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This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be
exact and complete. The semantics of non-essential built-in object types and of the built-in functions and modules
are described in library-index. For an informal introduction to the language, see tutorial-index. For C or C++
programmers, two additional manuals exist: extending-index describes the high-level picture of how to write a Python
extension module, and the c-api-index describes the interfaces available to C/C++ programmers in detail.
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CHAPTER
ONE

INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but
will leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python
from this document alone, you might have to guess things and in fact you would probably end up implementing quite
a different language. On the other hand, if you are using Python and wonder what the precise rules about a particular
area of the language are, you should definitely be able to find them here. If you would like to see a more formal
definition of the language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, CPython is the
one Python implementation in widespread use (although alternate implementations continue to gain support), and
its particular quirks are sometimes worth being mentioned, especially where the implementation imposes additional
limitations. Therefore, you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in
library-index. A few built-in modules are mentioned when they interact in a significant way with the language defi-
nition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.

Known implementations include:

CPython This is the original and most-maintained implementation of Python, written in C. New language features
generally appear here first.

Jython Python implemented in Java. This implementation can be used as a scripting language for Java applications,
or can be used to create applications using the Java class libraries. It is also often used to create tests for Java
libraries. More information can be found at the Jython website.

Python for .NET This implementation actually uses the CPython implementation, but is a managed .NET applica-
tion and makes .NET libraries available. It was created by Brian Lloyd. For more information, see the Python
for .NET home page.

IronPython An alternate Python for NET. Unlike Python.NET, this is a complete Python implementation that
generates IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the
original creator of Jython. For more information, see the IronPython website.

PyPy An implementation of Python written completely in Python. It supports several advanced features not found
in other implementations like stackless support and a Just in Time compiler. One of the goals of the project is
to encourage experimentation with the language itself by making it easier to modify the interpreter (since it is
written in Python). Additional information is available on the PyPy project’s home page.
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Each of these implementations varies in some way from the language as documented in this manual, or introduces
specific information beyond what’s covered in the standard Python documentation. Please refer to the implementation-
specific documentation to determine what else you need to know about the specific implementation you're using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style
of definition:

name lc_letter (lc_letter | "_")*
lc_letter = at.,.,."z"

The first line says that a name is an 1c_letter followed by a sequence of zero or more 1c_letters and
underscores. An lc_letter in turn is any of the single characters 'a' through 'z'. (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and : : =. A vertical bar (| ) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([ ]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by
three dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between
angular brackets (<. . . >) gives an informal description of the symbol defined; e.g., this could be used to describe
the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Chapter 1. Introduction



CHAPTER
TWO

LEXICAL ANALYSIS

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer.
This chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding decla-
ration and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is
raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any
of the standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the
Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the
ASCII CR (return) character. All of these forms can be used equally, regardless of platform. The end of input also
serves as an implicit terminator for the final physical line.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are
ignored by the syntax.
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2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([-\
w. ] +), this comment is processed as an encoding declaration; the first group of this expression names the encoding
of the source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first
line must also be a comment-only line. The recommended forms of an encoding expression are

’# —*— coding: <encoding-name> —*-

which is recognized also by GNU Emacs, and

’# vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. In addition, if the first bytes of the file are
the UTF-8 byte-order mark (b ' \xef\xbb\xbf "), the declared file encoding is UTF-8 (this is supported, among
others, by Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding
is used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

6 Chapter 2. Lexical analysis



The Python Language Reference, Release 3.11.1

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e.
one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of
spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to
use a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different
platforms may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring
on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT
token is generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that
is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
# Compute the 1list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:1] + 1[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1] + 1[i+1:]
p = perm(1[:1] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

2.1. Line structure 7
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(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes
as defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the
uppercase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits O through
9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier = xid _start xid_continue*

id_start = <all characters in general categories Lu, L1, Lt, Lm, Lo,
id_continue = <all characters in id_start, plus characters in the categories Mn,
xid_start = <all characters in id_start whose NFKC normalization is in "id_start

xid_continue

The Unicode category codes mentioned above stand for:
e Lu - uppercase letters
* LI - lowercase letters
[t - titlecase letters
¢ Lm - modifier letters
* Lo - other letters
* NI - letter numbers
* Mn - nonspacing marks
¢ Mc - spacing combining marks
e Nd - decimal numbers

* Pc - connector punctuations
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<all characters in id_continue whose NFKC normalization is in


https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/

The Python Language Reference, Release 3.11.1

e Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
* Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 14.0.0 can be found at https://www.
unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords

New in version 3.10.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers mat ch,
case and _ can syntactically act as keywords in contexts related to the pattern matching statement, but this distinction
is done at the parser level, not when tokenizing.

