The Python Library Reference
Release 2.7.15rcl

Guido van Rossum
and the Python development team

April 14, 2018

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
2 Built-in Functions 5
3 Non-essential Built-in Functions 27
4 Built-in Constants 29
4.1 Constants added by the site module L o 29
5 Built-in Types 31
5.1 Truth Value Testing e 31
5.2 Boolean Operations — and, or, not L.l 32
5.3 CompariSonso e e e e e e e e e e e e 32
5.4 Numeric Types — int, float, long, complex 33
5.5 Iterator Types oL 36
5.6 Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 37
5.7 Set Types — set, frozenset L e e e 49
5.8 Mapping Types — dict e e e e e 52
5.9 File Objects o o e e e e e 56
5.10 memoryview type Lo e e 60
5.11 Context Manager Types i e e e 62
5.12 Other Built-in Types« . . o e 63
5.13 Special Attributes oL L e e e e e e e 65
6 Built-in Exceptions 67
6.1 Exception hierarchy L 72
7 String Services 75
7.1 string — Common string operations oo 75
7.2 re — Regular expression operations Lo 88
7.3 struct — Interpret strings as packed binary data o o000 105
7.4 difflib — Helpers for computing deltaso L 109
7.5 StringlO — Read and write strings as files oo L. 120
7.6 cStringlO — Faster version of StringlOo oo Lo 120
7.7 textwrap — Text wrapping and filling Lo Lo 121
7.8 codecs — Codec registry and base classes o oo 124
7.9 unicodedata — Unicode Database 139
7.10 stringprep — Internet String Preparationo oL 141
7.11 fpformat — Floating point conversionso oo 142
8 Data Types 145

10

11

8.1 datetime — Basic date and time types Lo e
8.2 calendar — General calendar-related functions oo oo oL
8.3 collections — High-performance container datatypes
8.4 heapq — Heap queue algorithm L
8.5 bisect — Array bisection algorithm oo oo
8.6 array — Efficient arrays of numeric values L oL Lo oo
8.7 sets — Unordered collections of unique elements
8.8 sched — Event scheduler L
8.9 mutex — Mutual exclusion support Lo
8.10 Queue — A synchronized queue class Lo
8.11 weakref — Weak references
8.12 UserDict — Class wrapper for dictionary objects
8.13 UserList — Class wrapper for list objects
8.14 UserString — Class wrapper for string objects
8.15 types — Names for built-in types L e
8.16 new — Creation of runtime internal objects L oo Lo L.
8.17 copy — Shallow and deep copy operationso e e e
8.18 pprint — Data pretty printero Lo
8.19 repr — Alternate repr() implementation Lo Lo Lo

Numeric and Mathematical Modules

9.1 numbers — Numeric abstract base classes Lo o
9.2 math — Mathematical functions L
9.3 cmath — Mathematical functions for complex numbers
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions — Rational numbers. Lo
9.6 random — Generate pseudo-random numbers Lo
9.7 itertools — Functions creating iterators for efficient looping
9.8 functools — Higher-order functions and operations on callable objects
9.9 operator — Standard operators as functions Lo Lo Lo

File and Directory Access

10.1 os.path — Common pathname manipulations,
10.2 fileinput — Iterate over lines from multiple input streams
10.3 stat — Interpreting stat() results L oL
10.4 statvfs — Constants used with os.statvfs() Lo oo oo
10.5 fileemp — File and Directory Comparisons Lo
10.6 tempfile — Generate temporary files and directories00 L.
10.7 glob — Unix style pathname pattern expansion
10.8 fnmatch — Unix filename pattern matching oo
10.9 linecache — Random access to text lines Lo L.
10.10 shutil — High-level file operations L o
10.11 dircache — Cached directory listings Lo
10.12 macpath — Mac OS 9 path manipulation functions

Data Persistence

11.1 pickle — Python object serialization 0 i e e e
11.2 cPickle — A faster pickle e e
11.3 copy_reg — Register pickle support functions Lo oo
11.4 shelve — Python object persistence L Lo
11.5 marshal — Internal Python object serialization
11.6 anydbm — Generic access to DBM-style databases
11.7 whichdb — Guess which DBM module created a database
11.8 dbm — Simple “database” interface oL oo oL o

