raised if an operation attempts to open or traverse a non-directory file
as if it were a directory. Corresponds to errno ENOTDIR.

exception PermissionError

Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES, EPERM, and ENOTCAPABLE,.

Changed in version 3.11.1: WASI's ENOTCAPABLE is now mapped to PermissionError.

exception ProcessLookupError

Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError

Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.
New in version 3.3: All the above OSError subclasses were added.
See also:

PEP 3151 - Reworking the OS and IO exception hierarchy

5.4. Concrete exceptions 111

https://peps.python.org/pep-0475/
https://peps.python.org/pep-3151/

The Python Library Reference, Release 3.11.3

5.5 Warnings

The following exceptions are used as warning categories; see the Warning Categories documentation for more details.

exception Warning

Base class for warning categories.

exception UserWarning

Base class for warnings generated by user code.

exception DeprecationWarning

Base class for warnings about deprecated features when those warnings are intended for other Python developers.

Ignored by the default warning filters, except in the __main___ module (PEP 565). Enabling the Python Devel-
opment Mode shows this warning.

The deprecation policy is described in PEP 387.

exception PendingDeprecationWarning

Base class for warnings about features which are obsolete and expected to be deprecated in the future, but are not
deprecated at the moment.

This class is rarely used as emitting a warning about a possible upcoming deprecation is unusual, and Depreca—
tionWarning is preferred for already active deprecations.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.
The deprecation policy is described in PEP 387.

exception SyntaxWarning

Base class for warnings about dubious syntax.

exception RuntimeWarning

Base class for warnings about dubious runtime behavior.

exception FutureWarning

Base class for warnings about deprecated features when those warnings are intended for end users of applications
that are written in Python.

exception ImportWarning

Base class for warnings about probable mistakes in module imports.
Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

exception UnicodeWarning

Base class for warnings related to Unicode.

exception EncodingWarning

Base class for warnings related to encodings.
See Opt-in Encoding Warning for details.
New in version 3.10.

exception BytesWarning

Base class for warnings related to bytes and bytearray.

112 Chapter 5. Built-in Exceptions

https://peps.python.org/pep-0565/
https://peps.python.org/pep-0387/
https://peps.python.org/pep-0387/

The Python Library Reference, Release 3.11.3

exception ResourceWarning

Base class for warnings related to resource usage.
Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

New in version 3.2.

5.6 Exception groups

The following are used when it is necessary to raise multiple unrelated exceptions. They are part of the exception hierarchy
so they can be handled with except like all other exceptions. In addition, they are recognised by except *, which
matches their subgroups based on the types of the contained exceptions.

exception ExceptionGroup (msg, excs)

exception BaseExceptionGroup (msg, excs)

Both of these exception types wrap the exceptions in the sequence excs. The msg parameter must be a string. The
difference between the two classes is that BaseExceptionGroup extends BaseException and it can wrap
any exception, while Except ionGroup extends Except ion and it can only wrap subclasses of Exception.
This design is so that except Exception catchesan ExceptionGroupbutnot BaseExceptionGroup.

The BaseExceptionGroup constructor returns an ExceptionGroup rather than a BaseException—
Group if all contained exceptions are Except ion instances, so it can be used to make the selection automatic.
The ExceptionGroup constructor, on the other hand, raises a TypeError if any contained exception is not
an Except ion subclass.

message

The msg argument to the constructor. This is a read-only attribute.

exceptions

A tuple of the exceptions in the excs sequence given to the constructor. This is a read-only attribute.

subgroup (condition)
Returns an exception group that contains only the exceptions from the current group that match condition, or
None if the result is empty.

The condition can be either a function that accepts an exception and returns true for those that should be in
the subgroup, or it can be an exception type or a tuple of exception types, which is used to check for a match
using the same check that is used in an except clause.

The nesting structure of the current exception is preserved in the result, as are the values of its message,
__traceback__, _ cause__, _ context__ and _ notes__ fields. Empty nested groups are
omitted from the result.

The condition is checked for all exceptions in the nested exception group, including the top-level and any
nested exception groups. If the condition is true for such an exception group, it is included in the result in
full.

split (condition)
Like subgroup (), but returns the pair (match, rest) where match is subgroup (condition)
and rest is the remaining non-matching part.

derive (excs)
Returns an exception group with the same me ssage, but which wraps the exceptions in excs.

This method is used by subgroup () and split (). A subclass needs to override it in order to make
subgroup () and split () return instances of the subclass rather than ExceptionGroup.

5.6. Exception groups 113

The Python Library Reference, Release 3.11.3

subgroup () and split () copy the __ traceback__, _ cause__, _ context__ and
__notes___ fields from the original exception group to the one returned by derive (), so these fields
do not need to be updated by derive ().

>>> class MyGroup (ExceptionGroup) :

def derive(self, excs):

return MyGroup (self.message, excs)

>>> e = MyGroup ("eg", [ValueError(l), TypeError(2)])
>>> e.add_note("a note")
>>> e.__context__ = Exception("context")
>>> e.__cause__ = Exception("cause")
>>> try:

raise e

except Exception as e:

exc = e
>>> match, rest = exc.split (ValueError)
>>> exc, exc.__context_ , exc._ cause_ , exc._ _notes_
(MyGroup ('eg', [ValueError (1), TypeError(2)]), Exception('context'),.
—Exception('cause'), ['a note'])
>>> match, match._ _context_ , match._ _cause_ , match._ _notes_
(MyGroup ('eg', [ValueError(1)]), Exception('context'), Exception('cause'), [
—'a note'])
>>> rest, rest._ _context__, rest._ _cause_ , rest._ notes_
(MyGroup ('eg', [TypeError(2)]), Exception('context'), Exception('cause'), ['a.
—note'])
>>> exc._ _traceback__ is match._ traceback__ is rest._ traceback_
True

Note that BaseExceptionGroupdefines__new__ (), sosubclasses that need a different constructor signature
need to override that rather than __init__ (). For example, the following defines an exception group subclass

which accepts an exit_code and and constructs the group’s message from it.

class Errors (ExceptionGroup) :

def _ new__ (cls, errors, exit_code):
self = super().__new__ (Errors, f"exit code: {exit_code}", errors)
self.exit_code = exit_code

return self

def derive(self, excs):
return Errors(excs, self.exit_code)

Like ExceptionGroup, any subclass of BaseExceptionGroup which is also a subclass of Exception
can only wrap instances of Exception.

New in version 3.11.

114

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.11.3

5.7 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
BaseExceptionGroup
GeneratorExit
KeyboardInterrupt
SystemExit
Exception

[TTTT

F__

Tttt T 10T T ITIrrr

ArithmeticError
— FloatingPointError
— overflowError
L— zeroDivisionError
AssertionError
AttributeError
BufferError
EOFError

ExceptionGroup [BaseExceptionGroup]

ImportError

L— ModuleNotFoundError
LookupError

F—— IndexError

— KeyError
MemoryError
NameError

L— UnboundLocalError
OSError

F—— BlockingIOError
ChildProcessError
ConnectionError

F—— BrokenPipeError

— ConnectionAbortedError

— ConnectionRefusedError

L— ConnectionResetError
FileExistsError
FileNotFoundError
InterruptedError
IsADirectoryError
NotADirectoryError
PermissionError
ProcessLookupError
TimeoutError
ReferenceError
RuntimeError

— NotImplementedError

L— RecursionError
StopAsyncIteration
StoplIteration
SyntaxError

L— IndentationError

L— TabError

SystemError
TypeError
ValueError

L— UnicodeError

— UnicodeDecodeError

[TTTTTTT 17

(continues on next page)

5.7. Exception hierarchy

115

The Python Library Reference, Release 3.11.3

(continued from previous page)

— UnicodeEncodeError

L— UnicodeTranslateError
rning
BytesWarning
DeprecationWarning
EncodingWarning
FutureWarning
ImportWarning
PendingDeprecationWarning
ResourceWarning
RuntimeWarning
SyntaxWarning
UnicodeWarning
UserWarning

\
|
L—w

V)

[TTTTITTTTTT

116 Chapter 5. Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text processing
services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition, see the
documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:
Text Sequence Type — str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercaseand ascii_uppercase constants described below. This value
is not locale-dependent.

string.ascii_lowercase
The lowercase letters 'abcdefghijklmnopgrstuvwxyz'. This value is not locale-dependent and will not
change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. This value is not locale-dependent and will not
change.

string.digits
The string '0123456789".

string.hexdigits
The string ' 0123456789abcdefABCDEF'

string.octdigits
The string '01234567".

117

https://github.com/python/cpython/tree/3.11/Lib/string.py

The Python Library Reference, Release 3.11.3

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale: ! "#$%&"' () *+,—./:;
<=>?Q@[\]1"_"{[}~.

string.printable
String of ASCII characters which are considered printable. This is a combinationof digits, ascii_letters,
punctuation,and whitespace.

string.whitespace

A string containing all ASCII characters that are considered whitespace. This includes the characters space, tab,
linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the format ()
method described in PEP 3101. The Formatter class in the st ring module allows you to create and customize
your own string formatting behaviors using the same implementation as the built-in format () method.
class string.Formatter

The Formatter class has the following public methods:

format (format_string, /, *args, **kwargs)

The primary API method. It takes a format string and an arbitrary set of positional and keyword arguments.
It is just a wrapper that calls vformat ().

Changed in version 3.7: A format string argument is now positional-only.

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using the *args and * *kwargs syntax. viormat () does the work of breaking up
the format string into character data and replacement fields. It calls the various methods described below.

In addition, the Format ter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)

Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, conversion).
This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec and
conversion will be None.

get_field (field_name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns a
tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as “O[name]”
or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key has the same
meaning as the key parameter to get_value ().

get_value (key, args, kwargs)

Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer, it
represents the index of the positional argument in args; if it is a string, then it represents a named argument
in kwargs.

The args parameter is set to the list of positional arguments to viormat (), and the kwargs parameter is set
to the dictionary of keyword arguments.

118 Chapter 6. Text Processing Services

https://peps.python.org/pep-3101/
https://peps.python.org/pep-3101/

The Python Library Reference, Release 3.11.3

For compound field names, these functions are only called for the first component of the field name; subsequent
components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value () to be called with a key argument
of 0. The name attribute will be looked up after get_value () returns by calling the built-in getattr ()
function.

If the index or keyword refers to an item that does not exist, then an TndexError or KeyError should
be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all argument
keys that were actually referred to in the format string (integers for positional arguments, and strings for named
arguments), and a reference to the args and kwargs that was passed to vformat. The set of unused args can be
calculated from these parameters. check_unused_args () is assumed to raise an exception if the check
fails.

format_£field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that subclasses
can override it.

convert_f£field (value, conversion)

Converts the value (returned by get_field ()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), ‘t’ (repr) and ‘a’ (ascii) conversion types.

6.1.3 Format String Syntax

The str. format () method and the Format ter class share the same syntax for format strings (although in the case
of Formatter, subclasses can define their own format string syntax). The syntax is related to that of formatted string
literals, but it is less sophisticated and, in particular, does not support arbitrary expressions.

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doubling: { { and }}.

The grammar for a replacement field is as follows:

"{" [field name] ["!"™ conversion] [":" format_spec] "}"
arg_name ("." attribute_name | "[" element_index "]")*
[identifier | digit+]

replacement_field
field_name
arg_name

attribute_name = identifier

element_index = digit+ | index_string

index_string = <any source character except "]"> +
conversion = "r" | "s"™ | "a"

format_spec u= <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ' ! ', and a format_spec, which is preceded by a colon ' : '.
These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to a
positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names in a format
string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers O, 1, 2, ... will be automatically

6.1. string — Common string operations 119

The Python Library Reference, Release 3.11.3

inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify arbitrary dictionary keys
(e.g., the strings '10"' or ':—] ') within a format string. The arg_name can be followed by any number of index or
attribute expressions. An expression of the form ' .name' selects the named attribute using getattr (), while an
expression of the form ' [index] ' does an index lookup using __getitem__ ().

Changed in version 3.1: The positional argument specifiers can be omitted for str. format (), so '{} {}'.
format (a, b) isequivalentto '{0} {1}'.format (a, b).

Changed in version 3.4: The positional argument specifiers can be omitted for Formatter.

Some simple format string examples:

"First, thou shalt count to " # References first positional argument
"Bring me a "

e

Implicitly references the first positional.
—argument

"From to "

"My quest is "

"Weight in tons "
"Units destroyed: "

Same as "From {0} to {1}"
References keyword argument 'name'
'weight' attribute of first positional arg

HH FH W W

First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format__ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling __ format__ (),
the normal formatting logic is bypassed.

Three conversion flags are currently supported: ' ! s' which calls st () on the value, ' ! r' which calls repr () and
'1a' whichcalls ascii().

Some examples:

"Harold's a clever " # Calls str() on the argument first
"Bring out the holy " # Calls repr() on the argument first
"More " # Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field width,
alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-language” or
interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields may contain
a field name, conversion flag and format specification, but deeper nesting is not allowed. The replacement fields within
the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to be
dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (see Format String Syntax and f-strings). They can also be passed directly to the built-in format ()
function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format specification produces the same result as if you had called st = () on the
value. A non-empty format specification typically modifies the result.

The general form of a standard format specifier is:

120 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

format_spec

fill = <any character>

allgn = "<" | ">" I nwm_mn | nAmn

Slgn = "+" | n_mn I " "

width = digit+

grouping_option = e

precision = digit+

type = "b" | "C" I "d" | "e" ‘ "E" | "f" ‘ "F" | "g" | "G" I "n"

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a space if
omitted. It is not possible to use a literal curly brace (”{” or “}”) as the fill character in a formatted string literal or when
using the st r. format () method. However, it is possible to insert a curly brace with a nested replacement field. This
limitation doesn’t affect the format () function.

The meaning of the various alignment options is as follows:

Op- | Meaning
tion
'<' | Forces the field to be left-aligned within the available space (this is the default for most objects).
'>" | Forces the field to be right-aligned within the available space (this is the default for numbers).
'=" | Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing
fields in the form ‘+000000120°. This alignment option is only valid for numeric types. It becomes
the default for numbers when ‘0’ immediately precedes the field width.

'~ | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so that
the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning
tion
T4 indicates that a sign should be used for both positive as well as negative numbers.

- indicates that a sign should be used only for negative numbers (this is the default behavior).
space | indicates that a leading space should be used on positive numbers, and a minus sign on negative
numbers.

The 'z ' option coerces negative zero floating-point values to positive zero after rounding to the format precision. This
option is only valid for floating-point presentation types.

Changed in version 3.11: Added the 'z ' option (see also PEP 682).

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float and complex types. For integers, when binary, octal, or
hexadecimal output is used, this option adds the respective prefix '0b"', '0o', '0x "', or ' 0X"' to the output value. For
float and complex the alternate form causes the result of the conversion to always contain a decimal-point character, even
if no digits follow it. Normally, a decimal-point character appears in the result of these conversions only if a digit follows
it. In addition, for 'g"' and 'G' conversions, trailing zeros are not removed from the result.

The ', ' option signals the use of a comma for a thousands separator. For a locale aware separator, use the 'n' integer
presentation type instead.

Changed in version 3.1: Added the ', ' option (see also PEP 378).

6.1. string — Common string operations 121

[[filllalign] [sign] ["z"]["#"]["0"] [width] [grouping_option] [".

prec:

https://peps.python.org/pep-0682/
https://peps.python.org/pep-0378/

The Python Library Reference, Release 3.11.3

The '_' option signals the use of an underscore for a thousands separator for floating point presentation types and for
integer presentation type 'd'. For integer presentation types 'b', 'o', 'x', and 'X', underscores will be inserted
every 4 digits. For other presentation types, specifying this option is an error.

Changed in version 3.6: Added the ' _' option (see also PEP 515).

width is a decimal integer defining the minimum total field width, including any prefixes, separators, and other formatting
characters. If not specified, then the field width will be determined by the content.

When no explicit alignment is given, preceding the width field by a zero (' 0 ') character enables sign-aware zero-padding
for numeric types. This is equivalent to a fill character of ' 0' with an alignment type of '=".

Changed in version 3.10: Preceding the width field by ' 0 ' no longer affects the default alignment for strings.

The precision is a decimal integer indicating how many digits should be displayed after the decimal point for presentation
types 'f£' and 'F', or before and after the decimal point for presentation types 'g' or 'G'. For string presentation
types the field indicates the maximum field size - in other words, how many characters will be used from the field content.
The precision is not allowed for integer presentation types.

Finally, the fype determines how the data should be presented.

The available string presentation types are:

Type | Meaning
's! String format. This is the default type for strings and may be omitted.
None | Thesameas 's"'.

The available integer presentation types are:

Type Meaning

'b' | Binary format. Outputs the number in base 2.

'c' | Character. Converts the integer to the corresponding unicode character before printing.

'd"' | Decimal Integer. Outputs the number in base 10.

'o' | Octal format. Outputs the number in base 8.

'x ' | Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.

'X "' | Hex format. Outputs the number in base 16, using upper-case letters for the digits above 9. In
case '# ' is specified, the prefix ' 0x ' will be upper-cased to ' 0X' as well.

Number. This is the same as 'd', except that it uses the current locale setting to insert the
appropriate number separator characters.

None| The same as 'd"'.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed
below (except 'n' and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for f1oat and Decimal values are:

122 Chapter 6. Text Processing Services

https://peps.python.org/pep-0515/

The Python Library Reference, Release 3.11.3

Type Meaning

'e' | Scientific notation. For a given precision p, formats the number in scientific notation with the
letter ‘e’ separating the coefficient from the exponent. The coefficient has one digit before and p
digits after the decimal point, for a total of p + 1 significant digits. With no precision given,
uses a precision of 6 digits after the decimal point for £ 1oat, and shows all coefficient digits for
Decimal. If no digits follow the decimal point, the decimal point is also removed unless the #
option is used.

'E' | Scientific notation. Same as 'e' except it uses an upper case ‘E’ as the separator character.

'f£' | Fixed-point notation. For a given precision p, formats the number as a decimal number with
exactly p digits following the decimal point. With no precision given, uses a precision of 6 digits
after the decimal point for £1o0at, and uses a precision large enough to show all coefficient digits
for Decimal. If no digits follow the decimal point, the decimal point is also removed unless the
option is used.

'F' | Fixed-point notation. Same as ' £ ', but converts nan to NAN and inf to INF.

'g"' | General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on its
magnitude. A precision of O is treated as equivalent to a precision of 1.

The precise rules are as follows: suppose that the result formatted with presentation type 'e ' and
precision p—1 would have exponent exp. Then, if m <= exp < p, where m is -4 for floats and
-6 for Decimals, the number is formatted with presentation type ' £ ' and precision p—1-exp.
Otherwise, the number is formatted with presentation type 'e ' and precision p-1. In both cases
insignificant trailing zeros are removed from the significand, and the decimal point is also removed
if there are no remaining digits following it, unless the ' # ' option is used.

With no precision given, uses a precision of 6 significant digits for f1oat. For Decimal, the
coeficient of the result is formed from the coefficient digits of the value; scientific notation is
used for values smaller than 1e-6 in absolute value and values where the place value of the least
significant digit is larger than 1, and fixed-point notation is used otherwise.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf, —inf,
0, —0 and nan respectively, regardless of the precision.

'G' | General format. Same as 'g' except switches to 'E' if the number gets too large. The repre-
sentations of infinity and NaN are uppercased, too.

'n' | Number. This is the same as 'g', except that it uses the current locale setting to insert the
appropriate number separator characters.

%' | Percentage. Multiplies the number by 100 and displays in fixed (' £') format, followed by a
percent sign.

None For float this is the same as 'g', except that when fixed-point notation is used to format the
result, it always includes at least one digit past the decimal point. The precision used is as large as
needed to represent the given value faithfully.

For Decimal, this is the same as either 'g' or 'G' depending on the value of context.
capitals for the current decimal context.

The overall effect is to match the output of st r () as altered by the other format modifiers.

Format examples

This section contains examples of the st r. format () syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %$-formatting, with the addition of the { } and with : used instead of
%. For example, '$03.2f" can be translated to ' { : 03.2f}"'.

The new format syntax also supports new and different options, shown in the following examples.

Accessing arguments by position:

6.1. string — Common string operations 123

The Python Library Reference, Release 3.11.3

>>> '"/0}), {1}, {Z2}" . format('a', 'b', 'c")

'a, b, c'

>>> '/}, ()}, {}".format('a', 'b', 'c') # 3.1+ only

'a, b, ¢’

>>> '"/2}, {1}, {0}".format('a', 'b', 'c')

'c, b, a'

>>> '"/2}, {1}, {0}".format (*'abc') # unpacking argument sequence

'c, b, a'

>>> '"/(0}{1}{0}"'.format ('abra', 'cad') # arguments' indices can be repeated
'abracadabra'

Accessing arguments by name:

>>> 'Coordinates: {latitude}, {longitude}'.format (latitude='37.24N"', longitude='-115.
—81W")

'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: {latitude}, {longitude}'.format (**coord)
'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
'and the imaginary part {0.imag}.').format (c)

'The complex number (3-53j) is formed from the real part 3.0 and the imaginary part -5.
;)0 . '
>>> class Point:
def _ _init__ (self, x, y):
self.x, self.y = x, vy
def _ str_ (self):
return 'Point ({self.x}, {self.y})'.format (self=self)

>>> str(Point (4, 2))
'Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {0[1]}".format (coord)
'X: 3; Y: 5

Replacing $s and $r:

>>> "repr () shows quotes: {/r}; str() doesn't: {!/s}".format ('testl', 'test2')
"repr () shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> ' {:<30}" . format ('left aligned')
'left aligned !

>>> '"/:>30}"' . format ('right aligned')
! right aligned'

>>> '"/[:730}" . format ('centered")

! centered !

>>> ' /[:4730}" format ('centered') # use '"*' as a fill char
'***********Centered***********'

124 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

Replacing $+£, $—f, and $ £ and specifying a sign:

>>> "/:4f); {:+f}" format (3.14, -3.14) # show it always

'+3.140000; -3.140000"

>>> "/ f}; {: £} . format(3.14, -3.14) # show a space for positive numbers

' 3.140000; -3.140000"

>>> "/[:—f); {:-f}" . format (3.14, —-3.14) # show only the minus -- same as '{:f}; {:f}'

'3.140000; -3.140000"

Replacing $x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format (42)
'int: 42; hex: 2a; oct: 52; bin: 101010"

>>> # with 0x, 0o, or Ob as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0}; bin: {0:#b}".format (42)
'int: 42; hex: 0x2a; oct: 0052; Dbin: 0b101010"

Using the comma as a thousands separator:

>>> '/,)" format (1234567890)
'1,234,567,890"

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> 'Correct answers: {:.2%}'.format (points/total)

'Correct answers: 86.36%"'

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> '{:%Y-%m-%d $H:%M:%S}'.format (d)

'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<">', ['left', 'center', 'right']):

"{O0:{fill}{align}l6}'.format (text, fill=align, align=align)
'left<<<<<<!
'ANAANcenter AT
'>>>>>>>>>>>right’
>>>
>>> octets = [192, 168, 0, 1]
>>> "/ 02X 02X 02X) {02X]) " . format (*octets)
'COAB80001"
>>> int(_, 16)
3232235521
>>>

>>> width = 5
>>> for num in range(5,12):
for base in 'dXob':
print ('{0:{width}{base}}"'.format (num, base=base, width=width), end=' ")
print ()

(continues on next page)

6.1. string — Common string operations 125

The Python Library Reference, Release 3.11.3

(continued from previous page)

5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

6.1.4 Template strings

Template strings provide simpler string substitutions as described in PEP 292. A primary use case for template strings is
for internationalization (i18n) since in that context, the simpler syntax and functionality makes it easier to translate than
other built-in string formatting facilities in Python. As an example of a library built on template strings for i18n, see the
flufl.i18n package.

Template strings support $-based substitutions, using the following rules:
* $$ is an escape; it is replaced with a single $.

e Sidentifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier"isrestricted to any case-insensitive ASCII alphanumeric string (including underscores) that starts
with an underscore or ASCII letter. The first non-identifier character after the $ character terminates this place-
holder specification.

e ${identifier} is equivalent to $identifier. It is required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "${noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.
The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (template)

The constructor takes a single argument which is the template string.

substitute (mapping={}, /, **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where the
keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the place-
holders from kwds take precedence.

safe_substitute (mapping={}, /, **kwds)

Like substitute (), except that if placeholders are missing from mapping and kwds, instead of raising
a KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because it always tries to return a usable
string instead of raising an exception. In another sense, safe_substitute () may be anything other than
safe, since it will silently ignore malformed templates containing dangling delimiters, unmatched braces, or
placeholders that are not valid Python identifiers.

is_wvalid()
Returns false if the template has invalid placeholders that will cause substitute () toraise ValueEr—
ror.

New in version 3.11.

126 Chapter 6. Text Processing Services

https://peps.python.org/pep-0292/
https://flufli18n.readthedocs.io/en/latest/

The Python Library Reference, Release 3.11.3

get_identifiers ()

Returns a list of the valid identifiers in the template, in the order they first appear, ignoring any invalid iden-
tifiers.

New in version 3.11.
Template instances also provide one public data attribute:

template

This is the object passed to the constructor’s femplate argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template ('Swho likes S$what')

>>> s.substitute (who="'tim', what='kung pao')
'tim likes kung pao'

>>> d = dict (who="tim")

>>> Template ('Give $Swho $100') .substitute (d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template ('Swho likes Swhat') .substitute (d)
Traceback (most recent call last):

KeyError: 'what'
>>> Template ('Swho likes Swhat').safe_substitute (d)
'tim likes Swhat'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character, or
the entire regular expression used to parse template strings. To do this, you can override these class attributes:

* delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $. Note that
this should not be a regular expression, as the implementation will call re. escape () on this string as needed.
Note further that you cannot change the delimiter after class creation (i.e. a different delimiter must be set in the
subclass’s class namespace).

idpattern — This is the regular expression describing the pattern for non-braced placeholders. The default value is
the regular expression (?a: [_a-z] [_a—-z0-9]*). If this is given and braceidpattern is None this pattern will
also apply to braced placeholders.

Note: Since default flags is re . IGNORECASE, pattern [a—z] can match with some non-ASCII characters.
That’s why we use the local a flag here.

Changed in version 3.7: braceidpattern can be used to define separate patterns used inside and outside the braces.

braceidpattern — This is like idpattern but describes the pattern for braced placeholders. Defaults to None which
means to fall back to idpattern (i.e. the same pattern is used both inside and outside braces). If given, this allows
you to define different patterns for braced and unbraced placeholders.

New in version 3.7.

flags — The regular expression flags that will be applied when compiling the regular expression used for recognizing
substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added to the flags,
so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

6.1. string — Common string operations 127

The Python Library Reference, Release 3.11.3

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.
* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

e invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

The methods on this class will raise Va1 ueError if the pattern matches the template without one of these named groups
matching.

6.1.5 Helper functions

string.capwords (s, sep=None)

Split the argument into words using str.split (), capitalize each word using str.capitalize (), and
join the capitalized words using str. join (). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

6.2 re — Regular expression operations

Source code: Lib/re/

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings (st r) as well as 8-bit strings (by t es). However, Unicode
strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string with a byte pattern or vice-versa;
similarly, when asking for a substitution, the replacement string must be of the same type as both the pattern and the
search string.

Regular expressions use the backslash character (' \ ') to indicate special forms or to allow special characters to be used
without invoking their special meaning. This collides with Python’s usage of the same character for the same purpose in
string literals; for example, to match a literal backslash, one might have to write ' \\\\ ' as the pattern string, because
the regular expression must be \\, and each backslash must be expressed as \\ inside a regular Python string literal.
Also, please note that any invalid escape sequences in Python’s usage of the backslash in string literals now generate a
DeprecationWarning and in the future this will become a SyntaxError. This behaviour will happen even if it
is a valid escape sequence for a regular expression.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing '\ "' and 'n', while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and methods on
compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but miss
some fine-tuning parameters.

128 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.11/Lib/re/

The Python Library Reference, Release 3.11.3

See also:

The third-party regex module, which has an API compatible with the standard library re module, but offers additional
functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions, then
AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string pg will
match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and B; or have
numbered group references. Thus, complex expressions can easily be constructed from simpler primitive expressions like
the ones described here. For details of the theory and implementation of regular expressions, consult the Friedl book
[Frie09], or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A', 'a',or '0",
are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so last
matches the string ' last '. (In the rest of this section, we’ll write RE’s in this special style, usually without
quotes, and strings to be matched 'in single quotes'.)

Some characters, like ' | ' or ' (', are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

Repetition operators or quantifiers (*, +, ?, {m, n}, etc) cannot be directly nested. This avoids ambiguity with the
non-greedy modifier suffix ?, and with other modifiers in other implementations. To apply a second repetition to an
inner repetition, parentheses may be used. For example, the expression (?:a{6}) * matches any multiple of six 'a"'
characters.

The special characters are:

. (Dot.) In the default mode, this matches any character except a newline. If the DOTALT flag has been specified, this
matches any character including a newline.

~ (Caret.) Matches the start of the string, and in MUL T L TNE mode also matches immediately after each newline.

$ Matches the end of the string or just before the newline at the end of the string, and in MUL T I L. TNE mode also matches
before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression £oo$ matches only ‘foo’. More
interestingly, searching for foo.$ in 'fool\nfoo2\n"' matches ‘002’ normally, but fool’ in MULTILINE
mode; searching for a single $ in ' foo\n"' will find two (empty) matches: one just before the newline, and one
at the end of the string.

* Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible. ab*
will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

? Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

2,42,?2? The '', '+', and '?"' quantifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. *> is matched against ' <a> b <c>"', it will match the entire string, and not
just '<a>"'. Adding ? after the quantifier makes it perform the match in non-greedy or minimal fashion; as few
characters as possible will be matched. Using the RE <. * 2> will match only '<a>".

6.2. re — Regular expression operations 129

https://pypi.org/project/regex/

The Python Library Reference, Release 3.11.3

+, 44, ?+ Likethe '', '+',and ' ?' quantifiers, those where ' +' is appended also match as many times as possible.
However, unlike the true greedy quantifiers, these do not allow back-tracking when the expression following it fails
to match. These are known as possessive quantifiers. For example, a *a will match 'aaaa' because the a* will
match all 4 'a's, but, when the final 'a' is encountered, the expression is backtracked so that in the end the a*
ends up matching 3 'a's total, and the fourth 'a' is matched by the final 'a'. However, when a * +a is used to
match 'aaaa', the a*+ will match all 4 'a', but when the final 'a' fails to find any more characters to match,
the expression cannot be backtracked and will thus fail to match. x*+, x++ and x?+ are equivalent to (?>x*),

(?>x+) and (?>x?) correspondingly.

New in version 3.11.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For example, a{ 6} will match exactly six 'a' characters, but not five.

{m, n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3, 5} will match from3to5 'a' characters. Omitting m specifies a lower
bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b will match 'aaaab"' or
athousand 'a' characters followed by a 'b', but not 'aaab'. The comma may not be omitted or the modifier
would be confused with the previously described form.

{m, n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous quantifier. For example, on the 6-character
string 'aaaaaa',a{3, 5} willmatch 5 'a"' characters, while a{ 3, 5} ? will only match 3 characters.

{m, n}+ Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible without establishing any backtracking points. This is the possessive version of the quantifier
above. For example, on the 6-character string 'aaaaaa',a{3, 5}+aa attempttomatch 5 'a"' characters, then,
requiring 2 more 'a's, will need more characters than available and thus fail, while a { 3, 5} aa will match with
a{3,5} capturing 5, then 4 'a's by backtracking and then the final 2 'a's are matched by the final aa in the
pattern. x{m, n}+ is equivalent to (?>x{m,n}).

New in version 3.11.

\ Either escapes special characters (permitting you to match characters like ' *', ' 2 ', and so forth), or signals a special
sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an escape
sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and subsequent
character are included in the resulting string. However, if Python would recognize the resulting sequence, the
backslash should be repeated twice. This is complicated and hard to understand, so it’s highly recommended that
you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:
¢ Characters can be listed individually, e.g. [amk] will match 'a"', 'm',or 'k'.

* Ranges of characters can be indicated by giving two characters and separating them by a ' —', for example
[a—z] will match any lowercase ASCII letter, [0-5] [0-9] will match all the two-digits numbers from
00 to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If — is escaped (e.g. [a\-z]) or if it’s
placed as the first or last character (e.g. [—a] or [a—]), it will match a literal ' —'.

* Special characters lose their special meaning inside sets. For example, [(+*)] will match any of the literal
characters ' (', '+', "*",or ") ".

* Character classes such as \w or \ S (defined below) are also accepted inside a set, although the characters
they match depends on whether ASCT T or LOCALE mode is in force.

¢ Characters that are not within a range can be matched by complementing the set. If the first character of the
set is '~ ', all the characters that are not in the set will be matched. For example, [~5] will match any
character except '5"', and [~~] will match any character except '~ '. ~ has no special meaning if it’s not
the first character in the set.

130 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

* To match a literal '] ' inside a set, precede it with a backslash, or place it at the beginning of the set. For
example, both [() [\1{}] and [] () [{}] will match a right bracket, as well as left bracket, braces, and
parentheses.

 Support of nested sets and set operations as in Unicode Technical Standard #18 might be added in the future.
This would change the syntax, so to facilitate this change a FutureWarning will be raised in ambiguous
cases for the time being. That includes sets starting with a literal ' [' or containing literal character sequences
'——','s&", '~~",and ' | | '. To avoid a warning escape them with a backslash.

Changed in version 3.7: FutureWarning is raised if a character set contains constructs that will change seman-
tically in the future.

| A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary

number of REs can be separated by the ' | ' in this way. This can be used inside groups (see below) as well. As the
target string is scanned, REs separated by ' | ' are tried from left to right. When one pattern completely matches,
that branch is accepted. This means that once A matches, B will not be tested further, even if it would produce a
longer overall match. In other words, the ' | ' operator is never greedy. To match a literal ' | ', use \ |, or enclose

it inside a character class, asin [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string with
the \number special sequence, described below. To match the literals ' (' or ') ', use \ (or \), or enclose
them inside a character class: [(1, [)].

(?...) Thisis an extension notation (a '?"' following a ' (' is not meaningful otherwise). The first character after
the ' 2 ' determines what the meaning and further syntax of the construct is. Extensions usually do not create a
new group; (?P<name>. . .) is the only exception to this rule. Following are the currently supported extensions.

(?ailmsux) (One or more letters fromtheset 'a', '1', 'L', 'm', 's"', 'u', 'x"'.) The group matches the empty
string; the letters set the corresponding flags: re. A (ASCII-only matching), re. I (ignore case), re. L (locale
dependent), re . M (multi-line), re . S (dot matches all), re . U (Unicode matching), and re. X (verbose), for the
entire regular expression. (The flags are described in Module Contents.) This is useful if you wish to include the
flags as part of the regular expression, instead of passing a flag argument to the re. compile () function. Flags
should be used first in the expression string.

Changed in version 3.11: This construction can only be used at the start of the expression.

(?:...) Anon-capturing version of regular parentheses. Matches whatever regular expression is inside the parenthe-
ses, but the substring matched by the group cannot be retrieved after performing a match or referenced later in the
pattern.

(?ailmsux—imsx:...) (Zero or more letters from the set 'a', 'i', 'L', 'm", 's', 'u', 'x', optionally
followed by ' —' followed by one or more letters from the 'i', 'm', 's', 'x'.) The letters set or remove the

corresponding flags: re. A (ASCII-only matching), re. I (ignore case), re. L (locale dependent), re. M (multi-
line), re. S (dot matches all), re.U (Unicode matching), and re. X (verbose), for the part of the expression.
(The flags are described in Module Contents.)

Theletters 'a', 'L' and 'u' are mutually exclusive when used as inline flags, so they can’t be combined or follow

' —'. Instead, when one of them appears in an inline group, it overrides the matching mode in the enclosing group.
In Unicode patterns (?a: . ..) switchesto ASCII-only matching, and (?u:...) switches to Unicode matching
(default). In byte pattern (?L: .. .) switches to locale depending matching, and (?a:...) switches to ASCII-
only matching (default). This override is only in effect for the narrow inline group, and the original matching mode
is restored outside of the group.

New in version 3.6.
Changed in version 3.7: The letters 'a', 'L' and 'u' also can be used in a group.

(?>...) Attempts to match . .. asif it was a separate regular expression, and if successful, continues to match the
rest of the pattern following it. If the subsequent pattern fails to match, the stack can only be unwound to a point

6.2. re — Regular expression operations 131

https://unicode.org/reports/tr18/

The Python Library Reference, Release 3.11.3

before the (?>...) because once exited, the expression, known as an atomic group, has thrown away all stack
points within itself. Thus, (?>.*) . would never match anything because first the . * would match all characters
possible, then, having nothing left to match, the final . would fail to match. Since there are no stack points saved
in the Atomic Group, and there is no stack point before it, the entire expression would thus fail to match.

New in version 3.11.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible via the symbolic
group name name. Group names must be valid Python identifiers, and each group name must be defined only once
within a regular expression. A symbolic group is also a numbered group, just as if the group were not named.

Named groups can be referenced in three contexts. If the pattern is (?P<quote>['"]) .*? (?P=quote)
(i.e. matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it
in the same pattern itself

e (?P=quote) (as shown)
° \:]_

when processing match object m
* m.group ('quote")

e m.end ('quote') (etc.)

in a string passed to the repl argument of re . sub ()

\g<quote>
\g<1>
\1

L]

Deprecated since version 3.11: Group name containing characters outside the ASCII range (b ' \x00'-b'"\x7£f")
in bytes patterns.

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group named

name.
(?#...) A comment; the contents of the parentheses are simply ignored.
(?=...) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.

For example, Isaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov"'.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (2!
Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...) Matches if the current position in the string is preceded by a match for . . . that ends at the current po-
sition. This is called a positive lookbehind assertion. (?<=abc) def will find a match in 'abcdef ', since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must only
match strings of some fixed length, meaning that abc or a |b are allowed, but a* and a{3, 4} are not. Note
that patterns which start with positive lookbehind assertions will not match at the beginning of the string being
searched; you will most likely want to use the search () function rather than the match () function:

>>> import re

>>> m = re.search (' (?<=abc)def', 'abcdef')
>>> m.group (0)
'def'

This example looks for a word following a hyphen:

132 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

>>> m = re.search(r' (?<=-)\w+', 'spam-egg')
>>> m.group (0)
leggV

Changed in version 3.5: Added support for group references of fixed length.

(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings of
some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of the
string being searched.

(? (id/name) yes—pattern|no-pattern) Will try to match with yes-pattern if the group with given
id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted. For
example, (<) ? (\w+@\w+ (?2:\.\w+)+) (?(1)>[$) is a poor email matching pattern, which will match
with '<user@host.com>' as well as '"user@host.com', but not with '<user@host.com' nor
'user@host.com>".

Deprecated since version 3.11: Group id containing anything except ASCII digits. Group name containing char-
acters outside the ASCII range (b'\x00'-b'\x7f ") in bytes replacement strings.

The special sequences consist of '\ ' and a character from the list below. If the ordinary character is not an ASCII digit
or an ASCII letter, then the resulting RE will match the second character. For example, \ $ matches the character '$'.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1matches 'the the'or '55 55',butnot 'thethe' (note the space after the group). This special
sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number is 3 octal
digits long, it will not be interpreted as a group match, but as the character with octal value number. Inside the ' [’
and '] ' of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of word
characters. Note that formally, \b is defined as the boundary between a \w and a \W character (or vice versa),
or between \w and the beginning/end of the string. This means that r ' \bfoo\b' matches 'foo', 'foo."',
'(foo) ', '"bar foo baz' butnot 'foobar' or 'foo3"'.

By default Unicode alphanumerics are the ones used in Unicode patterns, but this can be changed by using the
ASCIT flag. Word boundaries are determined by the current locale if the LOCALE flag is used. Inside a character
range, \b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that r 'py\B'
matches 'python', 'py3', 'py2',butnot 'py"', 'py."',or "py!'. \Bis just the opposite of \Db, so word
characters in Unicode patterns are Unicode alphanumerics or the underscore, although this can be changed by using
the ASCI I flag. Word boundaries are determined by the current locale if the LOCALE flag is used.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode character cat-
egory [Nd]). This includes [0-9], and also many other digit characters. If the ASCTIT flag is used only
[0-9] is matched.

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a decimal digit. This is the opposite of \d. If the ASC I T flag is used this becomes
the equivalent of [~0-9].

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v], and
also many other characters, for example the non-breaking spaces mandated by typography rules in many
languages). If the ASCIT flagis used, only [\t\n\r\£f\v] is matched.

6.2. re — Regular expression operations 133

The Python Library Reference, Release 3.11.3

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is equiva-
lentto [\t\n\r\f\v].

\S Matches any character which is not a whitespace character. This is the opposite of \s. If the ASCT T flag is used
this becomes the equivalent of [~ \t\n\r\f\v].

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes alphanumeric characters (as defined
by str.isalnum()) as well as the underscore (_). If the ASCTT flag is used, only [a—zA-Z0-9_] is
matched.

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is equiv-
alentto [a-zA-Z0-9_1]. If the LOCALE flag is used, matches characters considered alphanumeric in the
current locale and the underscore.

\W Matches any character which is not a word character. This is the opposite of \w. If the ASCTT flag is used this
becomes the equivalent of [~a-zA-Z0-9_]. If the LOCALE flag is used, matches characters which are neither
alphanumeric in the current locale nor the underscore.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\N \r \t \u
\U \v \x AR

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u', "\U', and '\N"' escape sequences are only recognized in Unicode patterns. In bytes patterns they are errors.
Unknown escapes of ASCII letters are reserved for future use and treated as errors.

Octal escapes are included in a limited form. If the first digit is a O, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

Changed in version 3.3: The '\u' and '\U"' escape sequences have been added.
Changed in version 3.6: Unknown escapes consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.8: The '\N{name} ' escape sequence has been added. As in string literals, it expands to the
named Unicode character (e.g. ' \N{EM DASH}").

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of the
full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled form.

134 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

Flags

Changed in version 3.6: Flag constants are now instances of RegexF 1ag, which is a subclass of enum. IntFlag.

class re.RegexFlag

re

re

re

re

re

re.

re.

re.

re.

re.

An enum. IntFlag class containing the regex options listed below.

New in version 3.11: -addedto ___all_

LA

ASCII
Make \w, \W, \b, \B, \d, \D, \'s and \ S perform ASCII-only matching instead of full Unicode matching. This
is only meaningful for Unicode patterns, and is ignored for byte patterns. Corresponds to the inline flag (?a).

Note that for backward compatibility, the re .U flag still exists (as well as its synonym re .UNICODE and its
embedded counterpart (2u)), but these are redundant in Python 3 since matches are Unicode by default for strings
(and Unicode matching isn’t allowed for bytes).

DEBUG
Display debug information about compiled expression. No corresponding inline flag.

I

IGNORECASE

Perform case-insensitive matching; expressions like [A-Z] will also match lowercase letters. Full Unicode match-
ing (such as U matching 1) also works unless the re.ASCTT flag is used to disable non-ASCII matches. The
current locale does not change the effect of this flag unless the re. LOCALE flag is also used. Corresponds to the
inline flag (?21).

Note that when the Unicode patterns [a—z] or [A-Z] are used in combination with the TGNORECASE flag,
they will match the 52 ASCII letters and 4 additional non-ASCII letters: ‘I' (U+0130, Latin capital letter I with dot
above), ‘1’ (U+0131, Latin small letter dotless 1), ‘1" (U+017F, Latin small letter long s) and ‘K’ (U+212A, Kelvin
sign). If the ASCTIT flag is used, only letters ‘a’ to ‘z’ and ‘A’ to “Z’ are matched.

L
LOCALE

Make \w, \W, \b, \B and case-insensitive matching dependent on the current locale. This flag can be used only
with bytes patterns. The use of this flag is discouraged as the locale mechanism is very unreliable, it only handles
one “culture” at a time, and it only works with 8-bit locales. Unicode matching is already enabled by default in
Python 3 for Unicode (str) patterns, and it is able to handle different locales/languages. Corresponds to the inline
flag (2?L1).

Changed in version 3.6: re. LOCALE can be used only with bytes patterns and is not compatible with re. ASCTT.

Changed in version 3.7: Compiled regular expression objects with the re . LOCALE flag no longer depend on the
locale at compile time. Only the locale at matching time affects the result of matching.

M
MULTILINE

When specified, the pattern character ' ~' matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ' $ ' matches at the end of the string and at
the end of each line (immediately preceding each newline). By default, ' ~ ' matches only at the beginning of the
string, and ' $ ' only at the end of the string and immediately before the newline (if any) at the end of the string.
Corresponds to the inline flag (?m) .

NOFLAG

Indicates no flag being applied, the value is 0. This flag may be used as a default value for a function keyword
argument or as a base value that will be conditionally ORed with other flags. Example of use as a default value:

6.2. re — Regular expression operations 135

The Python Library Reference, Release 3.11.3

def myfunc (text, flag=re.NOFLAG) :
return re.match (text, flag)

New in version 3.11.

re.S

re.DOTALL
Make the ' . ' special character match any character at all, including a newline; without this flag, ' . ' will match
anything except a newline. Corresponds to the inline flag (?s).

re.X

re .VERBOSE
This flag allows you to write regular expressions that look nicer and are more readable by allowing you to visually
separate logical sections of the pattern and add comments. Whitespace within the pattern is ignored, except when
in a character class, or when preceded by an unescaped backslash, or within tokens like *?, (?: or (?P<...>.
For example, (? : and * 2 are not allowed. When a line contains a # that is not in a character class and is
not preceded by an unescaped backslash, all characters from the leftmost such # through the end of the line are
ignored.
This means that the two following regular expression objects that match a decimal number are functionally equal:
a = re.compile(r"""\d + # the integral part

\. # the decimal point
\d * # some fractional digits""", re.X)

b = re.compile (r"\d+\.\d*")
Corresponds to the inline flag (?x) .

Functions

re.compile (pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match (), search () and other methods, described below.
The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following variables,
combined using bitwise OR (the | operator).
The sequence
prog = re.compile (pattern)
result = prog.match(string)
is equivalent to
result = re.match(pattern, string)
but using re. compile () and saving the resulting regular expression object for reuse is more efficient when the
expression will be used several times in a single program.
Note: The compiled versions of the most recent patterns passed to re.compile () and the module-level
matching functions are cached, so programs that use only a few regular expressions at a time needn’t worry about
compiling regular expressions.

136 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

re.search (pattern, string, flags=0)

Scan through string looking for the first location where the regular expression pattern produces a match, and return a
corresponding match object. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

re .match (pattern, string, flags=0)

If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not at the
beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re . fullmatch (pattern, string, flags=0)

If the whole string matches the regular expression pattern, return a corresponding match object. Return None if
the string does not match the pattern; note that this is different from a zero-length match.

New in version 3.4.

re.split (pattern, string, maxsplit=0, flags=0)

Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all groups in
the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits occur, and
the remainder of the string is returned as the final element of the list.

>>> re.split (r'\W+', 'Words, words, words.')
['"Words', 'words', 'words', '']

>>> re.split(r' (\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']

>>> re.split (r'\W+', 'Words, words, words.',6 1)
["Words', 'words, words.']

>>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE)
[ro', '3', '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will start with an
empty string. The same holds for the end of the string:

>>> re.split(r' (\W+)', '...words, words...')
[L 'words' ' ! 'words' oot ']

That way, separator components are always found at the same relative indices within the result list.

Empty matches for the pattern split the string only when not adjacent to a previous empty match.

>>> re.split(r'\b', 'Words, words, words.')
(', 'words', ', ', 'words', ', ', 'words', '.']

>>> re.split(r'\wW*', '...words...")

[", l', Vw', VOV, YrV, YdV, ISY, l', Vl}

>>> re.split(r' (\W*)', '...words...")

['l’ l-..’, l', 'l, lWI, 'l, lol’ ll, lr', ll, ldl, 'l, ISI, '---'[IV, ll, '|j|

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.7: Added support of splitting on a pattern that could match an empty string.

re.findall (pattern, string, flags=0)

Return all non-overlapping matches of pattern in string, as a list of strings or tuples. The string is scanned left-to-
right, and matches are returned in the order found. Empty matches are included in the result.

6.2. re — Regular expression operations 137

The Python Library Reference, Release 3.11.3

The result depends on the number of capturing groups in the pattern. If there are no groups, return a list of strings
matching the whole pattern. If there is exactly one group, return a list of strings matching that group. If multiple
groups are present, return a list of tuples of strings matching the groups. Non-capturing groups do not affect the
form of the result.

>>> re.findall (r'\bf[a-z]*', 'which foot or hand fell fastest')
["foot', 'fell', 'fastest']

>>> re.findall (r' (\w+)=(\d+) "', 'set width=20 and height=10")

[("width', '20'), ('height', '10')]

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.finditer (pattern, string, flags=0)

Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The string
is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the result.

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re. sub (pattern, repl, string, count=0, flags=0)

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the re-
placement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if it is
a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character, \r is
converted to a carriage return, and so forth. Unknown escapes of ASCII letters are reserved for future use and
treated as errors. Other unknown escapes such as \ & are left alone. Backreferences, such as \ 6, are replaced with
the substring matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+ ([a-zA-Z_] [a-zA-Z 0-9]*)\s*\ (\s*\):"',
r'static PyObject*\npy_\1 (void)\n{"',

ce 'def myfunc():")

'static PyObject*\npy_myfunc (void) \n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single match
object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == '-': return ' '
. else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro————-gram-files')

'pro-—gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or a pattern object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a non-
negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are replaced
only when not adjacent to a previous empty match, so sub ('x*', '-', 'abxd') returns '-a-b--d-"'.

In string-type repl arguments, in addition to the character escapes and backreferences described above, \g<name>
will use the substring matched by the group named name, as defined by the (?P<name>...) syntax. \
g<number> uses the corresponding group number; \g<2> is therefore equivalent to \ 2, but isn’t ambiguous
in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference to group
2 followed by the literal character ' 0'. The backreference \ g<0> substitutes in the entire substring matched by
the RE.

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

138

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

Changed in version 3.6: Unknown escapes in pattern consisting of '\ ' and an ASCII letter now are errors.
Changed in version 3.7: Unknown escapes in repl consisting of '\ ' and an ASCII letter now are errors.
Changed in version 3.7: Empty matches for the pattern are replaced when adjacent to a previous non-empty match.

Deprecated since version 3.11: Group id containing anything except ASCII digits. Group name containing char-
acters outside the ASCII range (b ' \x00'-b'\x7£f") in bytes replacement strings.

re . subn (pattern, repl, string, count=0, flags=0)

Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).
Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

re.escape (pattern)

Escape special characters in pattern. This is useful if you want to match an arbitrary literal string that may have
regular expression metacharacters in it. For example:

>>> print (re.escape('https://www.python.org'))
https://www\.python\.org

>>> legal_chars = string.ascii_lowercase + string.digits + "!#$%&"*+—."_"[~:"
>>> print ('[]+' % re.escape(legal_chars))
[abcdefghijklmnopgrstuvwxyz0123456789 ! \#\S$2\& "\ *\+\=\.\"_"\|\~:1+

>>> OperatOrS - [|+Y, l7¥’ l*l, l/l’ l**’]
>>> print ('|'.Jjoin (map (re.escape, sorted(operators, reverse=True))))

ZIN=INHINFNF [\ F

This function must not be used for the replacement string in sub () and subn (), only backslashes should be
escaped. For example:

>>> digits_re = r'\d+'

>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'

>>> print (re.sub(digits_re, digits_re.replace('\\', r'\\'), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings

Changed in version 3.3: The '_' character is no longer escaped.

Changed in version 3.7: Only characters that can have special meaning in a regular expression are escaped. As a
result, L v’ l"l’ v%v’ nvu’ v, v’ |/v’ ', v’ |,. v’ v<v’ v=v’ l>l’ '@',and nyn arenolongerescaped.

re.purge ()

Clear the regular expression cache.

Exceptions

exception re.error (msg, pattern=None, pos=None)

Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern. The error instance has the following additional attributes:

msg

The unformatted error message.

6.2.

re — Regular expression operations 139

The Python Library Reference, Release 3.11.3

pattern

The regular expression pattern.
pos

The index in pattern where compilation failed (may be None).
lineno

The line corresponding to pos (may be None).

colno

The column corresponding to pos (may be None).

Changed in version 3.5: Added additional attributes.

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

Pattern.search (string[,pos[, endpos]])

Scan through string looking for the first location where this regular expression produces a match, and return a
corresponding match object. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0. This is
not completely equivalent to slicing the string; the ' ~ ' pattern character matches at the real beginning of the string
and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos
characters long, so only the characters from pos to endpos — 1 will be searched for a match. If endpos is less
than pos, no match will be found; otherwise, if rx is a compiled regular expression object, rx . search (string,
0, 50) isequivalentto rx.search (string[:50], 0).

>>> pattern = re.compile("d")

>>> pattern.search ("dog") # Match at index 0

<re.Match object; span=(0, 1), match='d'>

>>> pattern.search ("dog", 1) # No match; search doesn't include the "d"

Pattern.match (string[,pos[, endpos]])

If zero or more characters at the beginning of string match this regular expression, return a corresponding match
object. Return None if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".