As soft keywords, their use with pattern matching is possible while still preserving compatibility with existing code
that uses match, case and __ as identifier names.

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns
of leading and trailing underscore characters:

_* Not imported by from module import *.

_ Ina case pattern within a mat ch statement, _ is a soft keyword that denotes a wildcard.

Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is
stored in the builtins module, alongside built-in functions like print.)

Elsewhere, __is a regular identifier. It is often used to name “special” items, but it is not special to Python itself.

Note: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

It is also commonly used for unused variables.

__*__ System-defined names, informally known as “dunder” names. These names are defined by the interpreter
and its implementation (including the standard library). Current system names are discussed in the Special
method names section and elsewhere. More will likely be defined in future versions of Python. Any use of
___*___names, in any context, that does not follow explicitly documented use, is subject to breakage without
warning.

2.3. Identifiers and keywords 9



https://www.unicode.org/Public/14.0.0/ucd/PropList.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Release 3.11.1

__* Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between “private” attributes of base and derived classes. See
section Identifiers (Names).

2.4 Literals
Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix] (shortstring | longstring)
stringprefix = "™ | "y" | "R" | "U" | "£" | "E"

| "fr"™ | "Fr" | "fR" | "FR" | "rf" | "rg" | "Rf" | "RE"
shortstring = "'" shortstringitem* "'"™ | '"' shortstringitem* '"'
longstring = "' Jongstringitem* "'''" | '"""' Jongstringitem* '"""'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral = bytesprefix(shortbytes | longbytes)
bytesprefix = "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "rr'" longbytesitem* "'''" | '"""' Jongbytesitem* '"""!'
shortbytesitem = shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseq
shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseqg = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the st ring-
prefixor bytesprefix and the rest of the literal. The source character set is defined by the encoding declara-
tion; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted
strings). The backslash (\) character is used to escape characters that otherwise have a special meaning, such as
newline, backslash itself, or the quote character.

Bytes literals are always prefixed with 'b' or 'B'; they produce an instance of the bytes type instead of the str
type. They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with
escapes.

Both string and bytes literals may optionally be prefixed with a letter ' r' or 'R"'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, ' \U' and ' \u"' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur ' syntax
is not supported.

New in version 3.3: The 'rb ' prefix of raw bytes literals has been added as a synonym of 'br'.

New in version 3.3: Support for the unicode legacy literal (u' value ') was reintroduced to simplify the maintenance
of dual Python 2.x and 3.x codebases. See PEP 414 for more information.
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A string literal with ' £' or 'F "' in its prefix is a formatted string literal; see Formatted string literals. The ' £' may
be combined with 'r ', but not with 'b' or 'u"', therefore raw formatted strings are possible, but formatted bytes
literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the literal. (A “quote” is the character used to open the literal, i.e. either ' or ".)

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to
rules similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence | Meaning Notes
\<newline> Backslash and newline ignored | (1)
A\ Backslash (\)

\' Single quote (')

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo | (2,4)
\xhh Character with hex value hh (3.4)

Escape sequences only recognized in string literals are:

Escape Sequence | Meaning Notes
\N{name} Character named name in the Unicode database | (5)
\UXXXX Character with 16-bit hex value xxxx (6)
\UXXXXXXXX Character with 32-bit hex value xxxxxxxx @)

Notes:

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
. backslashes or newline characters.'
'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.
(2) Asin Standard C, up to three octal digits are accepted.

Changed in version 3.11: Octal escapes with value larger than 00377 produce a DeprecationWarning.
In a future Python version they will be a SyntaxWarning and eventually a SyntaxError.