223
223
226
230
233
260
261
266
279
282

291
291
295
297
301
302
304
307
308
309
309
314
315

ii

11.9 gdbm — GNU’s reinterpretation of dbm o oo
11.10 dbhash — DBM-style interface to the BSD database library
11.11 bsddb — Interface to Berkeley DB library Lo oL
11.12 dumbdbm — Portable DBM implementation
11.13 sqlite3 — DB-API 2.0 interface for SQLite databases

12 Data Compression and Archiving
12.1 zlib — Compression compatible with gzip o o0
12.2 gzip — Support for gzip files L
12.3 bz2 — Compression compatible with bzip2 00 000
12.4 zipfile — Work with ZIP archives
12.5 tarfile — Read and write tar archive fileso 0oL

13 File Formats
13.1 csv — CSV File Reading and Writing o
13.2 ConfigParser — Configuration file parser
13.3 robotparser — Parser for robots.txt oL L
13.4 netrc — netre file processing L. o e e
13.5 xdrlib — Encode and decode XDR data
13.6 plistlib — Generate and parse Mac OS X .plist files

14 Cryptographic Services
14.1 hashlib — Secure hashes and message digests oo
14.2 hmac — Keyed-Hashing for Message Authentication
14.3 md5 — MD5 message digest algorithm oo oo o
14.4 sha — SHA-1 message digest algorithm,

15 Generic Operating System Services
15.1 os — Miscellaneous operating system interfaces oL
15.2 io — Core tools for working with streams
15.3 time — Time access and cONVErsions« v v v vttt e e e e e e
15.4 argparse — Parser for command-line options, arguments and sub-commands
15.5 optparse — Parser for command line options L ...
15.6 getopt — C-style parser for command line optionso L.
15.7 logging — Logging facility for Python
15.8 logging.config — Logging configuration
15.9 logging.handlers — Logging handlers oo oo
15.10 getpass — Portable password input oL Lo oL
15.11 curses — Terminal handling for character-cell displays
15.12 curses.textpad — Text input widget for curses programs
15.13 curses.ascii — Utilities for ASCII characters oo ..
15.14 curses.panel — A panel stack extension for curses 0oL
15.15 platform — Access to underlying platform’s identifying data
15.16 errno — Standard errno system symbols oo oo Lo
15.17 ctypes — A foreign function library for Python oL,

16 Optional Operating System Services
16.1 select — Waiting for I/O completion Lo
16.2 threading — Higher-level threading interface
16.3 thread — Multiple threads of control o
16.4 dummy threading — Drop-in replacement for the threading module
16.5 dummy thread — Drop-in replacement for the thread module
16.6 multiprocessing — Process-based “threading” interface oL
16.7 mmap — Memory-mapped file supporto Lo
16.8 readline — GNU readline interface L o

361
361
364
366
368
374

385
385
393
400
400
401
404

407
407
409
411
412

413
413
443
454
460
490
517
519
931
041
950
551
5968
569
972
573
576
582

617
617
622
632
634
634
635
687
690

iii

17

18

19

20

16.9 rlcompleter — Completion function for GNU readline

Interprocess Communication and Networking

17.1 subprocess — Subprocess management oL el e e e e
17.2 socket — Low-level networking interface oL
17.3 ssl — TLS/SSL wrapper for socket objects
17.4 signal — Set handlers for asynchronous events
17.5 popen2 — Subprocesses with accessible I/O streams L.
17.6 asyncore — Asynchronous socket handler L oo oL
17.7 asynchat — Asynchronous socket command/response handler

Internet Data Handling

18.1 email — An email and MIME handling package
18.2 json — JSON encoder and decoder
18.3 mailcap — Mailcap file handling Lo
18.4 mailbox — Manipulate mailboxes in various formats
18.5 mhlib — Access to MH mailboxes e
18.6 mimetools — Tools for parsing MIME messages
18.7 mimetypes — Map filenames to MIME types Lo o oo
18.8 MimeWriter — Generic MIME file writer o0
18.9 mimify — MIME processing of mail messages
18.10 multifile — Support for files containing distinct parts
18.11 rfc822 — Parse RFC 2822 mail headers o
18.12 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings
18.13 binhex — Encode and decode binhex4 files 0.
18.14 binascii — Convert between binary and ASCIT,
18.15 quopri — Encode and decode MIME quoted-printable data
18.16 uu — Encode and decode uuencode fileso