<re.Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

Pattern.fullmatch (slring[, pos[, endpos]])

If the whole string matches this regular expression, return a corresponding match object. Return None if the string
does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

140 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch ("dog") # No match as "o" is not at the start of '"dog".
>>> pattern.fullmatch("ogre") # No match as not the full string matches.

>>> pattern.fullmatch ("doggie", 1, 3) # Matches within given limits.

<re.Match object; span=(1, 3), match='og'>

New in version 3.4.

Pattern.split (string, maxsplit=0)
Identical to the sp1it () function, using the compiled pattern.

Pattern.findall (string[, pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos param-
eters that limit the search region like for search ().

Pattern.finditer (string[, pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos pa-
rameters that limit the search region like for search ().

Pattern. sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

Pattern.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

Pattern.flags

The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline flags in
the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

Pattern.groups
The number of capturing groups in the pattern.
Pattern.groupindex

A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

Pattern.pattern

The pattern string from which the pattern object was compiled.

Changed in version 3.7: Added support of copy.copy () and copy.deepcopy (). Compiled regular expression
objects are considered atomic.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match () and search () return None when there is no
match, you can test whether there was a match with a simple if statement:

match = re.search(pattern, string)
if match:
process (match)

Match objects support the following methods and attributes:

6.2. re — Regular expression operations 141

The Python Library Reference, Release 3.11.3

Match .expand (femplate)

Return the string obtained by doing backslash substitution on the template string template, as done by the sub ()
method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences (\ 1, \2)
and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding group.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Match.group ([group],])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there are
multiple arguments, the result is a tuple with one item per argument. Without arguments, group! defaults to zero
(the whole match is returned). If a groupN argument is zero, the corresponding return value is the entire matching
string; if it is in the inclusive range [1..99], it is the string matching the corresponding parenthesized group. If a
group number is negative or larger than the number of groups defined in the pattern, an TndexError exception
is raised. If a group is contained in a part of the pattern that did not match, the corresponding result is None. If a
group is contained in a part of the pattern that matched multiple times, the last match is returned.

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

'Isaac Newton'

>>> m.group (1) # The first parenthesized subgroup.
'Isaac’

>>> m.group (2) # The second parenthesized subgroup.
'Newton'

>>> m.group(l, 2) # Multiple arguments give us a tuple.

("Isaac', 'Newton')

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings identifying
groups by their group name. If a string argument is not used as a group name in the pattern, an TndexError
exception is raised.

A moderately complicated example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group ('first_name')

'Malcolm'

>>> m.group ('last_name")

'Reynolds'

Named groups can also be referred to by their index:

>>> m.group (1)
'Malcolm'
>>> m.group (2)
'Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
IC3'

Match.__getitem__ (g)

This is identical to m. group (g) . This allows easier access to an individual group from a match:

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0] # The entire match
'Isaac Newton'

(continues on next page)

142 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> m[1] # The first parenthesized subgroup.
'Isaac’
>>> m[2] # The second parenthesized subgroup.
'Newton'

Named groups are supported as well:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Isaac Newton")
>>> m['first_name']

'Isaac'

>>> m['last_name']

'Newton'

New in version 3.6.

Match.groups (default=None)

Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m = re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()
('24', '"1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match. These
groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.? (\d+) 2", "24™")

>>> m.groups () # Second group defaults to None.

('24', None)

>>> m.groups ('0") # Now, the second group defaults to '0'.
('24V, YOV)

Match.groupdict (default=None)

Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

Match.start ([group])
Match.end ([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return -1 if group exists but did not contribute to the match. For a match object m,
and a group g that did contribute to the match, the substring matched by group g (equivalent to m. group (g)) is

’m.string[m.start(g):m.end(g)]

Note thatm.start (group) will equal m.end (group) if group matched a null string. For example, after m

= re.search('b(c?)', 'cba'),m.start(0)isl,m.end(0) is2, m.start (1) andm.end (1)
are both 2, and m. start (2) raises an TndexError exception.

An example that will remove remove_this from email addresses:

6.2. re — Regular expression operations 143

The Python Library Reference, Release 3.11.3

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]

'tony@tiger.net'

Match.span ([group])
For a match m, return the 2-tuple (m.start (group), m.end (group)). Note that if group did not con-
tribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

Match.pos
The value of pos which was passed to the search () or match () method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

Match.endpos
The value of endpos which was passed to the search () or match () method of a regex object. This is the index
into the string beyond which the RE engine will not go.

Match.lastindex

The integer index of the last matched capturing group, or None if no group was matched at all. For example, the
expressions (a)b, ((a) (b)),and ((ab)) willhave lastindex == 1 if applied to the string 'ab', while
the expression (a) (b) will have lastindex == 2, if applied to the same string.

Match.lastgroup

The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was matched
at all.

Match.re

The regular expression object whose match () or search () method produced this match instance.

Match.string

The string passed to match () or search ().

Changed in version 3.7: Added support of copy.copy () and copy.deepcopy (). Match objects are considered
atomic.

6.2.5 Regular Expression Examples
Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return '<Match: , groups=¢r>"' % (match.group (), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each character

representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2” through “9” representing the
card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r""[a2-9tjgk] S™M)
>>> displaymatch(valid.match ("akt5g")) # Valid.
"<Match: 'aktb5qg', groups=()>"

(continues on next page)

144 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> displaymatch (valid.match ("aktbe")) # Invalid.
>>> displaymatch(valid.match ("akt")) # Invalid.
>>> displaymatch(valid.match ("727ak")) # Valid.
"<Match: '727ak', groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> palr = re.compile (r".*(.).*\1")

>>> displaymatch (pair.match ("717ak")) # Pair of 7s.
"<Match: '717', groups=('T7',)>"

>>> displaymatch (pair.match ("718ak"))

>>> displaymatch (pair.match ("354aa")) # Pair of aces.
"<Match: '354aa', groups=('a',)>"

No pairs.

To find out what card the pair consists of, one could use the group () method of the match object in the following
manner:

>>> pair = re.compile(r".*(.).*\1")

>>> pair.match("717ak") .group (1)

|7|

Error because re.match() returns None, which doesn't have a group() method:

>>> pair.match("718ak") .group (1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match (r".*(.).*\1", "718ak") .group (1)
AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa") .group (1)
lal

Simulating scanf()

Python does not currently have an equivalent to scanf () . Regular expressions are generally more powerful, though also
more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings between
scanf () format tokens and regular expressions.

scanf () Token | Regular Expression

%cC .

$5¢ -{5}

$d [—+]?\d+

Se, $E, %f, %g [—+12 (\d+ (\.\d*)2[\.\d+) ([eE] [-+]2\d+) ?
$i [-+12(0[xX] [\dA-Fa—f]1+[0[0-7]*|\d+)

%0 [—+12[0-71+

$s \S+

S$u \d+

%%, $X [-+1?(0[xX])?[\dA-Fa—f]+

To extract the filename and numbers from a string like

/usr/sbin/sendmail - 0 errors, 4 warnings

6.2. re — Regular expression operations 145

The Python Library Reference, Release 3.11.3

you would use a scanf () format like

%s — %d errors, %d warnings

The equivalent regular expression would be

’(\SH - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers different primitive operations based on regular expressions:
e re.match () checks for a match only at the beginning of the string
e re.search () checks for a match anywhere in the string (this is what Perl does by default)
e re.fullmatch () checks for entire string to be a match

For example:

>>> re.match("c", "abcdef™) # No match

>>> re.search("c", "abcdef") # Match
<re.Match object; span=(2, 3), match='c'>

>>> re.fullmatch("p.*n", "python") # Match
<re.Match object; span=(0, 6), match='python'>
>>> re.fullmatch("r.*n", "python") # No match

Regular expressions beginning with ' ~ ' can be used with search () to restrict the match at the beginning of the string:

>>> re.match("c", "abcdef™) # No match
>>> re.search(""c", "abcdef") # No match
>>> re.search(""a", "abcdef") # Match

<re.Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with ' ~ ' will match at the beginning of each line.

>>> re.match ("X", "A\nB\nX", re.MULTILINE) # No match
>>> re.search(""X", "A\nB\nX", re.MULTILINE) # Match
<re.Match object; span=(4, 5), match='X'>

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual data
into data structures that can be easily read and modified by Python as demonstrated in the following example that creates
a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

146 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line having
its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['"Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. With a maxsplit of
4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['"Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
["Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates using
sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence except
for the first and last characters:

>>> def repl(m):
inner_word = list (m.group(2))
random.shuffle (inner_word)
.. return m.group(l) + "".join(inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if a writer
wanted to find all of the adverbs in some text, they might use findall () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly\b", text)
['carefully', 'quickly']

6.2. re — Regular expression operations 147

The Python Library Reference, Release 3.11.3

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it provides
match objects instead of strings. Continuing with the previous example, if a writer wanted to find all of the adverbs and
their positions in some text, they would use finditer () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly\b", text):
print (' - : ' % (m.start (), m.end(), m.group(0)))

07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r "t ext ") keeps regular expressions sane. Without it, every backslash (' \ ') in a regular expression
would have to be prefixed with another one to escape it. For example, the two following lines of code are functionally
identical:

>>> re.match (r"\wW(.)\1\w", "™ £f ")

<re.Match object; span=(0, 4), match=' ff '>
>>> re.match ("\\W (.)\\I\\w", " ££ ™)
<re.Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string notation, this
means r"\\". Without raw string notation, one must use "\\\\", making the following lines of code functionally
identical:

>>> re.match (r"\\", r"\\")
<re.Match object; span=(0, 1), match="\\"'>
>>> re.match ("\\\\", r"\\")
<re.Match object; span=(0, 1), match="\\'>

Writing a Tokenizer
A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a compiler
or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master regular
expression and to loop over successive matches:

from typing import NamedTuple
import re

class Token (NamedTuple) :
type: str
value: str
line: int
column: int

def tokenize (code) :
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [
('"NUMBER', r'\d+(\.\d*)?"), # Integer or decimal number
('ASSIGN', r':="), # Assignment operator

(continues on next page)

148 Chapter 6. Text Processing Services

https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.11.3

(continued from previous page)

('END', r';", # Statement terminator
('1D', r'[A-Za-z]+'"), # Identifiers
('op', r'[+\-*/1"), # Arithmetic operators
("NEWLINE', <r'\n'"), # Line endings
('SKIP', r'[\tl+"), # Skip over spaces and tabs
("MISMATCH', r'."), # Any other character
]
tok_regex = '|'.join(' (?P<%s5>%s)' % pair for pair in token_specification)
line_num = 1
line_start = 0

for mo in re.finditer (tok_regex, code):
kind = mo.lastgroup
value = mo.group ()

column = mo.start () - line_start
if kind == 'NUMBER':
value = float (value) if '.' in value else int (value)
elif kind == 'ID' and value in keywords:
kind = value
elif kind == 'NEWLINE':

line_start = mo.end()
line_num += 1

continue
elif kind == 'SKIP':
continue
elif kind == 'MISMATCH':
raise RuntimeError (f'{value!/r} unexpected on line {line_num}"')

yield Token (kind, wvalue, line_num, column)

statements = '''
IF quantity THEN
total := total + price * quantity;
tax := price * 0.05;
ENDIF;

for token in tokenize (statements):
print (token)

The tokenizer produces the following output:

Token (type="'IF', value='IF', line=2, column=4)

Token (type='1ID', value='quantity', line=2, column=7)
Token (type="'THEN', value='THEN', line=2, column=16)
Token (type="'ID', value='total', line=3, column=38)
Token (type="ASSIGN', wvalue=':=', line=3, column=14)
Token (type="ID', value='total', line=3, column=17)
Token (type='0OP', value='+', line=3, column=23)

Token (type="'ID', value='price', line=3, column=25)
Token (type='0OP', value='*', line=3, column=31)

Token (type="'ID', value='quantity', line=3, column=33)
Token (type="'END', value=';', line=3, column=41)

Token (type="ID', value='tax', line=4, column=8)

(
(
(
(
(

Token (type="ASSIGN', wvalue=':=', line=4, column=12)
Token (type="'ID', value='price', line=4, column=15)
Token (type="'0OP', value='*', line=4, column=21)

Token (type="'NUMBER', wvalue=0.05, line=4, column=23)
Token (type="'END', value=';', line=4, column=27)

(continues on next page)

6.2. re — Regular expression operations 149

The Python Library Reference, Release 3.11.3

(continued from previous page)

Token (type="ENDIF', value='ENDIF', line=5, column=4)
Token (type="END', value=';', line=5, column=9)

6.3 difflib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for comparing files,
and can produce information about file differences in various formats, including HTML and context and unified diffs. For
comparing directories and files, see also, the i Iecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are hashable.
The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by Ratcliff
and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest contiguous
matching subsequence that contains no “junk” elements; these “junk” elements are ones that are uninteresting
in some sense, such as blank lines or whitespace. (Handling junk is an extension to the Ratcliff and Obershelp
algorithm.) The same idea is then applied recursively to the pieces of the sequences to the left and to the right of
the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that “look
right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the expected
case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior dependent in a
complicated way on how many elements the sequences have in common; best case time is linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain sequence
items as junk. The heuristic counts how many times each individual item appears in the sequence. If an item’s
duplicates (after the first one) account for more than 1% of the sequence and the sequence is at least 200 items
long, this item is marked as “popular” and is treated as junk for the purpose of sequence matching. This heuristic
can be turned off by setting the aut o junk argument to False when creating the SequenceMatcher.

New in version 3.2: The autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas. Differ
uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters within
similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code | Meaning
'— ' | line unique to sequence 1

'+ ' | line unique to sequence 2
' line common to both sequences
'2? ' | line not present in either input sequence

Lines beginning with ‘2 attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

150

Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.11/Lib/difflib.py

The Python Library Reference, Release 3.11.3

class difflib.HtmlDiff

This class can be used to create an HTML table (or a complete HTML file containing the table) showing a side by
side, line by line comparison of text with inter-line and intra-line change highlights. The table can be generated in
either full or contextual difference mode.

The constructor for this class is:

__init_ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of Html1Diff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped, defaults
to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndi £ () (used by Htm1Diff to gen-
erate the side by side HTML differences). See ndiff () documentation for argument default values and
descriptions.

The following methods are public:

make_file (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5, *, charset="utf-8")

Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file containing
a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set confext to True when contextual differences
are to be shown, else the default is False to show the full files. numlines defaults to 5. When context is
True numlines controls the number of context lines which surround the difference highlights. When context
is False numlines controls the number of lines which are shown before a difference highlight when using
the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next difference highlight
at the top of the browser without any leading context).

Note: fromdesc and fodesc are interpreted as unescaped HTML and should be properly escaped while
receiving input from untrusted sources.

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML document
changed from 'ISO-8859-1"to 'utf-8"'.

make_table (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5)

Compares fromlines and folines (lists of strings) and returns a string which is a complete HTML table showing
line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.
Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its use.

difflib.context_diff (a, b, fromfile=", tofile=", fromfiledate="", tofiledate=", n=3, lineterm="\n'")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The changes
are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with *** or ———) are created with a trailing newline. This is helpful so
that inputs created from i 0. TOBase. readlines () resultin diffs that are suitable for use with 0. TOBase.
writelines () since both the inputs and outputs have trailing newlines.

6.3. difflib — Helpers for computing deltas 151

The Python Library Reference, Release 3.11.3

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may be

specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally expressed
in the ISO 8601 format. If not specified, the strings default to blanks.

>>> sl

['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> 52 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines (context_diff(sl, s2, fromfile='before.py', tofile=
—'after.py'))

*** before.py

-—— after.py

khkkhkkhkhkhkkhkkhkhkhkkkkkxk
* %k 1,4 * Kk kK
! bacon
! eggs
! ham
guido
-— 1,4 ———
! python
! eggy
! hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired (typically
a string), and possibilities is a list of sequences against which to match word (typically a list of strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater than 0.

Optional argument cutoff (default O . 6) is a float in the range [0, 1]. Possibilities that don’t score at least that similar
to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get_close_matches ('appel', ['ape', 'apple', 'peach', 'puppy'])
["apple', 'ape']

>>> import keyword

>>> get_close_matches ('wheel', keyword.kwlist)

['while']

>>> get_close_matches ('pineapple’', keyword.kwlist)

[]

>>> get_close_matches ('accept', keyword.kwlist)

["except']

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)

Compare a and b (lists of strings); return a D1 £ fer-style delta (a generator generating the delta lines).
Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if not. The
default is None. There is also a module-level function 7S LINE JUNK (), which filters out lines without visible
characters, except for at most one pound character (' # ') — however the underlying SequenceMatcher class

does a dynamic analysis of which lines are so frequent as to constitute noise, and this usually works better than
using this function.

152

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level function 7S_CHARACTER_JUNK (), which filters out whitespace characters (a
blank or tab; it’s a bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> print (''.join(diff), end="")

- one

o A

+ ore

- two
- three

+ tree

+ emu

difflib.restore (sequence, which)

Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
.. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> diff = list(diff) # materialize the generated delta into a 1list
>>> print (''.join (restore(diff, 1)), end="")

one

two

three

>>> print (''.join (restore(diff, 2)), end="")

ore

tree

emu

difflib.unified_diff (a, b, fromfile=", tofile=", fromfiledate="", tofiledate=", n=3, lineterm="\n'")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The changes
are shown in an inline style (instead of separate before/after blocks). The number of context lines is set by n which
defaults to three.

By default, the diff control lines (those with ———, +++, or @Q) are created with a trailing newline. This is helpful so
that inputs created from i 0. TOBase. readlines () resultin diffs that are suitable for use with 0. TOBase.
writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may be
specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally expressed
in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

(continues on next page)

6.3. difflib — Helpers for computing deltas 153

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> sys.stdout.writelines (unified_diff(sl, s2, fromfile='before.py', tofile=
—'after.py'))

—-—— before.py

+++ after.py

@R -1,4 +1,4 Q@

—-bacon

-eggs

—ham

+python

teggy
+hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.diff_bytes (dfunc, a, b, fromfile=b", tofile=b", fromfiledate=b", tofiledate=b", n=3, lineterm=b"\n'")
Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the format
returned by dfunc. dfunc must be a callable, typically either unified diff () or context_diff ().

Allows you to compare data with unknown or inconsistent encoding. All inputs except n must be bytes objects,
not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc (a, b, fromfile,
tofile, fromfiledate, tofiledate, n, lineterm). The outputof dfunc isthen converted back
to bytes, so the delta lines that you receive have the same unknown/inconsistent encodings as a and b.

New in version 3.5.

difflib.IS_LINE_JUNK (line)

Return True for ignorable lines. The line /ine is ignorable if /ine is blank or contains a single ' # ', otherwise it is
not ignorable. Used as a default for parameter linejunk in ndi £ £ () in older versions.

difflib.IS_CHARACTER_JUNK (ch)

Return True for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener.
This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMat cher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a=", b=", autojunk="True)

Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: False;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of both
sequences must be hashable.

The optional argument aufojunk can be used to disable the automatic junk heuristic.

New in version 3.2: The autojunk parameter.

154 Chapter 6. Text Processing Services

https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
https://www.drdobbs.com/

The Python Library Reference, Release 3.11.3

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is True;
bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled); b2j is a dict
mapping the remaining elements of b to a list of positions where they occur. All three are reset whenever b is reset
with set_segs () or set_seg2 ().

New in version 3.2: The bjunk and bpopular attributes.
SequenceMat cher objects have the following methods:

set_seqs (a, b)

Set the two sequences to be compared.
SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_seqg? () to set the commonly used sequence once and
call set_seql () repeatedly, once for each of the other sequences.
set_seql (a)

Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)

Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo=0, ahi=None, blo=0, bhi=None)
Find longest matching block in a [alo:ahi] and b [blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, j, k) suchthata[i:i+k]is
equaltob[J:J+k],wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= Dbhi. Forall
(1", 3J', k') meeting those conditions, the additional conditions k >= k', 1 <= i',andif i ==
i',j <= j' are also met. In other words, of all maximal matching blocks, return one that starts earliest in
a, and of all those maximal matching blocks that start earliest in a, return the one that starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional restric-
tion that no junk element appears in the block. Then that block is extended as far as possible by matching
(only) junk elements on both sides. So the resulting block never matches on junk except as identical junk
happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd' from matching
the ' abcd' at the tail end of the second sequence directly. Instead only the 'abcd' can match, and
matches the leftmost 'abcd' in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match (a, b, size).
Changed in version 3.9: Added default arguments.

get_matching_blocks ()
Return list of triples describing non-overlapping matching subsequences. Each triple is of the form (i, j,
n),and means that a [1i:i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0).Itisthe only triple withn ==
If (i, j, n)and (i', j', n') areadjacent triples in the list, and the second is not the last triple in

6.3. difflib — Helpers for computing deltas 155

The Python Library Reference, Release 3.11.3

the list, then i+n < i'or j+n < j';in other words, adjacent triples always describe non-adjacent equal
blocks.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()

Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, 12, 3j1,
j2). Thefirst tuple has 11 == j1 == 0, and remaining tuples have i/ equal to the i2 from the preceding
tuple, and, likewise, jI equal to the previous j2.

The fag values are strings, with these meanings:

Value Meaning

'replace' | a[i1:12] should be replacedbyb[j1:j2].

'delete' a[i1:12] should be deleted. Note that j1 == 72 in this case.

'insert' b[jl1l:732] should be insertedata[11:11]. Note that i1 == 1i2 in this case.
'equal' al[il:i2] == b[jl:7j2] (the sub-sequences are equal).

For example:

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, Db)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
print (' al : 1 —> bl :] -——> '.format (
. tag, 11, iz, 3j1, j2, alil:i2], b[jl:321))
delete al0:1] ——> b[0:0] 'g' > !
equal afl:3] ——> b[0:2] 'ab' —-—> 'ab'
replace a[3:4] ——> b[2:3] 'x' > 'y!
equal ald4:6] ——> b[3:5] 'ed' ——> 'cd!
insert al6:6] ——> b[5:6] Yo ——> ' f!

get_grouped_opcodes (n=3)

Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio()

Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M /
T. Note that this is 1 . 0 if the sequences are identical, and 0 . O if they have nothing in common.

This is expensive to compute if get_matching _blocks () or get_opcodes () hasn’t already been
called, in which case you may want to try quick_ratio () or real_quick_ratio () first to get an
upper bound.

Note: Caution: The result of a ratio () call may depend on the order of the arguments. For instance:

>>> SequenceMatcher (None, 'tide', 'diet').ratio()
0.25

(continues on next page)

156

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> SequenceMatcher (None, 'diet', 'tide').ratio()
0.5

quick_ratio ()
Return an upper bound on ratio () relatively quickly.

real_quick_ratio ()

Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, although quick_ratio () and real_quick_ratio () are always at least as large as ratio ():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value over

0.6 means the sequences are close matches:

>>> print (round(s.ratio(), 3))
0.866

If you're only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching_blocks() :
.. print ("al] and bl] match for elements" % block)
al[0] and b[0] match for 8 elements
al[8] and b[1l7] match for 21 elements
[29] and b[38] match for 0 elements

V1)

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len (a),
and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes ():

len(b), 0),

>>> for opcode in s.get_opcodes():
.. print (" al : 1 bl : 1" % opcode)
equal af[0:8] b[0:8]

insert af[8:8] b[8:17]

equal af[8:29] b[17:38]

See also:

6.3. difflib — Helpers for computing deltas

157

The Python Library Reference, Release 3.11.3

The get_close_matches () function in this module which shows how simple code building on Sequence—
Mat cher can be used to do useful work.

Simple version control recipe for a small application built with SequenceMat cher.

6.3.3 Differ Objects

Note that D1 f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often counter-
intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restricting synch
points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer diff.

The Di ffer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the character
is junk. The default is None, meaning that no character is considered junk.

These junk-filtering functions speed up matching to find differences and do not cause any differing lines or char-
acters to be ignored. Read the description of the find longest_match () method’s isjunk parameter for an
explanation.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).
Each sequence must contain individual single-line strings ending with newlines. Such sequences can be ob-

tained from the readlines () method of file-like objects. The delta generated also consists of newline-
terminated strings, ready to be printed as-is via the writelines () method of a file-like object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with newlines
(such sequences can also be obtained from the readlines () method of file-like objects):

>>>

>>>
4
>>>
l\nl
>>>

textl = '''" 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

""" .splitlines (keepends=True)

len (textl)

textl1[0][-1]

text2 = '''" 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

""" .splitlines (keepends=True)

Next

we instantiate a Differ object:

158

Chapter 6. Text Processing Services

https://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.11.3

>>> d = Differ ()

Note that when instantiating a D1 ffer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:

>>> result = list (d.compare (textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint

>>> pprint (result)

[’ 1. Beautiful is better than ugly.\n',

! 2. Explicit is better than implicit.\n',

'— 3. Simple is better than complex.\n',
3

'+ Simple is better than complex.\n',

' ++\n"',

' - 4. Complex is better than complicated.\n',
'? " -0 /\\nll
'+ 4. Complicated is better than complex.\n',
1o ++4++ A “\n',

L 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines (result)
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
- 3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
2 A —— A
+ 4. Complicated is better than complex.
? FH++ A ~
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a di £ £-like utility. It is also contained in the Python source distribution,
as Tools/scripts/diff.py.

#!/usr/bin/env python3
""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mn

import sys, os, difflib, argparse
from datetime import datetime, timezone

(continues on next page)

6.3. difflib — Helpers for computing deltas 159

The Python Library Reference, Release 3.11.3

(continued from previous page)

def file_mtime (path) :
t = datetime.fromtimestamp (os.stat (path) .st_mtime,
timezone.utc)
return t.astimezone () .isoformat ()

def main() :

parser = argparse.ArgumentParser ()
parser.add_argument ('-c', action='store_true', default=False,
help='Produce a context format diff (default)"')
parser.add_argument ('-u', action='store_true', default=False,
help='Produce a unified format diff')
parser.add_argument ('-m', action='store_true', default=False,
help='Produce HTML side by side diff '
'(can use -c and -1 in conjunction)')
parser.add_argument ('-n', action='store_true', default=False,
help='Produce a ndiff format diff')
parser.add_argument ('-1', '--lines', type=int, default=3,
help='Set number of context lines (default 3)"')
parser.add_argument ('fromfile')
parser.add_argument ('tofile')
options = parser.parse_args ()

n = options.lines
fromfile = options.fromfile
tofile = options.tofile

fromdate = file_mtime (fromfile)
todate = file_mtime (tofile)
with open(fromfile) as ff:
fromlines = ff.readlines|()
with open(tofile) as tf:
tolines = tf.readlines|()

if options.u:
diff = difflib.unified_diff (fromlines, tolines, fromfile, tofile, fromdate, .
—~todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file(fromlines,tolines, fromfile,tofile,
—context=options.c,numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile, fromdate, .
—todate, n=n)

sys.stdout.writelines (diff)

if name == '__main__ ':

main ()

160 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The t extwrap module provides some convenience functions, as well as TextWrappe r, the class that does all the work.
If you're just wrapping or filling one or two text strings, the convenience functions should be good enough; otherwise, you
should use an instance of TextWrapper for efficiency.

textwrap.wrap (fext, width=70, *, initial_indent="", subsequent_indent=", expand_tabs=True,
replace_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, placeholder="
[..]"
Wraps the single paragraph in fext (a string) so every line is at most width characters long. Returns a list of output
lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
See the TextWrapper.wrap () method for additional details on how wrap () behaves.

textwrap.£ill (fext, width=70, *, initial_indent="", subsequent_indent=", expand_tabs=True,
replace_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens="True, tabsize=8, max_lines=None, placeholder="
[..]")
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph. £il11 () is
shorthand for

"\n".Jjoin (wrap (text, ...))

In particular, £111 () accepts exactly the same keyword arguments as wrap ().

textwrap.shorten (fext, width, *, fix_sentence_endings=False, break_long_words=True,
break_on_hyphens="True, placeholder="]...]")

Collapse and truncate the given fext to fit in the given width.
First the whitespace in fext is collapsed (all whitespace is replaced by single spaces). If the result fits in the width, it is

returned. Otherwise, enough words are dropped from the end so that the remaining words plus the placeholder
fit within width:

>>> textwrap.shorten("Hello world!", width=12)

'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)

'Hello [...]"

>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. Note
that the whitespace is collapsed before the text is passed to the TextWrapper £i11 () function, so changing the
value of tabsize, expand_ tabs, drop _whitespace,and replace whitespace will have no effect.

New in version 3.4.

textwrap.dedent (fext)

Remove any common leading whitespace from every line in zext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting them
in the source code in indented form.

6.4. textwrap — Text wrapping and filling 161

https://github.com/python/cpython/tree/3.11/Lib/textwrap.py

The Python Library Reference, Release 3.11.3

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and "\
thello" are considered to have no common leading whitespace.

Lines containing only whitespace are ignored in the input and normalized to a single newline character in the output.

For example:

def test():
end first line with \ to avoid the empty line!
s = """\
hello
world
print (repr(s)) # prints ' hello\n world\n !
print (repr (dedent (s))) # prints 'hello\n world\n'

textwrap.indent (fext, prefix, predicate=None)

Add prefix to the beginning of selected lines in zext.
Lines are separated by calling text .splitlines (True).
By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).

For example:

>>> s = 'hello\n\n \nworld'
>>> indent (s, ' ")
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to add
prefix to even empty and whitespace-only lines:

>>> print (indent (s, '+ ', lambda line: True))
+ hello

+
+
+ world

New in version 3.3.

wrap (), fi11 () and shorten () work by creating a TextWrapper instance and calling a single method on it.
That instance is not reused, so for applications that process many text strings using wrap () and/or £i11 (), it may be
more efficient to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words be
broken if necessary, unless TextWrapper.break_long_words is set to false.

class textwrap.TextWrapper (**kwargs)

The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument cor-
responds to an instance attribute, so for example

wrapper = TextWrapper (initial_indent="* ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "* "

You can re-use the same TextWrapper object many times, and you can change any of its options through direct
assignment to instance attributes between uses.

162

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the input text
longer than width, TextWrapper guarantees that no output line will be longer than widt h characters.
expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the expandtabs ()
method of fext.
tabsize
(default: 8) If expand_tabs is true, then all tab characters in text will be expanded to zero or more spaces,
depending on the current column and the given tab size.

New in version 3.3.

replace_whitespace

(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return (' \t\n\v\£f\r").

Note: If expand_tabsisfalseand replace_whitespace istrue, each tab character will be replaced
by a single space, which is not the same as tab expansion.

Note: If replace whitespace is false, newlines may appear in the middle of a line and cause strange
output. For this reason, text should be split into paragraphs (using st r. splitlines () or similar) which
are wrapped separately.

drop_whitespace

(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before in-
denting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-whitespace
follows it. If whitespace being dropped takes up an entire line, the whole line is dropped.

initial_indent
(default: ' ') String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line. The empty string is not indented.

subsequent_indent
(default: ' ') String that will be prepended to all lines of wrapped output except the first. Counts towards the
length of each line except the first.

fix_sentence_endings

(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase letter
followed by oneof '."', '!',or ' 2", possibly followed by one of '" ' or "' ", followed by a space. One
problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

’ [...] Dr. Frankenstein's monster [...]

and “Spot.” in

’[...] See Spot. See Spot run [...]

6.4. textwrap — Text wrapping and filling 163

The Python Library Reference, Release 3.11.3

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter”, and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long_words

(default: True) If true, then words longer than width will be broken in order to ensure that no lines are
longer than width. If it is false, long words will not be broken, and some lines may be longer than width.
(Long words will be put on a line by themselves, in order to minimize the amount by which width is ex-
ceeded.)

break_on_hyphens

(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in compound
words, as it is customary in English. If false, only whitespaces will be considered as potentially good places
for line breaks, but you need to set break_1ong_woxrds to false if you want truly insecable words. Default
behaviour in previous versions was to always allow breaking hyphenated words.

max_lines

(default: None) If not None, then the output will contain at most max_lines lines, with placeholder appearing
at the end of the output.

New in version 3.4.

placeholder
(default: ' [...]") String that will appear at the end of the output text if it has been truncated.
New in version 3.4.

TextWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap (fext)

Wraps the single paragraph in fext (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

£ill (text)

Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all Unicode
characters. The data contained in this database is compiled from the UCD version 14.0.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character Database”.
It defines the following functions:

unicodedata.lookup (name)

Look up character by name. If a character with the given name is found, return the corresponding character. If not
found, KeyError is raised.

Changed in version 3.3: Support for name aliases' and named sequences” has been added.

! https://www.unicode.org/Public/14.0.0/ucd/NameAliases. txt
2 https://www.unicode.org/Public/14.0.0/ucd/NamedSequences. txt

164 Chapter 6. Text Processing Services

https://www.unicode.org/Public/14.0.0/ucd
https://www.unicode.org/reports/tr44/
https://www.unicode.org/Public/14.0.0/ucd/NameAliases.txt
https://www.unicode.org/Public/14.0.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.11.3

unicodedata.name (chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned, or,
if not given, ValueError is raised.

unicodedata.numeric (chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned, or,
if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)

Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty string
is returned.

unicodedata.combining (chr)

Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining class is
defined.

unicodedata.east_asian_width (chr)

Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)

Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been identified
as a “mirrored” character in bidirectional text, O otherwise.

unicodedata.decomposition (chr)

Returns the character decomposition mapping assigned to the character chr as string. An empty string is returned
in case no such mapping is defined.

unicodedata.normalize (form, unistr)

Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’, and
‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canonical
equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way. For
example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as the
sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form C
(NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I). How-
ever, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility characters
with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed by the
canonical composition.

6.5. unicodedata — Unicode Database 165

The Python Library Reference, Release 3.11.3

Even if two unicode strings are normalized and look the same to a human reader, if one has combining characters
and the other doesn’t, they may not compare equal.

unicodedata.is_normalized (form, unistr)

Return whether the Unicode string unistr is in the normal form form. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

New in version 3.8.
In addition, the module exposes the following constant:

unicodedata.unidata_version

The version of the Unicode database used in this module.

unicodedata.ued_3_2_0

This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2 instead,
for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata

>>> unicodedata.lookup ('LEFT CURLY BRACKET')

l{l

>>> unicodedata.name('/")

'SOLIDUS'

>>> unicodedata.decimal ('9")

9

>>> unicodedata.decimal ('a')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: not a decimal

>>> unicodedata.category ('A") # 'L'etter, 'u'ppercase

lLu'

>>> unicodedata.bidirectional ('\u0660') # 'A'rabic, 'N'umber
lAN'

6.6 stringprep — Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RF'C 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the wire,
they are processed with the preparation procedure, after which they have a certain normalized form. The RFC defines a
set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what other optional
parts of the st ringprep procedure are part of the profile. One example of a st ringprep profile is nameprep,
which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using the mkstringprep.py utility.

166 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.11/Lib/stringprep.py
https://datatracker.ietf.org/doc/html/rfc3454.html
https://datatracker.ietf.org/doc/html/rfc3454.html

The Python Library Reference, Release 3.11.3

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns True if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated value.
Below is a list of all functions available in the module.
stringprep.in_table_al (code)

Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).
stringprep.in_table_bl (code)

Determine whether code is in tableB.1 (Commonly mapped to nothing).
stringprep.map_table_b2 (code)

Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3 (code)

Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).
stringprep.in_table_cl1 (code)

Determine whether code is in tableC.1.1 (ASCII space characters).
stringprep.in_table_c12 (code)

Determine whether code is in tableC.1.2 (Non-ASCII space characters).
stringprep.in_table_cll_c12 (code)

Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).
stringprep.in_table_c21 (code)

Determine whether code is in tableC.2.1 (ASCII control characters).
stringprep.in_table_c22 (code)

Determine whether code is in tableC.2.2 (Non-ASCII control characters).
stringprep.in_table_c21_c22 (code)

Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).
stringprep.in_table_c3 (code)

Determine whether code is in tableC.3 (Private use).
stringprep.in_table_c4 (code)

Determine whether code is in tableC.4 (Non-character code points).
stringprep.in_table_c5 (code)

Determine whether code is in tableC.5 (Surrogate codes).
stringprep.in_table_c6 (code)

Determine whether code is in tableC.6 (Inappropriate for plain text).
stringprep.in_table_c7 (code)

Determine whether code is in tableC.7 (Inappropriate for canonical representation).
stringprep.in_table_c8 (code)

Determine whether code is in tableC.8 (Change display properties or are deprecated).
stringprep.in_table_c9 (code)

Determine whether code is in tableC.9 (Tagging characters).
stringprep.in_table_d1 (code)

Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

6.6. stringprep — Internet String Preparation 167

The Python Library Reference, Release 3.11.3

stringprep.in_table_d2 (code)

Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readl i ne module defines a number of functions to facilitate completion and reading/writing of history files from the
Python interpreter. This module can be used directly, or via the r1comp1eter module, which supports completion of
Python identifiers at the interactive prompt. Settings made using this module affect the behaviour of both the interpreter’s
interactive prompt and the prompts offered by the built-in i nput () function.

Readline keybindings may be configured via an initialization file, typically . inputrc in your home directory. See
Readline Init File in the GNU Readline manual for information about the format and allowable constructs of that file, and
the capabilities of the Readline library in general.

Note: The underlying Readline library API may be implemented by the 1ibedit library instead of GNU readline.
On macOS the readline module detects which library is being used at run time.

The configuration file for 1 ibedit is different from that of GNU readline. If you programmatically load configuration
strings you can check for the text “libedit” in readline.__doc___to differentiate between GNU readline and libedit.

If you use editline/1ibedit readline emulation on macOS, the initialization file located in your home directory is named
.editrc. For example, the following content in ~/ . edit rc will turn ON vi keybindings and TAB completion:

python:bind -v
python:bind "I rl_complete

6.7.1 Init file

The following functions relate to the init file and user configuration:

readline.parse_and_bind (string)
Execute the init line provided in the string argument. This calls r1_parse_and_bind () in the underlying
library.

readline.read_init_file([ﬁlename])

Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file () in the underlying library.

6.7.2 Line buffer

The following functions operate on the line buffer:
readline.get_line_buffer ()
Return the current contents of the line buffer (r1_1ine_buffer in the underlying library).

readline.insert_text (string)

Insert text into the line buffer at the cursor position. This calls r1_insert_text () in the underlying library,
but ignores the return value.

168 Chapter 6. Text Processing Services

https://tiswww.cwru.edu/php/chet/readline/rluserman.html#SEC9

The Python Library Reference, Release 3.11.3

readline.redisplay ()

Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay () in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history_ file([ﬁlename])
Load a readline history file, and append it to the history list. The default filename is ~/ .history. This calls
read_history () in the underlying library.

readline.write_history file ([ﬁlename])
Save the history list to a readline history file, overwriting any existing file. The default filename is ~/ .history.
This calls write_history () in the underlying library.

readline.append_history_file (nelements[, filename])

Append the last nelements items of history to a file. The default filename is ~/ . history. The file must already
exist. This calls append_history () inthe underlying library. This function only exists if Python was compiled
for a version of the library that supports it.

New in version 3.5.

readline.get_history_length(()
readline.set_history_length (length)

Set or return the desired number of lines to save in the history file. The write _history_ file () function
uses this value to truncate the history file, by calling history_truncate_file () in the underlying library.
Negative values imply unlimited history file size.

6.7.4 History list

The following functions operate on a global history list:

readline.clear_history ()
Clear the current history. This calls clear_history () in the underlying library. The Python function only
exists if Python was compiled for a version of the library that supports it.
readline.get_current_history_length ()
Return the number of items currently in the history. (This is different from get_history_ length (), which
returns the maximum number of lines that will be written to a history file.)
readline.get_history_item (index)
Return the current contents of history item at index. The item index is one-based. This calls history_get ()
in the underlying library.
readline.remove_history_item (pos)
Remove history item specified by its position from the history. The position is zero-based. This calls re—
move_history () in the underlying library.
readline.replace_history_item (pos, line)

Replace history item specified by its position with line. The position is zero-based. This calls re-
place_history_entry () in the underlying library.

6.7. readline — GNU readline interface 169

The Python Library Reference, Release 3.11.3

readline.add_history (line)
Append line to the history buffer, as if it was the last line typed. This calls add_history () in the underlying
library.

readline.set_auto_history (enabled)
Enable or disable automatic calls to add_history () when reading input via readline. The enabled argument
should be a Boolean value that when true, enables auto history, and that when false, disables auto history.

New in version 3.6.

CPython implementation detail: Auto history is enabled by default, and changes to this do not persist across
multiple sessions.

6.7.5 Startup hooks

readline.set_startup_hook ([function])

Set or remove the function invoked by the r1_startup_hook callback of the underlying library. If function is
specified, it will be used as the new hook function; if omitted or None, any function already installed is removed.
The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook ([functian])

Set or remove the function invoked by the r1_pre_input_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is removed.
The hook is called with no arguments after the first prompt has been printed and just before readline starts reading
input characters. This function only exists if Python was compiled for a version of the library that supports it.

6.7.6 Completion

The following functions relate to implementing a custom word completion function. This is typically operated by the
Tab key, and can suggest and automatically complete a word being typed. By default, Readline is set up to be used by
rlcompleter to complete Python identifiers for the interactive interpreter. If the readline module is to be used
with a custom completer, a different set of word delimiters should be set.

readline.set_completer ([function])

Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called as
function (text, state),forstatein 0, 1, 2, ..., until it returns a non-string value. It should return the next
possible completion starting with zext.

The installed completer function is invoked by the entry_func callback passed to

rl_completion_matches () in the underlying library. The text string comes from the first parame-

tertothe r1_attempted_completion_function callback of the underlying library.
readline.get_completer ()

Get the completer function, or None if no completer function has been set.

readline.get_completion_type ()

Get the type of completion being attempted. This returns the r1_completion_type variable in the underlying
library as an integer.

readline.get_begidx ()

170 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.3

readline.get_endidx ()

Get the beginning or ending index of the completion scope. These indexes are the start and end arguments passed
to the r1_attempted_completion_function callback of the underlying library. The values may be
different in the same input editing scenario based on the underlying C readline implementation. Ex: libedit is
known to behave differently than libreadline.

readline.set_completer_delims (string)
readline.get_completer_delims ()

Set or get the word delimiters for completion. These determine the start of the word to be considered for completion
(the completion scope). These functions access the r1_completer_word_break_characters variable
in the underlying library.

readline.set_completion_display matches_hook ([function])

Set or remove the completion display function. If function is specified, it will be used as the new completion
display function; if omitted or None, any completion display function already installed is removed. This sets or
clears the r1_completion_display_matches_hook callback in the underlying library. The completion
display function is called as function (substitution, [matches], longest_match_length)
once each time matches need to be displayed.

6.7.7 Example

The following example demonstrates how to use the readl ine module’s history reading and writing functions to au-
tomatically load and save a history file named .python_history from the user’s home directory. The code below
would normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser ("~"), ".python history")
try:
readline.read_history_file(histfile)
default history len is -1 (infinite), which may grow unruly
readline.set_history_length (1000)
except FileNotFoundError:
pass

atexit.register (readline.write_history_file, histfile)

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending the new
history.

import atexit

import os

import readline

histfile = os.path.join(os.path.expanduser ("~"), ".python_history")

try:

readline.read_history_file(histfile)

h_len = readline.get_current_history_length()
except FileNotFoundError:

open (histfile, 'wb').close()

h_len = 0

(continues on next page)

6.7. readline — GNU readline interface 171

The Python Library Reference, Release 3.11.3

(continued from previous page)

def save (prev_h_len, histfile):
new_h_len = readline.get_current_history_length()
readline.set_history_length(1000)
readline.append_history_file(new_h_len - prev_h_len, histfile)
atexit.register(save, h_len, histfile)

The following example extends the code. InteractiveConsole class to support history save/restore.

import atexit
import code
import os
import readline

class HistoryConsole (code.InteractiveConsole):

def _ init_ (self, locals=None, filename="<console>",
histfile=os.path.expanduser ("~/.console-history")):
code.InteractiveConsole._ _init_ (self, locals, filename)

self.init_history(histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete™)
if hasattr(readline, "read history_file"):
try:
readline.read_history_file(histfile)
except FileNotFoundError:
pass
atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.set_history_length (1000)
readline.write_history_file(histfile)

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The r1completer module defines a completion function suitable for the readline module by completing valid
Python identifiers and keywords.

When this module is imported on a Unix platform with the read i ne module available, an instance of the Completer
class is automatically created and its complete () method is set as the readl ine completer.

Example:

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete™)
>>> readline. <TAB PRESSED>

readline._ _doc_ readline.get_line_buffer(readline.read_init_file(
readline._ file_ readline.insert_text (readline.set_completer (
readline.__ _name___ readline.parse_and_bind(

>>> readline.

172 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.11/Lib/rlcompleter.py

The Python Library Reference, Release 3.11.3

The r1completer module is designed for use with Python’s interactive mode. Unless Python is run with the —S option,
the module is automatically imported and configured (see Readline configuration).

On platforms without readline, the Completer class defined by this module can still be used for custom purposes.

6.8.1 Completer Objects

Completer objects have the following method:

Completer.complete (fext, state)

Return the stateth completion for fext.

If called for fext that doesn’t include a period character (' . '), it will complete from names currently defined in
__main__,builtins and keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not be
evaluated, but it can generate calls to __getattr__ ()) up to the last part, and find matches for the rest via the
dir () function. Any exception raised during the evaluation of the expression is caught, silenced and None is
returned.

6.8. rlcompleter — Completion function for GNU readline 173

The Python Library Reference, Release 3.11.3

174 Chapter 6. Text Processing Services

CHAPTER
SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary data. Other
operations on binary data, specifically in relation to file formats and network protocols, are described in the relevant
sections.

Some libraries described under 7Text Processing Services also work with either ASCII-compatible binary formats (for
example, re) or all binary data (for example, di f£11ib).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types — bytes, bytearray,
memoryview.

7.1 struct — Interpret bytes as packed binary data

Source code: Lib/struct.py

This module converts between Python values and C structs represented as Python byt e s objects. Compact format strings
describe the intended conversions to/from Python values. The module’s functions and objects can be used for two largely
distinct applications, data exchange with external sources (files or network connections), or data transfer between the
Python application and the C layer.

Note: When no prefix character is given, native mode is the default. It packs or unpacks data based on the platform
and compiler on which the Python interpreter was built. The result of packing a given C struct includes pad bytes which
maintain proper alignment for the C types involved; similarly, alignment is taken into account when unpacking. In contrast,
when communicating data between external sources, the programmer is responsible for defining byte ordering and padding
between elements. See Byte Order, Size, and Alignment for details.

Several st ruct functions (and methods of St ruct) take a buffer argument. This refers to objects that implement the
bufferobjects and provide either a readable or read-writable buffer. The most common types used for that purpose are
bytes and bytearray, but many other types that can be viewed as an array of bytes implement the buffer protocol,
so that they can be read/filled without additional copying from a byt es object.

175

https://github.com/python/cpython/tree/3.11/Lib/struct.py

The Python Library Reference, Release 3.11.3

7.1.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error

Exception raised on various occasions; argument is a string describing what is wrong.

struct .pack (format, vi, v2,...)
Return a bytes object containing the values v/, v2, ... packed according to the format string format. The arguments
must match the values required by the format exactly.

struct .pack_into (format, buffer, offset, vi, v2,...)
Pack the values v/, v2, ... according to the format string format and write the packed bytes into the writable buffer
buffer starting at position offset. Note that offset is a required argument.

struct .unpack (format, buffer)

Unpack from the buffer buffer (presumably packed by pack (format, ...))according to the format string
format. The result is a tuple even if it contains exactly one item. The buffer’s size in bytes must match the size
required by the format, as reflected by calcsize ().

struct .unpack_from (format, /, buffer, offset=0)

Unpack from buffer starting at position offset, according to the format string format. The result is a tuple even if it
contains exactly one item. The buffer’s size in bytes, starting at position offset, must be at least the size required by
the format, as reflected by calcsize ().

struct.iter_unpack (format, buffer)

Iteratively unpack from the buffer buffer according to the format string format. This function returns an iterator
which will read equally sized chunks from the buffer until all its contents have been consumed. The buffer’s size in
bytes must be a multiple of the size required by the format, as reflected by calcsize ().

Each iteration yields a tuple as specified by the format string.
New in version 3.4.

struct.calcsize (format)

Return the size of the struct (and hence of the bytes object produced by pack (format, ...)) corresponding
to the format string format.

7.1.2 Format Strings

Format strings describe the data layout when packing and unpacking data. They are built up from format characters,
which specify the type of data being packed/unpacked. In addition, special characters control the byte order, size and
alignment. Each format string consists of an optional prefix character which describes the overall properties of the data
and one or more format characters which describe the actual data values and padding.

Byte Order, Size, and Alignment

By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping pad
bytes if necessary (according to the rules used by the C compiler). This behavior is chosen so that the bytes of a packed
struct correspond exactly to the memory layout of the corresponding C struct. Whether to use native byte ordering and
padding or standard formats depends on the application.

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

176 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.3

Character | Byte order Size Alignment
a native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, '@ "' is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86, AMDG64 (x86-64),
and Apple M1 are little-endian; IBM z and many legacy architectures are big-endian. Use sys.byteorder to check
the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between '@' and '=": both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form ' ! ' represents the network byte order which is always big-endian as defined in IETF RFC 1700.
There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<' or '>"'.
Notes:

(1) Padding is only automatically added between successive structure members. No padding is added at the beginning
or the end of the encoded struct.

9 (3

(2) No padding is added when using non-native size and alignment, e.g. with ‘<’, *>’, ‘=, and ‘!.

(3) To align the end of a structure to the alignment requirement of a particular type, end the format with the code for
that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given their
types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard size; that is, when
the format string starts with one of '<', '>', '!'' or '="'. When using native size, the size of the packed value is
platform-dependent.

7.1. struct — Interpret bytes as packed binary data 177

https://tools.ietf.org/html/rfc1700

The Python Library Reference, Release 3.11.3

Format | C Type Python type Standard size | Notes
X pad byte no value @)
c char bytes of length 1 | 1

b signed char integer 1 (D), (2)
B unsigned char integer 1 2)
? _Bool bool 1 e))
h short integer 2 2)
H unsigned short integer 2)
i int integer 4 2)
I unsigned int integer 4 2)
1 long integer 4 2)
L unsigned long integer 4 2)
q long long integer 8 2)
Q unsigned long long | integer 8 2)
n ssize_t integer 3)
N size_t integer 3)
e (6) float 2 @
f float float 4 @)
d double float 8 4)
S char[] bytes ©)]
P char[] bytes (3)
P void* integer ®))

Changed in version 3.3: Added support for the 'n"' and 'N' formats.

Changed in version 3.6: Added support for the 'e ' format.

Notes:

(1) The ' 2 ' conversion code corresponds to the _Bool type defined by C99. If this type is not available, it is simulated
using a char. In standard mode, it is always represented by one byte.

(2) When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer hasa __in-
dex__ () method then that method is called to convert the argument to an integer before packing.

Changed in version 3.2: Added use of the __index__ () method for non-integers.

(3) The 'n' and 'N"' conversion codes are only available for the native size (selected as the default or with the '@
byte order character). For the standard size, you can use whichever of the other integer formats fits your application.

(4) Forthe '£', 'd"' and 'e' conversion codes, the packed representation uses the IEEE 754 binary32, binary64 or
binary16 format (for ' £', 'd' or 'e' respectively), regardless of the floating-point format used by the platform.

(5) The 'P' format character is only available for the native byte ordering (selected as the default or with the '@
byte order character). The byte order character '=" chooses to use little- or big-endian ordering based on the host
system. The struct module does not interpret this as native ordering, so the 'P ' format is not available.

(6) The IEEE 754 binary16 “half precision” type was introduced in the 2008 revision of the IEEE 754 standard. It has
a sign bit, a 5-bit exponent and 11-bit precision (with 10 bits explicitly stored), and can represent numbers between
approximately 6.1e—05 and 6. 5e+04 at full precision. This type is not widely supported by C compilers: on a
typical machine, an unsigned short can be used for storage, but not for math operations. See the Wikipedia page
on the half-precision floating-point format for more information.

(7) When packing, 'x "' inserts one NUL byte.

(8) The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is smaller. The bytes
of the string follow. If the string passed in to pack () is too long (longer than the count minus 1), only the leading

178

Chapter 7. Binary Data Services

https://en.wikipedia.org/wiki/IEEE_754-2008_revision
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

The Python Library Reference, Release 3.11.3

count—1 bytes of the string are stored. If the string is shorter than count -1, it is padded with null bytes so that
exactly count bytes in all are used. Note that for unpack (), the 'p' format character consumes count bytes,
but that the string returned can never contain more than 255 bytes.

(9) For the 's' format character, the count is interpreted as the length of the bytes, not a repeat count like for the
other format characters; for example, ' 10s ' means a single 10-byte string mapping to or from a single Python
byte string, while '10c' means 10 separate one byte character elements (e.g2., cccccccccc) mapping to or
from ten different Python byte objects. (See Examples for a concrete demonstration of the difference.) If a count
is not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as appropriate to make
it fit. For unpacking, the resulting bytes object always has exactly the specified number of bytes. As a special case,
'0s' means a single, empty string (while ' 0c ' means 0 characters).