(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) Changed in version 3.3: Support for name aliases' has been added.
(6) Exactly four hex digits are required.
(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in
the result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more

! https://www.unicode.org/Public/11.0.0/ucd/NameAliases. txt
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easily recognized as broken.) It is also important to note that the escape sequences only recognized in string literals
fall into the category of unrecognized escapes for bytes literals.

Changed in version 3.6: Unrecognized escape sequences produce a DeprecationWarning. Ina
future Python version they will be a SyntaxWarning and eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r" \ " is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a
single backslash (since the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions, are
allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' isequivalentto "hel-
loworld". This feature can be used to reduce the number of backslashes needed, to split long strings conveniently
across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za—z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+ operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings), and formatted string literals may be
concatenated with plain string literals.

2.4.3 Formatted string literals

New in version 3.6.

A formatted string literal or f-string is a string literal that is prefixed with ' £' or 'F'. These strings may contain
replacement fields, which are expressions delimited by curly braces { }. While other string literals always have a
constant value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string).
After decoding, the grammar for the contents of the string is:

f_string n= (Iiteral_char | "{{" | "}}" | replacement_field)*
replacement_field = "{" f expression ["="] ["!" conversion] [":" format_spec]
f_expression = (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression
conversion u= "s" | "r" | "a"
format_spec = (Iiteral_char | NULL | replacement_field)™*
literal_char n= <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{"' or '} }'
are replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field,
which starts with a Python expression. To display both the expression text and its value after evaluation, (useful in
debugging), an equal sign ' =" may be added after the expression. A conversion field, introduced by an exclamation
point ' ! ' may follow. A format specifier may also be appended, introduced by a colon ' : '. A replacement field
ends with a closing curly bracket '} '.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with
a few exceptions. An empty expression is not allowed, and both Iambda and assignment expressions : = must be
surrounded by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings),
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but they cannot contain comments. Each expression is evaluated in the context where the formatted string literal
appears, in order from left to right.

Changed in version 3.7: Prior to Python 3.7, an awa i t expression and comprehensions containing an async for
clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '=" is provided, the output will have the expression text, the '="' and the evaluated value.
Spaces after the opening brace '{ ', within the expression and after the '="' are all retained in the output. By
default, the '=" causes the repr () of the expression to be provided, unless there is a format specified. When a
format is specified it defaults to the str () of the expression unless a conversion ' ! r' is declared.

New in version 3.8: The equal sign '=".

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' ! s
calls str () ontheresult, ' ! r' calls repr (),and '!a"' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed to the ___format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own con-
version fields and format specifiers, but may not include more deeply nested replacement fields. The format specifier
mini-language is the same as that used by the st r. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"

>>> f"He said his name is {name L

"He said his name is 'Fred'."

>>> f"He said his name is {repr(name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f'"result: {value:{width/. {precision} /" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, %Y}" # using date format specifier

'January 27, 2017'
>>> f"{today=:%B %d, %Y}" # using date format specifier and debugging
'today=January 27, 2017'

>>> number = 1024

>>> f" {number:#0x}" # using integer format specifier
'0x400'

>>> foo = "bar"

>>> f"{ foo " # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"/line "

'line = "The mill\'s closed"'

>>> f"/line 20"

"line = The mill's closed "

>>> f"{line 20"

'line = "The mill\'s closed" '

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must
not conflict with the quoting used in the outer formatted string literal:

f'abe fal"
f'abc {al'

"]} def" # error: outer string literal ended prematurely

X
x']} def" # workaround: use different quoting

Backslashes are not allowed in format expressions and will raise an error:
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f'"newline: {ord('\n') }" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n'")
>>> f'"newline: {newline}"
'newline: 10"

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def fool():
f"Not a docstring"

>>> foo. doc_ is None

See also PEP 498 for the proposal that added formatted string literals, and str. format (), which uses a related
format string mechanism.