Structured Markup Processing Tools

19.1 HTMLParser — Simple HTML and XHTML parser
19.2 sgmllib — Simple SGML parser o 0 e e e
19.3 htmllib — A parser for HTML documents 0o oot
19.4 htmlentitydefs — Definitions of HTML general entities
19.5 XML Processing Modules L e
19.6 XML vulnerabilities e e
19.7 xml.etree.ElementTree — The ElementTree XML APT
19.8 xml.dom — The Document Object Model APT
19.9 xml.dom.minidom — Minimal DOM implementation
19.10 xml.dom.pulldom — Support for building partial DOM trees
19.11 xml.sax — Support for SAX2 parserso
19.12 xml.sax.handler — Base classes for SAX handlers.
19.13 xml.sax.saxutils — SAX Utilities o . o oL
19.14 xml.sax.xmlreader — Interface for XML parsers
19.15 xml.parsers.expat — Fast XML parsing using Expat

Internet Protocols and Support

20.1 webbrowser — Convenient Web-browser controller
20.2 cgi — Common Gateway Interface support
20.3 cgitbh — Traceback manager for CGIL scripts
20.4 wsgiref — WSGI Utilities and Reference Implementation
20.5 urllib — Open arbitrary resources by URL o oo o .
20.6 urllib2 — extensible library for opening URLs o
20.7 httplib — HTTP protocol client
20.8 ftplib — FTP protocol client

iv

21

22

23

24

25

20.9 poplib — POP3 protocol client e 954

20.10 imaplib — IMAP4 protocol client L 956
20.11 nntplib — NNTP protocol client 962
20.12 smtplib — SMTP protocol client o e e 966
20.13 smtpd — SMTP Server o e e e e e e 971
20.14 telnetlib — Telnet client o L e 972
20.15 uuid — UUID objects according to RFC 4122 974
20.16 urlparse — Parse URLs into components oL 977
20.17 SocketServer — A framework for network servers o oo 981
20.18 BaseHTTPServer — Basic HTTP server o i it e it e e 989
20.19 SimpleHTTPServer — Simple HTTP request handler 993
20.20 CGIHTTPServer — CGI-capable HTTP request handler 994
20.21 cookielib — Cookie handling for HI'TP clients 995
20.22 Cookie — HTTP state managementot v it ot 1004
20.23 xmlrpclib — XML-RPC client access v o v v v i ittt s e e e e 1008
20.24 SimpleXMLRPCServer — Basic XML-RPC server 1016
20.25 DocXMLRPCServer — Self-documenting XML-RPC server 1020
Multimedia Services 1023
21.1 audioop — Manipulate raw audiodata Lo oL 1023
21.2 imageop — Manipulate raw image data Lo oL 1026
21.3 aifc — Read and write ATFF and ATFC files. 1027
21.4 sunau — Read and write Sun AU files 1029
21.5 wave — Read and write WAV files L 1032
21.6 chunk — Read IFF chunked data 1034
21.7 colorsys — Conversions between color systems 0L 000 e 1035
21.8 imghdr — Determine the type of an image 1036
21.9 sndhdr — Determine type of sound file oo Lo . 1037
21.10 ossaudiodev — Access to OSS-compatible audio devices 1038
Internationalization 1043
22.1 gettext — Multilingual internationalization services 1043
22.2 locale — Internationalization services L o 1053
Program Frameworks 1061
23.1 cmd — Support for line-oriented command interpreters 1061
23.2 shlex — Simple lexical analysis L e e e e 1063
Graphical User Interfaces with Tk 1069
24.1 Tkinter — Python interface to Tcl/Tko oo oo o 1069
24.2 ttk — Tk themed widgets e 1080
24.3 Tix — Extension widgets for Tk 1098
24.4 ScrolledText — Scrolled Text Widget o i 1103
24.5 turtle — Turtle graphics for Tk L 1103
24.6 IDLE o e e 1134
24.7 Other Graphical User Interface Packages 1142
Development Tools 1143
25.1 pydoc — Documentation generator and online help system 1143
25.2 doctest — Test interactive Python examples 0. 1144
25.3 wunittest — Unit testing framework oo 1169
25.4 2to3 - Automated Python 2 to 3 code translation 1194
25.5 test — Regression tests package for Python 000000, 1199
25.6 test.support — Utility functions for tests oL oL, 1202