A format character may be preceded by an integral repeat count. For example, the format string ' 4h ' means exactly the
same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.
When packing a value x using one of the integer formats ('b', 'B', 'h', 'H', "i', 'I', '1', 'L"', 'q', 'Q"),if
x is outside the valid range for that format then st ruct . error is raised.

Changed in version 3.1: Previously, some of the integer formats wrapped out-of-range values and raised Depreca—
tionWarning instead of struct.error.

For the ' ? ' format character, the return value is either True or False. When packing, the truth value of the argument
object is used. Either O or 1 in the native or standard bool representation will be packed, and any non-zero value will be
True when unpacking.

Examples

Note: Native byte order examples (designated by the ' @' format prefix or lack of any prefix character) may not match
what the reader’s machine produces as that depends on the platform and compiler.

Pack and unpack integers of three different sizes, using big endian ordering:

>>> from struct import *

>>> pack (">bhl", 1, 2, 3)
b'\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ('>bhl', b'\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize ('>bhl')

5

Attempt to pack an integer which is too large for the defined field:

>>> pack (">h", 99999)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
struct.error: 'h' format requires -32768 <= number <= 32767

Demonstrate the difference between 's ' and 'c' format characters:

>>> pack ("@ccc", b'1"'", b'2', b'3")
b'123"

>>> pack ("@3s", b'123")

b'123"

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

7.1. struct — Interpret bytes as packed binary data 179

The Python Library Reference, Release 3.11.3

>>> record = b'raymond \x32\x12\x08\x01\x08"'
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple

>>> Student = namedtuple('Student', 'name serialnum school gradelevel')
>>> Student._make (unpack ('<10sHHb', record))
Student (name=b'raymond ', serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size in native mode since padding is implicit. In standard
mode, the user is responsible for inserting any desired padding. Note in the first pack call below that three NUL bytes
were added after the packed '# ' to align the following integer on a four-byte boundary. In this example, the output was
produced on a little endian machine:

>>> pack('@Gci', b'#', 0x12131415)
b'#\x00\x00\x00\x15\x14\x13\x12"
>>> pack ('@ic', 0x12131415, b'#")
b'\x15\x14\x13\x124#"

>>> calcsize('G@ci")

8

>>> calcsize('@ic")

5

The following format ' 11h01 ' results in two pad bytes being added at the end, assuming the platform’s longs are aligned
on 4-byte boundaries:

>>> pack('@l1hO1"', 1, 2, 3)
b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

See also:
Module array Packed binary storage of homogeneous data.
Module json JSON encoder and decoder.

Module pickle Python object serialization.

7.1.3 Applications

Two main applications for the st ruct module exist, data interchange between Python and C code within an application
or another application compiled using the same compiler (native formats), and data interchange between applications using
agreed upon data layout (standard formats). Generally speaking, the format strings constructed for these two domains are
distinct.

Native Formats

When constructing format strings which mimic native layouts, the compiler and machine architecture determine byte
ordering and padding. In such cases, the @ format character should be used to specify native byte ordering and data sizes.
Internal pad bytes are normally inserted automatically. It is possible that a zero-repeat format code will be needed at the
end of a format string to round up to the correct byte boundary for proper alignment of consective chunks of data.

Consider these two simple examples (on a 64-bit, little-endian machine):

>>> calcsize('@1lhl")
24
>>> calcsize('@11h")
18

180 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.3

Data is not padded to an 8-byte boundary at the end of the second format string without the use of extra padding. A
zero-repeat format code solves that problem:

>>> calcsize('@11h01")
24

The 'x' format code can be used to specify the repeat, but for native formats it is better to use a zero-repeat format like
'01°".

By default, native byte ordering and alignment is used, but it is better to be explicit and use the ' @' prefix character.

Standard Formats

When exchanging data beyond your process such as networking or storage, be precise. Specify the exact byte order, size,
and alignment. Do not assume they match the native order of a particular machine. For example, network byte order
is big-endian, while many popular CPUs are little-endian. By defining this explicitly, the user need not care about the
specifics of the platform their code is running on. The first character should typically be < or > (or !). Padding is the
responsibility of the programmer. The zero-repeat format character won’t work. Instead, the user must explicitly add
'x ' pad bytes where needed. Revisiting the examples from the previous section, we have:

>>> calcsize ('<gh6xg')

24

>>> pack ('<qgh6xq', 1, 2, 3) == pack('@lhl', 1, 2, 3)
True

>>> calcsize('@1l1h'")

18

>>> pack('@¢llh', 1, 2, 3) == pack('<ggh', 1, 2, 3)
True

>>> calcsize ('<ggh6x'")

24

>>> calcsize ('@11h01")

24

>>> pack('@llh01', 1, 2, 3) == pack('<gghé6tx', 1, 2, 3)
True

The above results (executed on a 64-bit machine) aren’t guaranteed to match when executed on different machines. For
example, the examples below were executed on a 32-bit machine:

>>> calcsize ('<gghéx'")

24

>>> calcsize('@11h01")

12

>>> pack ('@11h01', 1, 2, 3) == pack('<gghébx', 1, 2, 3)
False

7.1.4 Classes

The st ruct module also defines the following type:

class struct.Struct (format)

Return a new Struct object which writes and reads binary data according to the format string format. Creating a
Struct object once and calling its methods is more efficient than calling module-level functions with the same
format since the format string is only compiled once.

7.1. struct — Interpret bytes as packed binary data 181

The Python Library Reference, Release 3.11.3

Note: The compiled versions of the most recent format strings passed to St ruct and the module-level functions
are cached, so programs that use only a few format strings needn’t worry about reusing a single St ruct instance.

Compiled Struct objects support the following methods and attributes:
pack (vi,v2,...)

Identical to the pack () function, using the compiled format. (1len (result) will equal size.)
pack_into (buffer, offset, vi, v2, ...)

Identical to the pack_into () function, using the compiled format.
unpack (buffer)

Identical to the unpack () function, using the compiled format. The buffer’s size in bytes must equal size.
unpack_£from (buffer, offset=0)

Identical to the unpack_from () function, using the compiled format. The buffer’s size in bytes, starting
at position offset, must be at least size.

iter_unpack (buffer)

Identical to the i ter_unpack () function, using the compiled format. The buffer’s size in bytes must be a
multiple of size.

New in version 3.4.
format

The format string used to construct this Struct object.

Changed in version 3.7: The format string type is now st r instead of bytes.
size

The calculated size of the struct (and hence of the bytes object produced by the pack () method) corre-
sponding to format.

7.2 codecs — Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the internal
Python codec registry, which manages the codec and error handling lookup process. Most standard codecs are text
encodings, which encode text to bytes (and decode bytes to text), but there are also codecs provided that encode text to
text, and bytes to bytes. Custom codecs may encode and decode between arbitrary types, but some module features are
restricted to be used specifically with zext encodings or with codecs that encode to bytes.

The module defines the following functions for encoding and decoding with any codec:

codecs .encode (0bj, encoding="utf-8', errors='strict’)

Encodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is 'strict ' meaning
that encoding errors raise ValueError (or amore codec specific subclass, such as UnicodeEncodeError).
Refer to Codec Base Classes for more information on codec error handling.

182

Chapter 7. Binary Data Services

https://github.com/python/cpython/tree/3.11/Lib/codecs.py

The Python Library Reference, Release 3.11.3

codecs .decode (0bj, encoding="utf-8', errors='strict')
Decodes obj using the codec registered for encoding.
Errors may be given to set the desired error handling scheme. The default error handler is 'strict ' meaning

that decoding errors raise ValueError (or a more codec specific subclass, such as UnicodeDecodeError).
Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

codecs . lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.
Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is scanned.

If no CodecInfo objectisfound, a LookupError is raised. Otherwise, the CodecTInfo object is stored in
the cache and returned to the caller.

class codecs.CodecInfo (encode, decode, streamreader=None, streamwriter=None, incrementalencoder=None,
incrementaldecoder=None, name=None)

Codec details when looking up the codec registry. The constructor arguments are stored in attributes of the same
name:

name

The name of the encoding.

encode
decode

The stateless encoding and decoding functions. These must be functions or methods which have the same in-
terface as the encode () and decode () methods of Codec instances (see Codec Interface). The functions
or methods are expected to work in a stateless mode.

incrementalencoder
incrementaldecoder

Incremental encoder and decoder classes or factory functions. These have to provide the interface defined
by the base classes TncrementalEncoder and IncrementalDecoder, respectively. Incremental
codecs can maintain state.

streamwriter
streamreader

Stream writer and reader classes or factory functions. These have to provide the interface defined by the base
classes St reamiriter and St reamReader, respectively. Stream codecs can maintain state.

To simplify access to the various codec components, the module provides these additional functions which use 1 ookup ()
for the codec lookup:

codecs .getencoder (encoding)

Look up the codec for the given encoding and return its encoder function.
Raises a LookupError in case the encoding cannot be found.

codecs .getdecoder (encoding)

Look up the codec for the given encoding and return its decoder function.
Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder (encoding)

Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental encoder.

7.2. codecs — Codec registry and base classes 183

The Python Library Reference, Release 3.11.3

codecs.getincrementaldecoder (encoding)

Look up the codec for the given encoding and return its incremental decoder class or factory function.
Raises a LookupError incase the encoding cannot be found or the codec doesn’t support an incremental decoder.

codecs .getreader (encoding)

Look up the codec for the given encoding and return its St reamReader class or factory function.
Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)

Look up the codec for the given encoding and return its St reamiriter class or factory function.
Raises a LookupError in case the encoding cannot be found.
Custom codecs are made available by registering a suitable codec search function:

codecs.register (search_function)

Register a codec search function. Search functions are expected to take one argument, being the encoding name in
all lower case letters with hyphens and spaces converted to underscores, and return a CodecInfo object. In case
a search function cannot find a given encoding, it should return None.

Changed in version 3.9: Hyphens and spaces are converted to underscore.

codecs .unregister (search_function)

Unregister a codec search function and clear the registry’s cache. If the search function is not registered, do nothing.
New in version 3.10.

While the builtin open () and the associated i o module are the recommended approach for working with encoded text
files, this module provides additional utility functions and classes that allow the use of a wider range of codecs when
working with binary files:

codecs . open (filename, mode="r', encoding=None, errors='strict', buffering=- 1)

Open an encoded file using the given mode and return an instance of St reamReadeririter, providing trans-
parent encoding/decoding. The default file mode is ' r ', meaning to open the file in read mode.

Note: If encoding is not None, then the underlying encoded files are always opened in binary mode. No automatic
conversion of '\n"' is done on reading and writing. The mode argument may be any binary mode acceptable to
the built-in open () function; the 'b' is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and decodes from
bytes is allowed, and the data types supported by the file methods depend on the codec used.

errors may be given to define the error handling. It defaults to 'strict ' which causes a ValueError to be
raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to -1 which means that the default
buffer size will be used.

Changed in version 3.11: The 'U' mode has been removed.

codecs .EncodedFile (file, data_encoding, file_encoding=None, errors='strict’)

Return a St reamRecoder instance, a wrapped version of file which provides transparent transcoding. The
original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data_encoding and then written to the original
file as bytes using file_encoding. Bytes read from the original file are decoded according to file_encoding, and the
result is encoded using data_encoding.

184 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.3

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to 'strict ', which causes ValueError to be
raised in case an encoding error occurs.

codecs.iterencode (iterator, encoding, errors='strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a generator. The
errors argument (as well as any other keyword argument) is passed through to the incremental encoder.

This function requires that the codec accept text st r objects to encode. Therefore it does not support bytes-to-bytes
encoders such as base64_codec.

codecs.iterdecode (iferator, encoding, errors='strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a generator. The
errors argument (as well as any other keyword argument) is passed through to the incremental decoder.

This function requires that the codec accept bytes objects to decode. Therefore it does not support text-to-text
encoders such as rot_ 13, although rot_ 13 may be used equivalently with i terencode ().

The module also provides the following constants which are useful for reading and writing to platform dependent files:

codecs .BOM

codecs .BOM_BE
codecs .BOM_LE
codecs .BOM_UTF8
codecs.BOM_UTF16
codecs.BOM_UTF16_BE
codecs .BOM_UTF16_LE
codecs.BOM_UTF32
codecs.BOM_UTF32_BE
codecs.BOM_UTF32_LE

These constants define various byte sequences, being Unicode byte order marks (BOMs) for several encodings.
They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and in UTF-8 as a Unicode
signature. BOM_UTF16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte
order, BOM is an alias for BOM_UTF 16, BOM_ LEfor BOM_UTF16_LEand BOM _BE for BOM_UTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecs module defines a set of base classes which define the interfaces for working with codec objects, and can
also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder, stream
reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to implement the
file protocols. Codec authors also need to define how the codec will handle encoding and decoding errors.

7.2. codecs — Codec registry and base classes 185

The Python Library Reference, Release 3.11.3

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by accepting the
errors string argument:

>>> 'German B, #'.encode(encoding='ascii', errors='backslashreplace')
b'German \\xdf, \\u266c’
>>> 'German B, #&'.encode(encoding='ascii', errors='xmlcharrefreplace')
b'German ß, ♬"'

The following error handlers can be used with all Python Standard Encodings codecs:

Value Meaning

'strict’ Raise UnicodeError (or a subclass), this is the default. Implemented in
strict_errors().

'ignore' Ignore the malformed data and continue without further notice. Implemented in
ignore_errors ().

'replace’ Replace with a replacement marker. On encoding, use ? (ASCII character). On

decoding, use @ (U+FFFD, the official REPLACEMENT CHARACTER).
Implemented in replace_errors ().

'backslashreplace' | Replace with backslashed escape sequences. On encoding, use hexadecimal form of
Unicode code point with formats \xhh \uxxxx \Uxxxxxxxx. On decoding, use
hexadecimal form of byte value with format \xhh. Implemented in
backslashreplace_errors ().

'surrogateescape’ On decoding, replace byte with individual surrogate code ranging from U+DC80 to
U+DCFF. This code will then be turned back into the same byte when the
'surrogateescape' error handler is used when encoding the data. (See PEP
383 for more.)

The following error handlers are only applicable to encoding (within zext encodings):

Value Meaning

'xmlchar— Replace with XML/HTML numeric character reference, which is a decimal form of Unicode code
refre- point with format & #num; Implemented in xmIcharrefreplace errors().

place'

'namere-— Replace with \N{ . . . } escape sequences, what appears in the braces is the Name property from
place' Unicode Character Database. Implemented in namereplace_errors ().

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning

'sur-— utf-8, utf-16, utf-32, utf- | Allow encoding and decoding surrogate code point (U+D800 - U+DFFF) as
ro- 16-be, utf-16-le, utf-32- | normal code point. Otherwise these codecs treat the presence of surrogate
gatepass be, utf-32-le code point in st r as an error.

New in version 3.1: The 'surrogateescape' and 'surrogatepass' error handlers.

Changed in version 3.4: The ' surrogatepass' error handler now works with utf-16* and utf-32* codecs.
New in version 3.5: The 'namereplace' error handler.

Changed in version 3.5: The 'backslashreplace' error handler now works with decoding and translating.

The set of allowed values can be extended by registering a new named error handler:

186 Chapter 7. Binary Data Services

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/

The Python Library Reference, Release 3.11.3

codecs.register_error (name, error_handler)
Register the error handling function error_handler under the name name. The error_handler argument will be
called during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding, error_handler will be called with a Un i codeEncodeError instance, which contains information
about the location of the error. The error handler must either raise this or a different exception, or return a tuple
with a replacement for the unencodable part of the input and a position where encoding should continue. The
replacement may be either st r or bytes. If the replacement is bytes, the encoder will simply copy them into
the output buffer. If the replacement is a string, the encoder will encode the replacement. Encoding continues on
original input at the specified position. Negative position values will be treated as being relative to the end of the
input string. If the resulting position is out of bound an TndexError will be raised.

Decoding and translating works similarly, except UnicodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

Previously registered error handlers (including the standard error handlers) can be looked up by name:

codecs.lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.
The following standard error handlers are also made available as module level functions:

codecs.strict_errors (exception)
Implements the 'strict' error handling.

Each encoding or decoding error raises a UnicodeError.

codecs.ignore_errors (exception)
Implements the ' ignore' error handling.

Malformed data is ignored; encoding or decoding is continued without further notice.

codecs.replace_errors (exception)
Implements the ' replace' error handling.

Substitutes ? (ASCII character) for encoding errors or € (U+FFFD, the official REPLACEMENT CHARACTER)
for decoding errors.

codecs .backslashreplace_errors (exception)
Implements the 'backslashreplace' error handling.

Malformed data is replaced by a backslashed escape sequence. On encoding, use the hexadecimal form of Unicode
code point with formats \xhh \uxxxx \Uxxxxxxxx. On decoding, use the hexadecimal form of byte value
with format \ xhh.

Changed in version 3.5: Works with decoding and translating.

codecs.xmlcharrefreplace_errors (exception)
Implements the 'xmlcharrefreplace’ error handling (for encoding within fext encoding only).

The unencodable character is replaced by an appropriate XML/HTML numeric character reference, which is a
decimal form of Unicode code point with format & #num; .

codecs.namereplace_errors (exception)
Implements the 'namereplace' error handling (for encoding within fext encoding only).

The unencodable character is replaced by a \N{ . . . } escape sequence. The set of characters that appear in the
braces is the Name property from Unicode Character Database. For example, the German lowercase letter '3 '
will be converted to byte sequence \N{LATIN SMALL LETTER SHARP S}.

New in version 3.5.

7.2. codecs — Codec registry and base classes 187

The Python Library Reference, Release 3.11.3

Stateless Encoding and Decoding

The base Codec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

Codec.encode (input, errors='strict’)

Encodes the object input and returns a tuple (output object, length consumed). For instance, fext encoding converts
a string object to a bytes object using a particular character set encoding (e.g., cp1252 or iso-8859-1).

The errors argument defines the error handling to apply. It defaults to 'strict ' handling.

The method may not store state in the Codec instance. Use St reamivr it er for codecs which have to keep state
in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

Codec .decode (input, errors='strict’)

Decodes the object input and returns a tuple (output object, length consumed). For instance, for a text encoding,
decoding converts a bytes object encoded using a particular character set encoding to a string object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the read-only
buffer interface — for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to 'strict ' handling.

The method may not store state in the Codec instance. Use St reamReader for codecs which have to keep state
in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

Incremental Encoding and Decoding

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental en-
coding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder function,
but with multiple calls to the encode ()/decode () method of the incremental encoder/decoder. The incremental
encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode ()/decode () method is the same as if all the single inputs were joined into
one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following methods
which every incremental encoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalEncoder (errors='strict')

Constructor for an TncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

The TncrementalEncoder may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it possible
to switch between different error handling strategies during the lifetime of the TncrementalEncoder object.

188 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.3

encode (object, final=False)
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded object.
If this is the last call to encode () final must be true (the default is false).

reset ()
Reset the encoder to the initial state. The output is discarded: call . encode (object, final=True),
passing an empty byte or text string if necessary, to reset the encoder and to get the output.

getstate ()
Return the current state of the encoder which must be an integer. The implementation should make sure that
0 is the most common state. (States that are more complicated than integers can be converted into an integer
by marshaling/pickling the state and encoding the bytes of the resulting string into an integer.)

setstate (state)

Set the state of the encoder to state. state must be an encoder state returned by getstate ().

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder (errors='strict')
Constructor for an TncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

The TncrementalDecoder may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it possible
to switch between different error handling strategies during the lifetime of the TncrementalDecoder object.

decode (object, final=False)

Decodes object (taking the current state of the decoder into account) and returns the resulting decoded object.
If this is the last call to decode () final must be true (the default is false). If final is true the decoder must
decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of incomplete byte
sequences at the end of the input) it must initiate error handling just like in the stateless case (which might
raise an exception).

reset ()
Reset the decoder to the initial state.

getstate ()

Return the current state of the decoder. This must be a tuple with two items, the first must be the buffer
containing the still undecoded input. The second must be an integer and can be additional state info. (The
implementation should make sure that O is the most common additional state info.) If this additional state
info is O it must be possible to set the decoder to the state which has no input buffered and 0 as the additional
state info, so that feeding the previously buffered input to the decoder returns it to the previous state without
producing any output. (Additional state info that is more complicated than integers can be converted into an
integer by marshaling/pickling the info and encoding the bytes of the resulting string into an integer.)

setstate (state)
Set the state of the decoder to state. state must be a decoder state returned by getstate ().

7.2. codecs — Codec registry and base classes 189

The Python Library Reference, Release 3.11.3

Stream Encoding and Decoding

The St reamriter and St reamReader classes provide generic working interfaces which can be used to implement
new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The St reamiriter class is a subclass of Codec and defines the following methods which every stream writer must
define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream, errors='strict')

Constructor for a St reamirit er instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments, but
only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate for the specific
codec.

The St reamr it er may implement different error handling schemes by providing the errors keyword argument.
See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it possible
to switch between different error handling strategies during the lifetime of the St reamiriter object.

write (object)
Writes the object’s contents encoded to the stream.
writelines (list)

Writes the concatenated iterable of strings to the stream (possibly by reusing the write () method). Infinite
or very large iterables are not supported. The standard bytes-to-bytes codecs do not support this method.

reset ()
Resets the codec buffers used for keeping internal state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamiriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The St reamReader class is a subclass of Codec and defines the following methods which every stream reader must
define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream, errors='strict')

Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments, but
only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate for the specific
codec.

The St reamReade r may implement different error handling schemes by providing the errors keyword argument.
See Error Handlers for the standard error handlers the underlying stream codec may support.

190 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.3

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it possible
to switch between different error handling strategies during the lifetime of the St reamReader object.

The set of allowed values for the errors argument can be extended with register error ().

read (size=- 1, chars=- 1, firstline=False)

Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read () method
will never return more data than requested, but it might return less, if there is not enough available.

The size argument indicates the approximate maximum number of encoded bytes or code points to read for
decoding. The decoder can modify this setting as appropriate. The default value -1 indicates to read and
decode as much as possible. This parameter is intended to prevent having to decode huge files in one step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are decoding errors
on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within the
definition of the encoding and the given size, e.g. if optional encoding endings or state markers are available
on the stream, these should be read too.

readline (size=None, keepends=True)

Read one line from the input stream and return the decoded data.
size, if given, is passed as size argument to the stream’s read () method.
If keepends is false line-endings will be stripped from the lines returned.

readlines (sizehint=None, keepends=True)

Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decode () method and are included in the list entries if
keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping internal state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

StreamReaderWriter Objects

The St reamReaderiWriter is a convenience class that allows wrapping streams which work in both read and write
modes.

The design is such that one can use the factory functions returned by the 1 ocokup () function to construct the instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors='strict')

Createsa St reamReaderiiriter instance. stream must be a file-like object. Reader and Writer must be factory
functions or classes providing the St reamReader and St reamiriter interface resp. Error handling is done
in the same way as defined for the stream readers and writers.

StreamReaderiWriter instances define the combined interfaces of St reamReaderand St reamWriter classes.
They inherit all other methods and attributes from the underlying stream.

7.2. codecs — Codec registry and base classes 191

The Python Library Reference, Release 3.11.3

StreamRecoder Objects

The St reamRecoder translates data from one encoding to another, which is sometimes useful when dealing with
different encoding environments.

The design is such that one can use the factory functions returned by the 1 ookup () function to construct the instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors='strict’)

Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work on the
frontend — the data visible to code calling read () and write (), while Reader and Writer work on the back-
end — the data in stream.

You can use these objects to do transparent transcodings, e.g., from Latin-1 to UTF-8 and back.
The stream argument must be a file-like object.

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must be factory functions
or classes providing objects of the St reamReader and St reamiiriter interface respectively.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of St reamReader and St reamiriter classes. They
inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range U+0000-U+10FFFF. (See PEP 393 for more details
about the implementation.) Once a string object is used outside of CPU and memory, endianness and how these arrays are
stored as bytes become an issue. As with other codecs, serialising a string into a sequence of bytes is known as encoding,
and recreating the string from the sequence of bytes is known as decoding. There are a variety of different text serialisation
codecs, which are collectivity referred to as text encodings.

The simplest text encoding (called 'latin-1" or 'iso-8859-1") maps the code points 0-255 to the bytes 0x0—
0xf £, which means that a string object that contains code points above U+00FF can’t be encoded with this codec. Doing
so will raise a UnicodeEncodeError that looks like the following (although the details of the error message may
differ): UnicodeEncodeError: 'latin-1' codec can't encode character '\ul234' in
position 3: ordinal not in range (256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these code points are mapped to the bytes 0x0-0xff. To see how this is done simply open e.g.
encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string constant with
256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and straightfor-
ward way that can store each Unicode code point, is to store each code point as four consecutive bytes. There are two
possibilities: store the bytes in big endian or in little endian order. These two encodings are called UTF—-32—-BE and
UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF—-32-BE on a little endian machine you will
always have to swap bytes on encoding and decoding. UTF-32 avoids this problem: bytes will always be in natural endi-
anness. When these bytes are read by a CPU with a different endianness, then bytes have to be swapped though. To be
able to detect the endianness of a UTF—16 or UTF—32 byte sequence, there’s the so called BOM (“Byte Order Mark”).
This is the Unicode character U+FEFF. This character can be prepended to every UTF—-16 or UTF-32 byte sequence.
The byte swapped version of this character (0xFFFE) is an illegal character that may not appear in a Unicode text. So
when the first character in a UTF—16 or UTF-32 byte sequence appears to be a U+FFFE the bytes have to be swapped
on decoding. Unfortunately the character U+FEFF had a second purpose as a ZERO WIDTH NO-BREAK SPACE:a
character that has no width and doesn’t allow a word to be split. It can e.g. be used to give hints to a ligature algorithm.
With Unicode 4.0 using U+FEFF asa ZERO WIDTH NO-BREAK SPACE has been deprecated (with U+2060 (WORD
JOINER) assuming this role). Nevertheless Unicode software still must be able to handle U+FEFF in both roles: as a

192 Chapter 7. Binary Data Services

https://peps.python.org/pep-0393/

The Python Library Reference, Release 3.11.3

BOM it’s a device to determine the storage layout of the encoded bytes, and vanishes once the byte sequence has been
decoded into a string; as a ZERO WIDTH NO-BREAK SPACE it’s a normal character that will be decoded like any
other.

There’s another encoding that is able to encode the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit encoding,
which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists of two parts:
marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to four 1 bits followed by
a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when concatenated give the Unicode
character):

Range Encoding
U-00000000 ... U-0000007F | OXXXXXXX

U-00000080 ... U-000007FF | 110xxxxx 10XXXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10XXXXXX
U-00010000 ... U-0010FFFF | 11110xxx 10xxxxxx 10xxxxxx 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s the first
character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string. Each
charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-8 byte
sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which a UTF-8
encoding can be detected, Microsoft invented a variant of UTF-8 (that Python calls "ut f-8-sig") for its Notepad
program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM (which looks like this as a
byte sequence: Oxef, Oxbb, Oxbf) is written. As it’s rather improbable that any charmap encoded file starts with these
byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in is0-8859-1), this increases the probability that a ut £-8-sig encoding can be correctly guessed from the byte se-
quence. So here the BOM is not used to be able to determine the byte order used for generating the byte sequence, but
as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write Oxe £, Oxbb, Oxbf as the
first three bytes to the file. On decoding ut £-8-s1ig will skip those three bytes if they appear as the first three bytes in
the file. In UTF-8, the use of the BOM is discouraged and should generally be avoided.

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore, e.g.
'ut £-8"' is a valid alias for the 'ut £_8"' codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to improve per-
formance. These optimization opportunities are only recognized by CPython for a limited set of (case insensitive) aliases:
utf-8, utf§, latin-1, latinl, is0-8859-1, is08859-1, mbcs (Windows only), ascii, us-ascii, utf-16, utf16, utf-32, utf32, and
the same using underscores instead of dashes. Using alternative aliases for these encodings may result in slower execution.

Changed in version 3.6: Optimization opportunity recognized for us-ascii.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO SIGN
is supported or not), and in the assignment of characters to code positions. For the European languages in particular, the

7.2. codecs — Codec registry and base classes 193

The Python Library Reference, Release 3.11.3

following variants typically exist:

e an ISO 8859 codeset

* a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control characters

with additional graphic characters
* an IBM EBCDIC code page
 an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
bigShkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp273 273, 1IBM273, csIBM273 German
New in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP- | Western Europe
CH, IBM500
cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM&65 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cpl006 Urdu
cpl026 ibm1026 Turkish
cpll25 1125, ibm1125, cp866u, ruscii Ukrainian
New in version 3.4.
cpl140 ibm1140 Western Europe
cpl250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian

continues on next page

194

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.3

Table 1 - continued from previous page

Codec Aliases Languages
cpl252 windows-1252 Western Europe
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic languages
cpl258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c-5601, | Korean
ks_c-5601-1987, ksx1001, ks_x-
1001
gb2312 chinese, csis058gb231280, euc-cn, | Simplified Chinese
euccn, eucgb2312-cn, gb2312-
1980, gb2312-80, iso-ir-58
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
1502022_jp csis02022jp, 1s02022jp, is0-2022- | Japanese
Jp
1502022_jp_1 1502022 jp-1, is0-2022-jp-1 Japanese

1502022_jp_2

1502022jp-2, is0-2022-jp-2

Japanese, Korean, Simplified Chi-
nese, Western Europe, Greek

i502022_jp_2004

1502022jp-2004, is0-2022-jp-2004

Japanese

1502022_jp_3 1502022jp-3, is0-2022-jp-3 Japanese
1502022_jp_ext 1502022 jp-ext, is0-2022-jp-ext Japanese
1502022 _kr csis02022kr, is02022kr, is0-2022- | Korean
kr
latin_1 180-8859-1, 1508859-1, 8859, | Western Europe
cp819, latin, latinl, L1
1508859_2 180-8859-2, latin2, L2 Central and Eastern Europe
1508859_3 1s0-8859-3, latin3, L3 Esperanto, Maltese
1508859_4 1s0-8859-4, latin4, L4 Baltic languages
1s08859_5 150-8859-5, cyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
1508859_6 180-8859-6, arabic Arabic
1508859_7 is0-8859-7, greek, greek8 Greek
1s08859_8 180-8859-8, hebrew Hebrew
1508859_9 is0-8859-9, latin5, L5 Turkish
1s08859_10 1s0-8859-10, latin6, L6 Nordic languages
1508859_11 i80-8859-11, thai Thai languages
1s08859_13 1s0-8859-13, latin7, L7 Baltic languages
1508859_14 180-8859-14, lating, L8 Celtic languages
1s08859_15 1s0-8859-15, latin9, L9 Western Europe
1508859_16 1s0-8859-16, latin10, L10 South-Eastern Europe
johab cpl361, ms1361 Korean
koi8_r Russian
koi8_t Tajik

New in version 3.5.

continues on next page

7.2. codecs — Codec registry and base classes

195

The Python Library Reference, Release 3.11.3

Table 1 - continued from previous page

Codec Aliases Languages
koi8_u Ukrainian
kz1048 kz_1048, strk1048_2002, rk1048 Kazakh

New in version 3.5.

mac_cyrillic maccyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope, | Central and Eastern Europe
mac_centeuro
mac_roman macroman, macintosh Western Europe
mac_turkish macturkish Turkish
ptcpl54 csptepl54, ptl54, cpl54, cyrillic- | Kazakh
asian
shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, s_jisx0213 | Japanese

utf 32

U32, utf32

all languages

utf_32_be UTF-32BE all languages
utf 32 le UTF-32LE all languages
utf_16 U16, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8, cp65001 all languages
utf_8_sig all languages

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points (U+D800-U+DFFF)
to be encoded. The utf-32* decoders no longer decode byte sequences that correspond to surrogate code points.

Changed in version 3.8: cp65001 is now an alias to ut £_8.

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python. These
are listed in the tables below based on the expected input and output types (note that while text encodings are the most
common use case for codecs, the underlying codec infrastructure supports arbitrary data transforms rather than just text
encodings). For asymmetric codecs, the stated meaning describes the encoding direction.

Text Encodings

The following codecs provide st r to bytes encoding and bytes-like object to st r decoding, similar to the Unicode text
encodings.

196 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.3

Codec Aliases Meaning

idna Implement RFC 3490, see also
encodings.idna. Only er-
rors='strict"' is supported.

mbcs ansi, dbcs Windows only: Encode the operand
according to the ANSI codepage
(CP_ACP).

oem Windows only: Encode the operand
according to the OEM codepage
(CP_OEMCP).
New in version 3.6.

palmos Encoding of PalmOS 3.5.

punycode Implement RFC 3492. Stateful
codecs are not supported.

raw_unicode_escape Latin-1 encoding with \uXXXX

and \UXXXXXXXX for other code
points. Existing backslashes are not
escaped in any way. It is used in the
Python pickle protocol.

undefined Raise an exception for all conver-
sions, even empty strings. The error
handler is ignored.

unicode_escape Encoding suitable as the contents of
a Unicode literal in ASCII-encoded
Python source code, except that
quotes are not escaped. Decode
from Latin-1 source code. Beware
that Python source code actually
uses UTF-8 by default.

Changed in version 3.8: “unicode_internal” codec is removed.

Binary Transforms

The following codecs provide binary transforms: bytes-like object to bytes mappings. They are not supported by
bytes.decode () (which only produces st r output).

7.2. codecs — Codec registry and base classes 197

https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3492.html

The Python Library Reference, Release 3.11.3

Codec Aliases Meaning Encoder / decoder
base64_codec! | base64, Convert the operand to multiline MIME base64 (the base64.
base_64 result always includes a trailing '\n"). encodebytes () /
Changed in version 3.4: accepts any bytes-like object as | base64.
input for encoding and decoding decodebytes ()
bz2_codec bz2 Compress the operand using bz2. bz2.compress () /
bz2.
decompress ()
hex_codec hex Convert the operand to hexadecimal representation, binascii.
with two digits per byte. b2a_hex () /
binascii.
azb_hex ()
quopri_codec quopri, Convert the operand to MIME quoted printable. quopri.encode ()
quotedprint- with
able, quotetabs=True/
quoted_printable quopri.decode ()
uu_codec uu Convert the operand using uuencode. uu.encode () /
uu.decode ()
zlib_codec zip, zlib Compress the operand using gzip. zlib.compress ()
/z1ib.
decompress ()

New in version 3.2: Restoration of the binary transforms.
Changed in version 3.4: Restoration of the aliases for the binary transforms.
Text Transforms

The following codec provides a text transform: a st r to st r mapping. It is not supported by st r. encode () (which
only produces byt es output).

Codec | Aliases | Meaning
rot_13 | rotl3 Return the Caesar-cypher encryption of the operand.

New in version 3.2: Restoration of the rot_ 13 text transform.

Changed in version 3.4: Restoration of the rot 13 alias.

7.2.5 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep: A
Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and st ring-
prep.

If you need the IDNA 2008 standard from RFC 5891 and RFC 5895, use the third-party idna module.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name containing
non-ASCII characters (such as www.Alliancefrangaise.nu) is converted into an ASCII-compatible encoding
(ACE, such as www.xn—-—alliancefranaise—-npb.nu). The ACE form of the domain name is then used in all
places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host fields, and so on.
This conversion is carried out in the application; if possible invisible to the user: The application should transparently

! In addition to bytes-like objects, "base64_codec" also accepts ASCII-only instances of st r for decoding

198 Chapter 7. Binary Data Services

https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3492.html
https://datatracker.ietf.org/doc/html/rfc5891.html
https://datatracker.ietf.org/doc/html/rfc5895.html
https://pypi.org/project/idna/

The Python Library Reference, Release 3.11.3

convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them to
the user.

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and ACE,
separating an input string into labels based on the separator characters defined in section 3.1 of RFC 3490 and converting
each label to ACE as required, and conversely separating an input byte string into labels based on the . separator and
converting any ACE labels found into unicode. Furthermore, the socket module transparently converts Unicode host
names to ACE, so that applications need not be concerned about converting host names themselves when they pass them
to the socket module. On top of that, modules that have host names as function parameters, such as ht tp.client and
ftplib, accept Unicode host names (http.client then also transparently sends an IDNA hostname in the Host
field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

encodings.idna.nameprep (label)

Return the nameprepped version of label. The implementation currently assumes query strings, so AllowUnas—
signed is true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs — Windows ANSI codepage

This module implements the ANSI codepage (CP_ACP).
Availability: Windows.
Changed in version 3.3: Support any error handler.

Changed in version 3.2: Before 3.2, the errors argument was ignored; 'replace’' was always used to encode, and
'ignore"' to decode.

7.2.7 encodings.utf_8_sig— UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec. On encoding, a UTF-8 encoded BOM will be prepended to the
UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream). On decoding,
an optional UTF-8 encoded BOM at the start of the data will be skipped.

7.2. codecs — Codec registry and base classes 199

https://datatracker.ietf.org/doc/html/rfc3490.html#section-3.1
https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3490.html

The Python Library Reference, Release 3.11.3

200 Chapter 7. Binary Data Services

CHAPTER
EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, double-ended queues, and enumerations.

Python also provides some built-in data types, in particular, dict, 1ist, set and frozenset, and tuple. The
str class is used to hold Unicode strings, and the bytes and bytearray classes are used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

Source code: Lib/datetime.py

The datet ime module supplies classes for manipulating dates and times.

While date and time arithmetic is supported, the focus of the implementation is on efficient attribute extraction for output
formatting and manipulation.

See also:

Module calendar General calendar related functions.

Module time Time access and conversions.

Module zoneinfo Concrete time zones representing the IANA time zone database.

Package dateutil Third-party library with expanded time zone and parsing support.

8.1.1 Aware and Naive Objects

Date and time objects may be categorized as “aware” or “naive” depending on whether or not they include timezone
information.

With sufficient knowledge of applicable algorithmic and political time adjustments, such as time zone and daylight saving
time information, an aware object can locate itself relative to other aware objects. An aware object represents a specific
moment in time that is not open to interpretation.'

A naive object does not contain enough information to unambiguously locate itself relative to other date/time objects.
Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some other timezone is
purely up to the program, just like it is up to the program whether a particular number represents metres, miles, or mass.
Naive objects are easy to understand and to work with, at the cost of ignoring some aspects of reality.

LIf, that is, we ignore the effects of Relativity

201

https://github.com/python/cpython/tree/3.11/Lib/datetime.py
https://dateutil.readthedocs.io/en/stable/

The Python Library Reference, Release 3.11.3

For applications requiring aware objects, dat et ime and t ime objects have an optional time zone information attribute,
tzinfo, that can be set to an instance of a subclass of the abstract t zinfo class. These tzinfo objects capture
information about the offset from UTC time, the time zone name, and whether daylight saving time is in effect.

Only one concrete t zinfo class, the t imezone class, is supplied by the datet ime module. The t imezone class
can represent simple timezones with fixed offsets from UTC, such as UTC itself or North American EST and EDT
timezones. Supporting timezones at deeper levels of detail is up to the application. The rules for time adjustment across
the world are more political than rational, change frequently, and there is no standard suitable for every application aside
from UTC.

8.1.2 Constants

The datet ime module exports the following constants:

datetime .MINYEAR

The smallest year number allowed in a date or datet ime object. MINYEAR s 1.

datetime .MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEAR1s 9999.

datetime.UTC

Alias for the UTC timezone singleton datetime. timezone. utc.

New in version 3.11.

8.1.3 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect. At-
tributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds.
(There is no notion of “leap seconds” here.) Attributes: hour, minute, second, microsecond, and tz—
info.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second, microsec—
ond,and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, t ime, or datet ime instances to microsecond resolu-
tion.

class datetime.tzinfo

An abstract base class for time zone information objects. These are used by the datet ime and t ime classes to
provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight saving
time).

class datetime.timezone

A class that implements the t zinfo abstract base class as a fixed offset from the UTC.
New in version 3.2.
Objects of these types are immutable.

Subclass relationships:

202 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

object
timedelta
tzinfo
timezone
time
date
datetime

Common Properties

The date, datetime, time, and t imezone types share these common features:
¢ Objects of these types are immutable.
* Objects of these types are hashable, meaning that they can be used as dictionary keys.

* Objects of these types support efficient pickling via the pi ck 1e module.

Determining if an Object is Aware or Naive

Objects of the date type are always naive.
An object of type t ime or datet ime may be aware or naive.
A datet ime object d is aware if both of the following hold:

1. d.tzinfois not None

2. d.tzinfo.utcoffset (d) does not return None
Otherwise, d is naive.
A time object ¢ is aware if both of the following hold:

1. t.tzinfois not None

2. t.tzinfo.utcoffset (None) does not return None.
Otherwise, ¢ is naive.

The distinction between aware and naive doesn’t apply to t imede 1t a objects.

8.1.4 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0,
weeks=0)

All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or negative.
Only days, seconds and microseconds are stored internally. Arguments are converted to those units:

* A millisecond is converted to 1000 microseconds.

¢ A minute is converted to 60 seconds.

* An hour is converted to 3600 seconds.

* A week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the representation is unique, with

8.1. datetime — Basic date and time types 203

The Python Library Reference, Release 3.11.3

e 0 <= microseconds < 1000000
e 0 <= seconds < 3600%*24 (the number of seconds in one day)
¢ —999999999 <= days <= 999999999

The following example illustrates how any arguments besides days, seconds and microseconds are “merged” and
normalized into those three resulting attributes:

>>> from datetime import timedelta
>>> delta = timedelta (

days=50,

seconds=27,

microseconds=10,

milliseconds=29000,

minutes=5,

hours=8,

weeks=2

)

>>> # Only days, seconds, and microseconds remain
>>> delta
datetime.timedelta (days=64, seconds=29156, microseconds=10)

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from all
arguments are combined and their sum is rounded to the nearest microsecond using round-half-to-even tiebreaker.
If no argument is a float, the conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example:

>>> from datetime import timedelta

>>> d = timedelta (microseconds=-1)

>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes:

timedelta.min
The most negative t imedelta object, timedelta (-999999999).

timedelta.max

The most positive t imedelta object, timedelta (days=999999999, hours=23, minutes=59,
seconds=59, microseconds=999999).

timedelta.resolution

The smallest possible difference between non-equal t imede Ita objects, timedelta (microseconds=1).

Note that, because of normalization, timedelta.max > ~timedelta.min. —timedelta.max is not repre-
sentable as a t imedelta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between 0 and 999999 inclusive

Supported operations:

204 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Operation Result
tl = t2 + t3 Sum of £2 and £3. Afterwards #/-12 == 13 and t1-13 == 12 are true. (1)
tl = t2 - t3 Difference of 12 and 3. Afterwards ¢t/ == 2 - 3 and 12 == tI + 13 are true. (1)(6)
tl = t2 * i or t1 | Deltamultiplied by an integer. Afterwards ¢/ // i ==12 is true, provided 1 != 0.
=1 * t2
In general, 1 *i==1¢1 * (i-1) + ¢1 is true. (1)
tl = t2 * £ or tl1 | Delta multiplied by a float. The result is rounded to the nearest multiple of

= f * t2 timedelta.resolution using round-half-to-even.

f=1t2 / t3 Division (3) of overall duration #2 by interval unit 3. Returns a f1oat object.

tl = t2 / £ or tl | Delta divided by a float or an int. The result is rounded to the nearest multiple of
=t2 / 1 timedelta.resolution using round-half-to-even.

tl = t2 // iortl = | The floor is computed and the remainder (if any) is thrown away. In the second case,
t2 // t3 an integer is returned. (3)

tl = t2 % t3

The remainder is computed as a t imedelta object. (3)

q, r = divmod(tl, | Computesthe quotient and the remainder: g = t1 // t2B3)andr = tl1 % t2.

t2) qis aninteger and r is a t imede 1t a object.

+t1 Returns a t imede 1t a object with the same value. (2)

-t1 equivalent to timedelta(-tl.days, -tl.seconds, -tl.microseconds), and to tI* -1.
(1))

abs (t) equivalent to +# when t . days >= 0, and to -t when t .days < 0. (2)

str(t) Returns a string in the form [D day([s],][H]JH:MM:SS[.UUUUUU], where D
is negative for negative t. (5)

repr (t) Returns a string representation of the t imedelta object as a constructor call with
canonical attribute values.

Notes:

(1) This is exact but may overflow.

(2) This is exact and cannot overflow.

(3) Division by O raises ZeroDivisionError

(4) -timedelta.max is not representable as a t imede 1 ta object.

(5) String representations of t imedelta objects are normalized similarly to their internal representation. This leads
to somewhat unusual results for negative timedeltas. For example:

>>> print (_)
-1 day, 19:00:00

>>> timedelta (hours=-5)
datetime.timedelta (days=-1,

seconds=68400)

(6) The expression t2 -

t 3 will always be equal to the expression t2 +

(-t 3) except when t3 is equal to

timedelta.max;in that case the former will produce a result while the latter will overflow.

In addition to the operations listed above, t imede 1t a objects support certain additions and subtractions with date and
datet ime objects (see below).

Changed in version 3.2: Floor division and true division of a t i mede 1 t a object by another ¢t i mede 1t a object are now
supported, as are remainder operations and the divmod () function. True division and multiplication of a t imedelta
object by a 1 oat object are now supported.

Comparisons of t imedelta objects are supported, with some caveats.

The comparisons == or ! = always return a boo 1, no matter the type of the compared object:

8.1. datetime — Basic date and time types

205

The Python Library Reference, Release 3.11.3

>>> from datetime import timedelta

>>> deltal = timedelta (seconds=57)

>>> delta?2 = timedelta (hours=25, seconds=2)
>>> delta2 != deltal

True

>>> delta2 ==

False

For all other comparisons (such as < and >), when a t imedelta object is compared to an object of a different type,
TypeError is raised:

>>> delta2 > deltal
True
>>> delta2 > 5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: '>' not supported between instances of 'datetime.timedelta' and 'int'

In Boolean contexts, a t imede 1t a object is considered to be true if and only if it isn’t equal to t imedelta (0).
Instance methods:

timedelta.total_seconds ()

Return the total number of seconds contained in the duration. Equivalent to td /
timedelta (seconds=1). For interval units other than seconds, use the division form directly (e.g.
td / timedelta (microseconds=1)).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose microsecond
accuracy.

New in version 3.2.

Examples of usage: timedelta

An additional example of normalization:

>>> # Components of another_year add up to exactly 365 days

>>> from datetime import timedelta

>>> year = timedelta (days=365)

>>> another_year = timedelta (weeks=40, days=84, hours=23,
minutes=50, seconds=600)

>>> year == another_year
True

>>> year.total_seconds ()
31536000.0

Examples of timedelta arithmetic:

>>> from datetime import timedelta
>>> year = timedelta (days=365)

>>> ten_years = 10 * year

>>> ten_years

datetime.timedelta (days=3650)

>>> ten_years.days // 365

10

>>> nine_years = ten_years - year
>>> nine_years

(continues on next page)

206 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

(continued from previous page)

datetime.timedelta (days=3285)

>>> three_years = nine_years // 3

>>> three_years, three_years.days // 365
(datetime.timedelta (days=1095), 3)

8.1.5 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar indefinitely
extended in both directions.

January 1 of year 1 is called day number 1, January 2 of year 1 is called day number 2, and so on.’

class datetime.date (year, month, day)

All arguments are required. Arguments must be integers, in the following ranges:
* MINYEAR <= year <= MAXYEAR
* 1 <= month <= 12
e 1 <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date.

This is equivalent to date . fromt imestamp (time.time ()).

classmethod date.fromtimestamp (fimestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by t ime. t ime ().
This may raise OverflowError, if the timestamp is out of the range of values supported by the platform C
localtime () function, and OSError on localtime () failure. It's common for this to be restricted to

years from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a
timestamp, leap seconds are ignored by fromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C localtime () function. Raise OSError instead of ValueError on
localtime () failure.

classmethod date.fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.

ValueErrorisraised unless 1 <= ordinal <= date.max.toordinal (). For any date d, date.
fromordinal (d.toordinal()) ==

classmethod date.fromisoformat (date_string)

Return a date corresponding to a date_string given in any valid ISO 8601 format, except ordinal dates (e.g.
YYYY-DDD):

>>> from datetime import date
>>> date.fromisoformat ('2019-12-04")
datetime.date (2019, 12, 4)

(continues on next page)

2 This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s book Calendrical Calculations, where it’s the base
calendar for all computations. See the book for algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

8.1. datetime — Basic date and time types 207

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> date.fromisoformat ('20191204")
datetime.date (2019, 12, 4)

>>> date.fromisoformat ('2021-W01-1")
datetime.date (2021, 1, 4)

New in version 3.7.

Changed in version 3.11: Previously, this method only supported the format YYYY-MM-DD.

classmethod date.fromisocalendar (year, week, day)

Return a dat e corresponding to the ISO calendar date specified by year, week and day. This is the inverse of the
function date. isocalendar ().

New in version 3.8.

Class attributes:

date.min
The earliest representable date, date (MINYEAR, 1, 1).

date.max
The latest representable date, date (MAXYEAR, 12, 31).

date.resolution

The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year

Between MINYEAR and MAXYEAR inclusive.

date.month

Between 1 and 12 inclusive.

date.day

Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation

Result

date?2

= datel + timedelta | date2 willbe timedelta.days days after datel. (1)

date2 = datel - timedelta | Computes date? such that date2 + timedelta == datel. (2)

timedelta = datel - date2 | (3)

datel < date2

datel is considered less than date2 when datel precedes date2 in time. (4)

Notes:

(1) date?ismoved forwardintimeif timedelta.days > 0,orbackwardif timedelta.days < 0. Afterward

date2 - datel

timedelta.days. timedelta.seconds and timedelta.microseconds

are ignored. OverflowError is raised if date2.year would be smaller than MINYEAR or larger than

MAXYEAR.

(2) timedelta.seconds and timedelta.microseconds are ignored.

(3) This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta ==

datel after.

208

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

(4) In other words, datel < date?2if andonlyif datel.toordinal () < date2.toordinal (). Date
comparison raises TypeFError if the other comparand isn’t also a dat e object. However, Not Implemented
is returned instead if the other comparand has a t imetuple () attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, when a date object is compared to an object
of a different type, TypeError is raised unless the comparison is == or ! =. The latter cases return F'alse or
True, respectively.

In Boolean contexts, all date objects are considered to be true.
Instance methods:

date.replace (year=self.year, month=self.month, day=self.day)

Return a date with the same value, except for those parameters given new values by whichever keyword arguments
are specified.

Example:

>>> from datetime import date
>>> d = date (2002, 12, 31)
>>> d.replace (day=26)
datetime.date (2002, 12, 26)

date.timetuple ()

Return a t ime. st ruct_t ime such as returned by t ime. localtime ().
The hours, minutes and seconds are 0, and the DST flag is -1.

d.timetuple () is equivalent to:

time.struct_time((d.year, d.month, d.day, 0, 0, 0, d.weekday(), yday, —-1))

where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 isthe day number
within the current year starting with 1 for January Ist.
date.toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any dat e object
d,date.fromordinal (d.toordinal ()) ==
date.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002, 12,
4) .weekday () == 2,a Wednesday. See also i soweekday ().
date.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002, 12,
4) .isoweekday () == 3, a Wednesday. See also weekday (), isocalendar ().
date.isocalendar ()

Return a named tuple object with three components: year, week and weekday.
The ISO calendar is a widely used variant of the Gregorian calendar.’

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The first
week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called week
number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003 and
ends on Sunday, 4 Jan 2004:

3 See R. H. van Gent’s guide to the mathematics of the ISO 8601 calendar for a good explanation.

8.1. datetime — Basic date and time types 209

https://web.archive.org/web/20220531051136/https://webspace.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.11.3

>>> from datetime import date

>>> date (2003, 12, 29).isocalendar ()
datetime.IsoCalendarDate (year=2004, week=1, weekday=1)
>>> date (2004, 1, 4).isocalendar ()
datetime.IsoCalendarDate (year=2004, week=1, weekday=7)

Changed in version 3.9: Result changed from a tuple to a named tuple.

date.isoformat ()

Return a string representing the date in ISO 8601 format, YYYY-MM-DD:

>>> from datetime import date
>>> date (2002, 12, 4).isoformat ()
'2002-12-04"

date.__str__ ()

For a date d, str (d) is equivalent to d.isoformat ().

date.ctime ()

Return a string representing the date:

>>> from datetime import date
>>> date (2002, 12, 4).ctime()
'Wed Dec 4 00:00:00 2002"

d.ctime () is equivalent to:

time.ctime (time.mktime (d.timetuple()))

on platforms where the native C ctime () function (which time.ctime () invokes, but which date.

ctime () does not invoke) conforms to the C standard.

date.strftime (format)

Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. For a complete list of formatting directives, see strftime() and strptime()

Behavior.

date.__ format__ (format)

Same as date.strftime (). This makes it possible to specify a format string for a dat e object in formatted
string literals and when using st r. format (). For a complete list of formatting directives, see strftime() and

strptime() Behavior.