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no
complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like —1 is actually an expression composed of the unary
operator ‘-’ and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer n= decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"1 digit)* | "O0"+ (["_"] "OQ")*
bininteger = "o" ("b" | "B") (["_"] bindigit)+

octinteger = "o" ("o"™ | "OM") (["_"] octdigit)+

hexinteger = oM ("x"™ | "X") (["_"] hexdigit)+

nonzerodigit = mar,L.L"on

digit = "om..."9"

bindigit BES "o | "

octdigit u= "om...mm

hexdigit = digit | "a"..."f" | "A"..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for
enhanced readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 Ob_1110_0101

Changed in version 3.6: Underscores are now allowed for grouping purposes in literals.
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2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat u= [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)™*

fraction = "." digitpart

exponent RES ("e"™ | "E") ["+" | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077e010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As
in integer literals, underscores are supported for digit grouping.

Some examples of floating point literals:

3.14 10. .001 1lel00 3.14e-10 0e0 3.14_15_93

Changed in version 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero
real part, add a floating point number to it, e.g., (3+4 7). Some examples of imaginary literals:

’3.14j 10.3 1073 .00173 1e10073 3.14e-1073 3.14_15_933

2.5 Operators

The following tokens are operators:

+ - * ok / // % @
<< >> & | ~ ~ He

< > <= >= == 1=

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

( ) [ ] { }

7 I = —->

+= -= *= /= //= &= @=

&= | = A= >>= << * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

2.5. Operators 15




The Python Language Reference, Release 3.11.1

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

E " # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

’ $ ?
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CHAPTER
THREE

DATA MODEL

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer”, code is
also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you
may think of it as the object’s address in memory. The ‘i s* operator compares the identity of two objects; the 1d ()
function returns an integer representing its identity.

CPython implementation detail: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and also defines
the possible values for objects of that type. The t ype () function returns an object’s type (which is an object itself).
Like its identity, an object’s fype is also unchangeable.'

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains
areference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same
as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed
detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. See the documentation of the gc module for information
on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change. Do
not depend on immediate finalization of objects when they become unreachable (so you should always close files
explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception with a ‘t ry...except’ statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close () method. Programs are
strongly recommended to explicitly close such objects. The ‘try... finally’ statement and the ‘with’ statement
provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists
and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability

11t is possible in some cases to change an object’s type, under certain controlled conditions. Tt generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.
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of a container, only the identities of the immediately contained objects are implied. So, if an immutable container
(like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1, a and b may
or may not refer to the same object with the value one, depending on the implementation, but afterc = []; d =
[1, c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d [1
assigns the same object to both ¢ and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be
provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing ‘special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
name None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions
that don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed
through the built-in name Not Implemented. Numeric methods and rich comparison methods should return
this value if they do not implement the operation for the operands provided. (The interpreter will then try the
reflected operation, or some other fallback, depending on the operator.) It should not be evaluated in a boolean
context.

See implementing-the-arithmetic-operations for more details.

Changed in version 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
literal . . . or the built-in name E111ipsis. Its truth value is true.

numbers .Number These are created by numeric literals and returned as results by arithmetic operators and arith-
metic built-in functions. Numeric objects are immutable; once created their value never changes. Python
numbers are of course strongly related to mathematical numbers, but subject to the limitations of numerical
representation in computers.

The string representations of the numeric classes, computed by ___repr_ () and __str__ (), have the
following properties:

» They are valid numeric literals which, when passed to their class constructor, produce an object having
the value of the original numeric.

¢ The representation is in base 10, when possible.
» Leading zeros, possibly excepting a single zero before a decimal point, are not shown.
* Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.
* A sign is shown only when the number is negative.
Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral These represent elements from the mathematical set of integers (positive and nega-
tive).

There are two types of integers:
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Integers (int) These represent numbers in an unlimited range, subject to available (virtual) memory
only. For the purpose of shift and mask operations, a binary representation is assumed, and negative
numbers are represented in a variant of 2’s complement which gives the illusion of an infinite string
of sign bits extending to the left.