26

27

28

29

30

31

32

Debugging and Profiling

26.1 bdb — Debugger framework
26.2 pdb — The Python Debugger e
26.3 Debugger Commands i e e e e e e e
26.4 The Python Profilers 0 e e e
26.5 hotshot — High performance logging profiler
26.6 timeit — Measure execution time of small code snippets oL,
26.7 trace — Trace or track Python statement execution

Software Packaging and Distribution
27.1 distutils — Building and installing Python modules
27.2 ensurepip — Bootstrapping the pip installero o000,

Python Runtime Services
28.1 sys — System-specific parameters and functions o000
28.2 sysconfig — Provide access to Python’s configuration information

28.3 _ builtin — Built-inobjects L
28.4 future builtins — Python 3 builtins oo
28.5 main — Top-level script environment oL oL o

28.6 warnings — Warning control oL L
28.7 contextlib — Utilities for with-statement contexts
28.8 abc — Abstract Base Classes o e e e e e
28.9 atexit — Exit handlers. L
28.10 traceback — Print or retrieve a stack tracebacko o o000 oo
28.11 _ future — Future statement definitions oo oL
28.12 gc — Garbage Collector interface L
28.13 inspect — Inspect live objects L L.
28.14 site — Site-specific configuration hook o oo
28.15 user — User-specific configuration hook oL
28.16 fpect]l — Floating point exception control oo

Custom Python Interpreters
29.1 code — Interpreter base classes e
29.2 codeop — Compile Python code

Restricted Execution
30.1 rexec — Restricted execution framework L
30.2 Bastion — Restricting access to objects L oL oo

Importing Modules

31.1 imp — Access the import internals L
31.2 importlib — Convenience wrappers for __import ()
31.3 imputil — Import utilities L
31.4 zipimport — Import modules from Zip archives oo oL,
31.5 pkgutil — Package extension utility o oo
31.6 modulefinder — Find modules used by a script oo oo oL
31.7 runpy — Locating and executing Python modules

Python Language Services

32.1 parser — Access Python parse trees Lo
32.2 ast — Abstract Syntax Trees
32.3 symtable — Access to the compiler’s symbol tables oL L.
32.4 symbol — Constants used with Python parse trees
32.5 token — Constants used with Python parse trees
32.6 keyword — Testing for Python keywords oL oo o

vi

33

34

35

36

37

38

32.7 tokenize — Tokenizer for Python source o oo oo
32.8 tabnanny — Detection of ambiguous indentation o000 L.
32.9 pyclbr — Python class browser support Lo
32.10 py _compile — Compile Python source fileso o o L.
32.11 compileall — Byte-compile Python libraries 0oL,
32.12 dis — Disassembler for Python bytecode o o L
32.13 pickletools — Tools for pickle developers. e

Python compiler package

33.1 The basicinterface L e e e
33.2 Limitations L e e e e e e
33.3 Python Abstract Syntax L
33.4 Using Visitors to Walk ASTs o
33.5 Bytecode Generation e e e e e

Miscellaneous Services
34.1 formatter — Generic output formatting o L

MS Windows Specific Services

35.1 msilib — Read and write Microsoft Installer files
35.2 msvert — Useful routines from the MS VC++ runtime
35.3 _ winreg — Windows registry access Lo e e e
35.4 winsound — Sound-playing interface for Windowso,

Unix Specific Services

36.1 posix — The most common POSIX system calls
36.2 pwd — The password database e
36.3 spwd — The shadow password database
36.4 grp — The group database
36.5 crypt — Function to check Unix passwords
36.6 dl — Call C functions in shared objects o L
36.7 termios — POSIX style tty control L
36.8 tty — Terminal control functions L
36.9 pty — Pseudo-terminal utilitieso
36.10 fentl — The fentl and ioctl system calls o oo o
36.11 pipes — Interface to shell pipelines L o
36.12 posixfile — File-like objects with locking support oo oL
36.13 resource — Resource usage information oL Lo
36.14 nis — Interface to Sun’s NIS (Yellow Pages)o o oo
36.15 syslog — Unix syslog library routines e
36.16 commands — Utilities for running commands