Examples of Usage: date

Example of counting days to an event:

>>>
>>>
>>>
>>>

>>>

True

import time
from datetime import date
today = date.today ()

today

datetime.date (2007, 12, 5)
today == date.fromtimestamp (time.time ())
my_birthday = date(today.year, 6, 24)

>>>
>>>

if my_birthday < today:

(continues on next page)

210

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

(continued from previous page)

ce my_birthday = my_birthday.replace (year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)

>>> time_to_birthday.days

202

More examples of working with date:

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> # Methods related to formatting string output
>>> d.isoformat ()

'2002-03-11"
>>> d.strftime ("%d/sm/%y")
'11/03/02"

>>> d.strftime ("%SA Sd. %B $Y")

'Monday 11. March 2002'

>>> d.ctime ()

'Mon Mar 11 00:00:00 2002"'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}.'.format (d, "day", "month")
'The day is 11, the month is March.'

>>> # Methods for to extracting 'components' under different calendars

>>> t = d.timetuple ()

>>> for i in t:

. print (i)

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> ic = d.isocalendar ()
>>> for i in ic:

ce print (i)

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)

>>> # A date object is immutable; all operations produce a new object
>>> d.replace (year=2005)
datetime.date (2005, 3, 11)

8.1. datetime — Basic date and time types 211

The Python Library Reference, Release 3.11.3

8.1.6 datetime Objects

A datet ime object is a single object containing all the information from a date object and a t i me object.

Like a dat e object, dat et ime assumes the current Gregorian calendar extended in both directions; like a t i me object,
datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

class datetime.datetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *,
fold=0)

The year, month and day arguments are required. #zinfo may be None, or an instance of a t zinfo subclass. The
remaining arguments must be integers in the following ranges:

e MINYEAR <= year <= MAXYEAR,

e 1 <= month <= 12,

<= day <= number of days in the given month and year,
<= hour < 24,

minute < 60,

<= second < 60,

L]

o o o o
A
Il

<= microsecond < 1000000,
e fold in [0, 1].
If an argument outside those ranges is given, ValueError is raised.
New in version 3.6: Added the fold argument.
Other constructors, all class methods:

classmethod datetime.today ()

Return the current local datetime, with t zinfo None.

Equivalent to:

datetime.fromtimestamp (time.time ())

See also now (), fromtimestamp ().
This method is functionally equivalent to now (), but without a t z parameter.

classmethod datetime.now (fz=None)

Return the current local date and time.

If optional argument #z is None or not specified, this is like today (), but, if possible, supplies more precision than
can be gotten from going through a t ime. t ime () timestamp (for example, this may be possible on platforms
supplying the C gettimeofday () function).

If #z is not None, it must be an instance of a t zinfo subclass, and the current date and time are converted to z’s
time zone.

This function is preferred over t oday () and utcnow ().

classmethod datetime.utcnow ()
Return the current UTC date and time, with t zinfo None.

This is like now (), but returns the current UTC date and time, as a naive datet ime object. An aware current
UTC datetime can be obtained by calling datetime.now (timezone.utc). See also now ().

212 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Warning: Because naive datet ime objects are treated by many datet ime methods as local times, it is
preferred to use aware datetimes to represent times in UTC. As such, the recommended way to create an object
representing the current time in UTC is by calling datet ime.now (timezone.utc).

classmethod datetime.fromtimestamp (fimestamp, tz=None)

Return the local date and time corresponding to the POSIX timestamp, such as is returned by t ime. time ().
If optional argument #z is None or not specified, the timestamp is converted to the platform’s local date and time,
and the returned dat et ime object is naive.

If 7z is not None, it must be an instance of a t zin fo subclass, and the timestamp is converted to #z’s time zone.

fromtimestamp () may raise OverflowError, if the timestamp is out of the range of values supported
by the platform C localtime () or gmtime () functions, and OSError on localtime () or gmtime ()
failure. It's common for this to be restricted to years in 1970 through 2038. Note that on non-POSIX systems that
include leap seconds in their notion of a timestamp, leap seconds are ignored by fromt imestamp (), and then
it’s possible to have two timestamps differing by a second that yield identical datet ime objects. This method is
preferred over ut cfromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C localtime () or gmtime () functions. Raise OSError instead of
ValueErroron localtime () or gmtime () failure.

Changed in version 3.6: fromtimestamp () may return instances with fold setto 1.

classmethod datetime.utcfromtimestamp (timestamp)
Return the UTC datet ime corresponding to the POSIX timestamp, with t zinfo None. (The resulting object
is naive.)

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform C
gmtime () function, and OSError on gmtime () failure. It’'s common for this to be restricted to years in 1970
through 2038.

To get an aware datet ime object, call fromtimestamp ():

’ datetime.fromtimestamp (timestamp, timezone.utc)

On the POSIX compliant platforms, it is equivalent to the following expression:

’datetime(1970, 1, 1, tzinfo=timezone.utc) + timedelta (seconds=timestamp)

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR inclusive.

Warning: Because naive datetime objects are treated by many datetime methods as local times, it is
preferred to use aware datetimes to represent times in UTC. As such, the recommended way to create an ob-
ject representing a specific timestamp in UTC is by calling datetime. fromtimestamp (timestamp,
tz=timezone.utc).

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C gmtime () function. Raise OSError instead of ValueError on gm—
time () failure.

classmethod datetime.fromordinal (ordinal)

Return the datet ime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.
ValueErrorisraised unless 1 <= ordinal <= datetime.max.toordinal (). The hour, minute,
second and microsecond of the result are all 0, and t zinfois None.

8.1. datetime — Basic date and time types 213

The Python Library Reference, Release 3.11.3

classmethod datetime.combine (date, time, tzinfo=self.tzinfo)

Return a new datet ime object whose date components are equal to the given date object’s, and whose time
components are equal to the given ¢ ime object’s. If the tzinfo argument is provided, its value is used to set the
t zinfo attribute of the result, otherwise the t z1info attribute of the fime argument is used.

For any datetime objectd, d == datetime.combine (d.date(), d.time(), d.tzinfo).If
date is a datet ime object, its time components and t zin fo attributes are ignored.

Changed in version 3.6: Added the tzinfo argument.

classmethod datetime.fromisoformat (date_string)

Return a datet ime corresponding to a date_string in any valid ISO 8601 format, with the following exceptions:
1. Time zone offsets may have fractional seconds.
2. The T separator may be replaced by any single unicode character.
3. Ordinal dates are not currently supported.
4. Fractional hours and minutes are not supported.

Examples:

>>> from datetime import datetime
>>> datetime.fromisoformat ('2011-11-04")
datetime.datetime (2011, 11, 4, 0, 0)
>>> datetime.fromisoformat ('20111104")
datetime.datetime (2011, 11, 4, 0, 0)
>>> datetime.fromisoformat ('2011-11-04T00:05:23")
datetime.datetime (2011, 11, 4, 0, 5, 23)
>>> datetime.fromisoformat ('2011-11-04T00:05:232")
datetime.datetime (2011, 11, 4, 0, 5, 23, tzinfo=datetime.timezone.utc)
>>> datetime.fromisoformat ('20111104T000523")
datetime.datetime (2011, 11, 4, 0, 5, 23)
>>> datetime.fromisoformat ('2011-WO01-2T00:05:23.283")
datetime.datetime (2011, 1, 4, 0, 5, 23, 283000)
>>> datetime.fromisoformat ('2011-11-04 00:05:23.283")
datetime.datetime (2011, 11, 4, 0, 5, 23, 283000)
>>> datetime.fromisoformat ('2011-11-04 00:05:23.283+00:00")
datetime.datetime (2011, 11, 4, 0, 5, 23, 283000, tzinfo=datetime.timezone.utc)
>>> datetime.fromisoformat ('2011-11-04T00:05:23+04:00")
datetime.datetime (2011, 11, 4, 0, 5, 23,

tzinfo=datetime.timezone (datetime.timedelta (seconds=14400)))

New in version 3.7.

Changed in version 3.11: Previously, this method only supported formats that could be emitted by date.
isoformat () or datetime.isoformat ().

classmethod datetime.fromisocalendar (year, week, day)

Return a datet ime corresponding to the ISO calendar date specified by year, week and day. The non-date
components of the datetime are populated with their normal default values. This is the inverse of the function
datetime.isocalendar().

New in version 3.8.

classmethod datetime.strptime (date_string, format)

Return a datet ime corresponding to date_string, parsed according to format.

This is equivalent to:

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

datetime (* (time.strptime (date_string, format) [0:6]))

ValueFError is raised if the date_string and format can’t be parsed by t ime. st rptime () or if it returns a
value which isn’t a time tuple. For a complete list of formatting directives, see strftime() and strptime() Behavior.

Class attributes:

datetime.min

The earliest representable datet ime, datetime (MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999, tz-
info=None).

datetime.resolution

The smallest possible difference between non-equal datet ime objects, timedelta (microseconds=1).
Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month

Between 1 and 12 inclusive.
datetime.day
Between 1 and the number of days in the given month of the given year.
datetime.hour
In range (24).
datetime.minute
In range (60).
datetime.second
In range (60).
datetime.microsecond

In range (1000000).

datetime.tzinfo

The object passed as the zinfo argument to the datet ime constructor, or None if none was passed.

datetime.fold

In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The value O (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.

Supported operations:

Operation Result
datetime2 = datetimel + timedelta | (1)

datetime2 = datetimel - timedelta | (2)
timedelta = datetimel - datetime2 | (3)
datetimel < datetime? Compares datetimeto datetime. (4)

8.1. datetime — Basic date and time types 215

The Python Library Reference, Release 3.11.3

ey

2

3)

“4)

datetime?2 is a duration of timedelta removed from datetimel, moving forward in time if timedelta.days >
0, or backward if timedelta.days < 0. The result has the same t zinfo attribute as the input datetime, and
datetime2 - datetimel == timedelta after. OverflowError is raised if datetime2.year would be smaller than
MINYEAR or larger than MAXYEAR. Note that no time zone adjustments are done even if the input is an aware
object.

Computes the datetime? such that datetime?2 + timedelta == datetimel. As for addition, the result has the same
t zinfo attribute as the input datetime, and no time zone adjustments are done even if the input is aware.

Subtraction of a datetime from a datet ime is defined only if both operands are naive, or if both are aware.
If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same t zinfo attribute, the ¢ zinfo attributes are ignored, and
the result is a t imede 1t a object ¢ such that datetime2 + t == datetimel. No time zone adjustments
are done in this case.

If both are aware and have different ¢ zinfo attributes, a—b acts as if a and b were first converted to naive
UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset()) - (b.
replace (tzinfo=None) - b.utcoffset ()) except that the implementation never overflows.

datetimel is considered less than datetime2 when datetimel precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted. For
equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same ¢ zinfo attribute, the common ¢ zinfo attribute is ignored
and the base datetimes are compared. If both comparands are aware and have different t zinfo attributes, the
comparands are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()).

Changed in version 3.3: Equality comparisons between aware and naive datet ime instances don’t raise Type—
Error.

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses, date-
time comparison normally raises TypeError if the other comparand isn’t also a datet ime object. However,
Not Implemented is returned instead if the other comparand has a t imetuple () attribute. This hook gives
other kinds of date objects a chance at implementing mixed-type comparison. If not, when a datet ime object
is compared to an object of a different type, TypeError is raised unless the comparison is == or !=. The latter
cases return False or True, respectively.

Instance methods:

datetime.date ()

Return date object with same year, month and day.

datetime.time ()

Return t ime object with same hour, minute, second, microsecond and fold. t zinfo is None. See also method
timetz ().

Changed in version 3.6: The fold value is copied to the returned t i me object.

datetime.timetz ()

Return t ime object with same hour, minute, second, microsecond, fold, and tzinfo attributes. See also method
time ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.replace (year=self.year, month=self.month, day=self.day, hour=self.hour, minute=self.minute,

second=self.second, microsecond=self.microsecond, tzinfo=self.tzinfo, *, fold=0)

216

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Return a datetime with the same attributes, except for those attributes given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time data.

New in version 3.6: Added the fold argument.

datetime.astimezone (fz=None)

Return a datet ime object with new ¢ zinfo attribute fz, adjusting the date and time data so the result is the
same UTC time as self, but in #z’s local time.

If provided, #z must be an instance of a t zinfo subclass, and its utcoffset () and dst () methods must not
return None. If self is naive, it is presumed to represent time in the system timezone.

If called without arguments (or with t z=None) the system local timezone is assumed for the target timezone. The
.t zinfo attribute of the converted datetime instance will be set to an instance of ¢ ime zone with the zone name
and offset obtained from the OS.

If self.tzinfoistz, self.astimezone (tz) is equal to self: no adjustment of date or time data is per-
formed. Else the result is local time in the timezone fz, representing the same UTC time as self: after astz =
dt.astimezone (tz), astz - astz.utcoffset () will have the same date and time data as dt -
dt.utcoffset ().

If you merely want to attach a time zone object #z to a datetime dr without adjustment of date and time data, use
dt.replace (tzinfo=tz). If you merely want to remove the time zone object from an aware datetime dt
without conversion of date and time data, use dt . replace (tzinfo=None).

Note that the default t zinfo. fromutc () method can be overridden in a t z1info subclass to affect the result
returned by astimezone (). Ignoring error cases, ast imezone () acts like:

def astimezone(self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()) .replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc (utc)

Changed in version 3.3: #z now can be omitted.

Changed in version 3.6: The ast imezone () method can now be called on naive instances that are presumed to
represent system local time.

datetime.utcoffset ()

If tzinfoisNone, returns None, else returns self.tzinfo.utcoffset (self), and raises an exception
if the latter doesn’t return None or a t imede] t a object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

datetime.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (self), and raises an exception if the
latter doesn’t return None or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

datetime.tzname ()

If tzinfo is None, returns None, else returns self.tzinfo.tzname (self), raises an exception if the
latter doesn’t return None or a string object,

8.1. datetime — Basic date and time types 217

The Python Library Reference, Release 3.11.3

datetime.timetuple ()

Return a t ime. st ruct_time such as returned by t ime. localtime ().

d.timetuple () is equivalent to:

time.struct_time ((d.year, d.month, d.day,
d.hour, d.minute, d.second,
d.weekday (), yday, dst))

where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 isthe day number
within the current year starting with 1 for January 1st. The tm_1isdst flag of the result is set according to the
dst () method: tzinfois None or dst () returns None, tm_isdst is set to —1; else if dst () returns a
non-zero value, tm_isdst issetto 1;else tm_isdst issetto 0.

datetime.utctimetuple ()

If datetime instance d is naive, this is the same as d.timetuple () except that tm_1isdst is forced to 0
regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (),anda time. st ruct_t ime for
the normalized time is returned. tm_1isdst is forced to 0. Note that an OverflowError may be raised if
d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

Warning: Because naive datetime objects are treated by many datetime methods as local
times, it is preferred to use aware datetimes to represent times in UTC; as a result, using datetime.
utctimetuple () may give misleading results. If you have a naive datetime representing UTC,
use datetime.replace (tzinfo=timezone.utc) to make it aware, at which point you can use
datetime.timetuple ().

datetime.toordinal ()

Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.timestamp ()

Return POSIX timestamp corresponding to the datet ime instance. The return value is a £1oat similar to that
returned by time.time ().

Naive datet ime instances are assumed to represent local time and this method relies on the platform C mk—
time () function to perform the conversion. Since datet ime supports wider range of values than mktime ()
on many platforms, this method may raise OverflowError for times far in the past or far in the future.

For aware dat et ime instances, the return value is computed as:

(dt - datetime (1970, 1, 1, tzinfo=timezone.utc)).total_seconds ()

New in version 3.3.

Changed in version 3.6: The t imestamp () method uses the fold attribute to disambiguate the times during a
repeated interval.

Note: There is no method to obtain the POSIX timestamp directly from a naive dat et ime instance representing
UTC time. If your application uses this convention and your system timezone is not set to UTC, you can obtain the
POSIX timestamp by supplying t zinfo=timezone.utc:

timestamp = dt.replace(tzinfo=timezone.utc) .timestamp ()

or by calculating the timestamp directly:

218

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

timestamp = (dt - datetime (1970, 1, 1)) / timedelta (seconds=1)

datetime.weekday ()

Return the day of the week as an integer, where Monday is O and Sunday is 6. The same as self.date () .
weekday (). See also i soweekday ().

datetime.isoweekday ()

Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date () .
isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()

Return a named tuple with three components: year, week and weekday. The same as self.date () .
isocalendar ().

datetime.isoformat (sep='T', timespec='auto")

Return a string representing the date and time in ISO 8601 format:
* YYYY-MM-DDTHH:MM:SS.ff££fff,if microsecondisnot0
* YYYY-MM-DDTHH:MM:SS, if microsecondis 0
If utcoffset () does not return None, a string is appended, giving the UTC offset:
* YYYY-MM-DDTHH:MM:SS.ffffff+HH:MM[:SS[.f££f£££f]],if microsecondisnot0
* YYYY-MM-DDTHH:MM:SS+HH:MM[:SS[.f£f£f£f£f]],if microsecondisO

Examples:

>>> from datetime import datetime, timezone

>>> datetime (2019, 5, 18, 15, 17, 8, 132263).isoformat ()
'2019-05-18T15:17:08.132263"

>>> datetime (2019, 5, 18, 15, 17, tzinfo=timezone.utc) .isoformat ()
'2019-05-18T15:17:00+00:00"

The optional argument sep (default ' T ') is a one-character separator, placed between the date and time portions
of the result. For example:

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ (tzinfo) :
"""A time zone with an arbitrary, constant -06:39 offset."""
def utcoffset (self, dt):
return timedelta (hours=-6, minutes=-39)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (' ")

'2002-12-25 00:00:00-06:39"
>>> datetime (2009, 11, 27, microsecond=100, tzinfo=TZ()) .isoformat ()

'2009-11-27T00:00:00.000100-06:39"

The optional argument fimespec specifies the number of additional components of the time to include (the default
is "auto'). It can be one of the following:

e 'auto': Sameas 'seconds' if microsecondis(, same as 'microseconds' otherwise.
e 'hours': Include the hour in the two-digit HH format.
e 'minutes': Include hour and minute in HH : MM format.

e '"seconds': Include hour, minute, and second in HH:MM: SS format.

8.1. datetime — Basic date and time types 219

The Python Library Reference, Release 3.11.3

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds. HH:MM: SS.
sss format.

e 'microseconds': Include full time in HH:MM: SS. ffffff format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid fimespec argument:

>>> from datetime import datetime

>>> datetime.now () .isoformat (timespec="minutes"')
'2002-12-25T00:00"

>>> dt = datetime (2015, 1, 1, 12, 30, 59, 0)

>>> dt.isoformat (timespec="microseconds")
'2015-01-01T12:30:59.000000"

New in version 3.6: Added the fimespec argument.

0

For a datet imeinstance d, str (d) is equivalentto d.isoformat (' ').

datetime.__str

datetime.ctime ()

Return a string representing the date and time:

>>> from datetime import datetime
>>> datetime (2002, 12, 4, 20, 30, 40).ctime ()
'Wed Dec 4 20:30:40 2002

The output string will not include time zone information, regardless of whether the input is aware or naive.

d.ctime () is equivalent to:

time.ctime (time.mktime (d.timetuple()))

on platforms where the native C ctime () function (which time. ctime () invokes, but which datetime.
ctime () does not invoke) conforms to the C standard.

datetime.strftime (format)

Return a string representing the date and time, controlled by an explicit format string. For a complete list of
formatting directives, see strftime() and strptime() Behavior.

datetime.__format__ (format)

Same as datetime.strftime (). This makes it possible to specify a format string for a datet ime object
in formatted string literals and when using str. format (). For a complete list of formatting directives, see
strftime() and strptime() Behavior.

Examples of Usage: datetime

Examples of working with datet ime objects:

>>> from datetime import datetime, date, time, timezone

>>> # Using datetime.combine ()
>>> d date (2005, 7, 14)
>>> t = time (12, 30)

(continues on next page)

220 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> datetime.combine (d, t)
datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1

>>> datetime.now (timezone.utc)

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060, tzinfo=datetime.timezone.utc)

>>> # Using datetime.strptime ()

>>> dt = datetime.strptime("21/11/06 16:30", "2d/%m/%y SH:%M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple () to get tuple of all attributes
>>> tt = dt.timetuple ()
>>> for it in tt:

print (it)
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since lst January
-1 # dst - method tzinfo.dst () returned None

>>> # Date in ISO format
>>> jc = dt.isocalendar ()
>>> for it in ic:

print (it)
2006 # ISO year
47 # ISO week
2 # ISO weekday

>>> # Formatting a datetime

>>> dt.strftime ("%A, 2d. %$B %Y $I:%M%p")

'Tuesday, 21. November 2006 04:30PM'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:%I:%M%p}."'.format (dt, "day",
—"month", "time")

'The day is 21, the month is November, the time is 04:30PM.'

The example below defines a t z i nfo subclass capturing time zone information for Kabul, Afghanistan, which used +4
UTC until 1945 and then +4:30 UTC thereafter:

from datetime import timedelta, datetime, tzinfo, timezone

class KabulTz (tzinfo) :
Kabul used +4 until 1945, when they moved to +4:30
UTC_MOVE_DATE = datetime (1944, 12, 31, 20, tzinfo=timezone.utc)

def utcoffset (self, dt):
if dt.year < 1945:

(continues on next page)

8.1. datetime — Basic date and time types 221

The Python Library Reference, Release 3.11.3

(continued from previous page)

return timedelta (hours=4)
elif (1945, 1, 1, 0, 0) <= dt.timetuple()[:5] < (1945, 1, 1, 0, 30):
An ambiguous ("imaginary") half-hour range representing
a 'fold' in time due to the shift from +4 to +4:30.
If dt falls in the imaginary range, use fold to decide how
to resolve. See PEP495.
return timedelta (hours=4, minutes= (30 if dt.fold else 0))
else:
return timedelta (hours=4, minutes=30)

def fromutc(self, dt):
Follow same validations as in datetime.tzinfo
if not isinstance(dt, datetime) :
raise TypeError ("fromutc () requires a datetime argument")
if dt.tzinfo is not self:
raise ValueError ("dt.tzinfo 1s not self")

A custom implementation is required for fromutc as

the input to this function is a datetime with utc values

but with a tzinfo set to self.

See datetime.astimezone or fromtimestamp.

if dt.replace(tzinfo=timezone.utc) >= self.UTC_MOVE_DATE:
return dt + timedelta (hours=4, minutes=30)

else:
return dt + timedelta (hours=4)

def dst(self, dt):
Kabul does not observe daylight saving time.
return timedelta (0)

def tzname (self, dt):
if dt >= self.UTC_MOVE_DATE:
return "+04:30"
return "+04"

Usage of KabulTz from above:

>>> tzl = KabulTz ()

>>> # Datetime before the change

>>> dtl = datetime (1900, 11, 21, 16, 30, tzinfo=tzl)
>>> print (dtl.utcoffset())

4:00:00

>>> # Datetime after the change

>>> dt2 = datetime (2006, 6, 14, 13, 0, tzinfo=tzl)
>>> print (dt2.utcoffset ())

4:30:00

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone (timezone.utc)

>>> dt3

datetime.datetime (2006, 6, 14, 8, 30, tzinfo=datetime.timezone.utc)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=KabulTz())

>>> dt2 == dt3

True

222 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

8.1.7 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment viaa t zinfo
object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0)

All arguments are optional. #zinfo may be None, or an instance of a ¢ zinfo subclass. The remaining arguments
must be integers in the following ranges:

e 0 <= hour < 24,

e 0 <= minute < 60,

e 0 <= second < 60,

e 0 <= microsecond < 1000000,
e fold in [0, 17.

If an argument outside those ranges is given, ValueError israised. All default to O except tzinfo, which defaults
to None.

Class attributes:
time.min

The earliest representable t ime, time (0, 0, 0, 0).
time.max

The latest representable t ime, time (23, 59, 59, 999999).

time.resolution

The smallest possible difference between non-equal t i me objects, t imedelta (microseconds=1), although
note that arithmetic on ¢ ime objects is not supported.

Instance attributes (read-only):
time.hour

In range (24).
time.minute

In range (60).
time.second

In range (60).
time.microsecond

In range (1000000).
time.tzinfo

The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

time. fold

In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The value O (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.

8.1. datetime — Basic date and time types 223

The Python Library Reference, Release 3.11.3

t ime objects support comparison of time to time, where a is considered less than b when a precedes b in time. If
one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted. For equality
comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same tzinfo attribute, the common tzinfo attribute is ignored and
the base times are compared. If both comparands are aware and have different ¢ zinfo attributes, the comparands
are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()). In order to stop mixed-type
comparisons from falling back to the default comparison by object address, when a t i me object is compared to an object
of a different type, TypeError is raised unless the comparison is == or ! =. The latter cases return False or True,
respectively.

Changed in version 3.3: Equality comparisons between aware and naive t ime instances don’t raise TypeError.
In Boolean contexts, a t ime object is always considered to be true.

Changed in version 3.5: Before Python 3.5, a t i me object was considered to be false if it represented midnight in UTC.
This behavior was considered obscure and error-prone and has been removed in Python 3.5. See bpo-13936 for full
details.

Other constructor:

classmethod time.fromisoformat (time_string)
Return a ¢ ime corresponding to a fime_string in any valid ISO 8601 format, with the following exceptions:

1. Time zone offsets may have fractional seconds.

2. The leading T, normally required in cases where there may be ambiguity between a date and a time, is not
required.

3. Fractional seconds may have any number of digits (anything beyond 6 will be truncated).
4. Fractional hours and minutes are not supported.

Examples:

>>> from datetime import time

>>> time.fromisoformat ('04:23:01")

datetime.time (4, 23, 1)

>>> time.fromisoformat ('T04:23:01")

datetime.time (4, 23, 1)

>>> time.fromisoformat ('T042301")

datetime.time (4, 23, 1)

>>> time.fromisoformat ('04:23:01.000384")
datetime.time (4, 23, 1, 384)

>>> time.fromisoformat ('04:23:01,000")
datetime.time (4, 23, 1, 384)

>>> time.fromisoformat ('04:23:01+04:00")
datetime.time (4, 23, 1, tzinfo=datetime.timezone (datetime.
—~timedelta (seconds=14400)))

>>> time.fromisoformat ('04:23:012")

datetime.time (4, 23, 1, tzinfo=datetime.timezone.utc)
>>> time.fromisoformat ('04:23:01+00:00")
datetime.time (4, 23, 1, tzinfo=datetime.timezone.utc)

New in version 3.7.

Changed in version 3.11: Previously, this method only supported formats that could be emitted by time.
isoformat ().

Instance methods:

224 Chapter 8. Data Types

https://bugs.python.org/issue?@action=redirect&bpo=13936

The Python Library Reference, Release 3.11.3

time.replace (hour=self.hour, minute=self.minute, second=self.second, microsecond=self.microsecond,
tzinfo=self.tzinfo, *, fold=0)

Return a t i me with the same value, except for those attributes given new values by whichever keyword arguments
are specified. Note that t zinfo=None can be specified to create a naive t ime from an aware t ime, without
conversion of the time data.

New in version 3.6: Added the fold argument.

time.isoformat (fimespec='auto")

Return a string representing the time in ISO 8601 format, one of:
e HH:MM:SS.ffffff,if microsecondisnot(
e HH:MM:SS, if microsecondis0
e HH:MM:SS.ffffff+HH:MM[:SS[.ff£f£f£ff]],if utcofrfset () does not return None

e HH:MM:SS+HH:MM[:SS[.fff£f£ff]], if microsecond is 0 and utcoffset () does not return
None

The optional argument fimespec specifies the number of additional components of the time to include (the default
is "auto'). It can be one of the following:

e 'auto': Sameas 'seconds' if microsecondis(, same as 'microseconds' otherwise.
¢ 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH : MM format.

e '"seconds': Include hour, minute, and second in HH:MM: SS format.

* 'milliseconds': Include full time, but truncate fractional second part to milliseconds. HH:MM: SS.
sss format.

e 'microseconds': Include full time in HH:MM: SS. f£f £ £ £ format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid fimespec argument.

Example:

>>> from datetime import time

>>> time (hour=12, minute=34, second=56, microsecond=123456) .isoformat (timespec=
—'minutes')

'12:34"

>>> dt = time (hour=12, minute=34, second=56, microsecond=0)

>>> dt.isoformat (timespec="microseconds"')

'12:34:56.000000"

>>> dt.isoformat (timespec="'auto")

'12:34:56"

New in version 3.6: Added the fimespec argument.

()
Foratimet, str (t) isequivalentto t .isoformat ().

time.__str

time.strftime (format)

Return a string representing the time, controlled by an explicit format string. For a complete list of formatting
directives, see strftime() and strptime() Behavior.

8.1. datetime — Basic date and time types 225

The Python Library Reference, Release 3.11.3

time.__format__ (format)

Same as t ime. strftime (). This makes it possible to specify a format string for a ¢ ime object in formatted
string literals and when using st r. format (). For a complete list of formatting directives, see strftime() and
strptime() Behavior.

time.utcoffset ()

If tzinfois None, returns None, else returns self.tzinfo.utcoffset (None), and raises an exception
if the latter doesn’t return None or a t imede1ta object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.
time.dst ()

If tzinfo is None, returns None, else returns self.tzinfo.dst (None), and raises an exception if the
latter doesn’t return None, or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

time.tzname ()

If tzinfois None, returns None, else returns self.tzinfo.tzname (None), or raises an exception if the
latter doesn’t return None or a string object.

Examples of Usage: time

Examples of working with a t ime object:

>>> from datetime import time, tzinfo, timedelta
>>> class TZ1l(tzinfo):
def utcoffset(self, dt):
return timedelta (hours=1)
def dst (self, dt):
return timedelta (0)
def tzname (self,dt):
return "+01:00"
def _ repr__ (self):
return f"{self. class .__name__} ()"

>>> t = time (12, 10, 30, tzinfo=TZ1())
>>> t

datetime.time (12, 10, 30, tzinfo=TZ1())
>>> t.isoformat ()

'12:10:30+01:00"

>>> t.dst ()

datetime.timedelta (0)

>>> t.tzname ()

'+01:00'

>>> t.strftime ("SH:$M:%S %2")

'12:10:30 +01:00"

>>> 'The is {:%H:%M}."'.format ("time", t)
'The time is 12:10."

226 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

8.1.8 tzinfo Objects

class datetime.tzinfo

This is an abstract base class, meaning that this class should not be instantiated directly. Define a subclass of
tzinfo to capture information about a particular time zone.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their attributes as being in local time, and the ¢ zinfo object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time
object passed to them.

You need to derive a concrete subclass, and (at least) supply implementations of the standard ¢ zinfo methods
needed by the datet ime methods you use. The datet ime module provides t imezone, a simple concrete
subclass of tzinfo which can represent timezones with fixed offset from UTC such as UTC itself or North
American EST and EDT.

Special requirement for pickling: A t zinfosubclass musthavean___init__ () method that can be called with
no arguments, otherwise it can be pickled but possibly not unpickled again. This is a technical requirement that
may be relaxed in the future.

A concrete subclass of t z1infomay need to implement the following methods. Exactly which methods are needed
depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

tzinfo.utcoffset (dr)

Return offset of local time from UTC, as a t imede1ta object that is positive east of UTC. If local time is west
of UTC, this should be negative.

This represents the fotal offset from UTC; for example, if a tzinfo object represents both time zone and
DST adjustments, utcoffset () should return their sum. If the UTC offset isn’t known, return None.
Else the value returned must be a timedelta object strictly between —timedelta (hours=24) and
timedelta (hours=24) (the magnitude of the offset must be less than one day). Most implementations of
utcoffset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset () does not return None, dst () should not return None either.
The default implementation of utcoffset () raises Not ImplementedError.
Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

tzinfo.dst (dt)

Return the daylight saving time (DST) adjustment, as a t imedelta object or None if DST information isn’t
known.

Return timedelta (0) if DST is not in effect. If DST is in effect, return the offset as a t imedelta object
(see utcorffset () for details). Note that DST offset, if applicable, has already been added to the UTC offset
returned by utcoffset (), so there’s no need to consult dst () unless you're interested in obtaining DST info
separately. For example, datetime.timetuple () callsits t zinfo attribute’s dst () method to determine
how the tm_1isdst flag should be set, and tzinfo. fromutc () calls dst () to account for DST changes
when crossing time zones.

An instance 7z of a t z i nfo subclass that models both standard and daylight times must be consistent in this sense:
tz.utcoffset (dt) - tz.dst(dt)

must return the same result for every datetime df with dt .tzinfo == tz For sane tzinfo subclasses,
this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but only
on geographic location. The implementation of datetime.astimezone () relies on this, but cannot detect

8.1. datetime — Basic date and time types 227

The Python Library Reference, Release 3.11.3

violations; it’s the programmer’s responsibility to ensure it. If a t zinfo subclass cannot guarantee this, it may be
able to override the default implementation of tzinfo. fromutc () to work correctly with ast imezone ()
regardless.

Most implementations of dst () will probably look like one of these two:

def dst (self, dt):
a fixed-offset class: doesn't account for DST
return timedelta (0)

or:

def dst (self, dt):
Code to set dston and dstoff to the time zone's DST
transition times based on the input dt.year, and expressed
in standard local time.

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.
Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

tzinfo.tzname (df)

Return the time zone name corresponding to the datet ime object dt, as a string. Nothing about string names is
defined by the datet ime module, and there’s no requirement that it mean anything in particular. For example,
“GMT”, “UTC”, “-5007, “-5:00”, “EDT”, “US/Eastern”, “America/New York” are all valid replies. Return None
if a string name isn’t known. Note that this is a method rather than a fixed string primarily because some tzinfo
subclasses will wish to return different names depending on the specific value of dt passed, especially if the t zinfo
class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

These methods are called by a datet ime or time object, in response to their methods of the same names. A date—
t ime object passes itself as the argument, and a t ime object passes None as the argument. A tzinfo subclass’s
methods should therefore be prepared to accept a df argument of None, or of class datet ime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is appro-
priate if the class wishes to say that time objects don’t participate in the t zinfo protocols. It may be more useful for
utcoffset (None) to return the standard UTC offset, as there is no other convention for discovering the standard
offset.

When a datet ime object is passed in response to a datetime method, dt .tzinfo is the same object as self.
tzinfo methods can rely on this, unless user code calls t zinfo methods directly. The intent is that the tzinfo
methods interpret df as being in local time, and not need worry about objects in other timezones.

There is one more t zinfo method that a subclass may wish to override:

tzinfo.fromutec (dt)

This is called from the default datetime.astimezone () implementation. When called from that, dt .
tzinfo is self, and df's date and time data are to be viewed as expressing a UTC time. The purpose of fro-
mutc () is to adjust the date and time data, returning an equivalent datetime in self’s local time.

Most t zinfo subclasses should be able to inherit the default Fromutc () implementation without problems. It’s
strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight time,
and the latter even if the DST transition times differ in different years. An example of a time zone the default
fromutc () implementation may not handle correctly in all cases is one where the standard offset (from UTC)

228 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

depends on the specific date and time passed, which can happen for political reasons. The default implementations
of astimezone () and fromutc () may not produce the result you want if the result is one of the hours
straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error 1f dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError 1f dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst ()
raise ValueError if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

In the following t zinfo_examples . py file there are some examples of ¢ zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta (0)
HOUR = timedelta (hours=1)
SECOND = timedelta (seconds=1)

A class capturing the platform's idea of local time.
(May result in wrong values on historical times 1in

timezones where UIC offset and/or the DST rules had
changed in the past.)

import time as _time

STDOFFSET = timedelta(seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET
DSTDIFF = DSTOFFSET - STDOFFSET
class LocalTimezone (tzinfo) :

def fromutc(self, dt):
assert dt.tzinfo is self
stamp = (dt - datetime (1970, 1, 1, tzinfo=self)) // SECOND
args = _time.localtime (stamp) [:6]
dst_diff = DSTDIFF // SECOND
Detect fold
fold = (args == _time.localtime(stamp - dst_diff))
return datetime (*args, microsecond=dt.microsecond,
tzinfo=self, fold=fold)

def utcoffset (self, dt):
if self._ isdst(dt):
return DSTOFFSET

(continues on next page)

8.1. datetime — Basic date and time types 229

The Python Library Reference, Release 3.11.3

(continued from previous page)

else:
return STDOFFSET

def dst (self, dt):
if self._isdst(dt):
return DSTDIFF
else:
return ZERO

def tzname (self, dt):
return _time.tzname[self._ isdst (dt)]

def _isdst(self, dt):

tt = (dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second,
dt .weekday (), 0, 0)

stamp = _time.mktime (tt)

tt = _time.localtime (stamp)

return tt.tm_isdst > 0

Local = LocalTimezone ()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after (dt):
days_to_go = 6 - dt.weekday ()
if days_to_go:
dt += timedelta (days_to_go)
return dt

US DST Rules

This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz—-1ink.htm
https://sourceforge.net/projects/pytz/ (might not be up-to-date)

In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.
DSTSTART_2007 = datetime (1, 3, 8, 2)

and ends at 2am (DST time) on the first Sunday of Nov.

DSTEND_2007 = datetime(l, 11, 1, 2)

From 1987 to 2006, DST used to start at Z2am (standard time) on the first
Sunday in April and to end at 2am (DST time) on the last

Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime (1, 4, 1, 2)

DSTEND_1987_2006 = datetime (1, 10, 25, 2)

From 1967 to 1986, DST used to start at Z2am (standard time) on the last
Sunday in April (the one on or after April 24) and to end at 2am (DST time)
on the last Sunday of October, which is the first Sunday

on or after Oct 25.

DSTSTART_1967_1986 = datetime (1, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

o O KR R H R R R R

(continues on next page)

230 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

(continued from previous page)

def us_dst_range (year) :

Find start and end times for US DST. For years before 1967, return
start = end for no DST.
if 2006 < year:

dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < year < 2007:

dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < year < 1987:

dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:

return (datetime(year, 1, 1),) * 2

start = first_sunday_on_or_after (dststart.replace (year=year))

end = first_sunday_on_or_after (dstend.replace (year=year))
return start, end

class USTimeZone (tzinfo) :

def __init__(self, hours, reprname, stdname, dstname) :
self.stdoffset = timedelta (hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def _ _repr__ (self):
return self.reprname

def tzname (self, dt):
if self.dst (dt):
return self.dstname
else:
return self.stdname

def utcoffset (self, dt):
return self.stdoffset + self.dst(dt)

def dst (self, dt):
if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc () implementation (called by the default astimezone ()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO
assert dt.tzinfo is self
start, end = us_dst_range (dt.year)
Can't compare naive to aware objects, so strip the timezone from
dt first.
dt = dt.replace(tzinfo=None)
if start + HOUR <= dt < end - HOUR:
DST is in effect.
return HOUR
if end - HOUR <= dt < end:
Fold (an ambiguous hour): use dt.fold to disambiguate.
return ZERO if dt.fold else HOUR
if start <= dt < start + HOUR:
Gap (a non-existent hour): reverse the fold rule.

(continues on next page)

8.1. datetime — Basic date and time types 231

The Python Library Reference, Release 3.11.3

(continued from previous page)

return HOUR if dt.fold else ZERO
DST is off.
return ZERO

def fromutc(self, dt):
assert dt.tzinfo is self
start, end = us_dst_range (dt.year)
start = start.replace(tzinfo=self)
end = end.replace(tzinfo=self)
std_time = dt + self.stdoffset
dst_time = std_time + HOUR
if end <= dst_time < end + HOUR:
Repeated hour
return std_time.replace(fold=1)
if std_time < start or dst_time >= end:
Standard time
return std_time
if start <= std_time < end - HOUR:
Daylight saving time
return dst_time

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
Central = USTimeZone (-6, "Central", "csTt", "CDT")
Mountain = USTimeZone (-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone (-8, "Pacific", "pST", "PDT")

Note that there are unavoidable subtleties twice per year in a t z i nfo subclass accounting for both standard and daylight
time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins the minute
after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the first Sunday in November:

UTcC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM O:MM 1:MM 2:MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM
start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM doesn’t
really make sense on that day, so astimezone (Eastern) won’t deliver a result with hour == 2 on the day DST
begins. For example, at the Spring forward transition of 2016, we get:

>>> from datetime import datetime, timezone
>>> from tzinfo_examples import HOUR, Eastern
>>> u0 = datetime (2016, 3, 13, 5, tzinfo=timezone.utc)
>>> for i1 in range(4):
u = ul0 + i1i*HOUR
t = u.astimezone (Eastern)
print (u.time (), 'UTC ="', t.time(), t.tzname())

05:00:00 UTC = 00:00:00 EST
06:00:00 UTC = 01:00:00 EST
07:00:00 UTC = 03:00:00 EDT
08:00:00 UTIC = 04:00:00 EDT

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unambiguously

232 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the day daylight time
ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again. Local times of the form
1:MM are ambiguous. astimezone () mimics the local clock’s behavior by mapping two adjacent UTC hours into
the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM both map to 1:MM when
converted to Eastern, but earlier times have the fo1d attribute set to O and the later times have it set to 1. For example,
at the Fall back transition of 2016, we get:

>>> u0 = datetime (2016, 11, 6, 4, tzinfo=timezone.utc)
>>> for i in range(4):
u = ul0 + i1i*HOUR
t = u.astimezone (Eastern)
print(u.time(), 'UIC =', t.time(), t.tzname(), t.fold)

04:00:00 UTIC = 00:00:00 EDT
05:00:00 UTC = 01:00:00 EDT
06:00:00 UTC = 01:00:00 EST
07:00:00 UTIC = 02:00:00 EST

o = O O

Note that the dat et ime instances that differ only by the value of the £o1d attribute are considered equal in comparisons.

Applications that can’t bear wall-time ambiguities should explicitly check the value of the fo1d attribute or avoid using
hybrid ¢ zinfo subclasses; there are no ambiguities when using t imezone, or any other fixed-offset t zinfo subclass
(such as a class representing only EST (fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

See also:

zoneinfo The datet ime module has a basic t imezone class (for handling arbitrary fixed offsets from
UTC) and its t imezone . ut c attribute (a UTC timezone instance).

zoneinfo brings the JANA timezone database (also known as the Olson database) to Python, and its
usage is recommended.

TANA timezone database The Time Zone Database (often called tz, tzdata or zoneinfo) contains code and data that
represent the history of local time for many representative locations around the globe. It is updated periodically to
reflect changes made by political bodies to time zone boundaries, UTC offsets, and daylight-saving rules.

8.1.9 timezone Objects
The t imezone class is a subclass of tzinfo, each instance of which represents a timezone defined by a fixed offset
from UTC.

Objects of this class cannot be used to represent timezone information in the locations where different offsets are used in
different days of the year or where historical changes have been made to civil time.

class datetime.timezone (offset, name=None)

The offset argument must be specified as a t imede 1 t a object representing the difference between the local time
and UTC. It must be strictly between ~t imedelta (hours=24) and timedelta (hours=24), otherwise
ValueError is raised.

The name argument is optional. If specified it must be a string that will be used as the value returned by the
datetime.tzname () method.

New in version 3.2.
Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

timezone.utcoffset (df)
Return the fixed value specified when the ¢ imezone instance is constructed.

8.1. datetime — Basic date and time types 233

https://www.iana.org/time-zones

The Python Library Reference, Release 3.11.3

The dt argument is ignored. The return value is a t imedeta instance equal to the difference between the local
time and UTC.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

timezone.tzname (dt)

Return the fixed value specified when the ¢ i me zone instance is constructed.

If name is not provided in the constructor, the name returned by t zname (dt) is generated from the value of
the of fset as follows. If offset is t imedelta (0), the name is “UTC”, otherwise it is a string in the format
UTC+HH : MM, where = is the sign of offset, HH and MM are two digits of of fset .hours and offset.
minutes respectively.

Changed in version 3.6: Name generated from offset=timedelta (0) is now plain 'UTC', not
'UTC+00:00".

timezone.dst (dt)

Always returns None.

timezone. fromute (dr)

Return dt + offset. The dr argument must be an aware datet ime instance, with t zinfo setto self.
Class attributes:

timezone.utc

The UTC timezone, t imezone (timedelta (0)).

8.1.10 strftime () and strptime () Behavior
date, datetime, and time objects all supporta strftime (format) method, to create a string representing the
time under the control of an explicit format string.

Conversely, the datetime. st rptime () class method creates a datet ime object from a string representing a date
and time and a corresponding format string.

The table below provides a high-level comparison of strftime () versus strptime ():

strftime strptime

Usage Convert object to a string according to a | Parse a string into a datet ime object given a corre-
given format sponding format

Type of | Instance method Class method

method

Method of date; datetime; time datetime

Signature strftime (format) strptime (date_string, format)

strftime () and strptime () Format Codes

The following is a list of all the format codes that the 1989 C standard requires, and these work on all platforms with a
standard C implementation.

234 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

fEf£££]] (empty string

Directive Meaning Example Notes
%a Weekday as locale’s abbre- (D)
viated name. Sun, Mon, ..., Sat
(en_US);
So, Mo, ..., Sa (de_DE)
SA Weekday as locale’s full @))
fame. Sunday, Monday, ...,
Saturday (en_US);
Sonntag, Montag, ...,
Samstag (de_DE)
SwW Weekday as a decimal | 0,1,...,6
number, where 0 is Sun-
day and 6 is Saturday.
$d Day of the month as azero- | 01, 02, ..., 31 9
padded decimal number.
%b Month as locale’s abbrevi- (D)
ated name. Jan, Feb, ..., Dec
(en_US);
Jan, Feb, ..., Dez (de_DE)
%B Month as locale’s full @))
hame. January, February, ...,
December (en_US);
Januar, Februar, ...,
Dezember (de_DE)
$m Month as a zero-padded | 01,02, ..., 12)
decimal number.
%y Year without century as a | 00, 01, ..., 99 ©))
zero-padded decimal num-
ber.
%Y Year with century as adec- | 0001, 0002, ..., 2013, | (2)
imal number. 2014, ..., 9998, 9999
$H Hour (24-hour clock) as a | 00,01, ..., 23 9
zero-padded decimal num-
ber.
ST Hour (12-hour clock) as a | 01,02, ..., 12 9
zero-padded decimal num-
ber.
$p Locale’s equivalent of ei- 1, 3)
ther AM or PM. AM., PM (en_US):
am, pm (de_DE)
M Minute as a zero-padded | 00, 01, ..., 59)
decimal number.
%S Second as a zero-padded | 00,01, ..., 59 @), 9)
decimal number.
$f Microsecond as a decimal | 000000, 000001, ..., | (5)
number, zero-padded to 6 | 999999
8.1. datetime — Basic daligiand time types 235
%7z UTC offset in the | (empty), +0000, -0400, | (6)
form +HHMM[SS[. | +1030, +063415, -
030712.345216

The Python Library Reference, Release 3.11.3

Several additional directives not required by the C89 standard are included for convenience. These parameters all corre-
spond to ISO 8601 date values.

Di- Meaning Example Notes

rec-

tive

%G ISO 8601 year with century representing the year that contains the | 0001, 0002, ..., 2013, | (8)
greater part of the ISO week (%V). 2014, ..., 9998, 9999

%u ISO 8601 weekday as a decimal number where 1 is Monday. 1,2,...,7

SV ISO 8601 week as a decimal number with Monday as the first day of | 01, 02, ..., 53 (8),
the week. Week 01 is the week containing Jan 4.)

These may not be available on all platforms when used with the st rftime () method. The ISO 8601 year and ISO
8601 week directives are not interchangeable with the year and week number directives above. Calling st rptime ()
with incomplete or ambiguous ISO 8601 directives will raise a ValueError.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s strf—
time () function, and platform variations are common. To see the full set of format codes supported on your platform,
consult the strftime (3) documentation. There are also differences between platforms in handling of unsupported
format specifiers.

New in version 3.6: 3G, $u and %V were added.

Technical Detail
Broadly speaking, d. strftime (fmt) actslike the t ime module’s time.strftime (fmt, d.timetuple())
although not all objects support a t imetuple () method.

For the datetime. strptime () class method, the default value is 1900-01-01T00:00:00.000: any compo-
nents not specified in the format string will be pulled from the default value.*

Using datetime.strptime (date_string, format) isequivalent to:

datetime (* (time.strptime (date_string, format) [0:6]))

except when the format includes sub-second components or timezone offset information, which are supported in
datetime.strptime butare discarded by time.strptime.

For t ime objects, the format codes for year, month, and day should not be used, as ¢ ime objects have no such values.
If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as dat e objects
have no such values. If they’re used anyway, O is substituted for them.

For the same reason, handling of format strings containing Unicode code points that can’t be represented in the charset
of the current locale is also platform-dependent. On some platforms such code points are preserved intact in the output,
while on others st rft ime may raise UnicodeError or return an empty string instead.

Notes:

(1) Because the format depends on the current locale, care should be taken when making assumptions about the output
value. Field orderings will vary (for example, “month/day/year” versus “day/month/year”), and the output may
contain Unicode characters encoded using the locale’s default encoding (for example, if the current locale is ja_ JP,
the default encoding could be any one of eucJP, SJIS, or utf-8;use locale.getlocale () to determine
the current locale’s encoding).

4 Passing datetime.strptime ('Feb 29', '$b %d') will fail since 1900 is not a leap year.

236 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

(2) The strptime () method can parse years in the full [1, 9999] range, but years < 1000 must be zero-filled to
4-digit width.

Changed in version 3.2: In previous versions, st rft ime () method was restricted to years >= 1900.
Changed in version 3.3: In version 3.2, st rft ime () method was restricted to years >= 1000.

(3) When used with the st rptime () method, the $p directive only affects the output hour field if the $ I directive
is used to parse the hour.

(4) Unlike the ¢ ime module, the dat et ime module does not support leap seconds.

(5) When used with the st rpt ime () method, the % £ directive accepts from one to six digits and zero pads on the
right. &£ is an extension to the set of format characters in the C standard (but implemented separately in datetime
objects, and therefore always available).

(6) For a naive object, the $z and %$Z format codes are replaced by empty strings.
For an aware object:

%z utcoffset () is transformed into a string of the form +HHMM[SS[.f£f£££f]], where HH is a 2-digit
string giving the number of UTC offset hours, MM is a 2-digit string giving the number of UTC offset minutes,
SS is a 2-digit string giving the number of UTC offset seconds and ££££ff is a 6-digit string giving the
number of UTC offset microseconds. The £££fff part is omitted when the offset is a whole number of
seconds and both the ££ £ £ £ f and the SS part is omitted when the offset is a whole number of minutes. For
example, if utcoffset () returns timedelta (hours=-3, minutes=-30), %z is replaced with
the string '-0330".

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

Changed in version 3.7: When the %z directive is provided to the st rptime () method, the UTC offsets can
have a colon as a separator between hours, minutes and seconds. For example, '+01:00: 00" will be parsed as
an offset of one hour. In addition, providing 'Z ' is identical to '+00:00".

%$Z In strftime (), $Z is replaced by an empty string if t zname () returns None; otherwise $7Z is replaced
by the returned value, which must be a string.

strptime () only accepts certain values for $Z:
1. any value in t ime . t zname for your machine’s locale
2. the hard-coded values UTC and GMT

So someone living in Japan may have JST, UTC, and GMT as valid values, but probably not EST. It will raise
ValueError for invalid values.

Changed in version 3.2: When the %z directive is provided to the st rpt ime () method, an aware datet ime
object will be produced. The t zinfo of the result will be set to a t i mezone instance.

(7) When used with the st rptime () method, $U and $W are only used in calculations when the day of the week
and the calendar year (%Y) are specified.

(8) Similar to $U and $W, $V is only used in calculations when the day of the week and the ISO year (%G) are specified
ina strptime () format string. Also note that $G and $Y are not interchangeable.

(9) When used with the st rptime () method, the leading zero is optional for formats $d, $m, $H, $I, $M, %3, $7,
$U, %W, and $V. Format $y does require a leading zero.

8.1. datetime — Basic date and time types 237

The Python Library Reference, Release 3.11.3

8.2 zoneinfo — IANA time zone support

New in version 3.9.

Source code: Lib/zoneinfo

The zoneinfo module provides a concrete time zone implementation to support the TANA time zone database as
originally specified in PEP 615. By default, zoneinfo uses the system’s time zone data if available; if no system time
zone data is available, the library will fall back to using the first-party tzdata package available on PyPI.

See also:

Module: datetime Provides the t ime and datetime types with which the ZoneInfo class is designed to be
used.

Package tzdata First-party package maintained by the CPython core developers to supply time zone data via PyPI.
Availability: not Emscripten, not WASI.

This module does not work or is not available on WebAssembly platforms wasm32-emscripten and
wasm32-wasi. See WebAssembly platforms for more information.

8.2.1 Using ZonelInfo

ZoneInfoisaconcrete implementation of the datet ime. t zinfo abstract base class, and is intended to be attached
to tzinfo, either via the constructor, the datetime. replace method or datetime.astimezone:

>>> from zoneinfo import ZonelInfo
>>> from datetime import datetime, timedelta

>>> dt = datetime (2020, 10, 31, 12, tzinfo=ZonelInfo ("America/Los_Angeles"))
>>> print (dt)
2020-10-31 12:00:00-07:00

>>> dt.tzname ()
'PDT"

Datetimes constructed in this way are compatible with datetime arithmetic and handle daylight saving time transitions
with no further intervention:

>>> dt_add = dt + timedelta (days=1)

>>> print (dt_add)
2020-11-01 12:00:00-08:00

>>> dt_add.tzname ()
'PST!