Booleans (bool) These represent the truth values False and True. The two objects representing the
values False and True are the only Boolean objects. The Boolean type is a subtype of the integer
type, and Boolean values behave like the values O and 1, respectively, in almost all contexts, the
exception being that when converted to a string, the strings "False" or "True" are returned,
respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and
mask operations involving negative integers.

numbers .Real (float) These represent machine-level double precision floating point numbers. You are
at the mercy of the underlying machine architecture (and C or Java implementation) for the accepted
range and handling of overflow. Python does not support single-precision floating point numbers; the
savings in processor and memory usage that are usually the reason for using these are dwarfed by the
overhead of using objects in Python, so there is no reason to complicate the language with two kinds of
floating point numbers.

numbers .Complex (complex) These represent complex numbers as a pair of machine-level double pre-
cision floating point numbers. The same caveats apply as for floating point numbers. The real and imag-
inary parts of a complex number z can be retrieved through the read-only attributes z . real and z .
imag.

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function len ()
returns the number of items of a sequence. When the length of a sequence is n, the index set contains the
numbers O, 1, ..., n-1. Item i of sequence a is selected by a [1].

Sequences also support slicing: a [1i: 7] selects all items with index k such that i <= k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts
at 0.

Some sequences also support “extended slicing” with a third “step” parameter: a [1: j : k] selects all items of
a with index x where x = 1 + n*k,n>=0andi<=x <.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created. (If the
object contains references to other objects, these other objects may be mutable and may be changed;
however, the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings A string is a sequence of values that represent Unicode code points. All the code points in
the range U+0000 - U+10FFFF can be represented in a string. Python doesn’t have a char
type; instead, every code point in the string is represented as a string object with length 1. The
built-in function ord () converts a code point from its string form to an integer in the range 0
— 10FFFF; chr () converts an integer in the range 0 — 10FFFF to the corresponding length
1 string object. str.encode () can be used to convert a str to bytes using the given text
encoding, and bytes.decode () can be used to achieve the opposite.

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing
a comma to an expression (an expression by itself does not create a tuple, since parentheses must be
usable for grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

Bytes A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the
range 0 <=x < 256. Bytes literals (like b ' abc ') and the built-in bytes () constructor can be used
to create bytes objects. Also, bytes objects can be decoded to strings via the decode () method.

Mutable sequences Mutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignment and de 1 (delete) statements.

There are currently two intrinsic mutable sequence types:
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Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated
list of expressions in square brackets. (Note that there are no special cases needed to form lists of
length O or 1.)

Byte Arrays A bytearray object is a mutable array. They are created by the built-in bytearray ()
constructor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the
same interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type, as does the
collections module.

Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by
any subscript. However, they can be iterated over, and the built-in function len () returns the number of
items in a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and
computing mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the
normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0), only one of them can
be contained in a set.

There are currently two intrinsic set types:

Sets These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add ().

Frozen sets These represent an immutable set. They are created by the built-in frozenset () constructor.
As a frozenset is immutable and hashable, it can be used again as an element of another set, or as a
dictionary key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k ] selects
the item indexed by k from the mapping a; this can be used in expressions and as the target of assignments or
de 1 statements. The built-in function 1en () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of
values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity, the reason being that the efficient implementation of
dictionaries requires a key’s hash value to remain constant. Numeric types used for keys obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0) then they can be used
interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were
added sequentially over the dictionary. Replacing an existing key does not change the order, however
removing a key and re-inserting it will add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dbm. ndbm and dbm. gnu provide additional examples of mapping types, as
does the collections module.

Changed in version 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In
CPython 3.6, insertion order was preserved, but it was considered an implementation detail at that time
rather than a language guarantee.

Callable types These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section Function
definitions). It should be called with an argument list containing the same number of items as the function’s
formal parameter list.

Special attributes:
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Attribute Meaning

__doc___ The function’s documentation string, or None if Writable
unavailable; not inherited by subclasses.

__name___ The function’s name. Writable

__qualname_ The function’s qualified name. Writable
New in version 3.3.

_ _module_ The name of the module the function was defined in, or Writable
None if unavailable.

__defaults___ A tuple containing default argument values for those Writable

arguments that have defaults, or None if no arguments
have a default value.

__code___ The code object representing the compiled function body. Writable
__globals___ A reference to the dictionary that holds the function’s Read-only
global variables — the global namespace of the module in
which the function was defined.