These time zones also support the fold attribute introduced in PEP 495. During offset transitions which induce am-
biguous times (such as a daylight saving time to standard time transition), the offset from before the transition is used
when fo1d=0, and the offset after the transition is used when fold=1, for example:

>>> dt = datetime (2020, 11, 1, 1, tzinfo=ZonelInfo("America/Los_Angeles"))
>>> print (dt)
2020-11-01 01:00:00-07:00

(continues on next page)

238 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.11/Lib/zoneinfo
https://peps.python.org/pep-0615/
https://pypi.org/project/tzdata/
https://pypi.org/project/tzdata/
https://peps.python.org/pep-0495/

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> print (dt.replace(fold=1))
2020-11-01 01:00:00-08:00

When converting from another time zone, the fold will be set to the correct value:

>>> from datetime import timezone
>>> LOS_ANGELES = ZoneInfo ("America/Los_Angeles™)
>>> dt_utc = datetime (2020, 11, 1, 8, tzinfo=timezone.utc)

>>> # Before the PDT -> PST transition
>>> print (dt_utc.astimezone (LOS_ANGELES))
2020-11-01 01:00:00-07:00

>>> # After the PDT —-> PST transition
>>> print ((dt_utc + timedelta (hours=1)).astimezone (LOS_ANGELES))
2020-11-01 01:00:00-08:00

8.2.2 Data sources

The zoneinfo module does not directly provide time zone data, and instead pulls time zone information from the
system time zone database or the first-party PyPI package tzdata, if available. Some systems, including notably Windows
systems, do not have an IANA database available, and so for projects targeting cross-platform compatibility that require
time zone data, it is recommended to declare a dependency on tzdata. If neither system data nor tzdata are available, all
calls to ZoneTInfo will raise ZoneInfoNotFoundError.

Configuring the data sources
When ZoneInfo (key) is called, the constructor first searches the directories specified in TZPATH for a file matching
key, and on failure looks for a match in the tzdata package. This behavior can be configured in three ways:

1. The default TZPATH when not otherwise specified can be configured at compile time.

2. TZPATH can be configured using an environment variable.

3. At runtime, the search path can be manipulated using the reset_tzpath () function.

Compile-time configuration

The default TZPATH includes several common deployment locations for the time zone database (except on Windows,
where there are no “well-known” locations for time zone data). On POSIX systems, downstream distributors and those
building Python from source who know where their system time zone data is deployed may change the default time zone
path by specifying the compile-time option TZPATH (or, more likely, the configure flag —--with-tzpath),
which should be a string delimited by os. pathsep.

On all platforms, the configured value is available as the TZPATH key in sysconfig.get_config_var().

8.2. zoneinfo — IANA time zone support 239

https://pypi.org/project/tzdata/

The Python Library Reference, Release 3.11.3

Environment configuration

When initializing TZPATH (either at import time or whenever reset_tzpath () is called with no arguments), the
zoneinfo module will use the environment variable PYTHONTZPATH, if it exists, to set the search path.
PYTHONTZPATH

This is an os . pathsep-separated string containing the time zone search path to use. It must consist of only abso-
lute rather than relative paths. Relative components specified in PYTHONTZPATH will not be used, but otherwise
the behavior when a relative path is specified is implementation-defined; CPython will raise TnvalidTZPath—
Warning, but other implementations are free to silently ignore the erroneous component or raise an exception.

To set the system to ignore the system data and use the tzdata package instead, set PYTHONTZPATH="".

Runtime configuration

The TZ search path can also be configured at runtime using the reset_tzpath () function. This is generally not an
advisable operation, though it is reasonable to use it in test functions that require the use of a specific time zone path (or
require disabling access to the system time zones).

8.2.3 The ZoneInfo class

class zoneinfo.ZoneInfo (key)

A concrete datetime. tzinfo subclass that represents an IANA time zone specified by the string key. Calls
to the primary constructor will always return objects that compare identically; put another way, barring cache
invalidation via ZoneInfo.clear cache (), for all values of key, the following assertion will always be

true:

a = Zonelnfo (key)
b = ZonelInfo (key)
assert a is b

key must be in the form of a relative, normalized POSIX path, with no up-level references. The constructor will
raise ValueError if a non-conforming key is passed.

If no file matching key is found, the constructor will raise Zone InfoNotFoundError.
The ZoneInfo class has two alternate constructors:

classmethod ZonelInfo.from_ file (fobj, /, key=None)

Constructs a ZoneInfo object from a file-like object returning bytes (e.g. a file opened in binary mode or an
io.BytesIO object). Unlike the primary constructor, this always constructs a new object.

The key parameter sets the name of the zone for the purposes of __str__ () and __repr__ ().
Objects created via this constructor cannot be pickled (see pickling).

classmethod ZoneInfo.no_cache (key)

An alternate constructor that bypasses the constructor’s cache. It is identical to the primary constructor, but returns
a new object on each call. This is most likely to be useful for testing or demonstration purposes, but it can also be
used to create a system with a different cache invalidation strategy.

Objects created via this constructor will also bypass the cache of a deserializing process when unpickled.

240 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Caution: Using this constructor may change the semantics of your datetimes in surprising ways, only use it if
you know that you need to.

The following class methods are also available:

classmethod ZonelInfo.clear_cache (* only_keys=None)
A method for invalidating the cache on the ZoneInfo class. If no arguments are passed, all caches are invalidated
and the next call to the primary constructor for each key will return a new instance.

If an iterable of key names is passed to the only_keys parameter, only the specified keys will be removed from
the cache. Keys passed to only_keys but not found in the cache are ignored.

Warning: Invoking this function may change the semantics of datetimes using Zone Info in surprising ways;
this modifies process-wide global state and thus may have wide-ranging effects. Only use it if you know that
you need to.

The class has one attribute:

ZoneInfo.key

This is a read-only atfribute that returns the value of key passed to the constructor, which should be a lookup key
in the TANA time zone database (e.g. America/New_York, Europe/Paris or Asia/Tokyo).

For zones constructed from file without specifying a key parameter, this will be set to None.

Note: Although it is a somewhat common practice to expose these to end users, these values are designed to be
primary keys for representing the relevant zones and not necessarily user-facing elements. Projects like CLDR (the
Unicode Common Locale Data Repository) can be used to get more user-friendly strings from these keys.

String representations

The string representation returned when calling st on a ZoneInfo object defaults to using the ZoneInfo.key
attribute (see the note on usage in the attribute documentation):

>>> zone = ZonelInfo("Pacific/Kwajalein")
>>> str (zone)
'Pacific/Kwajalein’

>>> dt = datetime (2020, 4, 1, 3, 15, tzinfo=zone)
>>> f"/dt.isoformat () [{dt.tzinfo /]"
'2020-04-01T03:15:00+12:00 [Pacific/Kwajalein]'

For objects constructed from a file without specifying a key parameter, str falls back to calling repr (). Zone-
Info’s repr is implementation-defined and not necessarily stable between versions, but it is guaranteed not to be a
valid ZoneInfo key.

8.2. zoneinfo — IANA time zone support 241

The Python Library Reference, Release 3.11.3

Pickle serialization

Rather than serializing all transition data, Zone Info objects are serialized by key, and ZoneInfo objects constructed
from files (even those with a value for key specified) cannot be pickled.

The behavior of a ZoneInfo file depends on how it was constructed:

1.

ZoneInfo (key): When constructed with the primary constructor, a ZoneInfo object is serialized by key,
and when deserialized, the deserializing process uses the primary and thus it is expected that these are expected
to be the same object as other references to the same time zone. For example, if europe_berlin_pkl isa
string containing a pickle constructed from ZoneInfo ("Europe/Berlin"), one would expect the following
behavior:

>>> a = ZoneInfo ("Europe/Berlin")

>>> b = pickle.loads (europe_berlin_pkl)
>>> a is b

True

ZoneInfo.no_cache (key): When constructed from the cache-bypassing constructor, the ZoneInfo
object is also serialized by key, but when deserialized, the deserializing process uses the cache bypassing
constructor. If europe_berlin_pkl_nc is a string containing a pickle constructed from ZoneInfo.
no_cache ("Europe/Berlin"), one would expect the following behavior:

>>> a = ZoneInfo ("Europe/Berlin")

>>> b = pickle.loads (europe_berlin_pkl_nc)
>>> a is b

False

ZoneInfo.from_file (fobj, /, key=None): When constructed from a file, the ZoneInfo object
raises an exception on pickling. If an end user wants to pickle a ZoneInfo constructed from a file, it is recom-
mended that they use a wrapper type or a custom serialization function: either serializing by key or storing the
contents of the file object and serializing that.

This method of serialization requires that the time zone data for the required key be available on both the serializing and
deserializing side, similar to the way that references to classes and functions are expected to exist in both the serializing and
deserializing environments. It also means that no guarantees are made about the consistency of results when unpickling a
ZoneInfo pickled in an environment with a different version of the time zone data.

8.2.4 Functions

zoneinfo.available_timezones ()

Get a set containing all the valid keys for IANA time zones available anywhere on the time zone path. This is
recalculated on every call to the function.

This function only includes canonical zone names and does not include “special” zones such as those under the
posix/ and right/ directories, or the posixrules zone.

Caution: This function may open a large number of files, as the best way to determine if a file on the time
zone path is a valid time zone is to read the “magic string” at the beginning.

Note: These values are not designed to be exposed to end-users; for user facing elements, applications should use
something like CLDR (the Unicode Common Locale Data Repository) to get more user-friendly strings. See also

242

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

the cautionary note on ZoneInfo.key.

zoneinfo.reset_tzpath (fo=None)

Sets or resets the time zone search path (TZPATH) for the module. When called with no arguments, TZPATH is
set to the default value.

Calling reset_tzpath will not invalidate the ZoneInfo cache, and so calls to the primary ZoneInfo con-
structor will only use the new TZPATH in the case of a cache miss.

The t o parameter must be a sequence of strings or os. Pat hLike and not a string, all of which must be absolute
paths. ValueError will be raised if something other than an absolute path is passed.

8.2.5 Globals

zoneinfo.TZPATH

A read-only sequence representing the time zone search path — when constructing a ZoneInfo from a key, the
key is joined to each entry in the TZPATH, and the first file found is used.

TZPATH may contain only absolute paths, never relative paths, regardless of how it is configured.

The object that zoneinfo.TZPATH points to may change in response to a call to reset_tzpath (), so it
is recommended to use zoneinfo.TZPATH rather than importing TZPATH from zoneinfo or assigning a
long-lived variable to zoneinfo.TZPATH.

For more information on configuring the time zone search path, see Configuring the data sources.

8.2.6 Exceptions and warnings

exception zoneinfo.ZoneInfoNotFoundError

Raised when construction of a Zone I'nfo object fails because the specified key could not be found on the system.
This is a subclass of KeyError.

exception zoneinfo.InvalidTZPathWarning
Raised when PYTHONTZPATH contains an invalid component that will be filtered out, such as a relative path.

8.3 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful functions related to
the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last (the European
convention). Use setfirstweekday () to set the first day of the week to Sunday (6) or to any other weekday.
Parameters that specify dates are given as integers. For related functionality, see also the datet ime and t i me modules.

The functions and classes defined in this module use an idealized calendar, the current Gregorian calendar extended indef-
initely in both directions. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s
book “Calendrical Calculations”, where it’s the base calendar for all computations. Zero and negative years are interpreted
as prescribed by the ISO 8601 standard. Year O is 1 BC, year -1 is 2 BC, and so on.

8.3. calendar — General calendar-related functions 243

https://github.com/python/cpython/tree/3.11/Lib/calendar.py

The Python Library Reference, Release 3.11.3

class calendar.Calendar (firstweekday=0)

Creates a Calendar object. firstweekday is an integer specifying the first day of the week. MONDAY is O (the
default), SUNDAY is 6.

A Calendar object provides several methods that can be used for preparing the calendar data for formatting.
This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the iterator
will be the same as the value of the i rstweekday property.

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end of
the month that are required to get a complete week.

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to i termonthdates (), but not restricted
by the datetime.date range. Days returned will simply be day of the month numbers. For the days
outside of the specified month, the day number is 0.

itermonthdays2 (year, month)
Return an iterator for the month month in the year year similar to i termonthdates (), but not restricted
by the datet ime. date range. Days returned will be tuples consisting of a day of the month number and
a week day number.

itermonthdays3 (year, month)

Return an iterator for the month month in the year year similar to i termonthdates (), but not restricted
by the datetime. date range. Days returned will be tuples consisting of a year, a month and a day of the
month numbers.

New in version 3.7.

itermonthdays4 (year, month)

Return an iterator for the month month in the year year similar to i termonthdates (), but not restricted
by the datetime.date range. Days returned will be tuples consisting of a year, a month, a day of the
month, and a day of the week numbers.

New in version 3.7.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven datetime.
date objects.

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples of
day numbers and weekday numbers.

monthdayscalendar (year, month)

Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day numbers.

yeardatescalendar (year, width=3)

Return the data for the specified year ready for formatting. The return value is a list of month rows. Each
month row contains up to width months (defaulting to 3). Each month contains between 4 and 6 weeks and
each week contains 1-7 days. Days are datet ime . date objects.

244

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

yeardays2calendar (year, width=3)

Return the data for the specified year ready for formatting (similar to yeardatescalendar ()). Entries
in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this month are zero.

yeardayscalendar (year, width=3)

Return the data for the specified year ready for formatting (similar to yeardatescalendar ()). Entries
in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar (firstweekday=0)

This class can be used to generate plain text calendars.
TextCalendar instances have the following methods:

formatmonth (theyear, themonth, w=0, [=0)

Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date columns,
which are centered. If [is given, it specifies the number of lines that each week will use. Depends on the first
weekday as specified in the constructor or set by the set firstweekday () method.

prmonth (theyear, themonth, w=0, [=0)
Print a month’s calendar as returned by formatmonth ().

formatyear (theyear, w=2, I=1, c=6, m=3)
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, /, and ¢ are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends on
the first weekday as specified in the constructor or set by the set firstweekday () method. The earliest
year for which a calendar can be generated is platform-dependent.

pryear (theyear, w=2, =1, c=6, m=3)
Print the calendar for an entire year as returned by formatyear ().

class calendar.HTMLCalendar (firstweekday=0)
This class can be used to generate HTML calendars.

HTMLCalendar instances have the following methods:

formatmonth (theyear, themonth, withyear="True)

Return a month’s calendar as an HTML table. If withyear is true the year will be included in the header,
otherwise just the month name will be used.

formatyear (theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months per row.

formatyearpage (theyear, width=3, css='calendar.css', encoding=None)

Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of months
per row. css is the name for the cascading style sheet to be used. None can be passed if no style sheet should
be used. encoding specifies the encoding to be used for the output (defaulting to the system default encoding).

HTMLCalendar has the following attributes you can override to customize the CSS classes used by the calendar:

cssclasses

A list of CSS classes used for each weekday. The default class list is:

cssclasses = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"]

more styles can be added for each day:

8.3. calendar — General calendar-related functions 245

The Python Library Reference, Release 3.11.3

cssclasses = ["mon text-bold", "tue", "wed", "thu", "fri", "sat", "sun red"]

Note that the length of this list must be seven items.

cssclass_noday

The CSS class for a weekday occurring in the previous or coming month.
New in version 3.7.

cssclasses_weekday_ head

A list of CSS classes used for weekday names in the header row. The default is the same as cssclasses.
New in version 3.7.

cssclass_month_head

The month’s head CSS class (used by formatmonthname ()). The default value is "month".
New in version 3.7.

cssclass_month
The CSS class for the whole month’s table (used by formatmonth ()). The default value is "month".

New in version 3.7.

cssclass_year

The CSS class for the whole year’s table of tables (used by formatyear ()). The default value is "year".
New in version 3.7.

cssclass_year_head

The CSS class for the table head for the whole year (used by formatyear ()). The default value is
" year "

New in version 3.7.

Note that although the naming for the above described class attributes is singular (e.g. cssclass_month css—
class_noday), one can replace the single CSS class with a space separated list of CSS classes, for example:

"text-bold text-red"

Here is an example how HTMLCalendar can be customized:

class CustomHTMLCal (calendar.HTMLCalendar) :
cssclasses = [style + " text-nowrap" for style in
calendar.HTMLCalendar.cssclasses]
cssclass_month_head = "text-center month-head"
cssclass_month = "text-center month"
cssclass_year = "text-italic lead"

class calendar.LocaleTextCalendar (firstweekday=0, locale=None)
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale.

class calendar.LocaleHTMLCalendar (firstweekday=0, locale=None)

This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale.

246 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Note: The constructor, formatweekday () and formatmonthname () methods of these two classes temporarily
change the LC_TIME locale to the given locale. Because the current locale is a process-wide setting, they are not thread-
safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example, to set the first
weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

calendar. firstweekday ()
Returns the current setting for the weekday to start each week.

calendar.isleap (year)

Returns True if year is a leap year, otherwise F'alse.

calendar.leapdays (v, y2)
Returns the number of leap years in the range from y/ to y2 (exclusive), where y/ and y2 are years.

This function works for ranges spanning a century change.

calendar .weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

calendar .weekheader (n)

Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

calendar .monthrange (year, month)

Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar .monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month are
represented by zeros. Each week begins with Monday unless set by set firstweekday ().

calendar .prmonth (theyear, themonth, w=0, [=0)
Prints a month’s calendar as returned by month ().

calendar .month (theyear, themonth, w=0, [=0)
Returns a month’s calendar in a multi-line string using the formatmonth () of the TextCalendar class.

calendar.precal (year, w=0, [=0, c=6, m=3)

Prints the calendar for an entire year as returned by calendar ().

calendar.calendar (year, w=2, =1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear () of the TextCal-
endar class.

calendar.timegm (fuple)

An unrelated but handy function that takes a time tuple such as returned by the gmt ime () function in the t ime
module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the POSIX encod-
ing. In fact, time.gmtime () and t imegm () are each others’ inverse.

The calendar module exports the following data attributes:

8.3. calendar — General calendar-related functions 247

The Python Library Reference, Release 3.11.3

calendar.day_name

An array that represents the days of the week in the current locale.

calendar.day_abbr

An array that represents the abbreviated days of the week in the current locale.

calendar .month_name
An array that represents the months of the year in the current locale. This follows normal convention of January
being month number 1, so it has a length of 13 and month_name [0] is the empty string.
calendar .month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal convention
of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty string.
calendar .MONDAY
calendar.TUESDAY
calendar.WEDNESDAY
calendar.THURSDAY
calendar.FRIDAY
calendar.SATURDAY
calendar.SUNDAY
Aliases for day numbers, where MONDAY is 0 and SUNDAY is 6.

See also:
Module datetime Object-oriented interface to dates and times with similar functionality to the t ime module.

Module time Low-level time related functions.

8.4 collections — Container datatypes

Source code: Lib/collections/__init__.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-in con-
tainers, dict, 1ist, set,and tuple.

namedtuple () | factory function for creating tuple subclasses with named fields
deque list-like container with fast appends and pops on either end
ChainMap dict-like class for creating a single view of multiple mappings
Counter dict subclass for counting /ashable objects

OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values
UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

248 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.11/Lib/collections/__init__.py

The Python Library Reference, Release 3.11.3

8.4.1 CchainMap objects

New in version 3.3.

A ChainMap class is provided for quickly linking a number of mappings so they can be treated as a single unit. It is
often much faster than creating a new dictionary and running multiple update () calls.

The class can be used to simulate nested scopes and is useful in templating.

class collections.ChainMap (*maps)
A ChainMap groups multiple dicts or other mappings together to create a single, updateable view. If no maps are
specified, a single empty dictionary is provided so that a new chain always has at least one mapping.

The underlying mappings are stored in a list. That list is public and can be accessed or updated using the maps
attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates, and deletions
only operate on the first mapping.

A ChainMap incorporates the underlying mappings by reference. So, if one of the underlying mappings gets
updated, those changes will be reflected in Cha inMap.

All of the usual dictionary methods are supported. In addition, there is a maps attribute, a method for creating new
subcontexts, and a property for accessing all but the first mapping:

maps
A user updateable list of mappings. The list is ordered from first-searched to last-searched. It is the only
stored state and can be modified to change which mappings are searched. The list should always contain at
least one mapping.

new_child (m=None, **kwargs)

Returns a new ChainMap containing a new map followed by all of the maps in the current instance. If m is
specified, it becomes the new map at the front of the list of mappings; if not specified, an empty dict is used, so
thatacalltod.new_child () isequivalentto: ChainMap ({}, *d.maps). If any keyword arguments
are specified, they update passed map or new empty dict. This method is used for creating subcontexts that
can be updated without altering values in any of the parent mappings.

Changed in version 3.4: The optional m parameter was added.
Changed in version 3.10: Keyword arguments support was added.

parents

Property returning a new ChainMap containing all of the maps in the current instance except the first one.
This is useful for skipping the first map in the search. Use cases are similar to those for the nonlocal
keyword used in nested scopes. The use cases also parallel those for the built-in super () function. A
reference to d.parents is equivalent to: ChainMap (*d.maps[1:]).

Note, the iteration order of a ChainMap () is determined by scanning the mappings last to first:

>>> baseline = {'music': 'bach', 'art': 'rembrandt'}

>>> adjustments = {'art': 'van gogh', 'opera': 'carmen'}
>>> list (ChainMap (adjustments, baseline))

['music', 'art', 'opera']

This gives the same ordering as a series of dict.update () calls starting with the last mapping:

>>> combined = baseline.copy ()
>>> combined.update (adjustments)
>>> list (combined)

['music', 'art', 'opera']

8.4. collections — Container datatypes 249

The Python Library Reference, Release 3.11.3

Changed in version 3.9: Added support for | and | = operators, specified in PEP 584.
See also:

* The MultiContext class in the Enthought CodeTools package has options to support writing to any mapping in the
chain.

* Django’s Context class for templating is a read-only chain of mappings. It also features pushing and popping of
contexts similar to the new_chi1d () method and the parents property.

» The Nested Contexts recipe has options to control whether writes and other mutations apply only to the first mapping
or to any mapping in the chain.

* A greatly simplified read-only version of Chainmap.
ChainMap Examples and Recipes

This section shows various approaches to working with chained maps.

Example of simulating Python’s internal lookup chain:

import builtins
pylookup = ChainMap (locals(), globals(), vars(builtins))

Example of letting user specified command-line arguments take precedence over environment variables which in turn
take precedence over default values:

import os, argparse
defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser ()

parser.add_argument ('-u', '—-user')

parser.add_argument ('-c', '—-—-color')

namespace = parser.parse_args ()

command_line_args = {k: v for k, v in vars(namespace) .items() if v is not None}

combined = ChainMap (command_line_args, os.environ, defaults)
print (combined['color'])
print (combined['user'])

Example patterns for using the Cha i nMap class to simulate nested contexts:

c = ChainMap () # Create root context

d = c.new_child() # Create nested child context

e = c.new_child() # Child of ¢, independent from d

e.maps[0] # Current context dictionary -- like Python's locals()
e.maps[-1] # Root context —- like Python's globals ()

e.parents # Enclosing context chain —-- like Python's nonlocals
dl'x"'"] = 1 # Set value 1n current context

dl'x"] # Get first key in the chain of contexts

del d['x"'] # Delete from current context

list (d) # All nested values

k in d # Check all nested values

len (d) # Number of nested values

d.items () # All nested items

dict (d) # Flatten into a regular dictionary

250 Chapter 8. Data Types

https://peps.python.org/pep-0584/
https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py
https://github.com/enthought/codetools
https://github.com/django/django/blob/main/django/template/context.py
https://code.activestate.com/recipes/577434/
https://code.activestate.com/recipes/305268/

The Python Library Reference, Release 3.11.3

The ChainMap class only makes updates (writes and deletions) to the first mapping in the chain while lookups will
search the full chain. However, if deep writes and deletions are desired, it is easy to make a subclass that updates keys
found deeper in the chain:

class DeepChainMap (ChainMap) :
'Variant of ChainMap that allows direct updates to inner scopes'

def _ setitem__ (self, key, value):
for mapping in self.maps:
if key in mapping:

mappinglkey] = value
return
self.maps([0] [key] = value

def _ _delitem__ (self, key):
for mapping in self.maps:
if key in mapping:
del mappinglkey]
return
raise KeyError (key)

>>> d = DeepChainMap ({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange' # update an existing key two levels down

>>> d['snake'] = 'red' # new keys get added to the topmost dict

>>> del d['elephant'] # remove an existing key one level down

>>> d # display result

DeepChainMap ({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

8.4.2 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a list

>>> cnt = Counter ()

>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue'l]:
. cnt [word] += 1

>>> cnt
Counter ({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the ten most common words in Hamlet

>>> import re

>>> words = re.findall(r'\w+', open('hamlet.txt').read().lower())

>>> Counter (words) .most_common (10)

[("the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

class collections.Counter ([iterable—or—mapping])

A Counter is a dict subclass for counting hashable objects. It is a collection where elements are stored as
dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value including
zero or negative counts. The Counter class is similar to bags or multisets in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> ¢ = Counter () # a new, empty counter
>>> ¢ = Counter ('gallahad") # a new counter from an iterable

(continues on next page)

8.4. collections — Container datatypes 251

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> ¢ = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> ¢ = Counter (cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items instead of raising
a KeyError:

>>> ¢ = Counter(['eggs', 'ham'])
>>> c['bacon'] # count of a missing element is zero
0

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

>>> c['sausage'] = 0 # counter entry with a zero count
]

>>> del c|['sausage' # del actually removes the entry

New in version 3.1.

Changed in version 3.7: As a dict subclass, Counter inherited the capability to remember insertion order.
Math operations on Counter objects also preserve order. Results are ordered according to when an element is first
encountered in the left operand and then by the order encountered in the right operand.

Counter objects support additional methods beyond those available for all dictionaries:

elements ()

Return an iterator over elements repeating each as many times as its count. Elements are returned in the order
first encountered. If an element’s count is less than one, e Ilement s () will ignore it.

>>> ¢ = Counter (a=4, b=2, c¢=0, d=-2)
>>> sorted(c.elements())
[la', laV, lal, lal’ lbl’ lle

most__common ([n])

Return a list of the » most common elements and their counts from the most common to the least. If n is
omitted or None, most_common () returns all elements in the counter. Elements with equal counts are
ordered in the order first encountered:

>>> Counter ('abracadabra') .most_common (3)
[(('a', 5), ('b', 2), ('r"', 2)]

subtract ([iterable-or-mapping])

Elements are subtracted from an iterable or from another mapping (or counter). Like dict . update () but
subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

>>> ¢ = Counter
>>> d = Counter
c

(, b=2,
(
>>> c.subtract (d

a=4

a=1, b=2,
)

>>> C

Counter ({'a': 3, 'b': 0, 'c¢': -3, 'd': -6})

New in version 3.2.

total ()
Compute the sum of the counts.

>>> ¢ = Counter(a=10, b=5, c=0)
>>> c.total ()
15

252

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

New in version 3.10.

The usual dictionary methods are available for Count e r objects except for two which work differently for counters.

fromkeys (iterable)

This class method is not implemented for Counter objects.

update ([itemble-or-mapping])

Elements are counted from an iterable or added-in from another mapping (or counter). Like dict.
update () but adds counts instead of replacing them. Also, the iterable is expected to be a sequence of
elements, not a sequence of (key, value) pairs.

Counters support rich comparison operators for equality, subset, and superset relationships: ==, ! =, <, <=, >, >=. All of
those tests treat missing elements as having zero counts so that Counter (a=1) == Counter (a=1, b=0) returns
true.

New in version 3.10: Rich comparison operations were added.

Changed in version 3.10: In equality tests, missing elements are treated as having zero counts. Formerly,
Counter (a=3) and Counter (a=3, b=0) were considered distinct.

Common patterns for working with Counter objects:

c.total () # total of all counts

c.clear () # reset all counts

list (c) # list unique elements

set (c) # convert to a set

dict (c) # convert to a regular dictionary

c.items () # convert to a list of (elem, cnt) pairs
Counter (dict (list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common () [:—n—-1:-1] # n least common elements

+c # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that have
counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts of corresponding
elements. Intersection and union return the minimum and maximum of corresponding counts. Equality and inclusion
compare corresponding counts. Each operation can accept inputs with signed counts, but the output will exclude results
with counts of zero or less.

>>> ¢ = Counter (a=3, b=1)

>>> d = Counter (a=1, b=2)

>>> ¢ + d # add two counters together: cl[x] + d[x]
Counter({'a': 4, 'b': 3})

>>> ¢ - d # subtract (keeping only positive counts)
Counter({'a': 2})

>>> ¢ & d # intersection: min(c[x], d[x])
Counter({'a': 1, 'b': 1})

>>> ¢ | d # union: max(c[x], d[x])

Counter({'a': 3, 'b': 2})

>>> ¢ == # equality: c[x] == d[x]

False

>>> ¢ <= d # inclusion: c[x] <= d[x]

False

Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty counter.

>>> ¢ = Counter (a=2, b=-4)
>>> +C

(continues on next page)

8.4. collections — Container datatypes 253

The Python Library Reference, Release 3.11.3

(continued from previous page)

Counter ({'a': 2})
>>> —C
Counter ({'b': 4})

New in version 3.3: Added support for unary plus, unary minus, and in-place multiset operations.

Note: Counters were primarily designed to work with positive integers to represent running counts; however, care was
taken to not unnecessarily preclude use cases needing other types or negative values. To help with those use cases, this
section documents the minimum range and type restrictions.

The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values are intended
to be numbers representing counts, but you could store anything in the value field.

The most_common () method requires only that the values be orderable.

For in-place operations such as c [key] += 1, the value type need only support addition and subtraction. So
fractions, floats, and decimals would work and negative values are supported. The same is also true for update ()
and subtract () which allow negative and zero values for both inputs and outputs.

The multiset methods are designed only for use cases with positive values. The inputs may be negative or zero, but
only outputs with positive values are created. There are no type restrictions, but the value type needs to support
addition, subtraction, and comparison.

The elements () method requires integer counts. It ignores zero and negative counts.

See also:

Bag class in Smalltalk.
Wikipedia entry for Multisets.
C++ multisets tutorial with examples.

For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer Programming
Volume I, Section 4.6.3, Exercise 19.

To enumerate all distinct multisets of a given size over a given set of elements, see itertools.
combinations_with_replacement ():

map (Counter, combinations_with_replacement ('ABC', 2)) # —--> AA AB AC BB BC CC

8.4.3 deque objects

class collections.deque ([iterable[, maxlen]])

Returns a new deque object initialized left-to-right (using append ()) with data from iterable. If iterable is not
specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-ended
queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque with ap-
proximately the same O(1) performance in either direction.

Though 11 st objects support similar operations, they are optimized for fast fixed-length operations and incur O(n)
memory movement costs for pop (0) and insert (0, v) operations which change both the size and position
of the underlying data representation.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is bounded to
the specified maximum length. Once a bounded length deque is full, when new items are added, a corresponding

254

Chapter 8. Data Types

https://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
https://en.wikipedia.org/wiki/Multiset
http://www.java2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.11.3

number of items are discarded from the opposite end. Bounded length deques provide functionality similar to the
tail filter in Unix. They are also useful for tracking transactions and other pools of data where only the most
recent activity is of interest.

Deque objects support the following methods:

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()

Remove all elements from the deque leaving it with length 0.

copy ()
Create a shallow copy of the deque.

New in version 3.5.
count (x)
Count the number of deque elements equal to x.
New in version 3.2.
extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)

Extend the left side of the deque by appending elements from iterable. Note, the series of left appends results
in reversing the order of elements in the iterable argument.

index (x[, start[, stop]])

Return the position of x in the deque (at or after index start and before index stop). Returns the first match
or raises ValueError if not found.

New in version 3.5.

insert (i, x)

Insert x into the deque at position i.
If the insertion would cause a bounded deque to grow beyond maxlen, an TndexError is raised.
New in version 3.5.

pop ()

Remove and return an element from the right side of the deque. If no elements are present, raises an In-—
dexError.

popleft ()

Remove and return an element from the left side of the deque. If no elements are present, raises an Tndex—
Error.

remove (value)

Remove the first occurrence of value. If not found, raises a ValueError.

reverse ()

Reverse the elements of the deque in-place and then return None.

New in version 3.2.

8.4.

collections — Container datatypes 255

The Python Library Reference, Release 3.11.3

rotate (n=1)

Rotate the deque n steps to the right. If # is negative, rotate to the left.

When the deque is not empty, rotating one step to the right is equivalent to d. appendleft (d.pop ()),
and rotating one step to the left is equivalent to d . append (d.popleft ()).

Deque objects also provide one read-only attribute:

maxlen

Maximum size of a deque or None if unbounded.

New in version 3.1.

In addition to the above, deques support iteration, pickling, len (d), reversed (d), copy.copy (d), copy.
deepcopy (d), membership testing with the in operator, and subscript references such as d [0] to access the first
element. Indexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Starting in version 3.5, deques support __add___

Example:

0,

mul__ (),and __imul__ ().

>>> from collections import deque

>>> d = deque('ghi'")

>>> for elem in d:

.. print (elem.upper())
G
H
I

>>> d.append('J")

>>> d.appendleft ("f"')

>>> d

deque([lfl, lgl, lhl, lil, ljl})

>>> d.pop ()
"J
>>> d.popleft ()
'fl

>>> list (d)
['gl, Vhl, li']
>>> d[0]

lgl

>>> d[-1]

T

>>> list (reversed(d))

['i', 'h', 'g'l

>>> 'h' in d

True

>>> d.extend('Jk1l")

>>> d

deque(['g', 'h', 'i', 'j3', 'k',
>>> d.rotate (1)

>>> d

deque(['1l', 'g', 'h', 'i', 'J',
>>> d.rotate(-1)

>>> d

deque(['g', 'h', 'i', 'j3', 'k',

>>> deque (reversed (d))

e

make a new deque with three items
iterate over the deque's elements

add a new entry to the right side
add a new entry to the left side
show the representation of the deque
return and remove the rightmost item
return and remove the leftmost item
list the contents of the deque

peek at leftmost item

peek at rightmost item

list the contents of a deque in reverse
search the deque

add multiple elements at once

right rotation

left rotation

make a new deque 1in reverse order

(continues on next page)

256

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

(continued from previous page)

deque(([('1', 'k', '3', 'i', 'h', 'g'l)
>>> d.clear () # empty the deque
>>> d.pop () # cannot pop from an empty deque
Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop ()
IndexError: pop from an empty deque

>>> d.extendleft ('abc') # extendleft () reverses the input order
>>> d
deque (['c', 'b', 'a'l)

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

def tail (filename, n=10):
'Return the last n lines of a file'
with open(filename) as f:
return deque (f, n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right and
popping to the left:

def moving_average (iterable, n=3):
moving_average ([40, 30, 50, 46, 39, 44]) —-—-> 40.0 42.0 45.0 43.0
https://en.wikipedia.org/wiki/Moving average

it = iter (iterable)

d = deque(itertools.islice(it, n-1))
d.appendleft (0)

s = sum(d)

for elem in it:
s += elem - d.popleft ()
d.append (elem)
yield s / n

A round-robin scheduler can be implemented with input iterators stored in a deque. Values are yielded from the active
iterator in position zero. If that iterator is exhausted, it can be removed with popleft (); otherwise, it can be cycled
back to the end with the rotate () method:

def roundrobin (*iterables) :

"roundrobin ('ABC', 'D', 'EF') -——> A D E B F C"
iterators = deque(map(iter, iterables))
while iterators:

try:

while True:
yield next (iterators[0])
iterators.rotate (-1)
except Stoplteration:
Remove an exhausted iterator.
iterators.popleft ()

The rotate () method provides a way to implement deqgue slicing and deletion. For example, a pure Python imple-
mentation of del d[n] relies on the rotate () method to position elements to be popped:

8.4. collections — Container datatypes 257

https://en.wikipedia.org/wiki/Round-robin_scheduling

The Python Library Reference, Release 3.11.3

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement deque slicing, use a similar approach applying rotate () to bring a target element to the left side of
the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the rotation. With
minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup, drop, swap,
over, pick, rot,and roll.

8.4.4 defaultdict objects

class collections.defaultdict (default_factory=None, /[,])

Return a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides one
method and adds one writable instance variable. The remaining functionality is the same as for the dict class and
is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including keyword
arguments.

defaultdict objects support the following method in addition to the standard di ct operations:

__missing__ (key)

If the default_factory attribute is None, this raises a Ke yError exception with the key as argument.

If default_factory isnot None, it is called without arguments to provide a default value for the given
key, this value is inserted in the dictionary for the key, and returned.

If calling default_ factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__ () method of the dict class when the requested key is not
found; whatever it returns or raises is then returned or raised by __getitem__ ().

Note that __missing () is not called for any operations besides __getitem__ (). This means that
get () will, like normal dictionaries, return None as a default rather than using default_rfactory.

defaultdict objects support the following instance variable:

default_factory

This attribute is used by the __missing () method; it is initialized from the first argument to the con-
structor, if present, or to None, if absent.

Changed in version 3.9: Added merge (|) and update (| =) operators, specified in PEP 584.

defaultdict Examples

Using 1ist asthe default_factory,itis easy to group a sequence of key-value pairs into a dictionary of lists:

>>> g = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d defaultdict (list)
>>> for k, v in s:

d[k] .append(v)

>>> sorted(d.items ())
[("blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

258 Chapter 8. Data Types

https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.11.3

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created using
the default_ factory function which returns an empty 1ist. The 1ist .append () operation then attaches the
value to the new list. When keys are encountered again, the look-up proceeds normally (returning the list for that key) and
the 1ist .append () operation adds another value to the list. This technique is simpler and faster than an equivalent
technique using dict.setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []).append(v)

>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the default_factoryto int makes the defaultdict useful for counting (like a bag or multiset in other
languages):

>>> s = 'mississippi’
>>> d = defaultdict (int)
>>> for k in s:

d[k] += 1

>>> sorted(d.items ())
[¢ra', 4), ('m', 1), ('p'y 2), ('s', 4)]

When a letter is first encountered, it is missing from the mapping, so the de fault_ factory function calls int () to
supply a default count of zero. The increment operation then builds up the count for each letter.

The function int () which always returns zero is just a special case of constant functions. A faster and more flexible
way to create constant functions is to use a lambda function which can supply any constant value (not just zero):

>>> def constant_factory(value) :

.. return lambda: value

>>> d = defaultdict (constant_factory('<missing>"))
>>> d.update (name="'John', action='ran')

>>> ! to L e

'John ran to <missing>'

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> s [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict (set)
>>> for k, v in s:

dl[k].add(v)

>>> sorted(d.items())
[('blue', {2, 4}), ('red', {1, 3})]

8.4. collections — Container datatypes 259

The

Python Library Reference, Release 3.11.3

8.4.5 namedtuple () Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They can
be used wherever regular tuples are used, and they add the ability to access fields by name instead of position index.

collections.namedtuple (typename, field_names, *, rename=False, defaults=None, module=None)

Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects that have fields
accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have a helpful
docstring (with typename and field_names) and a helpful __repr__ () method which lists the tuple contents in
a name=value format.

The field_names are a sequence of strings suchas ['x', 'y']. Alternatively, field names can be a single string
with each fieldname separated by whitespace and/or commas, for example 'x y'or 'x, y'.

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a
keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example, ['abc"',
'def', 'ghi', 'abc']isconvertedto ['abc', '_1', 'ghi', '_3'], eliminating the keyword
def and the duplicate fieldname abc.

defaults can be None or an iterable of default values. Since fields with a default value must come after any fields
without a default, the defaults are applied to the rightmost parameters. For example, if the fieldnames are ['x "',
'y', 'z'] and the defaults are (1, 2), then x will be a required argument, y will default to 1, and z will
default to 2.

If module is defined, the __module___ attribute of the named tuple is set to that value.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more memory
than regular tuples.

To support pickling, the named tuple class should be assigned to a variable that matches fypename.
Changed in version 3.1: Added support for rename.

Changed in version 3.6: The verbose and rename parameters became keyword-only arguments.
Changed in version 3.6: Added the module parameter.

Changed in version 3.7: Removed the verbose parameter and the _source attribute.

Changed in version 3.7: Added the defaults parameter and the _field_defaults attribute.

>>>
>>>
>>>
>>>
33
>>>
>>>
(11,
>>>
33
>>>

Basic example
Point = namedtuple('Point', ['x', 'v'])
p = Point (11, y=22) # instantiate with positional or keyword arguments
pl0] + pl1] # indexable like the plain tuple (11, 22)
X, Y = p # unpack like a regular tuple
X, ¥y
22)
p.x + p.y # fields also accessible by name
P # readable __repr__ with a name=value style

Point (x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sglite3 modules:

260

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

EmployeeRecord = namedtuple ('EmployeeRecord', 'name, age, title, department, paygrade

<)

import csv
for emp in map (EmployeeRecord._make, csv.reader (open ("employees.csv", "rb"))):
print (emp.name, emp.title)

import sqglite3
conn = sglite3.connect ('/companydata')
cursor conn.cursor ()
cursor.execute ('SELECT name, age, title, department, paygrade FROM employees')
for emp in map (EmployeeRecord._make, cursor.fetchall()):
print (emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support three additional methods and two attributes. To
prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make (iterable)

Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make (t)
Point (x=11, y=22)

somenamedtuple._asdict ()

Return a new dict which maps field names to their corresponding values:

>>> p = Point (x=11, y=22)
>>> p._asdict ()
{'x': 11, 'y': 22}

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

Changed in version 3.8: Returns a regular dict instead of an OrderedDict. As of Python 3.7, regular dicts
are guaranteed to be ordered. If the extra features of OrderedDict are required, the suggested remediation is
to cast the result to the desired type: OrderedDict (nt._asdict ()).

somenamedtuple._replace (**kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point (x=11, y=22)
>>> p._replace (x=33)
Point (x=33, y=22)

>>> for partnum, record in inventory.items():
.. inventory|[partnum] = record._replace (price=newprices|[partnum], .
—timestamp=time.now())

somenamedtuple._fields

Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from
existing named tuples.

>>> p._fields # view the field names

('x', 'y

>>> Color namedtuple ('Color', 'red green blue')
>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)

(continues on next page)

8.4. collections — Container datatypes 261

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> Pixel (11, 22, 128, 255, 0)
Pixel (x=11, y=22, red=128, green=255, blue=0)

somenamedtuple._field_defaults
Dictionary mapping field names to default values.

>>> Account = namedtuple('Account', ['type', 'balance'], defaults=[0])
>>> Account._field_defaults

{'balance': 0}

>>> Account ('premium')

Account (type='premium', balance=0)

To retrieve a field whose name is stored in a string, use the getattr () function:

>>> getattr(p, 'x'")
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-arguments):

>>> d = {'x': 11, 'y': 22}
>>> Point (**d)
Point (x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how to add
a calculated field and a fixed-width print format:

>>> class Point (namedtuple('Point’', ['x', 'y'])):
__slots___ = ()
@property
def hypot (self):

return (self.x ** 2 + self.y ** 2) ** 0.5
def _ str_ (self):
R return 'Point: x= y= hypot= ' % (self.x, self.y, self.
—hypot)
>>> for p in Point (3, 4), Point (14, 5/7):
C.. print (p)
Point: x= 3.000 vy= 4.000 hypot= 5.000
Point: x=14.000 vy= 0.714 hypot=14.018

The subclass shown above sets ___slots__ toan empty tuple. This helps keep memory requirements low by preventing
the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the _fields
attribute:

>>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

Docstrings can be customized by making direct assignments to the __doc___fields:

>>> Book = namedtuple('Book', ['id', 'title', 'authors'])
>>> Book. doc_ += ': Hardcover book in active collection'
>>> Book.id. doc = '13-digit ISBN'

>>> Book.title. ¢
>>> Book.authors.

= 'Title of first printing’
= 'List of authors sorted by last name'

Changed in version 3.5: Property docstrings became writeable.

262 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

See also:

See typing.NamedTuple for a way to add type hints for named tuples. It also provides an elegant notation
using the class keyword:

class Component (NamedTuple) :
part_number: int
weight: float
description: Optional[str] = None

See types.SimpleNamespace () for a mutable namespace based on an underlying dictionary instead of a
tuple.

The dataclasses module provides a decorator and functions for automatically adding generated special meth-
ods to user-defined classes.

8.4.6 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but have some extra capabilities relating to ordering operations.
They have become less important now that the built-in dict class gained the ability to remember insertion order (this
new behavior became guaranteed in Python 3.7).

Some differences from di ct still remain:

The regular dict was designed to be very good at mapping operations. Tracking insertion order was secondary.

The OrderedDict was designed to be good at reordering operations. Space efficiency, iteration speed, and the
performance of update operations were secondary.

The OrderedDict algorithm can handle frequent reordering operations better than dict. As shown in the
recipes below, this makes it suitable for implementing various kinds of LRU caches.

The equality operation for OrderedDict checks for matching order.

A regular dict can emulate the order sensitive equality test withp == g and all (k1 == k2 for k1,
k2 in zip(p, 9)).

The popitem () method of OrderedDict has a different signature. It accepts an optional argument to specify
which item is popped.

A regular dict can emulate OrderedDict’s od.popitem (last=True) with d.popitem () which is guar-
anteed to pop the rightmost (last) item.

A regular dict can emulate OrderedDict’s od.popitem (last=False) with (k := next (iter(d)),
d.pop (k)) which will return and remove the leftmost (first) item if it exists.

OrderedDict has amove_to_end () method to efficiently reposition an element to an endpoint.

A regular dict can emulate OrderedDict’s od .move_to_end (k, last=True) withd[k] = d.pop (k)
which will move the key and its associated value to the rightmost (last) position.

A regular di ct does not have an efficient equivalent for OrderedDict’s od .move_to_end (k, last=False)
which moves the key and its associated value to the leftmost (first) position.

Until Python 3.8, dict lackeda __reversed__ () method.

class collections.OrderedDict ([items])

Return an instance of a dict subclass that has methods specialized for rearranging dictionary order.

New in version 3.1.

8.4. collections — Container datatypes 263

The Python Library Reference, Release 3.11.3

popitem (last=True)
The popitem () method for ordered dictionaries returns and removes a (key, value) pair. The pairs are
returned in LIFO order if last is true or FIFO (first-in, first-out) order if false.

move_to_end (key, last=True)

Move an existing key to either end of an ordered dictionary. The item is moved to the right end if /as? is true
(the default) or to the beginning if /ast is false. Raises KeyError if the key does not exist:

>>> d = OrderedDict.fromkeys ('abcde')
>>> d.move_to_end('b")

>>> "' Join(d)

'acdeb'

>>> d.move_to_end('b', last=False)
>>> "' Join(d)

'bacde’

New in version 3.2.
In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed ().

Equality tests between OrderedDict objects are order-sensitive and are implemented as list (odl.
items ())==1list (od2.items ()). Equality tests between OrderedDict objects and other Mapping objects
are order-insensitive like regular dictionaries. This allows OrderedDict objects to be substituted anywhere a regular
dictionary is used.

Changed in version 3.5: The items, keys, and values views of OrderedDict now support reverse iteration using re—
versed ().

Changed in version 3.6: With the acceptance of PEP 468, order is retained for keyword arguments passed to the Or—
deredDict constructor and its update () method.

Changed in version 3.9: Added merge (|) and update (| =) operators, specified in PEP 584.
OrderedDict Examples and Recipes

It is straightforward to create an ordered dictionary variant that remembers the order the keys were last inserted. If a new
entry overwrites an existing entry, the original insertion position is changed and moved to the end:

class LastUpdatedOrderedDict (OrderedDict) :
'Store items in the order the keys were last added’

def __ _setitem__ (self, key, value):
super () .__setitem__ (key, value)
self.move_to_end(key)

An OrderedDict would also be useful for implementing variants of functools.lru_cache ():

from time import time

class TimeBoundedLRU:
"LRU Cache that invalidates and refreshes old entries.”

def _ _init__ (self, func, maxsize=128, maxage=30):
self.cache = OrderedDict () # { args : (timestamp, result)}
self.func = func
self.maxsize = maxsize
self.maxage = maxage

(continues on next page)

264 Chapter 8. Data Types

https://peps.python.org/pep-0468/
https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.11.3

(continued from previous page)

def

__call__ (self, *args):

if args in self.cache:
self.cache.move_to_end(args)

timestamp, result = self.cachelargs]
if time () - timestamp <= self.maxage:
return result
result = self.func(*args)
self.cachelargs] = time (), result

if len(self.cache) > self.maxsize:
self.cache.popitem(0)
return result

class MultiHitLRUCache:

mn

mn

def

def

LRU cache that defers caching a result until
it has been requested multiple times.

To avoid flushing the LRU cache with one-time requests,
we don't cache until a request has been made more than once.

__init__ (self, func, maxsize=128, maxrequests=4096, cache_after=1):
self.requests = OrderedDict () # { uncached_key : request_count }
self.cache = OrderedDict () # { cached_key : function_result }
self.func = func

self.maxrequests = maxrequests # max number of uncached requests
self.maxsize = maxsize # max number of stored return values
self.cache_after = cache_after

__call__ (self, *args):

if args in self.cache:
self.cache.move_to_end(args)
return self.cachelargs]
result = self.func(*args)
self.requests[args] = self.requests.get(args, 0) + 1
if self.requests[args] <= self.cache_after:
self.requests.move_to_end(args)
if len(self.requests) > self.maxrequests:
self.requests.popitem(0)
else:
self.requests.pop(args, None)
self.cachel[args] = result
if len(self.cache) > self.maxsize:
self.cache.popitem(0)
return result

8.4. collections — Container datatypes 265

The Python Library Reference, Release 3.11.3

8.4.7 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially supplanted
by the ability to subclass directly from dict; however, this class can be easier to work with because the underlying
dictionary is accessible as an attribute.

class collections.UserDict ([initialdata])

Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible via
the data attribute of UserDict instances. If initialdata is provided, dat a is initialized with its contents; note
that a reference to initialdata will not be kept, allowing it to be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDict instances provide the following
attribute:
data

A real dictionary used to store the contents of the UserDict class.

8.4.8 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can inherit
from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from 1 i st; however, this class can
be easier to work with because the underlying list is accessible as an attribute.

class collections.UserList ([list])

Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the empty
list []. list can be any iterable, for example a real Python list or a UserList object.

In addition to supporting the methods and operations of mutable sequences, UserList instances provide the
following attribute:

data

A real 11st object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserLi st are expected to offer a constructor which can be called with either
no arguments or one argument. List operations which return a new sequence attempt to create an instance of the actual
implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is a sequence
object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

8.4.9 Userstring objects

The class, UserString acts as a wrapper around string objects. The need for this class has been partially supplanted
by the ability to subclass directly from st r; however, this class can be easier to work with because the underlying string
is accessible as an attribute.

class collections.UserString (seq)

Class that simulates a string object. The instance’s content is kept in a regular string object, which is accessible via
the data attribute of UserSt ring instances. The instance’s contents are initially set to a copy of seq. The seq
argument can be any object which can be converted into a string using the built-in st = () function.

266 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

In addition to supporting the methods and operations of strings, UserSt ring instances provide the following
attribute:

data

A real st r object used to store the contents of the UserSt ring class.

Changed in version 3.5: New methods __getnewargs__, _ rmod
printable, and maketrans.

, casefold, format_map, is—

8.5 collections.abc — Abstract Base Classes for Containers

New in version 3.3: Formerly, this module was part of the collections module.

Source code: Lib/_collections_abc.py

This module provides abstract base classes that can be used to test whether a class provides a particular interface; for
example, whether it is hashable or whether it is a mapping.

An issubclass () or isinstance () test for an interface works in one of three ways.

1) A newly written class can inherit directly from one of the abstract base classes. The class must supply the required
abstract methods. The remaining mixin methods come from inheritance and can be overridden if desired. Other methods
may be added as needed:

Direct inheritance

Extra method not required by the ABC
Required abstract method

Required abstract method

Optionally override a mixin method

class C(Sequence) :
def _ init_ (self):
def _ getitem__ (self, index):
def _ len_ (self):
def count (self, wvalue):

HO¥E Y W W

>>> issubclass (C, Sequence)
True

>>> isinstance(C(), Sequence)
True

2) Existing classes and built-in classes can be registered as “virtual subclasses” of the ABCs. Those classes should define
the full API including all of the abstract methods and all of the mixin methods. This lets users rely on i ssubclass ()
or isinstance () tests to determine whether the full interface is supported. The exception to this rule is for methods
that are automatically inferred from the rest of the API:

class D: # No inheritance
def _ init_ (self): # Extra method not required by the ABC
def _ getitem__ (self, index): # Abstract method
def _ len_ (self): # Abstract method
def count (self, wvalue): # Mixin method
def index(self, wvalue): # Mixin method
Sequence.register (D) # Register instead of inherit

>>> issubclass (D, Sequence)
True

>>> isinstance (D (), Sequence)
True

8.5. collections.abc — Abstract Base Classes for Containers 267

https://github.com/python/cpython/tree/3.11/Lib/_collections_abc.py

The Python Library Reference, Release 3.11.3

In this example, class D does not need to define __contains__, __iter_ ,and _ reversed__ because the
in-operator, the iteration logic, and the reversed () function automatically fall back to using __getitem__ and
__len___

3) Some simple interfaces are directly recognizable by the presence of the required methods (unless those methods have
been set to None):

class E:
def _ iter_ (self):
def _ next_ (next):

>>> issubclass (E, Iterable)
True

>>> isinstance(E(), Iterable)
True

Complex interfaces do not support this last technique because an interface is more than just the presence of method
names. Interfaces specify semantics and relationships between methods that cannot be inferred solely from the presence
of specific method names. For example, knowing that a class supplies __getitem_ ,_len_ ,and __iter_ is
insufficient for distinguishing a Sequence from a Mapping.

New in version 3.9: These abstract classes now support []. See Generic Alias Type and PEP 585.

8.5.1 Collections Abstract Base Classes

The collections module offers the following ABCs:

268 Chapter 8. Data Types

https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.11.3

erator

ABC Inherits Abstract Methods Mixin Methods
from
Container! __contains___
Hashablete 701 __hash___
Tterablelee?70.12 __iter_
Iterator 701 Iterable | _ _next_ _ _iter_
Reversiblele270.1 Iterable | __reversed_
Generatorte 2701 Iterator | send, throw close,__iter_ ,_ next_
Si ZedPagc 270, 1 __len___
CallablePaee?T01 __call__
CollectionPe270.1 Sized, __contains__,
Iter— __iter_ ,_ len_
able,
Con—
tainer
Sequence Re— __getitem__, __contains_ ,__iter_
versible,| _ len_ _ _reversed_ , index, and count
Collec—
tion
MutableSequence Sequence | __getitem__, Inherited Sequence methods and
__setitem_ , append, reverse, extend, pop,
__delitem_ , remove,and ___iadd___
__len__ ,insert
ByteString Sequence | __getitem__, Inherited Sequence methods
__len_
Set Collec- __contains__, _le_ ,_ 1t , _eqg_,__ne__,
tion __diter_,_ len_ _gt__, ge_ ,__and__,__or__,
__sub__,_ xor__,and isdisjoint
MutableSet Set __contains__, Inherited Set methods and clear, pop,
__iter_ ,_ len_ , remove, __ior__,_iand__,
add, discard _ _ixor_ ,and __isub___
Mapping Collec— __getitem_ , __contains__, keys, items,
tion __iter_,__len_ values,get,__eq ,and_ _ne_
MutableMapping Mapping __getitem_ , Inherited Mapping methods and pop,
__setitem_ , popitem, clear, update, and
__delitem__, setdefault
__diter_,_ len_
MappingView Sized __len_
ItemsView Map— __contains_ ,__iter_
pingView,
Set
KeysView Map— __contains_ ,__iter_
pingView,
Set
ValuesView Map— __contains_ ,__iter_
pingView,
Collec—
tion
Awaitablelee 2701 __await___
Corout ineh?e /0.1 Await- send, throw close
able
AsyncIterablef?/01 __aiter_
AsyncIterator’e?/.1 AsyncIt—- | __anext_ __aiter_
erable
857 ST Tt £dnd . abe — ABStract Base C1586ks toF Entainers| 2close. _aiter . anexpgg

The Python Library Reference, Release 3.11.3

8.5.2 Collections Abstract Base Classes — Detailed Descriptions

class collections.abc.Container

ABC for classes that provide the __contains__ () method.

class collections.abc.Hashable
ABC for classes that provide the __hash___ () method.

class collections.abc.Sized
ABC for classes that provide the __1en__ () method.

class collections.abc.Callable
ABC for classes that provide the __call__ () method.

class collections.abc.Iterable
ABC for classes that provide the __iter__ () method.
Checking i sinstance (obj, Iterable) detects classes that are registered as Iterable or that have an
__iter__ () method, but it does not detect classes that iterate with the __getitem__ () method. The only
reliable way to determine whether an object is iferable is to call iter (obj).

class collections.abc.Collection
ABC for sized iterable container classes.

New in version 3.6.

class collections.abc.Iterator

ABC for classes that provide the __iter () and __next__ () methods. See also the definition of iterator.
class collections.abc.Reversible

ABC for iterable classes that also provide the __reversed__ () method.

New in version 3.6.

class collections.abc.Generator
ABC for generator classes that implement the protocol defined in PEP 342 that extends iterators with the send (),
throw () and close () methods. See also the definition of generator.

New in version 3.5.

class collections.abc.Sequence
class collections.abc.MutableSequence
class collections.abc.ByteString

ABC:s for read-only and mutable sequences.

Implementation note: Some of the mixin methods, suchas __iter_ (),__reversed__ () and index (),
make repeated calls to the underlying ___getitem__ () method. Consequently, if _ getitem__ () isimple-
mented with constant access speed, the mixin methods will have linear performance; however, if the underlying
method is linear (as it would be with a linked list), the mixins will have quadratic performance and will likely need
to be overridden.

Changed in version 3.5: The index() method added support for sfop and start arguments.

class collections.abc.Set

! These ABCs override object . __subclasshook__ () tosupport testing an interface by verifying the required methods are present and have
not been set to None. This only works for simple interfaces. More complex interfaces require registration or direct subclassing.

2 Checking isinstance (obj, Iterable) detects classes that are registered as Tterable or that have an __iter__ () method, but
it does not detect classes that iterate with the __getitem__ () method. The only reliable way to determine whether an object is iterable is to call
iter (obj).

270 Chapter 8. Data Types

https://peps.python.org/pep-0342/

The Python Library Reference, Release 3.11.3

class collections.abc.MutableSet

ABC:s for read-only and mutable sets.

class collections.abc.Mapping

class collections.abc.MutableMapping

ABC:s for read-only and mutable mappings.

class
class
class

class

ABC:s for mapping, items, keys, and values views.

collections.abc
collections.abc
collections.abc

collections.abc

.MappingView
.ItemsView
.KeysView

.ValuesView

class collections.abc.Awaitable

ABC for awaitable objects, which can be used in await expressions. Custom implementations must provide the

await__ () method.

Coroutine objects and instances of the Corout ine ABC are all instances of this ABC.

Note: In CPython, generator-based coroutines (generators decorated with t ypes. coroutine ()) are await-
ables, even though they do not have an __await__ () method. Using isinstance (gencoro, Await-
able) for them will return False. Use inspect.isawaitable () to detect them.

New in version 3.5.

class collections.abc.Coroutine

ABC for coroutine compatible classes. These implement the following methods, defined in coroutine-objects:

send (), throw(), and close ().

Custom implementations must also implement __await__ (). All

Coroutine instances are also instances of Awaitable. See also the definition of coroutine.

Note: In CPython, generator-based coroutines (generators decorated with t ypes. coroutine ()) are await-
ables, even though they do not have an __await__ () method. Using isinstance (gencoro, Corou-
tine) for them will return False. Use inspect.isawaitable () to detect them.

New in version 3.5.

class collections.abc.AsyncIterable

ABC for classes that provide __aiter___ method. See also the definition of asynchronous iterable.

New in version 3.5.

class collections.abc.AsyncIterator

ABC for classes that provide __aiter__ and __anext__ methods. See also the definition of asynchronous
iterator.

New in version 3.5.

class collections.abc.AsyncGenerator

ABC for asynchronous generator classes that implement the protocol defined in PEP 525 and PEP 492.

New in version 3.6.

8.5. collections.abc — Abstract Base Classes for Containers 271

https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Library Reference, Release 3.11.3

8.5.3 Examples and Recipes

ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance (myvar, collections.abc.Sized):
size = len (myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For
example, to write a class supporting the full Set API, it is only necessary to supply the three underlying abstract
methods: ___contains__ (), __iter_ (), and __len__ (). The ABC supplies the remaining methods such
as__and__ () and isdisjoint ():

class ListBasedSet (collections.abc.Set):

''"! Alternate set implementation favoring space over speed

and not requiring the set elements to be hashable. '''
def _ init_ (self, iterable):

self.elements = 1lst = []

for value in iterable:

if value not in 1lst:
lst.append(value)

def _ iter_ (self):
return iter (self.elements)

def _ contains_ (self, wvalue):
return value in self.elements

def len_ (self):

return len(self.elements)

sl = ListBasedSet ('abcdef'")
s2 = ListBasedSet ('defghi')
overlap = sl & s2 # The __and__ () method is supported automatically

Notes on using Set and MutableSet as a mixin:

(1) Since some set operations create new sets, the default mixin methods need a way to create new instances from an
iterable. The class constructor is assumed to have a signature in the form ClassName (iterable). That as-
sumption is factored-out to an internal classmethod called _from_iterable () whichcallscls (iterable)
to produce a new set. If the Set mixin is being used in a class with a different constructor signature, you will need
to override _from_iterable () with a classmethod or regular method that can construct new instances from
an iterable argument.

(2) To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le_ () and
__ge__ (), then the other operations will automatically follow suit.

(3) The Set mixin provides a _hash () method to compute a hash value for the set; however, hash__ () is
not defined because not all sets are hashable or immutable. To add set hashability using mixins, inherit from both
Set () and Hashable (),thendefine __hash__ = Set._hash.

See also:
* OrderedSet recipe for an example built on MutableSet.

¢ For more about ABCs, see the abc module and PEP 3119.

272 Chapter 8. Data Types

https://code.activestate.com/recipes/576694/
https://peps.python.org/pep-3119/

The Python Library Reference, Release 3.11.3

8.6 heapq — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. This implementation
uses arrays for which heap [k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all k, counting elements
from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is that its smallest element is always the root, heap [0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes the
relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable since
Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a “min heap” in
textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest item,
and heap.sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function heapify ().
The following functions are provided:

heapqg.heappush (heap, item)
Push the value ifem onto the heap, maintaining the heap invariant.

heapqg.heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty, TndexError
is raised. To access the smallest item without popping it, use heap [0].

heapq.heappushpop (heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush () followed by a separate call to heappop ().

heapg.heapify (x)

Transform list x into a heap, in-place, in linear time.

heapg.heapreplace (heap, item)

Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change. If the
heap is empty, TndexError is raised.

This one step operation is more efficient than a heappop () followed by heappush () and can be more ap-
propriate when using a fixed-size heap. The pop/push combination always returns an element from the heap and
replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using heappushpop ()
instead. Its push/pop combination returns the smaller of the two values, leaving the larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapqg.merge (*iterables, key=None, reverse=False)

Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple
log files). Returns an iterator over the sorted values.

Similar to sorted (itertools.chain (*iterables)) butreturns an iterable, does not pull the data into
memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).

Has two optional arguments which must be specified as keyword arguments.

8.6. heapg — Heap queue algorithm 273

https://github.com/python/cpython/tree/3.11/Lib/heapq.py

The Python Library Reference, Release 3.11.3

key specifies a key function of one argument that is used to extract a comparison key from each input element. The
default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the input elements are merged as if each comparison were reversed.
To achieve behavior similar to sorted (itertools.chain(*iterables), reverse=True), allit-
erables must be sorted from largest to smallest.

Changed in version 3.5: Added the optional key and reverse parameters.

heapqg.nlargest (n, iterable, key=None)

Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies a function
of one argument that is used to extract a comparison key from each element in iterable (for example, key=str.
lower). Equivalent to: sorted (iterable, key=key, reverse=True) [:n].

heapg.nsmallest (n, iterable, key=None)

Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, specifies a function
of one argument that is used to extract a comparison key from each element in iterable (for example, key=str.
lower). Equivalent to: sorted (iterable, key=key) [:n].

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the sorted ()
function. Also, when n==1, it is more efficient to use the built-in min () and max () functions. If repeated usage of
these functions is required, consider turning the iterable into an actual heap.

8.6.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at a time:

>>> def heapsort (iterable):
h = []
for value in iterable:
heappush (h, value)
return [heappop (h) for i in range(len(h))]

>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 01])
|:OI 1/ 2/ 37 4/ 5/ 6/ 77 8/ 9J

This is similar to sorted (iterable), but unlike sorted (), this implementation is not stable.

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the main
record being tracked:

>>> h = []

'write code'))
'release product'))
'write spec'))
'create tests'))

>>> heappush (h,
>>> heappush (h,
>>> heappush (h
>>> heappush (h,
>>> heappop (h)

(1, 'write spec')

~

’

~

w = 3 u;
~

~

274 Chapter 8. Data Types

https://en.wikipedia.org/wiki/Heapsort

The Python Library Reference, Release 3.11.3

8.6.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:
* Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally added?

¢ Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have a default
comparison order.

* If the priority of a task changes, how do you move it to a new position in the heap?
* Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and the task.
The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order they were added.
And since no two entry counts are the same, the tuple comparison will never attempt to directly compare two tasks.

Another solution to the problem of non-comparable tasks is to create a wrapper class that ignores the task item and only
compares the priority field:

from dataclasses import dataclass, field
from typing import Any

@dataclass (order=True)
class PrioritizedItem:
priority: int
item: Any=field(compare=False)

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it entirely.
Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants. So, a
possible solution is to mark the entry as removed and add a new entry with the revised priority:

pa = [] # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = '<removed-task>" # placeholder for a removed task
counter = itertools.count () # unique sequence count

def add_task(task, priority=0):
'Add a new task or update the priority of an existing task'
if task in entry_finder:
remove_task (task)

count = next (counter)
entry = [priority, count, task]
entry_finder[task] = entry

heappush (pg, entry)

def remove_task (task) :
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry = entry_finder.pop (task)
entry[-1] = REMOVED

def pop_task():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pqg:
priority, count, task = heappop (pqg)
if task is not REMOVED:
del entry_finder[task]

(continues on next page)

8.6. heapg — Heap queue algorithm 275

https://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.11.3

(continued from previous page)

return task
raise KeyError ('pop from an empty priority queue')

8.6.3 Theory

Heaps are arrays for which a [k] <= a[2*k+1] and a[k] <= a[2*k+2] for all &, counting elements from O.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is that
a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below are
k,notal[k]:

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell & is topping 2*k+1 and 2*k+2. In a usual binary tournament we see in sports, each cell is
the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had. However, in
many computer applications of such tournaments, we do not need to trace the history of a winner. To be more memory
efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the rule becomes that a
cell and the two cells it tops contain three different items, but the top cell “wins” over the two topped cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way to remove
it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the O position, and then
percolate this new O down the tree, exchanging values, until the invariant is re-established. This is clearly logarithmic on
the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the inserted
items are not “better” than the last 0’th element you extracted. This is especially useful in simulation contexts, where
the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event schedules
other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap is a good
structure for implementing schedulers (this is what I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they are
reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case. However,
there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs” (which
are pre-sorted sequences, whose size is usually related to the amount of CPU memory), followed by a merging passes for
these runs, which merging is often very cleverly organised'. It is very important that the initial sort produces the longest
runs possible. Tournaments are a good way to achieve that. If, using all the memory available to hold a tournament, you
replace and percolate items that happen to fit the current run, you’ll produce runs which are twice the size of the memory
for random input, and much better for input fuzzily ordered.

! The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabilities
of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in advance)
that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes were even able to
read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all times,
sorting has always been a Great Art! :-)

276 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because the
value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory
could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate the
first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and quite
effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to keep a
‘heap’ module around. :-)

8.7 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion. For
long lists of items with expensive comparison operations, this can be an improvement over the more common approach.
The module is called bisect because it uses a basic bisection algorithm to do its work. The source code may be most
useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

bisect .bisect_left (aq, x, lo=0, hi=len(a), *, key=None)

Locate the insertion point for x in a to maintain sorted order. The parameters lo and #i may be used to specify
a subset of the list which should be considered; by default the entire list is used. If x is already present in a, the
insertion point will be before (to the left of) any existing entries. The return value is suitable for use as the first
parameter to 1ist.insert () assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so that all (val < x for val in af[lo
i]) for the leftside and a1l (val >= x for val in a[i : hi]) for the right side.

key specifies a key function of one argument that is used to extract a comparison key from each element in the array.
To support searching complex records, the key function is not applied to the x value.

If key is None, the elements are compared directly with no intervening function call.
Changed in version 3.10: Added the key parameter.
bisect .bisect_right (a, x, lo=0, hi=len(a), *, key=None)

bisect .bisect (a, x, lo=0, hi=len(a), *, key=None)

Similarto bisect_left (),butreturns an insertion point which comes after (to the right of) any existing entries
of xin a.

The returned insertion point i partitions the array a into two halves so that all (val <= x for wval in
al[lo : 1i]) fortheleftsideand all (val > x for val in a[i : hi]) for the right side.

key specifies a key function of one argument that is used to extract a comparison key from each element in the array.
To support searching complex records, the key function is not applied to the x value.

If key is None, the elements are compared directly with no intervening function call.
Changed in version 3.10: Added the key parameter.

bisect.insort_left (aq, x, lo=0, hi=len(a), *, key=None)

Insert x in a in sorted order.

This function first runs bisect_left () tolocate an insertion point. Next, it runs the insert () method on a
to insert x at the appropriate position to maintain sort order.

8.7. bisect — Array bisection algorithm 277

https://github.com/python/cpython/tree/3.11/Lib/bisect.py

The Python Library Reference, Release 3.11.3

To support inserting records in a table, the key function (if any) is applied to x for the search step but not for the
insertion step.

Keep in mind that the O (1og n) search is dominated by the slow O(n) insertion step.
Changed in version 3.10: Added the key parameter.

bisect.insort_right (a, x, lo=0, hi=len(a), *, key=None)
bisect.insort (a, x, lo=0, hi=len(a), *, key=None)

Similar to insort_left (), butinserting x in a after any existing entries of x.

This function first runs bisect_right () tolocate an insertion point. Next, it runs the insert () method on
a to insert x at the appropriate position to maintain sort order.

To support inserting records in a table, the key function (if any) is applied to x for the search step but not for the
insertion step.

Keep in mind that the O (1log n) search is dominated by the slow O(n) insertion step.

Changed in version 3.10: Added the key parameter.

8.7.1 Performance Notes

When writing time sensitive code using bisect() and insort(), keep these thoughts in mind:
* Bisection is effective for searching ranges of values. For locating specific values, dictionaries are more performant.
* The insort() functions are O (n) because the logarithmic search step is dominated by the linear time insertion step.

 The search functions are stateless and discard key function results after they are used. Consequently, if the search
functions are used in a loop, the key function may be called again and again on the same array elements. If the
key function isn’t fast, consider wrapping it with functools.cache () to avoid duplicate computations. Alter-
natively, consider searching an array of precomputed keys to locate the insertion point (as shown in the examples
section below).

See also:
¢ Sorted Collections is a high performance module that uses bisect to managed sorted collections of data.

¢ The SortedCollection recipe uses bisect to build a full-featured collection class with straight-forward search methods
and support for a key-function. The keys are precomputed to save unnecessary calls to the key function during
searches.

8.7.2 Searching Sorted Lists

The above bisect () functions are useful for finding insertion points but can be tricky or awkward to use for common
searching tasks. The following five functions show how to transform them into the standard lookups for sorted lists:

def index(a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left (a, x)
if i != len(a) and ali] =
return i
raise ValueError

Il
w

def find_1lt(a, x):
'Find rightmost value less than x'
i = bisect_left(a, x)

(continues on next page)

278 Chapter 8. Data Types

https://grantjenks.com/docs/sortedcollections/
https://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.11.3

(continued from previous page)

if i:
return al[i-1]
raise ValueError

def find_le(a, x):
'Find rightmost value less than or equal to x'
i = bisect_right(a, x)
if 1i:
return af[i-1]
raise ValueError

def find_gt(a, x):
'Find leftmost value greater than x'
i = bisect_right(a, x)
if i != len(a):
return ali]
raise ValueError

def find_ge(a, x):
'Find leftmost item greater than or equal to x'
i = bisect_left (a, x)
if 1 != len(a):
return a[i]
raise ValueError

8.7.3 Examples

The bisect () function can be useful for numeric table lookups. This example uses bisect () to look up a letter
grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is a ‘B’, and
SO on:

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect (breakpoints, score)
return grades|[i]

>>> [grade (score) for score in [33, 99, 77, 70, 89, 90, 1001]]
[IF" IAI’ ‘Cl’ lCl, lB', lAl, IAlJ

The bisect () and insort () functions also work with lists of tuples. The key argument can serve to extract the field
used for ordering records in a table:

>>> from collections import namedtuple
>>> from operator import attrgetter
>>> from bisect import bisect, insort
>>> from pprint import pprint

>>> Movie = namedtuple('Movie', ('name', 'released', 'director'))

>>> movies = [
Movie ('Jaws', 1975, 'Speilberg'),
Movie ('Titanic', 1997, 'Cameron'),
Movie ('The Birds', 1963, 'Hitchcock'),
Movie ('Aliens', 1986, 'Scott')

(continues on next page)

8.7. bisect — Array bisection algorithm 279

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> # Find the first movie released after 1960

>>> by_vyear = attrgetter('released')

>>> movies.sort (key=by_year)

>>> movies [bisect (movies, 1960, key=by_year)]

Movie (name='The Birds', released=1963, director='Hitchcock')

>>> # Insert a movie while maintaining sort order

>>> romance = Movie ('Love Story', 1970, 'Hiller'")

>>> insort (movies, romance, key=by_year)

>>> pprint (movies)

[Movie (name="'The Birds', released=1963, director='Hitchcock'),
name='Love Story', released=1970, director='Hiller'),
name='Jaws', released=1975, director='Speilberg'),
name='Aliens', released=1986, director='Scott'),
name='Titanic', released=1997, director='Cameron')]

Movie
Movie
Movie
Movie

If the key function is expensive, it is possible to avoid repeated function calls by searching a list of precomputed keys to
find the index of a record:

>>> data = [('red', 5), ('blue', 1), ('yellow', 8), ('black', 0)]
>>> data.sort (key=lambda r: r[1]) # Or use operator.itemgetter(1).
>>> keys = [r[l] for r in data] # Precompute a list of keys.
>>> data[bisect_left (keys, 0)]

('black', 0)

>>> datal[bisect_left (keys, 1)]

("blue', 1)

>>> datal[bisect_left (keys, 5)]

('red', 5)

>>> data[bisect_left (keys, 8)]

('yellow', 8)

8.8 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers, floating
point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects stored in them
is constrained. The type is specified at object creation time by using a type code, which is a single character. The following
type codes are defined:

280 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Type code | C Type Python Type Minimum size in bytes | Notes
'b! signed char int 1

'B' unsigned char int 1

u' wchar_t Unicode character | 2 (D)
'h' signed short int 2

'H' unsigned short int 2

it signed int int 2

' unsigned int int 2

1 signed long int 4

' unsigned long int 4

'q' signed long long int 8

Q' unsigned long long | int 8

£ float float 4

'd’ double float 8

Notes:
(1) It can be 16 bits or 32 bits depending on the platform.

Changed in version 3.9: array ('u') now uses wchar_t as C type instead of deprecated Py_UNICODE. This
change doesn’t affect its behavior because Py_UNICODE is alias of wchar_t since Python 3.3.

Deprecated since version 3.3, will be removed in version 4.0.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implementation).
The actual size can be accessed through the array. i temsize attribute.

The module defines the following item:

array.typecodes

A string with all available type codes.
The module defines the following type:

class array.array (typecode[, initializer])
A new array whose items are restricted by fypecode, and initialized from the optional inifializer value, which must
be a list, a byfes-like object, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist (), frombytes (), or fromu-
nicode () method (see below) to add initial items to the array. Otherwise, the iterable initializer is passed to the
extend () method.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
‘When using slice assignment, the assigned value must be an array object with the same type code; in all other cases,
TypeError is raised. Array objects also implement the buffer interface, and may be used wherever bytes-like
objects are supported.

Raises an auditing event array .__new___ with arguments typecode, initializer.

typecode

The typecode character used to create the array.
itemsize

The length in bytes of one array item in the internal representation.
append (x)

Append a new item with value x to the end of the array.

8.8. array — Efficient arrays of numeric values 281

The Python Library Reference, Release 3.11.3

buffer_info ()

Return a tuple (address, length) giving the current memory address and the length in elements of
the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as array .
buffer_info () [1] * array.itemsize. Thisis occasionally useful when working with low-level
(and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl () operations.
The returned numbers are valid as long as the array exists and no length-changing operations are applied to
1t.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method is
maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in bufferobjects.

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, Runt imeError is raised. It is useful when reading data from a file written on a
machine with a different byte order.

count (x)

Return the number of occurrences of x in the array.

extend (iterable)
Append items from iterable to the end of the array. If iferable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array.

frombytes (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read
from a file using the fromfile () method).
New in version 3.2: fromstring () is renamed to frombytes () for clarity.

fromfile (f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array.

fromlist (list)
Append items from the list. This is equivalent to for x in list: a.append (x) except thatif there
is a type error, the array is unchanged.

fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type 'u' array; otherwise
a ValueErrorisraised. Use array.frombytes (unicodestring.encode (enc)) to append
Unicode data to an array of some other type.

index (x[, start[, stop]])

Return the smallest i such that i is the index of the first occurrence of x in the array. The optional arguments
start and stop can be specified to search for x within a subsection of the array. Raise ValueError if x is
not found.

Changed in version 3.10: Added optional start and stop parameters.

insert (i, x)

Insert a new item with value x in the array before position i. Negative values are treated as being relative to
the end of the array.

282

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

pop ([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to -1, so
that by default the last item is removed and returned.

remove (x)

Remove the first occurrence of x from the array.

reverse ()

Reverse the order of the items in the array.

tobytes ()
Convert the array to an array of machine values and return the bytes representation (the same sequence of
bytes that would be written to a file by the tofile () method.)

New in version 3.2: tostring () is renamed to tobytes () for clarity.

tofile (f)

Write all items (as machine values) to the file object f.

tolist ()
Convert the array to an ordinary list with the same items.

tounicode ()

Convert the array to a unicode string. The array must be a type 'u' array; otherwise a ValueError is
raised. Use array.tobytes () .decode (enc) to obtain a unicode string from an array of some other

type.

When an array object is printed or converted to a string, it is represented as array (typecode, initializer).
The initializer is omitted if the array is empty, otherwise it is a string if the typecodeis ' u ', otherwise it is a list of numbers.
The string is guaranteed to be able to be converted back to an array with the same type and value using eval (), so long
as the array class has been imported using from array import array. Examples:

array ('l")

array ('u', 'hello \u2641")

array('1l', [1, 2, 3, 4, 51)
array('d', [1.0, 2.0, 3.141])

See also:
Module struct Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some remote proce-
dure call systems.

NumPy The NumPy package defines another array type.

8.9 weakref — Weak references

Source code: Lib/weakref.py

The weakref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a referent
are weak references, garbage collection is free to destroy the referent and reuse its memory for something else. However,
until the object is actually destroyed the weak reference may return the object even if there are no strong references to it.

8.9. weakref — Weak references 283

https://numpy.org/
https://github.com/python/cpython/tree/3.11/Lib/weakref.py

The Python Library Reference, Release 3.11.3

A primary use for weak references is to implement caches or mappings holding large objects, where it’s desired that a
large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each. If you
used a Python dictionary to map names to images, or images to names, the image objects would remain alive just because
they appeared as values or keys in the dictionaries. The WeakKeyDictionary and WeakValueDictionary
classes supplied by the weakref module are an alternative, using weak references to construct mappings that don’t
keep objects alive solely because they appear in the mapping objects. If, for example, an image object is a value in a
WeakValueDictionary, then when the last remaining references to that image object are the weak references held
by weak mappings, garbage collection can reclaim the object, and its corresponding entries in weak mappings are simply
deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up call-
back functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed by garbage
collection. WeakSet implements the set interface, but keeps weak references to its elements, just like a WeakKey—
Dictionary does.

finalize provides a straight forward way to register a cleanup function to be called when an object is garbage collected.
This is simpler to use than setting up a callback function on a raw weak reference, since the module automatically ensures
that the finalizer remains alive until the object is collected.

Most programs should find that using one of these weak container types or £finalize is all they need — it’s not usually
necessary to create your own weak references directly. The low-level machinery is exposed by the weak re £ module for
the benefit of advanced uses.

Not all objects can be weakly referenced. Objects which support weak references include class instances, functions written
in Python (but not in C), instance methods, sets, frozensets, some file objects, generators, type objects, sockets, arrays,
deques, regular expression pattern objects, and code objects.

Changed in version 3.2: Added support for thread.lock, threading.Lock, and code objects.

Several built-in types such as 1ist and dict do not directly support weak references but can add support through
subclassing:

class Dict (dict):
pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referenceable

CPython implementation detail: Other built-in types such as tuple and int do not support weak references even
when subclassed.

Extension types can easily be made to support weak references; see weakref-support.

When __slots___ are defined for a given type, weak reference support is disabled unless a ' __weakref___' string
is also present in the sequence of strings in the ___slots__ declaration. See __slots__ documentation for details.

class weakref.ref (object[, callback])

Return a weak reference to object. The original object can be retrieved by calling the reference object if the referent
is still alive; if the referent is no longer alive, calling the reference object will cause None to be returned. If callback
is provided and not None, and the returned weakref object is still alive, the callback will be called when the object
is about to be finalized; the weak reference object will be passed as the only parameter to the callback; the referent
will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each weak
reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an object’s __del__ () method.

284 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Weak references are hashable if the object is hashable. They will maintain their hash value even after the object
was deleted. If hash () is called the first time only after the object was deleted, the call will raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have the
same equality relationship as their referents (regardless of the callback). If either referent has been deleted, the
references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

__callback__
This read-only attribute returns the callback currently associated to the weakref. If there is no callback or if
the referent of the weakref is no longer alive then this attribute will have value None.

Changed in version 3.4: Added the _ callback__ attribute.

weakref.proxy (object[, callback])

Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type of
either ProxyType or CallableProxyType, depending on whether object is callable. Proxy objects are not
hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable nature,
and prevents their use as dictionary keys. callback is the same as the parameter of the same name to the ref ()
function.

Accessing an attribute of the proxy object after the referent is garbage collected raises Re ferenceError.

Changed in version 3.8: Extended the operator support on proxy objects to include the matrix multiplication op-
erators @ and @=.
weakref.getweakrefcount (object)

Return the number of weak references and proxies which refer to object.

weakref .getweakrefs (object)

Return a list of all weak reference and proxy objects which refer to object.

class weakref.WeakKeyDictionary ([dict])

Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

Note that when a key with equal value to an existing key (but not equal identity) is inserted into the dictionary,
it replaces the value but does not replace the existing key. Due to this, when the reference to the original key is
deleted, it also deletes the entry in the dictionary:

>>> class T(str): pass

>>> k1, k2 =T, T()
>>> d = weakref.WeakKeyDictionary ()

>>> d[kl] = 1 #d = {k1: 1}
>>> d[k2] = 2 # d = {kl: 2}
>>> del k1 #d = {}

A workaround would be to remove the key prior to reassignment:

>>> class T(str): pass

>>> k1, k2 = T(), T()
>>> d = weakref.WeakKeyDictionary ()
>>> d[kl] = 1 # d = {kl: 1}

(continues on next page)

8.9. weakref — Weak references 285

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> del d[k1l]
>>> d[k2] = 2 # d
>>> del k1 # d

{k2: 2}
= {k2: 2}

Changed in version 3.9: Added support for | and | = operators, specified in PEP 584.

WeakKeyDictionary objects have an additional method that exposes the internal references directly. The references
are not guaranteed to be “live” at the time they are used, so the result of calling the references needs to be checked before
being used. This can be used to avoid creating references that will cause the garbage collector to keep the keys around
longer than needed.

WeakKeyDictionary.keyrefs ()

Return an iterable of the weak references to the keys.

class weakref.WeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong reference
to the value exists any more.
Changed in version 3.9: Added support for | and | = operators, as specified in PEP 584.

WeakValueDictionary objects have an additional method that has the same issues as the keyrefs () method of
WeakKeyDictionary objects.
WeakValueDictionary.valuerefs ()

Return an iterable of the weak references to the values.

class weakref.WeakSet ([elements])
Set class that keeps weak references to its elements. An element will be discarded when no strong reference to it
exists any more.

class weakref.WeakMethod (method[, callback])

A custom ref subclass which simulates a weak reference to a bound method (i.e., a method defined on a class and
looked up on an instance). Since a bound method is ephemeral, a standard weak reference cannot keep hold of it.
WeakMethod has special code to recreate the bound method until either the object or the original function dies:

>>> class C:
def method(self):
print ("method called!")

>>>

c =C()
>>> r = weakref.ref (c.method)
>>> 1 ()
>>> r = weakref.WeakMethod (c.method)
>>> 1 ()
<bound method C.method of <__main__.C object at 0x7fc859830220>>
>>> r() ()

method called!
>>> del c

>>> gc.collect ()
0

>>> ()

>>>

callback is the same as the parameter of the same name to the ref () function.

New in version 3.4.

286 Chapter 8. Data Types

https://peps.python.org/pep-0584/
https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.11.3

class weakref.finalize (obj, func, /, *args, **kwargs)

Return a callable finalizer object which will be called when obj is garbage collected. Unlike an ordinary weak
reference, a finalizer will always survive until the reference object is collected, greatly simplifying lifecycle man-
agement.

A finalizer is considered alive until it is called (either explicitly or at garbage collection), and after that it is dead.
Calling a live finalizer returns the result of evaluating func (*arg, **kwargs), whereas calling a dead finalizer
returns None.

Exceptions raised by finalizer callbacks during garbage collection will be shown on the standard error output, but
cannot be propagated. They are handled in the same way as exceptions raised from an object’s __del__ ()
method or a weak reference’s callback.

When the program exits, each remaining live finalizer is called unless its atexi t attribute has been set to false.
They are called in reverse order of creation.

A finalizer will never invoke its callback during the later part of the interpreter shutdown when module globals are
liable to have been replaced by None.
call ()
If self is alive then mark it as dead and return the result of calling func (*args, **kwargs). If self is
dead then return None.
detach ()
If self is alive then mark it as dead and return the tuple (obj, func, args, kwargs). If self is dead
then return None.
peek ()

If self is alive then return the tuple (obj, func, args, kwargs). If self is dead then return None.
alive
Property which is true if the finalizer is alive, false otherwise.

atexit

A writable boolean property which by default is true. When the program exits, it calls all remaining live
finalizers for which atexit is true. They are called in reverse order of creation.

Note: It is important to ensure that func, args and kwargs do not own any references to obyj, either directly or
indirectly, since otherwise obj will never be garbage collected. In particular, func should not be a bound method
of obj.

New in version 3.4.
weakref .ReferenceType

The type object for weak references objects.
weakref.ProxyType

The type object for proxies of objects which are not callable.
weakref.CallableProxyType

The type object for proxies of callable objects.

weakref.ProxyTypes

Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy without
being dependent on naming both proxy types.

See also:

8.9. weakref — Weak references 287

The Python Library Reference, Release 3.11.3

PEP 205 - Weak References The proposal and rationale for this feature, including links to earlier implementations and
information about similar features in other languages.

8.9.1 Weak Reference Objects

Weak reference objects have no methods and no attributes besides ref.___callback__. A weak reference object
allows the referent to be obtained, if it still exists, by calling it:

>>> import weakref
>>> class Object:

pass
>>> o = Object ()

>>> r = weakref.ref (0)
>>> 02 = r()

>>> o0 is 02

True

If the referent no longer exists, calling the reference object returns None:

>>> del o, o2
>>> print (r())
None

Testing that a weak reference object is still live should be done using the expression ref () is not None. Normally,
application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o =r()
if o is None:
referent has been garbage collected
print ("Object has been deallocated; can't frobnicate.")
else:
print ("Object is still live!")
o.do_something_useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded applications
as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary toreduce the memory overhead for each entry in the mapping. This may be most useful to
associate additional information with a reference, but could also be used to insert additional processing on calls to retrieve
the referent.

This example shows how a subclass of ref can be used to store additional information about an object and affect the
value that’s returned when the referent is accessed:

import weakref

class ExtendedRef (weakref.ref):

def _ init_ (self, ob, callback=None, /, **annotations):
super () .__init__ (ob, callback)
self._counter = 0

for k, v in annotations.items{() :
setattr(self, k, v)

(continues on next page)

288 Chapter 8. Data Types

https://peps.python.org/pep-0205/

The Python Library Reference, Release 3.11.3

(continued from previous page)

def _ call_ (self):
"""Return a palir containing the referent and the number of
times the reference has been called.
ob = super().__call__ ()
if ob is not None:
self.__ _counter += 1
ob = (ob, self.__ counter)
return ob

8.9.2 Example

This simple example shows how an application can use object IDs to retrieve objects that it has seen before. The IDs of
the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can still
be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary ()

def remember (obj) :
oid = id(obj)
_i1d2obj_dict[oid] = obj
return oid

def id2obj (oid) :
return _id2obj_dict[oid]

8.9.3 Finalizer Objects

The main benefit of using finalize is that it makes it simple to register a callback without needing to preserve the
returned finalizer object. For instance

>>> import weakref
>>> class Object:
pass

>>> kenny = Object ()

>>> weakref.finalize (kenny, print, "You killed Kenny!")
<finalize object at ...; for 'Object' at ...>

>>> del kenny

You killed Kenny!

The finalizer can be called directly as well. However the finalizer will invoke the callback at most once.

>>> def callback(x, vy, z):
print ("CALLBACK")
return x + y + z

>>> obj = Object ()
>>> f = weakref.finalize(obj, callback, 1, 2, z=3)
>>> assert f.alive

(continues on next page)

8.9. weakref — Weak references 289

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> assert f() == 6

CALLBACK

>>> assert not f.alive

>>> f() # callback not called because finalizer dead
>>> del obj # callback not called because finalizer dead

You can unregister a finalizer using its detach () method. This kills the finalizer and returns the arguments passed to
the constructor when it was created.

>>> obj = Object ()

>>> f = weakref.finalize(obj, callback, 1, 2, z=3)
>>> f.detach()
(<...0Object object ...>, <function callback ...>, (1, 2), {'z': 3})

>>> newobj, func, args, kwargs = _
>>> assert not f.alive

>>> assert newob]j is obj

>>> assert func(*args, **kwargs) == 6
CALLBACK

Unless you set the atexit attribute to False, a finalizer will be called when the program exits if it is still alive. For
instance

>>> obj = Object ()

>>> weakref.finalize (obj, print, "obj dead or exiting")
<finalize object at ...; for 'Object' at ...>

>>> exit ()

obj dead or exiting

8.9.4 Comparing finalizers with __del__ () methods
Suppose we want to create a class whose instances represent temporary directories. The directories should be deleted
with their contents when the first of the following events occurs:

* the object is garbage collected,

¢ the object’s remove () method is called, or

* the program exits.

We might try to implement the class usinga __del__ () method as follows:

class TempDir:
def _ init_ (self):
self.name = tempfile.mkdtemp ()

def remove (self):
if self.name is not None:
shutil.rmtree (self.name)
self.name = None

@property
def removed(self):
return self.name is None

def _ del_ (self):
self.remove ()

290 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Starting with Python 3.4, __del__ () methods no longer prevent reference cycles from being garbage collected, and
module globals are no longer forced to None during interpreter shutdown. So this code should work without any issues
on CPython.

However, handling of __del__ () methods is notoriously implementation specific, since it depends on internal details
of the interpreter’s garbage collector implementation.

A more robust alternative can be to define a finalizer which only references the specific functions and objects that it needs,
rather than having access to the full state of the object:

class TempDir:
def _ init_ (self):
self.name = tempfile.mkdtemp ()
self._finalizer = weakref.finalize(self, shutil.rmtree, self.name)

def remove (self):
self. finalizer ()

@property
def removed(self):
return not self._finalizer.alive

Defined like this, our finalizer only receives a reference to the details it needs to clean up the directory appropriately. If
the object never gets garbage collected the finalizer will still be called at exit.

The other advantage of weakref based finalizers is that they can be used to register finalizers for classes where the definition
is controlled by a third party, such as running code when a module is unloaded:

import weakref, sys
def unloading_module () :

implicit reference to the module globals from the function body
weakref.finalize (sys.modules[_ name], unloading_module)

Note: If you create a finalizer object in a daemonic thread just as the program exits then there is the possibility that the
finalizer does not get called at exit. However, in a daemonic thread atexit.register(),try: ... finally:
.andwith: ... donot guarantee that cleanup occurs either.

8.10 types — Dynamic type creation and names for built-in types

Source code: Lib/types.py

This module defines utility functions to assist in dynamic creation of new types.

It also defines names for some object types that are used by the standard Python interpreter, but not exposed as builtins
like int or str are.

Finally, it provides some additional type-related utility classes and functions that are not fundamental enough to be builtins.

8.10. types — Dynamic type creation and names for built-in types 291

https://github.com/python/cpython/tree/3.11/Lib/types.py

The Python Library Reference, Release 3.11.3

8.10.1 Dynamic Type Creation

types.new_class (name, bases=(), kwds=None, exec_body=None)

Creates a class object dynamically using the appropriate metaclass.

The first three arguments are the components that make up a class definition header: the class name, the base classes
(in order), the keyword arguments (such as metaclass).

The exec_body argument is a callback that is used to populate the freshly created class namespace. It should accept
the class namespace as its sole argument and update the namespace directly with the class contents. If no callback
is provided, it has the same effect as passing in 1lambda ns: None.

New in version 3.3.

types.prepare_class (name, bases=(), kwds=None)

Calculates the appropriate metaclass and creates the class namespace.

The arguments are the components that make up a class definition header: the class name, the base classes (in
order) and the keyword arguments (such as metaclass).

The return value is a 3-tuple: metaclass, namespace, kwds

metaclass is the appropriate metaclass, namespace is the prepared class namespace and kwds is an updated copy of
the passed in kwds argument with any 'metaclass' entry removed. If no kwds argument is passed in, this will
be an empty dict.

New in version 3.3.

Changed in version 3.6: The default value for the namespace element of the returned tuple has changed. Now
an insertion-order-preserving mapping is used when the metaclass does not have a __prepare__ method.

See also:
metaclasses Full details of the class creation process supported by these functions
PEP 3115 - Metaclasses in Python 3000 Introduced the __prepare__ namespace hook

types.resolve_bases (bases)
Resolve MRO entries dynamically as specified by PEP 560.

This function looks for items in bases that are not instances of ¢ ype, and returns a tuple where each such object
that has an __mro_entries__ method is replaced with an unpacked result of calling this method. If a bases
item is an instance of ¢ ype, or it doesn’t have an __mro_entries__ method, then it is included in the return
tuple unchanged.

New in version 3.7.
See also:

PEP 560 - Core support for typing module and generic types

8.10.2 Standard Interpreter Types

This module provides names for many of the types that are required to implement a Python interpreter. It deliberately
avoids including some of the types that arise only incidentally during processing such as the 1istiterator type.
Typical use of these names is for isinstance () or issubclass () checks.

If you instantiate any of these types, note that signatures may vary between Python versions.

Standard names are defined for the following types:

292 Chapter 8. Data Types

https://peps.python.org/pep-3115/
https://peps.python.org/pep-0560/
https://peps.python.org/pep-0560/

The Python Library Reference, Release 3.11.3

types.NoneType
The type of None.

New in version 3.10.

types.FunctionType
types.LambdaType

The type of user-defined functions and functions created by 1ambda expressions.
Raises an auditing event function.__new__ with argument code.
The audit event only occurs for direct instantiation of function objects, and is not raised for normal compilation.

types.GeneratorType
The type of generator-iterator objects, created by generator functions.

types.CoroutineType
The type of coroutine objects, created by async def functions.

New in version 3.5.

types.AsyncGeneratorType

The type of asynchronous generator-iterator objects, created by asynchronous generator functions.
New in version 3.6.

class types.CodeType (**kwargs)
The type for code objects such as returned by compile ().

Raises an auditing event code.__new___ with arguments code, filename, name, argcount, posonl—
yargcount, kwonlyargcount,nlocals, stacksize, flags.

Note that the audited arguments may not match the names or positions required by the initializer. The audit event
only occurs for direct instantiation of code objects, and is not raised for normal compilation.

replace (**kwargs)
Return a copy of the code object with new values for the specified fields.
New in version 3.8.
types.CellType
The type for cell objects: such objects are used as containers for a function’s free variables.
New in version 3.8.
types.MethodType

The type of methods of user-defined class instances.

types.BuiltinFunctionType

types.BuiltinMethodType
The type of built-in functions like Ien () or sys.exit (), and methods of built-in classes. (Here, the term
“built-in” means “written in C”.)

types.WrapperDescriptorType
The type of methods of some built-in data types and base classes such as object.__init__ () orobject.
1t (0.

New in version 3.7.

8.10. types — Dynamic type creation and names for built-in types 293

The Python Library Reference, Release 3.11.3

types.MethodWrapperType

The type of bound methods of some built-in data types and base classes. For example it is the type of object () .
__str__ .

New in version 3.7.

types.NotImplementedType
The type of Not Implemented.

New in version 3.10.

types.MethodDescriptorType

The type of methods of some built-in data types such as str. join ().
New in version 3.7.

types.ClassMethodDescriptorType

The type of unbound class methods of some built-in data types such as dict.__dict__ ['fromkeys'].
New in version 3.7.

class types.ModuleType (name, doc=None)

The type of modules. The constructor takes the name of the module to be created and optionally its docstring.

Note: Use importlib.util.module_ from_spec () tocreate anew module if you wish to set the various
import-controlled attributes.

doc

The docstring of the module. Defaults to None.

__loader___
The loader which loaded the module. Defaults to None.

This attribute is to match importlib.machinery.ModuleSpec.loader as stored in the
__spec___object.

Note: A future version of Python may stop setting this attribute by default. To guard against this
potential change, preferably read from the _ _spec__ attribute instead or use getattr (module,
"__loader__", None) if you explicitly need to use this attribute.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

name

The name of the module. Expected to match importlib.machinery.ModuleSpec.name.

package_
Which package a module belongs to. If the module is top-level (i.e. not a part of any specific package) then
the attribute should be set to ' ', else it should be set to the name of the package (which can be ___name___
if the module is a package itself). Defaults to None.

This attribute is to match importlib.machinery.ModuleSpec.parent as stored in the
__spec___object.

Note: A future version of Python may stop setting this attribute by default. To guard against this
potential change, preferably read from the ___spec__ attribute instead or use getattr (module,

294 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

"__package__", None) if you explicitly need to use this attribute.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

—_Spec__
A record of the module’s import-system-related state. Expected to be an instance of importlib.
machinery.ModuleSpec.

New in version 3.4.

types.EllipsisType
The typeof E11ipsis.

New in version 3.10.
class types.GenericAlias (¢ _origin,t_args)
The type of parameterized generics such as 1ist [int].

t_origin should be a non-parameterized generic class, such as 1ist, tuple or dict. t_args should be a
tuple (possibly of length 1) of types which parameterize t _origin:

>>> from types import GenericAlias

>>> list[int] == GenericAlias(list, (int,))

True

>>> dict[str, int] == GenericAlias(dict, (str, int))
True

New in version 3.9.
Changed in version 3.9.2: This type can now be subclassed.

class types.UnionType

The type of union type expressions.
New in version 3.10.

class types.TracebackType (tb_next, th_frame, th_lasti, tb_lineno)
The type of traceback objects such as found in sys.exception () .__traceback__.
See the language reference for details of the available attributes and operations, and guidance on creating tracebacks
dynamically.
types.FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

See the language reference for details of the available attributes and operations.

types.GetSetDescriptorType

The type of objects defined in extension modules with PyGetSetDef, such as FrameType.f_locals or
array.array.typecode. This type is used as descriptor for object attributes; it has the same purpose as the
property type, but for classes defined in extension modules.

types.MemberDescriptorType

The type of objects defined in extension modules with PyMemberDef, such as datetime.timedelta.
days. This type is used as descriptor for simple C data members which use standard conversion functions; it has
the same purpose as the property type, but for classes defined in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to Get Set -
DescriptorType.

8.10. types — Dynamic type creation and names for built-in types 295

The Python Library Reference, Release 3.11.3

class types.MappingProxyType (mapping)

Read-only proxy of a mapping. It provides a dynamic view on the mapping’s entries, which means that when the
mapping changes, the view reflects these changes.

New in version 3.3.

Changed in version 3.9: Updated to support the new union (|) operator from PEP 584, which simply delegates to
the underlying mapping.
key in proxy
Return True if the underlying mapping has a key key, else False.
proxy [key]
Return the item of the underlying mapping with key key. Raises a KeyError if key is not in the underlying
mapping.
iter (proxy)
Return an iterator over the keys of the underlying mapping. This is a shortcut for iter (proxy.keys ()).
len (proxy)
Return the number of items in the underlying mapping.

copy ()
Return a shallow copy of the underlying mapping.

get (key[, default])

Return the value for key if key is in the underlying mapping, else default. If default is not given, it defaults to
None, so that this method never raises a KeyError.

items ()

Return a new view of the underlying mapping’s items ((key, value) pairs).

keys ()
Return a new view of the underlying mapping’s keys.

values ()

Return a new view of the underlying mapping’s values.

reversed (proxy)

Return a reverse iterator over the keys of the underlying mapping.

New in version 3.9.

8.10.3 Additional Utility Classes and Functions

class types.SimpleNamespace

A simple ob ject subclass that provides attribute access to its namespace, as well as a meaningful repr.

Unlike object, with SimpleNamespace you can add and remove attributes. If a SimpleNamespace
object is initialized with keyword arguments, those are directly added to the underlying namespace.

The type is roughly equivalent to the following code:

class SimpleNamespace:
def __init__ (self, /, **kwargs):
self. dict_ .update(kwargs)

(continues on next page)

296

Chapter 8. Data Types

https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.11.3

(continued from previous page)

def _ repr_ (self):
items = (f"{k/}={v " for k, v in self. dict__ .items{())
return " ()" . format (type (self). name_ , ", ".join(items))

def __eqg (self, other):
if isinstance(self, SimpleNamespace) and isinstance (other, .
—~SimpleNamespace) :
return self. dict == other. dict
return NotImplemented

SimpleNamespace may be useful as a replacement for class NS: pass. However, for a structured record
type use namedtuple () instead.

New in version 3.3.
Changed in version 3.9: Attribute order in the repr changed from alphabetical to insertion (like dict).

types.DynamicClassAttribute (fger=None, fset=None, fdel=None, doc=None)

Route attribute access on a class to __getattr__.

This is a descriptor, used to define attributes that act differently when accessed through an instance and through
a class. Instance access remains normal, but access to an attribute through a class will be routed to the class’s
__getattr__ method,; this is done by raising AttributeError.

This allows one to have properties active on an instance, and have virtual attributes on the class with the same name
(see enum. Enum for an example).

New in version 3.4.

8.10.4 Coroutine Utility Functions

types.coroutine (gen_func)

This function transforms a generator function into a coroutine function which returns a generator-based coroutine.
The generator-based coroutine is still a generator iterator, but is also considered to be a coroutine object and is
awaitable. However, it may not necessarily implement the __await__ () method.

If gen_func is a generator function, it will be modified in-place.

If gen_func is not a generator function, it will be wrapped. If it returns an instance of collections.abc.
Generator, the instance will be wrapped in an awaitable proxy object. All other types of objects will be returned
as is.

New in version 3.5.

8.11 copy — Shallow and deep copy operations

Source code: Lib/copy.py

Assignment statements in Python do not copy objects, they create bindings between a target and an object. For collections
that are mutable or contain mutable items, a copy is sometimes needed so one can change one copy without changing the
other. This module provides generic shallow and deep copy operations (explained below).

Interface summary:

8.11. copy — Shallow and deep copy operations 297

https://github.com/python/cpython/tree/3.11/Lib/copy.py

The Python Library Reference, Release 3.11.3

Ccopy . copy (x)
Return a shallow copy of x.
copy . deepcopy (x[, memo])
Return a deep copy of x.
exception copy.Error

Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other objects,
like lists or class instances):

* A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to the
objects found in the original.

* A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found in
the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

¢ Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

* Because deep copy copies everything it may copy too much, such as data which is intended to be shared between
copies.
The deepcopy () function avoids these problems by:
* keeping a memo dictionary of objects already copied during the current copying pass; and
* letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, or any similar types.
It does “copy” functions and classes (shallow and deeply), by returning the original object unchanged; this is compatible
with the way these are treated by the pick e module.

Shallow copies of dictionaries can be made using dict.copy (), and of lists by assigning a slice of the entire list, for
example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description of module
pickle for information on these methods. In fact, the copy module uses the registered pickle functions from the
copyreg module.

In order for a class to define its own copy implementation, it can define special methods ___copy__ () and __deep-
copy___ (). The former is called to implement the shallow copy operation; no additional arguments are passed. The
latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If the _ deep-
copy___ () implementation needs to make a deep copy of a component, it should call the deepcopy () function with
the component as first argument and the memo dictionary as second argument. The memo dictionary should be treated
as an opaque object.

See also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

298 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

8.12 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types, the
representation may not be loadable. This may be the case if objects such as files, sockets or classes are included, as well
as many other objects which are not representable as Python literals.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t fit
within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width constraint.

Dictionaries are sorted by key before the display is computed.