_ dict__ The namespace supporting arbitrary function attributes. Writable
__closure___ None or a tuple of cells that contain bindings for the Read-only
function’s free variables. See below for information on the
cell_contents attribute.

__annotations___ | A dict containing annotations of parameters. The keys of Writable
the dict are the parameter names, and 'return' for the
return annotation, if provided. For more information on
working with this attribute, see annotations-howto.
__kwdefaults___ A dict containing defaults for keyword-only parameters. Writable

Most of the attributes labelled “Writable” check the type of the assigned value.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to
attach metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note that
the current implementation only supports function attributes on user-defined functions. Function attributes
on built-in functions may be supported in the future.

A cell object has the attribute ce11_contents. This can be used to get the value of the cell, as well
as set the value.

Additional information about a function’s definition can be retrieved from its code object; see the de-
scription of internal types below. The ce 11l type can be accessed in the t ypes module.

Instance methods An instance method object combines a class, a class instance and any callable object (nor-
mally a user-defined function).

Special read-only attributes: ___self _is the class instance object, __func___is the function object;
__doc___is the method’s documentation (same as ___func__._ doc__);_ name___isthe method
name (same as ___func___._ name_ ); _ module__is the name of the module the method was
defined in, or None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying func-
tion object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance
of that class), if that attribute is a user-defined function object or a class method object.

When an instance method object is created by retrieving a user-defined function object from a class via
one of its instances, its __self___ attribute is the instance, and the method object is said to be bound.
The new method’s ___func___ attribute is the original function object.

When an instance method object is created by retrieving a class method object from a class or instance,
its __self__ attribute is the class itself, and its ___func___ attribute is the function object underlying
the class method.

When an instance method object is called, the underlying function (___func__) is called, inserting the
class instance (__self__)in front of the argument list. For instance, when C is a class which contains a
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definition for a function f (), and x is an instance of C, calling x . £ (1) is equivalent to calling C. £ (x,
1).

When an instance method object is derived from a class method object, the “class instance” stored in
__self__ will actually be the class itself, so that calling either x. £ (1) or C.f (1) is equivalent to
calling £ (C, 1) where f is the underlying function.

Note that the transformation from function object to instance method object happens each time the at-
tribute is retrieved from the instance. In some cases, a fruitful optimization is to assign the attribute
to a local variable and call that local variable. Also notice that this transformation only happens for
user-defined functions; other callable objects (and all non-callable objects) are retrieved without trans-
formation. It is also important to note that user-defined functions which are attributes of a class instance
are not converted to bound methods; this only happens when the function is an attribute of the class.

Generator functions A function or method which uses the y i e 1 d statement (see section The yield statement)

is called a generator function. Such a function, when called, always returns an iferator object which can be
used to execute the body of the function: calling the iterator’s iterator.__next__ () method will
cause the function to execute until it provides a value using the yield statement. When the function
executes a return statement or falls off the end, a StopIteration exception is raised and the
iterator will have reached the end of the set of values to be returned.

Coroutine functions A function or method which is defined using async def is called a coroutine function.

Such a function, when called, returns a coroutine object. It may contain await expressions, as well as
async withand async for statements. See also the Coroutine Objects section.

Asynchronous generator functions A function or method which is defined using async def and which

uses the yield statement is called a asynchronous generator function. Such a function, when called,
returns an asynchronous iterator object which can be used in an async for statement to execute the
body of the function.

Calling the asynchronous iterator’s aiterator.__anext__ method will return an awaitable which
when awaited will execute until it provides a value using the yield expression. When the function
executes an empty return statement or falls off the end, a StopAsyncIteration exception is
raised and the asynchronous iterator will have reached the end of the set of values to be yielded.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in functions

are len () and math.sin () (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributes: ___doc___ is the function’s
documentation string, or None if unavailable; __name___is the function’s name; self_  issetto
None (but see the next item); __module__is the name of the module the function was defined in or
None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed

to the C function as an implicit extra argument. An example of a built-in methodis alist .append (),
assuming alist is a list object. In this case, the special read-only attribute __self _ is set to the object
denoted by alist.