Changed in version 3.9: Added support for pretty-printing t ypes. SimpleNamespace.
Changed in version 3.10: Added support for pretty-printing dataclasses.dataclass.
The pprint module defines one class:

class pprint.PrettyPrinter (indent=1, width=80, depth=None, stream=None, *, compact=False,
sort_dicts=True, underscore_numbers=False)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters.

stream (default sys.stdout) is a file-like object to which the output will be written by calling its write ()
method. If both sream and sys . stdout are None, then pprint () silently returns.

Other values configure the manner in which nesting of complex data structures is displayed.
indent (default 1) specifies the amount of indentation added for each nesting level.

depth controls the number of nesting levels which may be printed; if the data structure being printed is too deep,
the next contained level is replaced by By default, there is no constraint on the depth of the objects being
formatted.

width (default 80) specifies the desired maximum number of characters per line in the output. If a structure cannot
be formatted within the width constraint, a best effort will be made.

compact impacts the way that long sequences (lists, tuples, sets, etc) are formatted. If compact is false (the default)
then each item of a sequence will be formatted on a separate line. If compact is true, as many items as will fit within
the width will be formatted on each output line.

If sort_dicts is true (the default), dictionaries will be formatted with their keys sorted, otherwise they will display
in insertion order.

If underscore_numbers is true, integers will be formatted with the _ character for a thousands separator, otherwise
underscores are not displayed (the default).

Changed in version 3.4: Added the compact parameter.
Changed in version 3.8: Added the sort_dicts parameter.
Changed in version 3.10: Added the underscore_numbers parameter.

Changed in version 3.11: No longer attempts to write to sys . stdout if it is None.

>>> import pprint

>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert (0, stuffl[:])

>>> pp = pprint.PrettyPrinter (indent=4)

>>> pp.pprint (stuff)

(continues on next page)

8.12. pprint — Data pretty printer 299

https://github.com/python/cpython/tree/3.11/Lib/pprint.py

The Python Library Reference, Release 3.11.3

(continued from previous page)

[['"spam', 'eggs', 'lumberjack', 'knights', 'ni'],
'spam',
'eggs’',
'lumberjack’',
'knights',
'ni']
>>> pp = pprint.PrettyPrinter (width=41, compact=True)
>>> pp.pprint (stuff)
[["spam', 'eggs', 'lumberjack',
'knights', 'ni'],
'spam', 'eggs', 'lumberjack', 'knights',
'ni']
>>> tup = ('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead',
('"parrot', ('fresh fruit',))))))))
>>> pp = pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
("spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead', (...)))))))

pprint .pformat (object, indent=1, width=80, depth=None, *, compact=False, sort_dicts=True,
underscore_numbers=False)
Return the formatted representation of object as a string. indent, width, depth, compact, sort_dicts and under-

score_numbers are passed to the PrettyPrinter constructor as formatting parameters and their meanings are
as described in its documentation above.

pprint .pp (object, *args, sort_dicts=False, **kwargs)

Prints the formatted representation of object followed by a newline. If sort_dicts is false (the default), dictionaries
will be displayed with their keys in insertion order, otherwise the dict keys will be sorted. args and kwargs will be
passed to pprint () as formatting parameters.

New in version 3.8.

pprint.pprint (object, stream=None, indent=1, width=80, depth=None, *, compact=False, sort_dicts=True,
underscore_numbers=False)
Prints the formatted representation of object on stream, followed by a newline. If stream is None, sys.stdout

is used. This may be used in the interactive interpreter instead of the print () function for inspecting values (you
can even reassign print = pprint.pprint for use within a scope).

The configuration parameters stream, indent, width, depth, compact, sort_dicts and underscore_numbers are passed
to the PrettyPrinter constructor and their meanings are as described in its documentation above.

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert (0, stuff)
>>> pprint.pprint (stuff)
[<Recursion on list with id=...>,
'spam',
'eggs',
'lumberjack’',
'knights',
'ni']

pprint.isreadable (object)

Determine if the formatted representation of object is “readable”, or can be used to reconstruct the value using
eval (). This always returns False for recursive objects.

300 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

>>> pprint.isreadable (stuff)
False

pprint.isrecursive (object)

Determine if object requires a recursive representation.
One more support function is also defined:

pprint .saferepr (object)

Return a string representation of object, protected against recursive data structures. If the representation of object
exposes a recursive entry, the recursive reference will be represented as <Recursion on typename with
id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)
"[<Recursion on list with id=...>, 'spam', 'eggs', 'lumberjack', 'knights', 'ni']"

8.12.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

PrettyPrinter.pformat (object)

Return the formatted representation of object. This takes into account the options passed to the PrettyPrinter
constructor.

PrettyPrinter.pprint (object)

Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be created.

PrettyPrinter.isreadable (object)

Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval (). Note that this returns False for recursive objects. If the depth parameter of the PrettyPrinter
is set and the object is deeper than allowed, this returns False.

PrettyPrinter.isrecursive (object)

Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of the saferepr () implementation.

PrettyPrinter.format (object, context, maxlevels, level)

Returns three values: the formatted version of object as a string, a flag indicating whether the result is readable, and
a flag indicating whether recursion was detected. The first argument is the object to be presented. The second is a
dictionary which contains the 71 d () of objects that are part of the current presentation context (direct and indirect
containers for object that are affecting the presentation) as the keys; if an object needs to be presented which is
already represented in context, the third return value should be True. Recursive calls to the format () method
should add additional entries for containers to this dictionary. The third argument, maxlevels, gives the requested
limit to recursion; this will be 0 if there is no requested limit. This argument should be passed unmodified to
recursive calls. The fourth argument, level, gives the current level; recursive calls should be passed a value less than
that of the current call.

8.12. pprint — Data pretty printer 301

The Python Library Reference, Release 3.11.3

8.12.2 Example

To demonstrate several uses of the pprint () function and its parameters, let’s fetch information about a project from
PyPI:

>>> import json

>>> import pprint

>>> from urllib.request import urlopen

>>> with urlopen('https://pypi.org/pypi/sampleproject/json') as resp:
project_info = json.load(resp) ['info']

In its basic form, pprint () shows the whole object:

>>> pprint.pprint (project_info)

{'author': 'The Python Packaging Authority',

'author_email': 'pypa-dev@googlegroups.com',

'bugtrack_url': None,

'classifiers': ['Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2°',
'Programming Language :: Python :: 2.6',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.2°',
'Programming Language :: Python :: 3.3',
'Programming Language :: Python :: 3.4"',
'Topic :: Software Development :: Build Tools'],

'description': 'A sample Python project\n'
| j— \nl
l\n|
'This is the description file for the project.\n'
l\nl

'The file should use UTF-8 encoding and be written using '

'ReStructured Text. It\n'
'will be used to generate the project webpage on PyPI, and '
'should be written for\n'

'that purpose.\n'

l\nl

'Typical contents for this file would include an overview of
'the project, basic\n'

'usage examples, etc. Generally, including the project

v

1

'changelog in here is not\n'
'a good idea, although a simple "What\'s New" section for the '
'most recent version\n'
'may be appropriate.’,
'description_content_type': None,
'docs_url': None,

'download_url': 'UNKNOWN',

'downloads': {'last_day': -1, 'last_month': -1, 'last_week': -1},
'home_page': 'https://github.com/pypa/sampleproject’,

'keywords': 'sample setuptools development',

'license': 'MIT',

'maintainer': None,

'maintainer_email': None,

'name': 'sampleproject',

'package_url': 'https://pypi.org/project/sampleproject/"',
'platform': 'UNKNOWN',

(continues on next page)

302 Chapter 8. Data Types

https://pypi.org

The Python Library Reference, Release 3.11.3

(continued from previous page)

'project_url': 'https://pypi.org/project/sampleproject/"',
'project_urls': {'Download': 'UNKNOWN',

'Homepage': 'https://github.com/pypa/sampleproject'},
'release_url': 'https://pypi.org/project/sampleproject/1.2.0/",
'requires_dist': None,
'requires_python': None,
'summary': 'A sample Python project',
'version': '1.2.0"}

The result can be limited to a certain depth (ellipsis is used for deeper contents):

>>> pprint.pprint (project_info, depth=1)

{'author': 'The Python Packaging Authority"',

'author_email': 'pypa-dev@googlegroups.com',

'bugtrack_url': None,

'classifiers': [...1,

'description': 'A sample Python project\n'
| - _— \nv
l\nl
'This is the description file for the project.\n'
l\nl

'The file should use UTF-8 encoding and be written using '
'ReStructured Text. It\n'
'will be used to generate the project webpage on PyPI, and '
'should be written for\n'
'that purpose.\n'
n\nu
'Typical contents for this file would include an overview of '
'the project, basic\n'
'usage examples, etc. Generally, including the project '
'changelog in here is not\n'
'a good idea, although a simple "What\'s New" section for the '
'most recent version\n'
'may be appropriate.’,

'description_content_type': None,

'docs_url': None,

'download_url': 'UNKNOWN',

'downloads': {...},

'home_page': 'https://github.com/pypa/sampleproject’,

'keywords': 'sample setuptools development',

'"license': 'MIT',

'maintainer': None,

'maintainer_email': None,

'name': 'sampleproject',

'package_url': 'https://pypi.org/project/sampleproject/"',

'platform': 'UNKNOWN',

'project_url': 'https://pypi.org/project/sampleproject/"',

'project_urls': {...},

'release_url': 'https://pypi.org/project/sampleproject/1.2.0/",

'requires_dist': None,

'requires_python': None,

'summary': 'A sample Python project',

'version': '1.2.0'}

Additionally, maximum character width can be suggested. If a long object cannot be split, the specified width will be
exceeded:

8.12. pprint — Data pretty printer 303

The Python Library Reference, Release 3.11.3

>>> pprint.pprint (project_info, depth=1, width=60)

{'author': 'The Python Packaging Authority',
'author_email': 'pypa-dev@googlegroups.com',
'bugtrack_url': None,

'classifiers': [...],

'description': 'A sample Python project\n'
] \nl
l\nl

'This is the description file for the '
'project.\n'
n\nu
'The file should use UTF-8 encoding and be '
'written using ReStructured Text. It\n'
'will be used to generate the project '
'webpage on PyPI, and should be written '
'for\n'
'that purpose.\n'
l\nl
'Typical contents for this file would '
'include an overview of the project, '
'basic\n'
'usage examples, etc. Generally, including '
'the project changelog in here is not\n'
'a good idea, although a simple "What\'s '
'New" section for the most recent version\n'
'may be appropriate.’',
'description_content_type': None,
'docs_url': None,
'download_url': 'UNKNOWN',
'downloads': {...},
'home_page': 'https://github.com/pypa/sampleproject’',
'keywords': 'sample setuptools development',
'license': 'MIT',
'maintainer': None,
'maintainer_email': None,
'name': 'sampleproject',
'package_url': 'https://pypil.org/project/sampleproject/"',
'platform': 'UNKNOWN',
'project_url': 'https://pypil.org/project/sampleproject/"',
'project_urls': {...},
'release_url': 'https://pypi.org/project/sampleproject/1.2.0/',
'requires_dist': None,
'requires_python': None,
'summary': 'A sample Python project',
'version': '1.2.0'}

304

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

8.13 reprlib — Alternate repr () implementation

Source code: Lib/reprlib.py

The repriib module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr
Class which provides formatting services useful in implementing functions similar to the built-in repr (); size
limits for different object types are added to avoid the generation of representations which are excessively long.
reprlib.aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing the attributes
of this object will affect the size limits used by repr () and the Python debugger.
reprlib. repr (obj)
This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of the

same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive callsto __repr__ () and
substituting a placeholder string instead.
@reprlib.recursive_repr (fillvalue="..")

Decorator for ___repr__ () methods to detect recursive calls within the same thread. If a recursive call is made,
the fillvalue is returned, otherwise, the usual __repr__ () call is made. For example:

>>> from reprlib import recursive_repr
>>> class MyList (list):
@recursive_repr ()
def _ repr_ (self):
return '<' + '|'.join (map(repr, self)) + '>'

>>> m = MyList ('abc'")
>>> m.append (m)

>>> m.append('x")

>>> print (m)
<fa'|'b'|'c'[...|'x"'>

New in version 3.2.

8.13.1 Repr Objects

Repr instances provide several attributes which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

Repr.fillvalue

This string is displayed for recursive references. It defaults to
New in version 3.11.

Repr.maxlevel

Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict

8.13. reprlib — Alternate repr () implementation 305

https://github.com/python/cpython/tree/3.11/Lib/reprlib.py

The Python Library Reference, Release 3.11.3

Repr.maxlist

Repr.maxtuple

Repr.maxset

Repr.maxfrozenset

Repr.maxdeque

Repr.maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5 for
maxarray,and 6 for the others.

Repr.maxlong
Maximum number of characters in the representation for an integer. Digits are dropped from the middle. The
default is 40.

Repr.maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of the
string is used as the character source: if escape sequences are needed in the representation, these may be mangled
when the representation is shortened. The default is 30.

Repr.maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner as maxstring. The default is 20.

Repr.repr (0bj)
The equivalent to the built-in repr () that uses the formatting imposed by the instance.

Repr.reprl (obj, level)
Recursive implementation used by repr (). This uses the type of 0bj to determine which formatting method to

call, passing it obj and level. The type-specific methods should call repri () to perform recursive formatting,
with level - 1 for the value of level in the recursive call.

Repr.repr_TYPE (obj, level)

Formatting methods for specific types are implemented as methods with a name based on the type name. In the
method name, TYPE is replaced by '_'.join (type (obj) .__name__.split ()). Dispatch to these
methods is handled by repr1 (). Type-specific methods which need to recursively format a value should call
self.reprl (subobj, level - 1).

8.13.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr. repri () allows subclasses of Repr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file objects
could be added:

import reprlib
import sys

class MyRepr (reprlib.Repr) :

def repr_TextIOWrapper (self, obj, level):
if obj.name in {'<stdin>', '<stdout>', '<stderr>'}:
return obj.name
return repr (obj)

aRepr = MyRepr ()
print (aRepr.repr (sys.stdin)) # prints '<stdin>'

306 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

8.14 enum — Support for enumerations

New in version 3.4.

Source code: Lib/enum.py

Important
This page contains the API reference information. For tutorial information and discussion of more advanced topics,
see

* Basic Tutorial

¢ Advanced Tutorial

* Enum Cookbook

An enumeration:
* is a set of symbolic names (members) bound to unique values
e can be iterated over to return its canonical (i.e. non-alias) members in definition order
* uses call syntax to return members by value
* uses index syntax to return members by name

Enumerations are created either by using class syntax, or by using function-call syntax:

>>> from enum import Enum

>>> # class syntax
>>> class Color (Enum) :
RED = 1
GREEN = 2
BLUE = 3

>>> # functional syntax
>>> Color = Enum('Color', ['RED', 'GREEN', 'BLUE'])

Even though we can use class syntax to create Enums, Enums are not normal Python classes. See How are Enums
different? for more details.

Note: Nomenclature
¢ The class Color is an enumeration (or enum)

 The attributes Color .RED, Color.GREEN, etc., are enumeration members (or members) and are functionally
constants.

¢ The enum members have names and values (the name of Color .RED is RED, the value of Color .BLUE is 3,
etc.)

8.14. enum — Support for enumerations 307

https://github.com/python/cpython/tree/3.11/Lib/enum.py

The Python Library Reference, Release 3.11.3

8.14.1 Module Contents

EnumType

The type for Enum and its subclasses.
Enum

Base class for creating enumerated constants.
IntEnum

Base class for creating enumerated constants that are also subclasses of int. (Notes)
StrEnum

Base class for creating enumerated constants that are also subclasses of st r. (Notes)
Flag

Base class for creating enumerated constants that can be combined using the bitwise operations
without losing their 1 ag membership.

IntFlag

Base class for creating enumerated constants that can be combined using the bitwise operators
without losing their TntF1ag membership. TntFI1ag members are also subclasses of int.
(Notes)

ReprEnum
Used by TntEnum, St rEnum, and IntFlag to keep the st r () of the mixed-in type.
EnumCheck

An enumeration with the values CONTINUOUS, NAMED_ FLAGS, and UNIQUE, for use with
verify () toensure various constraints are met by a given enumeration.

FlagBoundary

An enumeration with the values STRICT, CONFORM, EJECT, and KEEP which allows for more
fine-grained control over how invalid values are dealt with in an enumeration.

auto

Instances are replaced with an appropriate value for Enum members. St rEnum defaults to the
lower-cased version of the member name, while other Enums default to 1 and increase from there.

property ()

Allows Enum members to have attributes without conflicting with member names.
unique ()

Enum class decorator that ensures only one name is bound to any one value.
verify ()

Enum class decorator that checks user-selectable constraints on an enumeration.
member ()

Make obj a member. Can be used as a decorator.
nonmember ()

Do not make obj a member. Can be used as a decorator.

global_ enum/()

308 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Modify the str () and repr () of an enum to show its members as belonging to the module
instead of its class, and export the enum members to the global namespace.

show_flag_values /()
Return a list of all power-of-two integers contained in a flag.
New in version 3.6: Flag, IntFlag, auto

New in version 3.11: St rEnum, EnumCheck, ReprEnum, FlagBoundary, property, member, nonmember,
global_enum, show_flag_values

8.14.2 Data Types

class enum.EnumType

EnumType is the metaclass for enum enumerations. It is possible to subclass EnumType — see Subclassing Enum-
Type for details.

EnumType is responsible for setting the correct __repr__ (), str__ (), format__ (),and __re-—
duce__ () methods on the final enum, as well as creating the enum members, properly handling duplicates,
providing iteration over the enum class, etc.

__call__ (cls, value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

This method is called in two different ways:

* to look up an existing member:
cls The enum class being called.
value The value to lookup.

* to use the c1ls enum to create a new enum (only if the existing enum does not have any members):
cls The enum class being called.
value The name of the new Enum to create.
names The names/values of the members for the new Enum.
module The name of the module the new Enum is created in.
qualname The actual location in the module where this Enum can be found.
type A mix-in type for the new Enum.
start The first integer value for the Enum (used by aut o).
boundary How to handle out-of-range values from bit operations (F1ag only).

__contains___ (cls, member)

Returns True if member belongs to the c1s:

>>> some_var = Color.RED
>>> some_var in Color
True

Note: In Python 3.12 it will be possible to check for member values and not just members; until then, a
TypeError will be raised if a non-Enum-member is used in a containment check.

8.14. enum — Support for enumerations 309

The Python Library Reference, Release 3.11.3

__dir__ (cls)
Returns ['__class__ ', '__doc__ ', '_ _members__ ', '_ module_ '] and the names of
the members in cls:
>>> dir (Color)
['BLUE', 'GREEN', 'RED', '__class__', '__contains__ ', '__doc__', '__getitem__
', '__init_subclass_ ', '__iter_ ', '__len_ ', '_ members_ ', '_ module_ ',
—'__name__', '__qualname_ ']

__getattr__ (cls, name)

>>> Color.GREEN
<Color.GREEN: 2>

Returns the Enum member in cls matching name,

orraises an AttributeError:

__getitem__ (cls, name)

>>> Color['BLUE']
<Color.BLUE: 3>

Returns the Enum member in cls matching name, or raises a KeyError:

__iter__ (cls)

Returns each member in cls in definition order:

>>> list (Color)
[<Color.RED:

1>,

<Color.GREEN:

2>, <Color.BLUE: 3>]
__len__ (cls)

Returns the number of member in cls:
>>> len (Color)

3

__reversed__ (cls)

Returns each member in cls in reverse definition order:

>>> list (reversed(Color))

[<Color.BLUE: 3>, <Color.GREEN: 2>, <Color.RED: 1>]

class enum.Enum

Enum is the base class for all enum enumerations.
name

The name used to define the Enum member:

>>> Color.BLUE.name
'BLUE"

value

The value given to the Enum member:

>>> Color.RED.value
1

310

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

Note: Enum member values

Member values can be anything: int, str, etc. If the exact value is unimportant you may use auto
instances and an appropriate value will be chosen for you. See aut o for the details.

ignore
ignore is only used during creation and is removed from the enumeration once creation is complete.

ignore is a list of names that will not become members, and whose names will also be removed from
the completed enumeration. See TimePeriod for an example.

_dir__ (self)

Returns ['__class__ ', '__doc__', '__module__', 'name', 'value'] and any public

methods defined on self.__class__:

>>> from datetime import date
>>> class Weekday (Enum) :

MONDAY = 1

TUESDAY = 2

WEDNESDAY = 3

THURSDAY = 4

FRIDAY = 5

SATURDAY = 6

SUNDAY = 7

@classmethod

def today(cls):
.. print ('today is ' % cls(date.today () .isoweekday ()) .name)
>>> dir (Weekday.SATURDAY)
['_class__', '__doc__'", '_eqg__', '__hash_ ', '__module__', 'name', 'today',
—'value']

_generate_next_value_ (name, start, count, last_values)

name The name of the member being defined (e.g. ‘RED’).

start The start value for the Enum; the default is 1.

count The number of members currently defined, not including this one.
last_values A list of the previous values.

A staticmethod that is used to determine the next value returned by aut o:

>>> from enum import auto
>>> class PowersOfThree (Enum) :
@staticmethod
def _generate_next_value_ (name, start, count, last_values):
return 3 ** (count + 1)
FIRST = auto()
SECOND = auto ()
>>> PowersOfThree.SECOND.value
9

__init_subclass__ (cls, **kwds)

A classmethod that is used to further configure subsequent subclasses. By default, does nothing.

8.14. enum — Support for enumerations 311

The Python Library Reference, Release 3.11.3

missing (cls, value)

A classmethod for looking up values not found in cls. By default it does nothing, but can be overridden to
implement custom search behavior:

>>> from enum import StrEnum
>>> class Build (StrEnum) :
DEBUG = auto()
OPTIMIZED = auto()
@classmethod
def _missing_(cls, value):
value = value.lower ()
for member in cls:
if member.value == value:
return member
ce return None
>>> Build.DEBUG.value
'debug'
>>> Build('deBUG')
<Build.DEBUG: 'debug'>

__repr__ (self)

Returns the string used for repr() calls. By default, returns the Enum name, member name, and value, but can
be overridden:

>>> class OtherStyle (Enum) :
ALTERNATE = auto()
OTHER = auto ()
SOMETHING_ELSE = auto ()
def _ _repr_ (self):

cls_name = self. class . name
. return f'{cls_name /. {self.name}’
>>> OtherStyle.ALTERNATE, str (OtherStyle.ALTERNATE), f"/{OtherStyle.ALTERNATE "
(OtherStyle.ALTERNATE, 'OtherStyle.ALTERNATE', 'OtherStyle.ALTERNATE')

__str__ (self)

Returns the string used for str() calls. By default, returns the Enum name and member name, but can be
overridden:

>>> class OtherStyle (Enum) :
ALTERNATE = auto ()
OTHER = auto()
SOMETHING_ELSE = auto()
def _ str_ (self):
Ce return f'{self.name}/}'
>>> OtherStyle.ALTERNATE, str (OtherStyle.ALTERNATE), f"/{OtherStyle.ALTERNATE /"
(<OtherStyle.ALTERNATE: 1>, 'ALTERNATE', 'ALTERNATE')

__format__ (self)

Returns the string used for format() and f-string calls. By default, returns ___str___ () return value, but can
be overridden:

>>> class OtherStyle (Enum) :
ALTERNATE = auto ()
OTHER = auto ()
SOMETHING_ELSE = auto ()
def _ format__ (self, spec):

(continues on next page)

312

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

(continued from previous page)

C return f'{self.name}'
>>> OtherStyle.ALTERNATE, str (OtherStyle.ALTERNATE), f"/OtherStyle.ALTERNATE "
(<OtherStyle.ALTERNATE: 1>, 'OtherStyle.ALTERNATE', 'ALTERNATE')

Note: Using auto with Enum results in integers of increasing value, starting with 1.

class enum.IntEnum

IntEnum is the same as Enum, but its members are also integers and can be used anywhere that an integer can be
used. If any integer operation is performed with an IntEnum member, the resulting value loses its enumeration
status.

>>> from enum import IntEnum
>>> class Numbers (IntEnum) :

ONE = 1
TWO = 2
THREE = 3

>>> Numbers.THREE
<Numbers.THREE: 3>

>>> Numbers.ONE + Numbers.TWO
3

>>> Numbers.THREE + 5

8

>>> Numbers.THREE ==

True

Note: Using auto with TntEnum results in integers of increasing value, starting with 1.

Changed in version 3.11: __str__ () isnow int.__str__ () to better support the replacement of existing
constants use-case. __format__ () wasalready int.__format__ () for that same reason.

class enum.StrEnum

StrEnum is the same as Enum, but its members are also strings and can be used in most of the same places that a
string can be used. The result of any string operation performed on or with a StrEnum member is not part of the
enumeration.

Note: There are places in the stdlib that check for an exact st rinstead of a st r subclass (i.e. type (unknown)
== str instead of isinstance (unknown, str)), and in those locations you will need to use
str (StrEnum.member).

Note: Using auto with St rEnum results in the lower-cased member name as the value.

Note: _ str__ () is str.__str__ () to better support the replacement of existing constants use-case.
_ format__ () islikewise str.__ format__ () for that same reason.

New in version 3.11.

class enum.Flag

8.14. enum — Support for enumerations 313

The Python Library Reference, Release 3.11.3

Flag members support the bitwise operators & (AND), | (OR), ~ (XOR), and ~ (INVERT); the results of those

operators are members of the enumeration.

_ _contains__ (self, value)

Returns True if value is in self:

>>> from enum import Flag, auto
>>> class Color (Flag):
RED = auto ()
GREEN = auto ()
.. BLUE = auto()
>>> purple = Color.RED | Color.BLUE
>>> white = Color.RED | Color.GREEN | Color.BLUE
>>> Color.GREEN in purple
False
>>> Color.GREEN in white
True
>>> purple in white
True
>>> white in purple
False

__iter__ (self):

Returns all contained non-alias members:

>>> list (Color.RED)

[<Color.RED: 1>]

>>> list (purple)

[<Color.RED: 1>, <Color.BLUE: 4>]

Changed in version 3.11: Aliases are no longer returned during iteration.

len__ (self):
Returns number of members in flag:

>>> len (Color.GREEN)
1

>>> len (white)

3

__bool__ (self):
Returns True if any members in flag, False otherwise:

>>> bool (Color.GREEN)
True

>>> bool (white)

True

>>> black = Color (0)
>>> bool (black)

False

__or___ (self, other)

Returns current flag binary or’ed with other:

>>> Color.RED | Color.GREEN
<Color.RED|GREEN: 3>

314

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

__and__ (self, other)

Returns current flag binary and’ed with other:

>>> purple & white
<Color.RED|BLUE: 5>

>>> purple & Color.GREEN
<Color: 0>

__xor___(self, other)

Returns current flag binary xor’ed with other:

>>> purple ”~ white
<Color.GREEN: 2>

>>> purple ”~ Color.GREEN
<Color.RED|GREEN|BLUE: 7>

__invert__ (self):

Returns all the flags in fype(self) that are not in self:

>>> ~white

<Color: 0>

>>> ~purple
<Color.GREEN: 2>

>>> ~Color.RED
<Color.GREEN|BLUE: 6>

_numeric_repr_ ()

Function used to format any remaining unnamed numeric values. Default is the value’s repr; common choices
are hex () and oct ().

Note: Using auto with F'1ag results in integers that are powers of two, starting with 1.

Changed in version 3.11: The repr() of zero-valued flags has changed. It is now::

>>> Color (0)
<Color: 0>

class enum.IntFlag

IntFlag is the same as Flag, but its members are also integers and can be used anywhere that an integer can be used.

>>> from enum import IntFlag, auto
>>> class Color (IntFlag):
RED = auto ()
GREEN auto ()
.. BLUE = auto()
>>> Color.RED & 2
<Color: 0>
>>> Color.RED | 2
<Color.RED|GREEN: 3>

If any integer operation is performed with an IntFlag member, the result is not an IntFlag:

>>> Color.RED + 2
3

8.14. enum — Support for enumerations 315

The Python Library Reference, Release 3.11.3

If a Flag operation is performed with an IntFlag member and:
* the result is a valid IntFlag: an IntFlag is returned
* the result is not a valid IntFlag: the result depends on the FlagBoundary setting

The repr() of unnamed zero-valued flags has changed. It is now:

>>> Color (0)
<Color: 0>

Note: Using auto with ITntFlag results in integers that are powers of two, starting with 1.

Changed in version 3.11: __str__ () isnow int.__str__ () to better support the replacement of existing
constants use-case. __format__ () wasalready int.__format__ () for that same reason.

Inversion of an IntF1ag now returns a positive value that is the union of all flags not in the given flag, rather than
a negative value. This matches the existing F'1 a g behavior.

class enum.ReprEnum

ReprEnum uses the repr () of Enum, but the st r () of the mixed-in data type:
e int._ str_ () for ITntEnumand IntFlag
e str.__str__ () for StrEnum

Inherit from ReprEnum to keep the str () / format () of the mixed-in data type instead of using the Enum-
default str ().

New in version 3.11.

class enum.EnumCheck

EnumCheck contains the options used by the verify () decorator to ensure various constraints; failed constraints
resultina ValueError.

UNIQUE

Ensure that each value has only one name:

>>> from enum import Enum, verify, UNIQUE
>>> @verify (UNIQUE)
class Color (Enum) :
RED = 1
GREEN = 2
BLUE = 3
CRIMSON = 1
Traceback (most recent call last):

ValueError: aliases found in <enum 'Color'>: CRIMSON -> RED

CONTINUOUS

Ensure that there are no missing values between the lowest-valued member and the highest-valued member:

>>> from enum import Enum, verify, CONTINUOUS
>>> @Qverify (CONTINUOUS)
class Color (Enum) :
RED = 1
GREEN = 2
BLUE = 5

(continues on next page)

316 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

(continued from previous page)

Traceback (most recent call last):

ValueError: invalid enum 'Color': missing values 3, 4

NAMED_FLAGS

Ensure that any flag groups/masks contain only named flags — useful when values are specified instead of being
generated by auto ():

>>> from enum import Flag, verify, NAMED_FLAGS
>>> @verify (NAMED_FLAGS)
class Color (Flag) :

RED = 1
GREEN = 2
BLUE = 4
WHITE = 15
NEON = 31

Traceback (most recent call last):

ValueError: invalid Flag 'Color': aliases WHITE and NEON are missing combined.
—values of 0x18 [use enum.show_flag_values(value) for details]

Note: CONTINUOUS and NAMED_FLAGS are designed to work with integer-valued members.

New in version 3.11.
class enum.FlagBoundary
FlagBoundary controls how out-of-range values are handled in Flag and its subclasses.

STRICT

Out-of-range values cause a ValueError to be raised:

>>> from enum import Flag, STRICT, auto

>>> class StrictFlag(Flag, boundary=STRICT) :
RED = auto()
GREEN = auto /()

.. BLUE = auto()

>>> StrictFlag(2**2 + 2**4)

Traceback (most recent call last):

ValueError: <flag 'StrictFlag'> invalid value 20
given 0b0O 10100
allowed ObO 00111

CONFORM

Out-of-range values have invalid values removed, leaving a valid Flag value. This is the default for F1ag:

>>> from enum import Flag, CONFORM, auto
>>> class ConformFlag(Flag, boundary=CONFORM) :
RED = auto ()
GREEN = auto ()
. BLUE = auto()
>>> ConformFlag (2**2 + 2*%*4)
<ConformFlag.BLUE: 4>

8.14. enum — Support for enumerations 317

The Python Library Reference, Release 3.11.3

EJECT

Out-of-range values lose their Flag membership and revert to int.

>>> from enum import Flag, EJECT, auto
>>> class EjectFlag(Flag, boundary=EJECT) :
RED = auto ()
GREEN = auto ()
.. BLUE = auto()
>>> EjectFlag (2**2 + 2%%4)
20

KEEP
Out-of-range values are kept, and the Flag membership is kept. This is the default for TntFlag:

>>> from enum import Flag, KEEP, auto
>>> class KeepFlag(Flag, boundary=KEEP) :
RED = auto ()
GREEN = auto ()
.. BLUE = auto ()
>>> KeepFlag (2**2 + 2*%*4)
<KeepFlag.BLUE|16: 20>

New in version 3.11.

Supported __dunder__ names

__members___is aread-only ordered mapping of member_name:member items. It is only available on the class.

__new___ (), if specified, must create and return the enum members; it is also a very good idea to set the member’s
value appropriately. Once all the members are created it is no longer used.

Supported _sunder_ names

¢ name_ —name of the member
¢ _value_ — value of the member; can be set / modified in __new___
* _missing_ —alookup function used when a value is not found; may be overridden

e _ignore_ —alist of names, either asa 1ist or a st r, that will not be transformed into members, and will be
removed from the final class

e _order_ —used in Python 2/3 code to ensure member order is consistent (class attribute, removed during class
creation)

* _generate_next_value_ —used to get an appropriate value for an enum member; may be overridden

Note: For standard Enum classes the next value chosen is the last value seen incremented by one.

For F1ag classes the next value chosen will be the next highest power-of-two, regardless of the last
value seen.

318 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

New in version 3.6: _missing_, _order_, _generate_next_value_

New in version 3.7: _ignore_

8.14.3 Utilities and Decorators

class enum.auto

auto can be used in place of a value. If used, the Enwm machinery will call an Enum’s _gener—
ate_next_value_ () togetan appropriate value. For Enum and IntEnum that appropriate value will be the last
value plus one; for Flag and IntFlag it will be the first power-of-two greater than the highest value; for StrEnum it
will be the lower-cased version of the member’s name. Care must be taken if mixing auto() with manually specified
values.

auto instances are only resolved when at the top level of an assignment:
e FIRST = auto () will work (auto() is replaced with 1);

e SECOND = auto(), -2 will work (auto is replaced with 2,s0 2, -2 is used to create the SEC-
OND enum member;

e THREE = [auto (), —3] willnotwork (<auto instance>, -3isused to createthe THREE enum
member)

Changed in version 3.11.1: In prior versions, auto () had to be the only thing on the assignment line to work
properly.

_generate_next_value_ can be overridden to customize the values used by auto.

Note: in3.13 the default_generate_next_value_ will always return the highest member value incremented
by 1, and will fail if any member is an incompatible type.

@enum.property

A decorator similar to the built-in property, but specifically for enumerations. It allows member attributes to have
the same names as members themselves.

Note: the property and the member must be defined in separate classes; for example, the value and name attributes
are defined in the Enum class, and Enum subclasses can define members with the names value and name.

New in version 3.11.

@enum.unique

A class decorator specifically for enumerations. It searches an enumeration’s __members
aliases it finds; if any are found ValueError is raised with the details:

, gathering any

>>> from enum import Enum, unique
>>> @Qunique
class Mistake (Enum) :

ONE = 1
TWO = 2
THREE = 3
FOUR = 3

Traceback (most recent call last):

(continues on next page)

8.14. enum — Support for enumerations 319

The Python Library Reference, Release 3.11.3

(continued from previous page)

ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE

@enum.verify

A class decorator specifically for enumerations. Members from EnumCheck are used to specify which con-
straints should be checked on the decorated enumeration.

New in version 3.11.

@enum.member

A decorator for use in enums: its target will become a member.
New in version 3.11.

@enum.nonmember

A decorator for use in enums: its target will not become a member.
New in version 3.11.

@enum.global_enum

A decorator to change the str () and repr () of an enum to show its members as belonging to the module
instead of its class. Should only be used when the enum members are exported to the module global namespace
(see re.RegexF1ag for an example).

New in version 3.11.

enum.show_£flag_values (value)

Return a list of all power-of-two integers contained in a flag value.

New in version 3.11.

8.14.4 Notes

IntEnum, StrEnum,and IntFlag

These three enum types are designed to be drop-in replacements for existing integer- and string-based values;
as such, they have extra limitations:

e _ str__ uses the value and not the name of the enum member

e _ format_ ,becauseituses __ str__, will also use the value of the enum member instead of its

name

If you do not need/want those limitations, you can either create your own base class by mixing in the int
or str type yourself:

>>> from enum import Enum
>>> class MyIntEnum (int, Enum):
pass

or you can reassign the appropriate st r (), etc., in your enum:

>>> from enum import Enum, IntEnum
>>> class MyIntEnum (IntEnum) :
__str__ = Enum.__ str_

320 Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

8.15 graphlib — Functionality to operate with graph-like structures

Source code: Lib/graphlib.py

class graphlib.TopologicalSorter (graph=None)

Provides functionality to topologically sort a graph of hashable nodes.

A topological order is a linear ordering of the vertices in a graph such that for every directed edge u -> v from vertex
u to vertex v, vertex u comes before vertex v in the ordering. For instance, the vertices of the graph may represent
tasks to be performed, and the edges may represent constraints that one task must be performed before another;
in this example, a topological ordering is just a valid sequence for the tasks. A complete topological ordering is
possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic graph.

If the optional graph argument is provided it must be a dictionary representing a directed acyclic graph where the
keys are nodes and the values are iterables of all predecessors of that node in the graph (the nodes that have edges
that point to the value in the key). Additional nodes can be added to the graph using the add () method.

In the general case, the steps required to perform the sorting of a given graph are as follows:

 Create an instance of the TopologicalSorter with an optional initial graph.

Add additional nodes to the graph.
e Call prepare () on the graph.

e While is_active () is True, iterate over the nodes returned by get_ready () and process them. Call
done () on each node as it finishes processing.

In case just an immediate sorting of the nodes in the graph is required and no parallelism is involved, the convenience
method TopologicalSorter.static_order () can be used directly:

>>> graph = {"D": {"B", "C"}, HC": {"A"}, "B": {"A"}}
>>> ts = TopologicalSorter (graph)

>>> tuple (ts.static_order())

('A" 'C" 'B" VD')

The class is designed to easily support parallel processing of the nodes as they become ready. For instance:

topological_sorter = TopologicalSorter ()
Add nodes to 'topological_sorter'...

topological_sorter.prepare ()
while topological_sorter.is_active():
for node in topological_sorter.get_ready () :
Worker threads or processes take nodes to work on off the
'task_queue' queue.
task_queue.put (node)

When the work for a node is done, workers put the node in
'finalized_tasks_queue' so we can get more nodes to work on.

The definition of 'is_active()' guarantees that, at this point, at
least one node has been placed on 'task_queue' that hasn't yet

been passed to 'done()', so this blocking 'get ()' must (eventually)
succeed. After calling 'done()', we loop back to call 'get_ready()'
again, so put newly freed nodes on 'task_queue' as soon as

HH HH R W R R W H

logically possible.

(continues on next page)

8.15. graphlib — Functionality to operate with graph-like structures 321

https://github.com/python/cpython/tree/3.11/Lib/graphlib.py

The Python Library Reference, Release 3.11.3

(continued from previous page)

node = finalized_tasks_queue.get ()
topological_sorter.done (node)

add (node, *predecessors)

Add a new node and its predecessors to the graph. Both the node and all elements in predecessors must be
hashable.

If called multiple times with the same node argument, the set of dependencies will be the union of all depen-
dencies passed in.

It is possible to add a node with no dependencies (predecessors is not provided) or to provide a dependency
twice. If a node that has not been provided before is included among predecessors it will be automatically
added to the graph with no predecessors of its own.

Raises ValueError if called after prepare ().

prepare ()

Mark the graph as finished and check for cycles in the graph. If any cycle is detected, CycleError will
be raised, but get_ready () can still be used to obtain as many nodes as possible until cycles block more
progress. After a call to this function, the graph cannot be modified, and therefore no more nodes can be
added using add ().

is_active ()

Returns True if more progress can be made and False otherwise. Progress can be made if cy-
cles do not block the resolution and either there are still nodes ready that haven’t yet been returned by
TopologicalSorter.get_ready () or the number of nodes marked TopologicalSorter.
done () is less than the number that have been returned by TopologicalSorter.get_ready ().

The _ _bool__ () method of this class defers to this function, so instead of:

if ts.is_active():

it is possible to simply do:

if ts:

Raises ValueError if called without calling prepare () previously.

done (*nodes)

Marks a set of nodes returned by TopologicalSorter.get_ready () as processed, unblocking any
successor of each node in nodes for being returned in the future by a call to TopologicalSorter.
get_ready /().

Raises ValueError if any node in nodes has already been marked as processed by a previous call to this
method or if a node was not added to the graph by using TopologicalSorter.add (), if called without
calling prepare () or if node has not yet been returned by get_ ready ().

get_ready ()

Returns a tuple with all the nodes that are ready. Initially it returns all nodes with no predecessors, and
once those are marked as processed by calling TopologicalSorter.done (), further calls will return
all new nodes that have all their predecessors already processed. Once no more progress can be made, empty
tuples are returned.

Raises ValueError if called without calling prepare () previously.

322

Chapter 8. Data Types

The Python Library Reference, Release 3.11.3

static_order ()

Returns an iterator object which will iterate over nodes in a topological order. When using this method,
prepare () and done () should not be called. This method is equivalent to:

def static_order (self):
self.prepare ()
while self.is_active():
node_group = self.get_ready ()
yield from node_group
self.done (*node_group)

The particular order that is returned may depend on the specific order in which the items were inserted in the
graph. For example:

>>> ts = TopologicalSorter()
>>> ts.add(3, 2, 1)

>>> ts.add (1, 0)

>>> print ([*ts.static_order()])
(2, 0, 1, 3]

>>> ts2 = TopologicalSorter ()
>>> ts2.add (1, 0)

>>> ts2.add (3, 2, 1)

>>> print ([*ts2.static_order()])
[0, 2, 1, 3]

This is due to the fact that “0” and “2” are in the same level in the graph (they would have been returned in
the same call to get_ ready ()) and the order between them is determined by the order of insertion.

If any cycle is detected, CycleError will be raised.

New in version 3.9.

8.15.1 Exceptions

The graph1ib module defines the following exception classes:

exception graphlib.CycleError

Subclass of ValueErrorraisedby TopologicalSorter.prepare () if cycles exist in the working graph.
If multiple cycles exist, only one undefined choice among them will be reported and included in the exception.

The detected cycle can be accessed via the second element in the args attribute of the exception instance and
consists in a list of nodes, such that each node is, in the graph, an immediate predecessor of the next node in the
list. In the reported list, the first and the last node will be the same, to make it clear that it is cyclic.

8.15. graphlib — Functionality to operate with graph-like structures 323

The Python Library Reference, Release 3.11.3

324 Chapter 8. Data Types

CHAPTER
NINE

NUMERIC AND MATHEMATICAL MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbe rs module
defines an abstract hierarchy of numeric types. The math and cmath modules contain various mathematical functions
for floating-point and complex numbers. The decimal module supports exact representations of decimal numbers,
using arbitrary precision arithmetic.

The following modules are documented in this chapter:

9.1 numbers — Numeric abstract base classes

Source code: Lib/numbers.py

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively define more
operations. None of the types defined in this module are intended to be instantiated.
class numbers.Number

The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring what
kind, use isinstance (x, Number).

9.1.1 The numeric tower

class numbers.Complex
Subclasses of this type describe complex numbers and include the operations that work on the built-in compIex
type. These are: conversions to complex and bool, real, imag, +, —, *, /, **, abs (), conjugate (),
==,and !=. All except — and ! = are abstract.
real
Abstract. Retrieves the real component of this number.
imag
Abstract. Retrieves the imaginary component of this number.
abstractmethod conjugate ()

Abstract. Returns the complex conjugate. For example, (1+37) .conjugate () == (1-37).

class numbers.Real

To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc (), round (), math.floor (), math.ceil (),
divmod(),//,%, <, <=, >, and >=.

325

https://github.com/python/cpython/tree/3.11/Lib/numbers.py
https://peps.python.org/pep-3141/

The Python Library Reference, Release 3.11.3

Real also provides defaults for complex (), real, imag,and conjugate ().

class numbers.Rational
Subtypes Real and adds numerator and denominator properties. It also provides a default for f1oat ().
The numerator and denominator values should be instances of Tntegral and should be in lowest terms
with denominator positive.
numerator
Abstract.

denominator
Abstract.

class numbers.Integral

Subtypes Rational and adds a conversion to int. Provides defaults for f1oat (), numerator, and de—
nominator. Adds abstract methods for pow () with modulus and bit-string operations: <<, >>, &, ~, |, ~.

9.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may be subtle if
there are two different extensions of the real numbers. For example, fractions.Fraction implements hash ()
as follows:

def _ hash_ (self):

if self.denominator == 1:
Get integers right.
return hash (self.numerator)

Expensive check, but definitely correct.

if self == float (self):
return hash (float (self))

else:
Use tuple's hash to avoid a high collision rate on
simple fractions.
return hash((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the possibility
of adding those. You can add MyFoo between Complex and Real with:

class MyFoo (Complex) :
MyFoo.register (Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there.
For subtypes of Tntegral, this means that __add__ () and __radd__ () should be defined as:

class MyIntegral (Integral):

def _ add__ (self, other):

(continues on next page)

326 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

(continued from previous page)

if isinstance (other, MyIntegral):
return do_my_adding_stuff (self, other)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff (self, other)
else:
return NotImplemented

def _ radd__ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff (other, self)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff (other, self)
elif isinstance (other, Integral):
return int (other) + int (self)
elif isinstance (other, Real):
return float (other) + float (self)
elif isinstance (other, Complex) :
return complex (other) + complex(self)
else:
return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I'll refer to all of the above code that
doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance of A, which is a
subtype of Complex(a : A <: Complex),andb : B <: Complex. 'll considera + b:

1. If A defines an __add___ () which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add__ (), we’d miss the possibil-
ity that B defines a more intelligent __radd__ (), so the boilerplate should return Not Implemented from
__add__ (). (Or A may not implement __add___ () atall.)

3. Then B’s __radd___ () gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default implemen-
tation should live.

5.If B <: A, Python tries B.___radd__ before A.__add__. This is ok, because it was implemented with
knowledge of A, so it can handle those instances before delegating to Complex.

IfA <: ComplexandB <: Real without sharing any other knowledge, then the appropriate shared operation is
the one involving the built in complex, and both __radd__ () sland there, so a+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function which
generates the forward and reverse instances of any given operator. For example, fractions.Fraction uses:

def _operator_fallbacks (monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance (b, (int, Fraction)):
return monomorphic_operator(a, b)

elif isinstance (b, float):
return fallback_operator (float (a), b)

elif isinstance (b, complex):
return fallback_operator (complex(a), b)

else:
return NotImplemented
forward._ name_ = '__ ' + fallback_operator._ name_ _ + '__ '
forward. doc_ = monomorphic_operator. doc

(continues on next page)

9.1. numbers — Numeric abstract base classes 327

The Python Library Reference, Release 3.11.3

(continued from previous page)

def reverse (b, a):
if isinstance(a, Rational):
Includes ints.
return monomorphic_operator(a, b)
elif isinstance (a, Real):
return fallback_operator (float (a), float (b))
elif isinstance(a, Complex):
return fallback_operator (complex(a), complex (b))
else:
return NotImplemented
reverse._ nec __r' + fallback_operator._ name__ + '__'
reverse._ ¢

monomorphic_operator. doc

return forward, reverse

def _add(a, b):
"y + pnrnre
return Fraction (a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)

_add__, __radd__ = _operator_fallbacks(_add, operator.add)

9.2 math — Mathematical functions

This module provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath module if
you require support for complex numbers. The distinction between functions which support complex numbers and those
which don’t is made since most users do not want to learn quite as much mathematics as required to understand complex
numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected complex number
used as a parameter, so that the programmer can determine how and why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are floats.

9.2.1 Number-theoretic and representation functions

math.ceil (x)

Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegatestox .__ceil_ ,
which should return an Tntegral value.

math.comb (n, k)
Return the number of ways to choose k items from » items without repetition and without order.

Evaluateston! / (k! * (n - k)!) whenk <= n and evaluates to zero whenk > n.

Also called the binomial coefficient because it is equivalent to the coefficient of k-th term in polynomial expansion
of (1 + x)".

328 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments
are negative.

New in version 3.8.

math.copysign (x, y)
Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros,
copysign (1.0, -0.0) returns -1.0.

math. fabs (x)

Return the absolute value of x.

math.factorial (n)

Return n factorial as an integer. Raises ValueError if n is not integral or is negative.
Deprecated since version 3.9: Accepting floats with integral values (like 5. 0) is deprecated.

math.floor (x)

Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to x.___floor__,
which should return an Tntegral value.

math. fmod (x, y)

Return fmod (x, v), as defined by the platform C library. Note that the Python expression x % y may not
return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically; to infinite
precision) equal to x — n*y for some integer # such that the result has the same sign as x and magnitude less than
abs (y). Python’s x % vy returns a result with the sign of y instead, and may not be exactly computable for float
arguments. For example, fmod (-1e-100, 1e100) is —1e-100, but the result of Python’s -1e-100 %
1e100is 1e100-1e-100, which cannot be represented exactly as a float, and rounds to the surprising 1e100.
For this reason, function fmod () is generally preferred when working with floats, while Python’s x % vy is
preferred when working with integers.

math. frexp (x)

Return the mantissa and exponent of x as the pair (m, e). misafloatand e is an integer such that x == m *
2**¢ exactly. If x is zero, returns (0.0, 0),otherwise 0.5 <= abs (m) < 1. This is used to “pick apart”
the internal representation of a float in a portable way.

math . £sum (iterable)

Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
0.9999999999999999

>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition and
may occasionally double-round an intermediate sum causing it to be off in its least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating point
summation.
math.ged (*integers)

Return the greatest common divisor of the specified integer arguments. If any of the arguments is nonzero, then
the returned value is the largest positive integer that is a divisor of all arguments. If all arguments are zero, then
the returned value is 0. gcd () without arguments returns 0.

New in version 3.5.

9.2. math — Mathematical functions 329

https://code.activestate.com/recipes/393090/
https://code.activestate.com/recipes/393090/

The Python Library Reference, Release 3.11.3

Changed in version 3.9: Added support for an arbitrary number of arguments. Formerly, only two arguments were
supported.

math.isclose (a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative tolerances.

rel_tol is the relative tolerance — it is the maximum allowed difference between a and b, relative to the larger absolute
value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance is 1e-09,
which assures that the two values are the same within about 9 decimal digits. rel_fol must be greater than zero.

abs_tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must be at least zero.

If no errors occur, the result will be: abs (a-b) <= max(rel_tol * max(abs(a), abs(b)),
abs_tol).

The IEEE 754 special values of NaN, inf, and —inf will be handled according to IEEE rules. Specifically, NaN
is not considered close to any other value, including NaN. inf and —inf are only considered close to themselves.

New in version 3.5.
See also:
PEP 485 — A function for testing approximate equality

math.isfinite (x)

Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0 . 0 is considered finite.)
New in version 3.2.

math.isinf (x)

Return True if x is a positive or negative infinity, and False otherwise.
math.isnan (x)
Return True if x is a NaN (not a number), and False otherwise.

math.isqrt (n)

Return the integer square root of the nonnegative integer n. This is the floor of the exact square root of n, or
equivalently the greatest integer a such that o < n.

For some applications, it may be more convenient to have the least integer a such that n < a2, or in other words the
ceiling of the exact square root of n. For positive n, this can be computed usinga = 1 + isqgrt(n - 1).

New in version 3.8.

math.lcm (*integers)

Return the least common multiple of the specified integer arguments. If all arguments are nonzero, then the returned
value is the smallest positive integer that is a multiple of all arguments. If any of the arguments is zero, then the
returned value is 0. 1cm () without arguments returns 1.

New in version 3.9.

math.ldexp (x, i)
Return x * (2**1i). This is essentially the inverse of function frexp ().

math.modf (x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

330 Chapter 9. Numeric and Mathematical Modules

https://peps.python.org/pep-0485/

The Python Library Reference, Release 3.11.3

math.nextafter (x, y)

Return the next floating-point value after x towards y.
If x is equal to y, return y.
Examples:
e math.nextafter (x, math.inf) goes up: towards positive infinity.
* math.nextafter (x, -math.inf) goes down: towards minus infinity.
* math.nextafter (x, 0.0) goes towards zero.
* math.nextafter (x, math.copysign(math.inf, x)) goes away from zero.
See also math.ulp ().

New in version 3.9.

math.perm (n, k=None)

Return the number of ways to choose k items from » items without repetition and with order.
Evaluateston! / (n - k) ! when k <= n and evaluates to zero when k > n.
If & is not specified or is None, then k defaults to n and the function returns n ! .

Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments
are negative.

New in version 3.8.

math.prod (iterable, *, start=1)

Calculate the product of all the elements in the input iterable. The default start value for the product is 1.

When the iterable is empty, return the start value. This function is intended specifically for use with numeric values
and may reject non-numeric types.

New in version 3.8.

math.remainder (x, y)

Return the IEEE 754-style remainder of x with respect to y. For finite x and finite nonzero y, this is the difference
x — n*y, where n is the closest integer to the exact value of the quotient x / vy. If x / vy is exactly halfway
between two consecutive integers, the nearest even integer is used for n. The remainder r = remainder (x,
y) thus always satisfies abs (r) <= 0.5 * abs(y).

Special cases follow IEEE 754: in particular, remainder (x, math.inf) is x for any finite x, and
remainder (x, 0) and remainder (math.inf, x) raise ValueError for any non-NaN x. If the
result of the remainder operation is zero, that zero will have the same sign as x.

On platforms using IEEE 754 binary floating-point, the result of this operation is always exactly representable: no
rounding error is introduced.

New in version 3.7.

math.trunc (x)

Return x with the fractional part removed, leaving the integer part. This rounds toward O0: t runc () is equivalent to
floor () for positive x, and equivalent to ce i 1 () for negative x. If x is not a float, delegates to x . __trunc__,
which should return an Tntegral value.

math.ulp (x)

Return the value of the least significant bit of the float x:
e If x is a NaN (not a number), return x.

 If x is negative, return ulp (-x).

9.2. math — Mathematical functions 331

The Python Library Reference, Release 3.11.3

* If x is a positive infinity, return x.

* If x is equal to zero, return the smallest positive denormalized representable float (smaller than the minimum
positive normalized float, sys. float_info.min).

 If x is equal to the largest positive representable float, return the value of the least significant bit of x, such
that the first float smaller than xis x — ulp (x).

e Otherwise (x is a positive finite number), return the value of the least significant bit of x, such that the first
float bigger than x is x + ulp (x).

ULP stands for “Unit in the Last Place”.
See also math.nextafter () and sys. float_info.epsilon.
New in version 3.9.

Note that frexp () and modf () have a different call/return pattern than their C equivalents: they take a single argument
and return a pair of values, rather than returning their second return value through an ‘output parameter’ (there is no such
thing in Python).

Forthe ceil (), f1oor (),and modf () functions, note that all floating-point numbers of sufficiently large magnitude
are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C double
type), in which case any float x with abs (x) >= 2**52 necessarily has no fractional bits.

9.2.2 Power and logarithmic functions

math.cbrt (x)
Return the cube root of x.

New in version 3.11.

math.exp (x)
Return e raised to the power x, where e = 2.718281... is the base of natural logarithms. This is usually more
accurate thanmath.e ** xor pow (math.e, x).

math.exp2 (x)

Return 2 raised to the power x.
New in version 3.11.

math.expml (x)

Return e raised to the power x, minus 1. Here e is the base of natural logarithms. For small floats x, the subtraction
in exp (x) — 1 can result in a significant loss of precision; the expm1 () function provides a way to compute
this quantity to full precision:

>>> from math import exp, expml

>>> exp(le-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expml (1le-5) # result accurate to full precision

1.0000050000166668e-05

New in version 3.2.

math.log (x[, base])

With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as 1og (x) /1log (base).

332 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Loss_of_significance

The Python Library Reference, Release 3.11.3

math.loglp (x)
Return the natural logarithm of /+x (base e). The result is calculated in a way which is accurate for x near zero.

math.log2 (x)

Return the base-2 logarithm of x. This is usually more accurate than log (x, 2).
New in version 3.3.
See also:

int.bit_Ilength () returns the number of bits necessary to represent an integer in binary, excluding the sign
and leading zeros.

math.loglO (x)
Return the base-10 logarithm of x. This is usually more accurate than 1og (x, 10).
math.pow (x, y)

Return x raised to the power y. Exceptional cases follow the IEEE 754 standard as far as possible. In particular,
pow (1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN. If both x and y are
finite, x is negative, and v is not an integer then pow (x, vy) is undefined, and raises ValueError.

Unlike the built-in * * operator, math.pow () converts both its arguments to type £1oat. Use ** or the built-in
pow () function for computing exact integer powers.

Changed in version 3.11: The special cases pow (0.0, -inf) and pow (-0.0, -inf) were changed to
return inf instead of raising Va lueError, for consistency with IEEE 754.

math.sqgrt (x)

Return the square root of x.

9.2.3 Trigonometric functions

math.acos (x)

Return the arc cosine of x, in radians. The result is between 0 and pi.

math.asin (x)

Return the arc sine of x, in radians. The result is between —pi /2 and pi/2.

math.atan (x)

Return the arc tangent of x, in radians. The result is between —pi/2 and pi/2.

math.atan2 (y, x)

Return atan (y / x), inradians. The result is between —pi and pi. The vector in the plane from the origin to
point (x, y) makes this angle with the positive X axis. The point of atan2 () is that the signs of both inputs
are known to it, so it can compute the correct quadrant for the angle. For example, atan (1) and atan2 (1,
1) are bothpi/4,butatan2 (-1, -1) is-3*pi/A4.

math.cos (x)

Return the cosine of x radians.

math.dist (p, q)

Return the Euclidean distance between two points p and g, each given as a sequence (or iterable) of coordinates.
The two points must have the same dimension.

Roughly equivalent to:

sgrt (sum((px — gx) ** 2.0 for px, gx in zip(p, 9)))

9.2. math — Mathematical functions 333

The Python Library Reference, Release 3.11.3

New in version 3.8.

math.hypot (*coordinates)

Return the Euclidean norm, sgrt (sum (x**2 for x in coordinates)). Thisis the length of the vector
from the origin to the point given by the coordinates.

For a two dimensional point (x, v), this is equivalent to computing the hypotenuse of a right triangle using the
Pythagorean theorem, sqrt (x*x + y*y).

Changed in version 3.8: Added support for n-dimensional points. Formerly, only the two dimensional case was
supported.

Changed in version 3.10: Improved the algorithm’s accuracy so that the maximum error is under 1 ulp (unit in the
last place). More typically, the result is almost always correctly rounded to within 1/2 ulp.

math.sin (x)

Return the sine of x radians.

math.tan (x)

Return the tangent of x radians.

9.2.4 Angular conversion

math.degrees (x)
Convert angle x from radians to degrees.

math.radians (x)

Convert angle x from degrees to radians.

9.2.5 Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.
math.acosh (x)

Return the inverse hyperbolic cosine of x.
math.asinh (x)

Return the inverse hyperbolic sine of x.
math.atanh (x)

Return the inverse hyperbolic tangent of x.
math.cosh (x)

Return the hyperbolic cosine of x.
math.sinh (x)

Return the hyperbolic sine of x.

math.tanh (x)
Return the hyperbolic tangent of x.

334 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Hyperbolic_function

The Python Library Reference, Release 3.11.3

9.2.6 Special functions

math.erf (x)

Return the error function at x.

The erf () function can be used to compute traditional statistical functions such as the cumulative standard normal
distribution:

def phi (x):
'"Cumulative distribution function for the standard normal distribution'’
return (1.0 + erf(x / sqrt(2.0))) / 2.0

New in version 3.2.

math.erfec (x)
Return the complementary error function at x. The complementary error function is definedas 1.0 - erf (x).
It is used for large values of x where a subtraction from one would cause a loss of significance.

New in version 3.2.

math.gamma (x)

Return the Gamma function at x.
New in version 3.2.
math.lgamma (x)
Return the natural logarithm of the absolute value of the Gamma function at x.

New in version 3.2.

9.2.7 Constants

math.pi
The mathematical constant 7 = 3.141592..., to available precision.

math.e
The mathematical constant e = 2.718281..., to available precision.

math.tau

The mathematical constant 7 = 6.283185..., to available precision. Tau is a circle constant equal to 2, the ratio of
a circle’s circumference to its radius. To learn more about Tau, check out Vi Hart’s video Pi is (still) Wrong, and
start celebrating Tau day by eating twice as much pie!

New in version 3.6.

math.inf
A floating-point positive infinity. (For negative infinity, use —-math.inf.) Equivalent to the output of
float ('inf').
New in version 3.5.

math.nan

A floating-point “not a number” (NaN) value. Equivalent to the output of f1oat ('nan'). Due to the require-
ments of the IEEE-754 standard, math.nan and float ('nan') are not considered to equal to any other
numeric value, including themselves. To check whether a number is a NaN, use the i snan () function to test for
NaNs instead of is or ==. Example:

9.2. math — Mathematical functions 335

https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_functions
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_functions
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Gamma_function
https://www.youtube.com/watch?v=jG7vhMMXagQ
https://tauday.com/
https://en.wikipedia.org/wiki/IEEE_754

The Python Library Reference, Release 3.11.3

>>> import math

>>> math.nan == math.nan

False

>>> float ('nan') == float('nan')
False

>>> math.isnan (math.nan)

True

>>> math.isnan(float ('nan'))
True

Changed in version 3.11: It is now always available.
New in version 3.5.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C math
library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate. The current
implementation will raise ValueError for invalid operations like sgqrt (-=1.0) or log (0.0) (where C99 Annex F
recommends signaling invalid operation or divide-by-zero), and Ove r f 1 owE r ror for results that overflow (for example,
exp (1000.0)). A NaN will not be returned from any of the functions above unless one or more of the input arguments
was a NaN; in that case, most functions will return a NaN, but (again following C99 Annex F) there are some exceptions
to this rule, for example pow (float ('nan'), 0.0) orhypot (float ('nan'), float('inf')).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs remains
unspecified. Typical behavior is to treat all NaNs as though they were quiet.

See also:

Module cmath Complex number versions of many of these functions.

9.3 cmath — Mathematical functions for complex numbers

This module provides access to mathematical functions for complex numbers. The functions in this module accept in-
tegers, floating-point numbers or complex numbers as arguments. They will also accept any Python object that has
eithera___complex__ () ora__float__ () method: these methods are used to convert the object to a complex or
floating-point number, respectively, and the function is then applied to the result of the conversion.

Note: For functions involving branch cuts, we have the problem of deciding how to define those functions on the cut
itself. Following Kahan’s “Branch cuts for complex elementary functions” paper, as well as Annex G of C99 and later
C standards, we use the sign of zero to distinguish one side of the branch cut from the other: for a branch cut along (a
portion of) the real axis we look at the sign of the imaginary part, while for a branch cut along the imaginary axis we look
at the sign of the real part.

For example, the cmath.sqgrt () function has a branch cut along the negative real axis. An argument of
complex (-2.0, -0.0) is treated as though it lies below the branch cut, and so gives a result on the negative
imaginary axis:

>>> cmath.sqgrt (complex(-2.0, -0.0))
-1.41421356237309517

But an argument of complex (-2.0, 0.0) is treated as though it lies above the branch cut:

>>> cmath.sqgrt (complex(-2.0, 0.0))
1.41421356237309517

336 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely determined
by its real part z . real and its imaginary part z . imag. In other words:

z == z.real + z.imag*1lj

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number z is
defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while the phase phi
is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that joins the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

cmath.phase (x)

Return the phase of x (also known as the argument of x), as afloat. phase (x) isequivalenttomath.atan2 (x.
imag, x.real). The resultliesin the range [-7, 7], and the branch cut for this operation lies along the negative
real axis. The sign of the result is the same as the sign of x . imag, even when x . imag is zero:

>>> phase (complex (-1.0, 0.0))
3.141592653589793

>>> phase (complex (1.0, —-0.0))
-3.141592653589793

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs () function. There
is no separate cmat h module function for this operation.

cmath.polar (x)

Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x and
phi is the phase of x. polar (x) isequivalentto (abs (x), phase(x)).

cmath.rect (r, phi)

Return the complex number x with polar coordinates r and phi. Equivalent to r * (math.cos (phi) +
math.sin (phi) *17).

9.3.2 Power and logarithmic functions

cmath.exp (x)
Return e raised to the power x, where e is the base of natural logarithms.
cmath.log (x[, base])

Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x. There
is one branch cut, from 0 along the negative real axis to -co.

cmath.logl0 (x)
Return the base-10 logarithm of x. This has the same branch cutas 1og ().
cmath.sqgrt (x)

Return the square root of x. This has the same branch cut as 1og ().

9.3. cmath — Mathematical functions for complex numbers 337

The Python Library Reference, Release 3.11.3

9.3.3 Trigonometric functions

cmath.acos (x)

Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to co. The other
extends left from -1 along the real axis to -oco.

cmath.asin (x)

Return the arc sine of x. This has the same branch cuts as acos ().

cmath.atan (x)

Return the arc tangent of x. There are two branch cuts: One extends from 1 j along the imaginary axis to 7. The
other extends from -1 7j along the imaginary axis to —7j.

cmath.cos (x)

Return the cosine of x.

cmath.sin (x)

Return the sine of x.

cmath.tan (x)

Return the tangent of x.

9.3.4 Hyperbolic functions

cmath.acosh (x)
Return the inverse hyperbolic cosine of x. There is one branch cut, extending left from 1 along the real axis to -co.
cmath.asinh (x)

Return the inverse hyperbolic sine of x. There are two branch cuts: One extends from 1 j along the imaginary axis
to «j. The other extends from —1 j along the imaginary axis to —7j.

cmath.atanh (x)

Return the inverse hyperbolic tangent of x. There are two branch cuts: One extends from 1 along the real axis to
o, The other extends from —1 along the real axis to —.

cmath.cosh (x)

Return the hyperbolic cosine of x.

cmath.sinh (x)

Return the hyperbolic sine of x.

cmath.tanh (x)
Return the hyperbolic tangent of x.

9.3.5 Classification functions

cmath.isfinite (x)

Return True if both the real and imaginary parts of x are finite, and False otherwise.
New in version 3.2.

cmath.isinf (x)

Return True if either the real or the imaginary part of x is an infinity, and False otherwise.

338 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

cmath.isnan (x)

Return True if either the real or the imaginary part of x is a NaN, and False otherwise.

cmath.isclose (a, b, *, rel_tol=1e-09, abs_tol=0.0)

Return True if the values a and b are close to each other and False otherwise.
Whether or not two values are considered close is determined according to given absolute and relative tolerances.

rel_tol is the relative tolerance — it is the maximum allowed difference between a and b, relative to the larger absolute
value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance is 1e-09,
which assures that the two values are the same within about 9 decimal digits. rel_tol must be greater than zero.

abs_tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must be at least zero.

If no errors occur, the result will be: abs (a-b) <= max(rel_tol * max(abs(a), abs (b)),
abs_tol).

The IEEE 754 special values of NaN, inf, and —inf will be handled according to IEEE rules. Specifically, NaN
is not considered close to any other value, including NaN. inf and —inf are only considered close to themselves.

New in version 3.5.
See also:

PEP 485 — A function for testing approximate equality

9.3.6 Constants

cmath.pi

The mathematical constant s, as a float.

cmath.e

The mathematical constant e, as a float.

cmath.tau

The mathematical constant 7, as a float.
New in version 3.6.

cmath.inf

Floating-point positive infinity. Equivalent to float ('inf").
New in version 3.6.

cmath.infj

Complex number with zero real part and positive infinity imaginary part. Equivalent to complex (0.0,
float ('inf')).

New in version 3.6.

cmath.nan

A floating-point “not a number” (NaN) value. Equivalent to f1oat ('nan').
New in version 3.6.

cmath.nanj

Complex number with zero real part and NaN imaginary part. Equivalent to complex (0.0,
float ('nan')).

New in version 3.6.

9.3. cmath — Mathematical functions for complex numbers 339

https://peps.python.org/pep-0485/

The Python Library Reference, Release 3.11.3

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They would
rather have math.sqgrt (—1) raise an exception than return a complex number. Also note that the functions defined
in cmath always return a complex number, even if the answer can be expressed as a real number (in which case the
complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary feature
of many complex functions. It is assumed that if you need to compute with complex functions, you will understand about
branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment. For information of
the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A., and
Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

9.4 decimal — Decimal fixed point and floating point arithmetic

Source code: Lib/decimal.py

The decimal module provides support for fast correctly rounded decimal floating point arithmetic. It offers several
advantages over the £ 1oat datatype:

e Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has a
paramount guiding principle — computers must provide an arithmetic that works in the same way as the arithmetic
that people learn at school.” — excerpt from the decimal arithmetic specification.

¢ Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have exact rep-
resentations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as 3.
3000000000000003 as it does with binary floating point.

» The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 isexactly
equal to zero. In binary floating point, the result is 5.5511151231257827e-017. While near to zero, the
differences prevent reliable equality testing and differences can accumulate. For this reason, decimal is preferred
in accounting applications which have strict equality invariants.

* The decimal module incorporates a notion of significant places sothat 1 .30 + 1.201s 2.50. The trailing zero
is kept to indicate significance. This is the customary presentation for monetary applications. For multiplication,
the “schoolbook” approach uses all the figures in the multiplicands. For instance, 1.3 * 1.2 gives 1 .56 while
1.30 * 1.20gives 1.5600.

¢ Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting to 28
places) which can be as large as needed for a given problem:

>>> from decimal import *

>>> getcontext () .prec = 6

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857")

>>> getcontext () .prec = 28

>>> Decimal (1) / Decimal (7)

Decimal ('0.1428571428571428571428571429")

* Both binary and decimal floating point are implemented in terms of published standards. While the built-in float
type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of the standard.
When needed, the programmer has full control over rounding and signal handling. This includes an option to enforce
exact arithmetic by using exceptions to block any inexact operations.

340 Chapter 9. Numeric and Mathematical Modules

https://github.com/python/cpython/tree/3.11/Lib/decimal.py

The Python Library Reference, Release 3.11.3

¢ The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic (some-
times called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal arithmetic
specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the coefficient
digits do not truncate trailing zeros. Decimals also include special values such as Infinity, -Infinity, and NaN.
The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags indicat-
ing the results of operations, and trap enablers which determine whether signals are treated as exceptions. Rounding
options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN, ROUND_HALF_EVEN,
ROUND_HALF_UP, ROUND_UP, and ROUND_ 05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs of the
application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the decimal mod-
uleare: Clamped, InvalidOperation,DivisionByZero, Inexact, Rounded, Subnormal, Overflow,
Underflowand FloatOperation.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the trap enabler
is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring a calculation.

See also:

¢ IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

9.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with getcontext () and, if
necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *

>>> getcontext ()

Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext () .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer or a float
performs an exact conversion of the value of that integer or float. Decimal numbers include special values such as NaN
which stands for “Not a number”, positive and negative Infinity, and —0:

>>> getcontext () .prec = 28

>>> Decimal (10)

Decimal ('10")

>>> Decimal ('3.14")

Decimal ('3.14")

>>> Decimal (3.14)

Decimal ('3.140000000000000124344978758017532527446746826171875")
>>> Decimal ((0, (3, 1, 4), -2))

Decimal ('3.14")

>>> Decimal (str (2.0 ** 0.5))

Decimal ('1.4142135623730951")

>>> Decimal (2) ** Decimal ('0.5")

Decimal ('1.414213562373095048801688724")
>>> Decimal ('NaN'")

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 341

https://speleotrove.com/decimal/decarith.html

The Python Library Reference, Release 3.11.3

(continued from previous page)

Decimal ('NaN"'")
>>> Decimal ('-Infinity")
Decimal ('-Infinity")

If the FloatOperation signal is trapped, accidental mixing of decimals and floats in constructors or ordering com-
parisons raises an exception:

>>> c = getcontext ()

>>> c.traps[FloatOperation] = True
>>> Decimal (3.14)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal ('3.5") < 3.7
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal ('3.5') == 3.5
True

New in version 3.3.

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ('3.0")

Decimal ('3.0")

>>> Decimal ('3.1415926535")

Decimal ('3.1415926535")

>>> Decimal ('3.1415926535") + Decimal('2.7182818285")
Decimal ('5.85987")

>>> getcontext () .rounding = ROUND_UP

>>> Decimal ('3.1415926535") + Decimal('2.7182818285")
Decimal ('5.85988")

If the internal limits of the C version are exceeded, constructing a decimal raises ITnvalidOperation:

>>> Decimal ("1e9999999999999999999")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

Changed in version 3.3.

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = list (map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25".split()))
>>> max (data)

Decimal ('9.25")

>>> min (data)

Decimal ('0.03")

>>> sorted (data)

[Decimal ('0.03'"), Decimal ('1.00'), Decimal('1.34"),
Decimal ('2.35"), Decimal('3.45"), Decimal('9.25")]
>>> sum(data)

Decimal ('19.29")

Decimal('1.87"),

(continues on next page)

342 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

(continued from previous page)

>>> a,b,c = datal:3]
>>> str(a)

'1.34"

>>> float (a)

1.34

>>> round(a, 1)
Decimal ('1.3")
>>> int (a)

1

>> a * 5
Decimal ('6.70")
>>> a * Db
Decimal ('2.5058")
>>> c % a
Decimal ('0.77")

And some mathematical functions are also available to Decimal:

>>> getcontext () .prec = 28

>>> Decimal (2) .sqgrt ()

Decimal ('1.414213562373095048801688724")
>>> Decimal (1) .exp ()

Decimal ('2.718281828459045235360287471")
>>> Decimal ('10") .1n ()

Decimal ('2.302585092994045684017991455")
>>> Decimal ('10") .1ogl0 ()

Decimal('1")

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications that
often round results to a fixed number of places:

>>> Decimal ('7.325") .quantize (Decimal ('.01"'), rounding=ROUND_DOWN)
Decimal ('7.32")

>>> Decimal ('7.325") .quantize (Decimal ('1."), rounding=ROUND_UP)
Decimal ('8")

As shown above, the get context () function accesses the current context and allows the settings to be changed. This
approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use the set context () function.

In accordance with the standard, the decimal module provides two ready to use standard contexts, BasicContext
and ExtendedContext. The former is especially useful for debugging because many of the traps are enabled:

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext (myothercontext)

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857143")

>>> Decimal (42) / Decimal (0)

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 343

The Python Library Reference, Release 3.11.3

(continued from previous page)

Decimal ('Infinity'")

>>> setcontext (BasicContext)
>>> Decimal (42) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal (42) / Decimal (0)
DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags re-
main set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using the
clear_ flags () method.

>>> setcontext (ExtendedContext)

>>> getcontext () .clear_flags /()

>>> Decimal (355) / Decimal (113)

Decimal ('3.14159292")

>>> getcontext ()

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to pi was rounded (digits beyond the context precision were thrown
away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the t raps attribute of a context:

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (0)

Decimal ('Infinity")

>>> getcontext () .traps[DivisionByZero] = 1

>>> Decimal (1) / Decimal (0)

Traceback (most recent call last):

File "<pyshell#112>", line 1, in -toplevel-

Decimal (1) / Decimal (0)

DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications, data is
converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of the program
manipulates the data no differently than with other Python numeric types.

9.4.2 Decimal objects

class decimal .Decimal (value='0', context=None)
Construct a new Decimal object based from value.
value can be an integer, string, tuple, £1oat, or another Decimal object. If no value is given, returns Deci-—

mal ('0"). If value is a string, it should conform to the decimal numeric string syntax after leading and trailing
whitespace characters, as well as underscores throughout, are removed:

sign HEE A S

digit O I e A R e O I T A A AL B - L B R
indicator = 'e' | 'E'

digits ::= digit [digit]...

decimal-part ::= digits '.' [digits] | ['.'] digits

exponent-part ::= indicator [sign] digits

(continues on next page)

344 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

(continued from previous page)

infinity ::= 'Infinity' | 'Inf'

nan ::= 'NaN' [digits] | 'sNaN' [digits]
numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

Other Unicode decimal digits are also permitted where digit appears above. These include decimal digits
from various other alphabets (for example, Arabic-Indic and Devanagar1 digits) along with the fullwidth digits
"\uff10"' through "\uff19"'.

If value is a t uple, it should have three components, a sign (0 for positive or 1 for negative), a t uple of digits,
and an integer exponent. For example, Decimal ((O, (1, 4, 1, 4), -3)) returns Decimal ('1l.
414").

If value is a f1oat, the binary floating point value is losslessly converted to its exact decimal equivalent. This
conversion can often require 53 or more digits of precision. For example, Decimal (float ('1.1")) converts
to Decimal ('1.100000000000000088817841970012523233890533447265625").

The context precision does not affect how many digits are stored. That is determined exclusively by the number of
digits in value. For example, Decimal ('3.00000") records all five zeros even if the context precision is only
three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context traps
InvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with the value
of NaN.

Once constructed, Decimal objects are immutable.
Changed in version 3.2: The argument to the constructor is now permitted to be a 1 oat instance.

Changed in version 3.3: f1oat arguments raise an exception if the FloatOperation trap is set. By default
the trap is off.

Changed in version 3.6: Underscores are allowed for grouping, as with integral and floating-point literals in code.

Decimal floating point objects share many properties with the other built-in numeric types such as f1oat and
int. All of the usual math operations and special methods apply. Likewise, decimal objects can be copied,
pickled, printed, used as dictionary keys, used as set elements, compared, sorted, and coerced to another type
(such as float or int).

There are some small differences between arithmetic on Decimal objects and arithmetic on integers and floats.
When the remainder operator % is applied to Decimal objects, the sign of the result is the sign of the dividend
rather than the sign of the divisor:

>>> (=7) % 4

1

>>> Decimal (-7) % Decimal (4)
Decimal ('-3")

The integer division operator // behaves analogously, returning the integer part of the true quotient (truncating
towards zero) rather than its floor, so as to preserve the usual identity x == (x // y) * v + x % y:

>>> -7 // 4

-2
>>> Decimal (-7) // Decimal (4)
Decimal ('—-1")

The % and // operators implement the remainder and divide-integer operations (respectively) as de-
scribed in the specification.

9.4. decimal — Decimal fixed point and floating point arithmetic 345

The Python Library Reference, Release 3.11.3

Decimal objects cannot generally be combined with floats or instances of fractions.Fraction in arithmetic
operations: an attempt to add a Decimal to a float, for example, will raise a TypeError. However, it is
possible to use Python’s comparison operators to compare a Decimal instance x with another number y. This
avoids confusing results when doing equality comparisons between numbers of different types.

Changed in version 3.2: Mixed-type comparisons between Decimal instances and other numeric types are now
fully supported.

In addition to the standard numeric properties, decimal floating point objects also have a number of specialized
methods:
adjusted ()

Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit re-
mains: Decimal ('321e+5") .adjusted () returns seven. Used for determining the position of the
most significant digit with respect to the decimal point.

as_integer_ratio()

Return a pair (n, d) of integers that represent the given Decima 1 instance as a fraction, in lowest terms
and with a positive denominator:

>>> Decimal ('-3.14") .as_integer_ratio()
(=157, 50)

The conversion is exact. Raise OverflowError on infinities and ValueError on NaNs.
New in version 3.6.
as_tuple ()
Return a named tuple representation of the number: DecimalTuple (sign, digits, exponent).

canonical ()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always
canonical, so this operation returns its argument unchanged.

compare (other, context=None)

Compare the values of two Decimal instances. compare () returns a Decimal instance, and if either operand
is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal ('NaN'")
a <b ==> Decimal('-1")
a == Db ==> Decimal ('0")
a>b ==> Decimal('1l")

compare_signal (other, context=None)
This operation is identical to the compa re () method, except that all NaNs signal. That is, if neither operand
is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.
compare_total (other, context=None)

Compare two operands using their abstract representation rather than their numerical value. Similar to the
compare () method, but the result gives a total ordering on Decimal instances. Two Decima 1 instances
with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal ('12.0") .compare_total (Decimal('12"))
Decimal ('-1")

Quiet and signaling NaNs are also included in the total ordering. The result of this function is Deci-
mal ('0") if both operands have the same representation, Decimal ('—1") if the first operand is lower

346

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

in the total order than the second, and Decimal ('1") if the first operand is higher in the total order than
the second operand. See the specification for details of the total order.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As
an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly.
compare_total_mag (other, context=None)

Compare two operands using their abstract representation rather than their value as in compare_total (),
but ignoring the sign of each operand. x . compare_total_mag (y) isequivalentto x . copy_abs () .
compare_total (y.copy_abs()).

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As
an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly.
conjugate ()

Just returns self, this method is only to comply with the Decimal Specification.

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no flags
are changed and no rounding is performed.

copy_negate ()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags are
changed and no rounding is performed.

copy_sign (other, context=None)

Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For

example:
>>> Decimal ('2.3") .copy_sign(Decimal('-1.5"))
Decimal ('-2.3")

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As
an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly.
exp (context=None)

Return the value of the (natural) exponential function e**x at the given number. The result is correctly
rounded using the ROUND_HALF_EVEN rounding mode.

>>> Decimal (1) .exp ()

Decimal ('2.718281828459045235360287471")

>>> Decimal (321) .exp ()

Decimal ('2.561702493119680037517373933E+139")

classmethod from_float (f)

Alternative constructor that only accepts instances of f1oat or int.

Note Decimal.from float (0.1) is not the same as Decimal ('0.1'"). Since 0.1 is
not exactly representable in binary floating point, the value is stored as the nearest repre-
sentable value which is 0x1.999999999999%ap—-4. That equivalent value in decimal is O.
1000000000000000055511151231257827021181583404541015625.

Note: From Python 3.2 onwards, a Decimal instance can also be constructed directly from a f1oat.

9.4. decimal — Decimal fixed point and floating point arithmetic 347

The Python Library Reference, Release 3.11.3

>>> Decimal.from_float (0.1)

Decimal ('0.1000000000000000055511151231257827021181583404541015625")
>>> Decimal.from_float (float ('nan'))

Decimal ('NaN"')

>>> Decimal.from_float (float ('inf'))

Decimal ('Infinity")

>>> Decimal.from_float (float ('—-inf'"))

Decimal ('-Infinity")

New in version 3.1.

£ma (other, third, context=None)

Fused multiply-add. Return self*other+third with no rounding of the intermediate product self *other.

>>> Decimal (2) .fma (3, 5)
Decimal ('11")

is_canonical ()
Return True if the argument is canonical and F'a I se otherwise. Currently, a Decima 1 instance is always
canonical, so this operation always returns True.
is_finite ()
Return True if the argument is a finite number, and F'a 1 se if the argument is an infinity or a NaN.
is_infinite()
Return True if the argument is either positive or negative infinity and Fa I se otherwise.
is_nan()

Return True if the argument is a (quiet or signaling) NaN and False otherwise.

is_normal (context=None)
Return True if the argument is a normal finite number. Return Fa 1 se if the argument is zero, subnormal,
infinite or a NaN.

is_gnan()
Return True if the argument is a quiet NaN, and False otherwise.

is_signed()
Return True if the argument has a negative sign and Fa I se otherwise. Note that zeros and NaNs can both
carry signs.

is_snan()

Return True if the argument is a signaling NaN and False otherwise.

is_subnormal (context=None)

Return True if the argument is subnormal, and Fa I se otherwise.

is_zero()

Return True if the argument is a (positive or negative) zero and F'a I se otherwise.

1n (context=None)
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

1o0g10 (context=None)

Return the base ten logarithm of the operand. The result is correctly rounded using the ROUND_HALF _EVEN
rounding mode.

348

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

logb (context=None)
For a nonzero number, return the adjusted exponent of its operand as a Decimal instance. If the operand
is a zero then Decimal ('-Infinity"') is returned and the DivisionByZero flag is raised. If the
operand is an infinity then Decimal ('Infinity"') is returned.

logical_and (other, context=None)
logical_and () is alogical operation which takes two logical operands (see Logical operands). The result
is the digit-wise and of the two operands.

logical_invert (context=None)

logical_invert () is alogical operation. The result is the digit-wise inversion of the operand.

logical_or (other, context=None)
logical_or () is alogical operation which takes two logical operands (see Logical operands). The result
is the digit-wise or of the two operands.
logical_xor (other, context=None)
logical_ xor () is alogical operation which takes two logical operands (see Logical operands). The result
is the digit-wise exclusive or of the two operands.
max (other, context=None)
Like max (self, other) except that the context rounding rule is applied before returning and that NaN
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).
max_mag (other, context=None)

Similar to the max () method, but the comparison is done using the absolute values of the operands.

min (other, context=None)
Likemin (self, other) except that the context rounding rule is applied before returning and that NaN
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).
min_mag (other, context=None)

Similar to the min () method, but the comparison is done using the absolute values of the operands.

next_minus (context=None)
Return the largest number representable in the given context (or in the current thread’s context if no context
is given) that is smaller than the given operand.

next_plus (context=None)
Return the smallest number representable in the given context (or in the current thread’s context if no context
is given) that is larger than the given operand.

next_toward (other, context=None)
If the two operands are unequal, return the number closest to the first operand in the direction of the second
operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the
same as the sign of the second operand.

normalize (context=None)

Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Deci—
mal ('0') toDecimal ('0e0"'). Used for producing canonical values for attributes of an equivalence
class. For example, Decimal ('32.100"') and Decimal ('0.321000e+2") both normalize to the
equivalent value Decimal ('32.1").

number_class (context=None)

Return a string describing the class of the operand. The returned value is one of the following ten strings.

e "-Infinity", indicating that the operand is negative infinity.

9.4.

decimal — Decimal fixed point and floating point arithmetic 349

The Python Library Reference, Release 3.11.3

e "-Normal™", indicating that the operand is a negative normal number.

e "—Subnormal", indicating that the operand is negative and subnormal.
* "-Zero", indicating that the operand is a negative zero.

e "+Zero", indicating that the operand is a positive zero.

e "+Subnormal", indicating that the operand is positive and subnormal.
* "+Normal™", indicating that the operand is a positive normal number.

e "+Infinity", indicating that the operand is positive infinity.

e "NaN", indicating that the operand is a quiet NaN (Not a Number).

e "sNaN", indicating that the operand is a signaling NaN.

quantize (exp, rounding=None, context=None)

Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal ('1.41421356") .quantize (Decimal ("1.000"))
Decimal ('1.414")

Unlike other operations, if the length of the coefficient after the quantize operation would be greater than
precision, thenan TnvalidOperat ionissignaled. This guarantees that, unless there is an error condition,
the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary. In this
case, the rounding mode is determined by the rounding argument if given, else by the given context
argument; if neither argument is given the rounding mode of the current thread’s context is used.

An error is returned whenever the resulting exponent is greater than Emax or less than Etiny ().

radix ()

Return Decimal (10), the radix (base) in which the Decima I class does all its arithmetic. Included for
compatibility with the specification.

remainder_near (other, context=None)

Return the remainder from dividing self by other. This differs from self % other in that the sign of the
remainder is chosen so as to minimize its absolute value. More precisely, the return value is self — n *
other where n is the integer nearest to the exact value of self / other, and if two integers are equally
near then the even one is chosen.

If the result is zero then its sign will be the sign of self.

>>> Decimal (18) .remainder_near (Decimal (10))
Decimal ('-2")

>>> Decimal (25) .remainder_near (Decimal (10))
Decimal ('5")

>>> Decimal (35) .remainder_near (Decimal (10))
Decimal ('-5")

rotate (other, context=None)

Return the result of rotating the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of the
second operand gives the number of places to rotate. If the second operand is positive then rotation is to the
left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to
length precision if necessary. The sign and exponent of the first operand are unchanged.

350

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

same_quantum (other, context=None)
Test whether self and other have the same exponent or whether both are NaN.
This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As
an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly.
scaleb (other, context=None)
Return the first operand with exponent adjusted by the second. Equivalently, return the first operand multiplied
by 10**other. The second operand must be an integer.
shift (other, context=None)

Return the result of shifting the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of the
second operand gives the number of places to shift. If the second operand is positive then the shift is to the
left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of
the first operand are unchanged.

sqrt (context=None)

Return the square root of the argument to full precision.

to_eng_string (context=None)
Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of the
decimal place and may require the addition of either one or two trailing zeros.

For example, this converts Decimal ('123E+1"') toDecimal ('1.23E+3").

to_integral (rounding=None, context=None)
Identical tothe to_integral_value () method. The to_integral name has been kept for compat-
ibility with older versions.

to_integral_exact (rounding=None, context=None)

Round to the nearest integer, signaling Tnexact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by the rounding parameter if given, else by the given context. If neither
parameter is given then the rounding mode of the current context is used.

to_integral_value (rounding=None, context=None)

Round to the nearest integer without signaling Tnexact or Rounded. If given, applies rounding; otherwise,
uses the rounding method in either the supplied context or the current context.

Logical operands

The logical_and (), logical_invert(),logical_or(),and logical_xor () methods expect their ar-
guments to be logical operands. A logical operand is a Decimal instance whose exponent and sign are both zero, and
whose digits are all either 0 or 1.

9.4. decimal — Decimal fixed point and floating point arithmetic 351

The Python Library Reference, Release 3.11.3

9.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the get context () and setcontext ()
functions:
decimal.getcontext ()

Return the current context for the active thread.

decimal.setcontext (¢)

Set the current context for the active thread to c.
You can also use the with statement and the 1ocalcontext () function to temporarily change the active context.

decimal.localcontext (ctx=None, **kwargs)

Return a context manager that will set the current context for the active thread to a copy of ctx on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified, a copy
of the current context is used. The kwargs argument is used to set the attributes of the new context.

For example, the following code sets the current decimal precision to 42 places, performs a calculation, and then
automatically restores the previous context:

from decimal import localcontext

with localcontext () as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something()
s = +s # Round the final result back to the default precision

Using keyword arguments, the code would be the following:

from decimal import localcontext

with localcontext (prec=42) as ctx:
s = calculate_something ()
s = +s

Raises TypeError if kwargs supplies an attribute that Context doesn’t support. Raises either TypeError or
ValueError if kwargs supplies an invalid value for an attribute.

Changed in version 3.11: 1ocalcontext () now supports setting context attributes through the use of keyword
arguments.

New contexts can also be created using the Context constructor described below. In addition, the module provides
three pre-made contexts:
class decimal.BasicContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALE _UP. All flags are cleared. All traps are enabled (treated as exceptions) except
Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class decimal.ExtendedContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine. Round-
ing is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are not raised
during computations).

352 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

Because the traps are disabled, this context is useful for applications that prefer to have result value of NaN or
Infinity instead of raising exceptions. This allows an application to complete a run in the presence of conditions
that would otherwise halt the program.

class decimal .DefaultContext

This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts created by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are started
has the effect of setting system-wide defaults. Changing the fields after threads have started is not recommended
as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are Context .prec=28, Context . rounding=ROUND_HALF _EVEN, and enabled traps
for Overflow, InvalidOperation,and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class decimal.Context (prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None,
flags=None, traps=None)

Creates a new context. If a field is not specified or is None, the default values are copied from the Default -
Context. If the flags field is not specified or is None, all flags are cleared.

prec is an integer in the range [1, MAX_PREC] that sets the precision for arithmetic operations in the context.
The rounding option is one of the constants listed in the section Rounding Modes.

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave the flags
clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents. Emin must be in the
range [MIN_EMIN, 0], Emax in the range [0, MAX_EMAX].

The capitals field is either O or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise, a
lowercase e is used: Decimal ('6.02e+23").

The clamp field is either O (the default) or 1. If set to 1, the exponent e of a Decimal instance representable in
this context is strictly limited to the range Emin - prec + 1 <= e <= Emax - prec + 1.Ifclampis
0 then a weaker condition holds: the adjusted exponent of the Decimal instance is at most Emax. When clamp
is 1, a large normal number will, where possible, have its exponent reduced and a corresponding number of zeros
added to its coefficient, in order to fit the exponent constraints; this preserves the value of the number but loses
information about significant trailing zeros. For example:

>>> Context (prec=6, Emax=999, clamp=1).create_decimal('1.23e999")
Decimal ('"1.23000E+999")

A clamp value of 1 allows compatibility with the fixed-width decimal interchange formats specified in IEEE 754.

The Context class defines several general purpose methods as well as a large number of methods for doing arith-
metic directly in a given context. In addition, for each of the Decimal methods described above (with the excep-
tion of the ad justed () and as_tuple () methods) there is a corresponding Context method. For example,
for a Context instance C and Decimal instance x, C.exp (x) is equivalent to x . exp (context=C). Each
Context method accepts a Python integer (an instance of int) anywhere that a Decimal instance is accepted.

clear_flags ()
Resets all of the flags to 0.

9.4. decimal — Decimal fixed point and floating point arithmetic 353

The Python Library Reference, Release 3.11.3

clear_traps ()

Resets all of the traps to O.

New in version 3.3.

copy ()

Return a duplicate of the context.

copy_decimal (num)

Return a copy of the Decimal instance num.

create_decimal (num)

Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor, the
context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that adding zero to a sum can change the
result:

>>> getcontext () .prec 3

>>> Decimal ('3.4445') + Decimal('1.0023")

Decimal ('4.45"

>>> Decimal ('3.4445'") + Decimal (0) + Decimal('1.0023")
Decimal ('4.44")

This method implements the to-number operation of the IBM specification. If the argument is a string, no
leading or trailing whitespace or underscores are permitted.

create_decimal_from_float (f)

Creates a new Decimal instance from a float f but rounding using self as the context. Unlike the Decimal .
from_float () class method, the context precision, rounding method, flags, and traps are applied to the
conversion.

>>> context = Context (prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float (math.pi)
Decimal ('3.1415")

>>> context = Context (prec=5, traps=[Inexact])

>>> context.create_decimal_from_float (math.pi)
Traceback (most recent call last):

decimal.Inexact: None

New in version 3.1.

Etiny ()

Returns a value equal to Emin - prec + 1 which is the minimum exponent value for subnormal results.
When underflow occurs, the exponent is set to Et iny.

Etop ()

Returns a value equal to Emax - prec + 1.

The usual approach to working with decimals is to create Decima I instances and then apply arithmetic operations
which take place within the current context for the active thread. An alternative approach is to use context methods
for calculating within a specific context. The methods are similar to those for the Decimal class and are only
briefly recounted here.

354

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

abs (x)

Returns the absolute value of x.

add (x, y)

Return the sum of x and y.

canonical (x)

Returns the same Decimal object x.

compare (x, y)

Compares x and y numerically.

compare_signal (x, y)

Compares the values of the two operands numerically.

compare_total (x, y)

Compares two operands using their abstract representation.

compare_total_mag (x, y)

Compares two operands using their abstract representation, ignoring sign.

copy_abs (x)

Returns a copy of x with the sign set to 0.
copy_negate (x)

Returns a copy of x with the sign inverted.
copy_sign (x,y)

Copies the sign from y to x.
divide (x, y)

Return x divided by y.
divide_int (x,y)

Return x divided by y, truncated to an integer.
divmod (x, y)

Divides two numbers and returns the integer part of the result.
exp (x)

Returns e ** x.
fma (x, y, 7)

Returns x multiplied by y, plus z.
is_canonical (x)

Returns True if x is canonical; otherwise returns False.
is_finite (x)

Returns True if x is finite; otherwise returns False.
is_infinite (x)

Returns True if x is infinite; otherwise returns False.
is_nan (x)

Returns True if x is a qNaN or sNaN; otherwise returns False.

9.4.

decimal — Decimal fixed point and floating point arithmetic

355

The Python Library Reference, Release 3.11.3

is_normal (x)

Returns True if x is a normal number; otherwise returns False.
is_gnan (x)

Returns True if x is a quiet NaN; otherwise returns False.
is_signed (x)

Returns True if x is negative; otherwise returns False.
is_snan (x)

Returns True if x is a signaling NaN; otherwise returns False.
is_subnormal (x)

Returns True if x is subnormal; otherwise returns False.
is_zero (x)

Returns True if x is a zero; otherwise returns False.
1n (x)

Returns the natural (base e) logarithm of x.
logl0 (x)

Returns the base 10 logarithm of x.
logb (x)

Returns the exponent of the magnitude of the operand’s MSD.
logical_and (x, y)

Applies the logical operation and between each operand’s digits.
logical_invert (x)

Invert all the digits in x.
logical_or (x,y)

Applies the logical operation or between each operand’s digits.
logical_xor (x,y)

Applies the logical operation xor between each operand’s digits.
max (x, y)

Compares two values numerically and returns the maximum.
max_mag (x, y)

Compares the values numerically with their sign ignored.
min (x, y)

Compares two values numerically and returns the minimum.
min_mag (x, y)

Compares the values numerically with their sign ignored.
minus (x)

Minus corresponds to the unary prefix minus operator in Python.
multiply (x,y)

Return the product of x and y.

356 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

next_minus (x)

Returns the largest representable number smaller than x.

next_plus (x)
Returns the smallest representable number larger than x.

next_toward (x, y)

Returns the number closest to x, in direction towards y.

normalize (x)

Reduces x to its simplest form.

number_class (x)

Returns an indication of the class of x.

plus (x)

Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision and
rounding, so it is not an identity operation.

power (x, y, modulo=None)

Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x**y. If x is negative then y must be integral. The result will be inexact
unless y is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The rounding
mode of the context is used. Results are always correctly rounded in the Python version.

Decimal (0) ** Decimal (0) results in InvalidOperation, and if InvalidOperation is
not trapped, then results in Decimal ('NaN"').

Changed in version 3.3: The C module computes power () in terms of the correctly rounded exp () and
1In () functions. The result is well-defined but only “almost always correctly rounded”.

With three arguments, compute (x**y) % modulo. For the three argument form, the following restric-
tions on the arguments hold:

* all three arguments must be integral

* y must be nonnegative

e at least one of x or y must be nonzero

¢ modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context .power (x, y, modulo) isequal to the value that would be obtained

by computing (x**y) % modulo with unbounded precision, but is computed more efficiently. The

exponent of the result is zero, regardless of the exponents of x, y and modulo. The result is always exact.
quantize (x, y)

Returns a value equal to x (rounded), having the exponent of y.

radix ()
Just returns 10, as this is Decimal, :)

remainder (x, y)

Returns the remainder from integer division.
The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near (x, y)

Returns x — y * n, where n is the integer nearest the exact value of x / vy (if the result is O then its sign
will be the sign of x).

9.4. decimal — Decimal fixed point and floating point arithmetic 357

The Python Library Reference, Release 3.11.3

rotate (x, y)

Returns a rotated copy of x, y times.

same_quantum (x, y)

Returns True if the two operands have the same exponent.

scaleb (x, y)

Returns the first operand after adding the second value its exp.

shift (x,y)

Returns a shifted copy of x, y times.

sqgrt (x)

Square root of a non-negative number to context precision.

subtract (x, y)

Return the difference between x and y.

to_eng_string (x)

Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of the
decimal place and may require the addition of either one or two trailing zeros.

to_integral_exact (x)
Rounds to an integer.

to_sci_string (x)

Converts a number to a string using scientific notation.

9.4.4 Constants

The constants in this section are only relevant for the C module. They are also included in the pure Python version for
compatibility.

32-bit 64-bit

425000000 999999999999999999
decimal .MAX_PREC

425000000 999999999999999999
decimal .MAX_EMAX

-425000000 -999999999999999999
decimal .MIN_EMIN

-849999999 -1999999999999999997
decimal .MIN_ETINY

decimal.HAVE_THREADS

The value is True. Deprecated, because Python now always has threads.

Deprecated since version 3.9.

358 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

decimal .HAVE_CONTEXTVAR

The default value is True. If Pythonis configured using the —-without-decimal-contextvar
option, the C version uses a thread-local rather than a coroutine-local context and the value is False. This is
slightly faster in some nested context scenarios.

New in version 3.9: backported to 3.7 and 3.8.

9.4.5 Rounding modes

decimal .ROUND_CEILING

Round towards Infinity.
decimal .ROUND_DOWN

Round towards zero.
decimal .ROUND_FLOOR

Round towards —-Infinity.
decimal .ROUND_HALF_ DOWN

Round to nearest with ties going towards zero.
decimal .ROUND_HALF_EVEN

Round to nearest with ties going to nearest even integer.
decimal.ROUND_HALF_ UP

Round to nearest with ties going away from zero.
decimal .ROUND_UP

Round away from zero.

decimal .ROUND_O05UP

Round away from zero if last digit after rounding towards zero would have been 0 or 5; otherwise round towards
zZero.

9.4.6 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for informa-
tional purposes (for instance, to determine whether a computation was exact). After checking the flags, be sure to clear
all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For example,
if the DivisionByZerotrapisset,thena DivisionByZero exception is raised upon encountering the condition.

class decimal.Clamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible, the
exponent is reduced to fit by adding zeros to the coefficient.

class decimal.DecimalException

Base class for other signals and a subclass of ArithmeticError.

9.4. decimal — Decimal fixed point and floating point arithmetic 359

The Python Library Reference, Release 3.11.3

class decimal.DivisionByZero

Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not trapped,
returns Infinity or —Infinity with the sign determined by the inputs to the calculation.

class decimal.Inexact

Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag or
trap is used to detect when results are inexact.

class decimal.InvalidOperation

An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible causes
include:

Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0

Infinity % x

sgqrt (-x) and x > 0
0 ** 0

X ** (non—-integer)
x ** Infinity

class decimal.Overflow
Numerical overflow.
Indicates the exponent is larger than Context .Emax after rounding has occurred. If not trapped, the result
depends on the rounding mode, either pulling inward to the largest representable finite number or rounding outward
to Infinity. Ineither case, Tnexact and Rounded are also signaled.

class decimal.Rounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5. 00 to 5. 0). If not
trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class decimal.Subnormal

Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result un-
changed.
class decimal.Underflow

Numerical underflow with result rounded to zero.
Occurs when a subnormal result is pushed to zero by rounding. Tnexact and Subnormal are also signaled.
class decimal.FloatOperation

Enable stricter semantics for mixing floats and Decimals.

If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal constructor, cre—
ate_decimal () and all comparison operators. Both conversion and comparisons are exact. Any occurrence
of a mixed operation is silently recorded by setting 1 oat Operat ion in the context flags. Explicit conversions
with from_ float () or create_decimal_from_float () do not set the flag.

360 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All other mixed
operations raise F'loatOperation.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError (exceptions.Exception)
DecimalException
Clamped
DivisionByZero (DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow (Inexact, Rounded)
Underflow (Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal
FloatOperation (DecimalException, exceptions.TypeError)

9.4.7 Floating Point Notes
Mitigating round-off error with increased precision
The use of decimal floating point eliminates decimal representation error (making it possible to represent 0 . 1 exactly);

however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities resulting in
loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with insufficient
precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext () .prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111")
>>> (u + v) + w

Decimal ('9.5111111")

>>> u + (v + w)

Decimal ('10")

>>> u, v, w = Decimal (20000), Decimal (-6), Decimal ('6.0000003")
>>> (u*v) + (u*w)

Decimal ('0.01")

>>> u * (vtw)

Decimal ('0.0060000")

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss of
significance:

>>> getcontext () .prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111")
>>> (u + v) + w

Decimal ('9.51111111")

>>> u + (v + w)

Decimal ('"9.51111111")

>>>

>>> u, v, w = Decimal (20000), Decimal (-6), Decimal ('6.0000003")

>>> (u*v) + (u*w)

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 361

The Python Library Reference, Release 3.11.3

(continued from previous page)

Decimal ('0.0060000")
>>> u * (vtw)
Decimal ('0.0060000")

Special values

The number system for the dec ima 1 module provides special values including NaN, sNaN, -Infinity, Infinity,
and two zeros, +0 and —0.

Infinities can be constructed directly with: Decimal ('Infinity"'). Also, they can arise from dividing by zero when
the DivisionByZero signal is not trapped. Likewise, when the Overf1ow signal is not trapped, infinity can result
from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, indeterminate
numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the TnvalidOperat ion signal is trapped, raise an exception.
For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once created, will flow
through other computations always resulting in another NaN. This behavior can be useful for a series of computations that
occasionally have missing inputs — it allows the calculation to proceed while flagging specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value when an
invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test for
equality where one of the operands is a quiet or signaling NaN always returns F'alse (even when doing Deci-
mal ('NaN')==Decimal ('NaN"')), while a test for inequality always returns True. An attempt to compare two
Decimals using any of the <, <=, > or >= operators will raise the TnvalidOperation signal if either operand is a NaN,
and return False if this signal is not trapped. Note that the General Decimal Arithmetic specification does not specify
the behavior of direct comparisons; these rules for comparisons involving a NaN were taken from the IEEE 854 standard
(see Table 3 in section 5.7). To ensure strict standards-compliance, use the compare () and compare_signal ()
methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the calculation
had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros are treated as
equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating point
representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal ('Infinity")
Decimal ('OE-1000026")

9.4.8 Working with threads

The getcontext () function accesses a different Context object for each thread. Having separate thread contexts
means that threads may make changes (such as get context () . prec=10) without interfering with other threads.

Likewise, the set context () function automatically assigns its target to the current thread.

If setcontext () has not been called before getcontext (), then getcontext () will automatically create a
new context for use in the current thread.

362 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.3

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each thread will
use the same values throughout the application, directly modify the DefaultContext object. This should be done before
any threads are started so that there won’t be a race condition between threads calling get context (). For example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy ()
DefaultContext.traps[InvalidOperation] = 1

setcontext (DefaultContext)

Afterwards, the threads can be started
tl.start ()
t2.start ()
t3.start ()

9.4.9 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

def moneyfmt (value, places=2, curr='', sep=',', dp='.",
pos='"', neg='-"', trailneg="'"):
"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)
only specify as blank when places 1s zero
pos: optional sign for positive numbers: '+', space or blank
neg: optional sign for negative numbers: '-', '(', space or blank
trailneg:optional trailing minus indicator: '-', ')'", space or blank

>>> d = Decimal ('-1234567.8901")

>>> moneyfmt (d, curr='$")

'-$1,234,567.89"'

>>> moneyfmt (d, places=0, sep='."', dp='"', neg='"', trailneg='-")
'1.234.568-"

>>> moneyfmt (d, curr='S$', neg='(', trailneg="')")
'($1,234,567.89) "'

>>> moneyfmt (Decimal (123456789), sep=' ")

'123 456 789.00"

>>> moneyfmt (Decimal ('-0.02"'), neg='<', trailneg='>")

'<0.02>"

g = Decimal (10) ** -places # 2 places ——> '0.01"'
sign, digits, exp = value.quantize(q) .as_tuple()
result = []

digits = list (map(str, digits))
build, next = result.append, dig