Classes Classes are callable. These objects normally act as factories for new instances of themselves, but

variations are possible for class types that override ___new___ (). The arguments of the call are passed
to __new__ () and, in the typical case,to ___init__ () to initialize the new instance.

Class Instances Instances of arbitrary classes can be made callable by defininga ___call__ () method in

their class.

Modules Modules are a basic organizational unit of Python code, and are created by the import system as invoked

either by the import statement, or by calling functions such as importlib.import_module () and
built-in __import__ (). A module object has a namespace implemented by a dictionary object (this is the
dictionary referenced by the __globals___ attribute of functions defined in the module). Attribute references
are translated to lookups in this dictionary, e.g., m. x is equivalent tom.__dict__ ["x"]. A module object
does not contain the code object used to initialize the module (since it isn’t needed once the initialization is

done).
Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
_ dict_ ["x"] = 1.
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Predefined (writable) attributes:
__name__ The module’s name.
__doc___ The module’s documentation string, or None if unavailable.

_ file__ The pathname of the file from which the module was loaded, if it was loaded from a
file. The _ file  attribute may be missing for certain types of modules, such as C modules
that are statically linked into the interpreter. For extension modules loaded dynamically from
a shared library, it’s the pathname of the shared library file.

__annotations___ A dictionary containing variable annotations collected during module body
execution. For best practices on working with __annotations__, please see annotations-
howto.

Special read-only attribute: ___dict___ is the module’s namespace as a dictionary object.

CPython implementation detail: Because of the way CPython clears module dictionaries, the module dic-
tionary will be cleared when the module falls out of scope even if the dictionary still has live references. To
avoid this, copy the dictionary or keep the module around while using its dictionary directly.

Custom classes Custom class types are typically created by class definitions (see section Class definitions). A class
has a namespace implemented by a dictionary object. Class attribute references are translated to lookups in
this dictionary, e.g., C . x is translated to C.__dict__ ["x"] (although there are a number of hooks which
allow for other means of locating attributes). When the attribute name is not found there, the attribute search
continues in the base classes. This search of the base classes uses the C3 method resolution order which behaves
correctly even in the presence of ‘diamond’ inheritance structures where there are multiple inheritance paths
leading back to a common ancestor. Additional details on the C3 MRO used by Python can be found in the
documentation accompanying the 2.3 release at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an
instance method object whose __self__ attribute is C. When it would yield a static method object, it is trans-
formed into the object wrapped by the static method object. See section lmplementing Descriptors for another
way in which attributes retrieved from a class may differ from those actually contained inits __dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).
Special attributes:

_ _name___ The class name.

__module___ The name of the module in which the class was defined.

__dict__ The dictionary containing the class’s namespace.

__bases___ A tuple containing the base classes, in the order of their occurrence in the base class
list.

_ _doc___ The class’s documentation string, or None if undefined.

__annotations___ A dictionary containing variable annotations collected during class body
execution. For best practices on working with __annotations__, please see annotations-
howto.

Class instances A class instance is created by calling a class object (see above). A class instance has a namespace
implemented as a dictionary which is the first place in which attribute references are searched. When an
attribute is not found there, and the instance’s class has an attribute by that name, the search continues with
the class attributes. If a class attribute is found that is a user-defined function object, it is transformed into an
instance method object whose ___self_  attribute is the instance. Static method and class method objects
are also transformed; see above under “Classes”. See section /mplementing Descriptors for another way in
which attributes of a class retrieved via its instances may differ from the objects actually stored in the class’s
__dict__. If no class attribute is found, and the object’s class has a __getattr__ () method, that is
called to satisfy the lookup.
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Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has
a__setattr__ () or__delattr__ () method, this is called instead of updating the instance dictionary
directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special
names. See section Special method names.

Special attributes: ___dict___is the attribute dictionary; ___class___is the instance’s class.

I/O objects (also known as file objects) A file object represents an open file. Various shortcuts are available to

create file objects: the open () built-in function, and also os . popen (), os.fdopen (), and the make-
file () method of socket objects (and perhaps by other functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to
the interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow
the interface defined by the 10. Text IOBase abstract class.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change

with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or bytecode. The difference be-
tween a code object and a function object is that the function object contains an explicit reference to
the function’s globals (the module in which it was defined), while a code object contains no context; also
the default argument values are stored in the function object, not in the code object (because they repre-
sent values calculated at run-time). Unlike function objects, code objects are immutable and contain no
references (directly or indirectly) to mutable objects.

Special read-only attributes: co_name gives the function name; co_qualname gives the fully qualified
function name; co_argcount is the total number of positional arguments (including positional-only
arguments and arguments with default values); co_posonlyargcount is the number of positional-
only arguments (including arguments with default values); co_kwonlyargcount is the number of
keyword-only arguments (including arguments with default values); co_nlocals is the number of local
variables used by the function (including arguments); co_varnames is a tuple containing the names of
the local variables (starting with the argument names); co_cellvars is a tuple containing the names of
local variables that are referenced by nested functions; co_freevars is a tuple containing the names of
free variables; co_code is a string representing the sequence of bytecode instructions; co_constsisa
tuple containing the literals used by the bytecode; co_names is a tuple containing the names used by the
bytecode; co_filename is the filename from which the code was compiled; co_firstlineno is
the first line number of the function; co_lnotab is a string encoding the mapping from bytecode offsets
to line numbers (for details see the source code of the interpreter); co_stacksi ze is the required stack
size; co_flags is an integer encoding a number of flags for the interpreter.

The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the *argu-
ments syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if the function
uses the * *keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set if the function is
a generator.

Future feature declarations (from __ future_  import division)alsousebitsin co_flags
to indicate whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if
the function was compiled with future division enabled; bits 0x10 and 0x1000 were used in earlier
versions of Python.

Other bits in co_f1ags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the
function, or None if undefined.

codeobject.co_positions ()
Returns an iterable over the source code positions of each bytecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column,
end_column). The i-th tuple corresponds to the position of the source code that compiled to the
i-th instruction. Column information is O-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:
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* Running the interpreter with —X no_debug_ranges.

* Loading a pyc file compiled while using ~X no_debug_ranges.

* Position tuples corresponding to artificial instructions.

* Line and column numbers that can’t be represented due to implementation specific limitations.
When this occurs, some or all of the tuple elements can be None.

New in version 3.11.

Note:  This feature requires storing column positions in code objects which may result in a
small increase of disk usage of compiled Python files or interpreter memory usage. To avoid
storing the extra information and/or deactivate printing the extra traceback information, the —X
no_debug_ranges command line flag or the PYTHONNODEBUGRANGES environment vari-
able can be used.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below),
and are also passed to registered trace functions.

Special read-only attributes: £_back is to the previous stack frame (towards the caller), or None if
this is the bottom stack frame; £_code is the code object being executed in this frame; £_locals is
the dictionary used to look up local variables; £_globals is used for global variables; £_builtins
is used for built-in (intrinsic) names; £_lasti gives the precise instruction (this is an index into the
bytecode string of the code object).

Accessing f_code raises an auditing event object._ _getattr__ with arguments obj and
"f_code".

Special writable attributes: £_trace, if not None, is a function called for various events during code
execution (this is used by the debugger). Normally an event is triggered for each new source line - this
can be disabled by setting f_trace_linestoFalse.

Implementations may allow per-opcode events to be requested by setting f_trace_opcodesto True.
Note that this may lead to undefined interpreter behaviour if exceptions raised by the trace function escape
to the function being traced.

f_lineno is the current line number of the frame — writing to this from within a trace function jumps
to the given line (only for the bottom-most frame). A debugger can implement a Jump command (aka
Set Next Statement) by writing to f_lineno.

Frame objects support one method:

frame.clear ()

This method clears all references to local variables held by the frame. Also, if the frame belonged
to a generator, the generator is finalized. This helps break reference cycles involving frame objects
(for example when catching an exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing.
New in version 3.4.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is im-
plicitly created when an exception occurs, and may also be explicitly created by calling types.
TracebackType.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack,
at each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section The try statement.) It is
accessible as the third item of the tuple returned by sys.exc_info (),andasthe __traceback___
attribute of the caught exception.

When the program contains no suitable handler, the stac