Mac OS X specific services

37.1 ic — Access to the Mac OS X Internet Config
37.2 MacOS — Access to Mac OS interpreter features
37.3 macostools — Convenience routines for file manipulation
37.4 findertools — The finder‘s Apple Events interface
37.5 EasyDialogs — Basic Macintosh dialogs Lo o
37.6 FrameWork — Interactive application framework
37.7 autoGIL — Global Interpreter Lock handling in event loops
37.8 Mac OS Toolbox Modules o e e
37.9 ColorPicker — Color selection dialog

MacPython OSA Modules
38.1 gensuitemodule — Generate OSA stub packages

vii

38.2
38.3
38.4
38.5

aetools — OSA client supporto e e
aepack — Conversion between Python variables and AppleEvent data containers
aetypes — AppleEvent objects L
MiniAEFrame — Open Scripting Architecture server support

39 SGI IRIX Specific Services

39.1
39.2
39.3
39.4
39.5
39.6
39.7
39.8
39.9

al — Audio functions on the SGI L
AL — Constants used with the almodule o 0L 0oL
cd — CD-ROM access on SGL systemso . 0o it i e
fl — FORMS library for graphical user interfaces
FL — Constants used with the flmodule
flp — Functions for loading stored FORMS designs,
fm — Font Manager interface L e
gl — Graphics Library interface oL e
DEVICE — Constants used with the gl module

39.10 GL — Constants used with the gl module o .o .
39.11 imgfile — Support for SGI imglib fileso
39.12 jpeg — Read and write JPEG files oL

40 SunOS Specific Services

40.1
40.2

sunaudiodev — Access to Sun audio hardware
SUNAUDIODEV — Constants used with sunaudiodev

41 Undocumented Modules

41.1
41.2
41.3
41.4
41.5
41.6

Miscellaneous useful utilities e e e
Platform specific modules e e e e
Multimedia e e e e e e e e e e e
Undocumented Mac OS modules e e e e
Obsolete
SGl-specific Extension moduleso

A Glossary

Bibliography

B About these documents

B.1

Contributors to the Python Documentation

C History and License

C1
C.2
C.3

History of the software
Terms and conditions for accessing or otherwise using Python
Licenses and Acknowledgements for Incorporated Software

D Copyright

Python Module Index

Index

1451

1453
1453

1455
1455
1456
1459

1471

1473

1479

viii

The Python Library Reference, Release 2.7.15rcl

While reference-index describes the exact syntax and semantics of the Python language, this library reference
manual describes the standard library that is distributed with Python. It also describes some of the optional
components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long
table of contents listed below. The library contains built-in modules (written in C) that provide access to
system functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well
as modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability of
Python programs by abstracting away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also
include many additional components. For Unix-like operating systems Python is normally provided as a
collection of packages, so it may be necessary to use the packaging tools provided with the operating system
to obtain some or all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from
individual programs and modules to packages and entire application development frameworks), available
from the Python Package Index.

CONTENTS 1

https://pypi.python.org/pypi

The Python Library Reference, Release 2.7.15rcl

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers
and lists. For these types, the Python language core defines the form of literals and places some constraints
on their semantics, but does not fully define the semantics. (On the other hand, the language core does
define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code
without the need of an import statement. Some of these are defined by the core language, but many are not
essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this
collection. Some modules are written in C and built in to the Python interpreter; others are written in
Python and imported in source form. Some modules provide interfaces that are highly specific to Python,
like printing a stack trace; some provide interfaces that are specific to particular operating systems, such as
access to specific hardware; others provide interfaces that are specific to a particular application domain,
like the World Wide Web. Some modules are available in all versions and ports of Python; others are
only available when the underlying system supports or requires them; yet others are available only when a
particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of
the chapters as well as the ordering of the modules within each chapter is roughly from most relevant to
least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get
bored, you will get a reasonable overview of the available modules and application areas that are supported
by the Python library. Of course, you don’t have to read it like a novel — you can also browse the table of
contents (in front of the manual), or look for a specific function, module or term in the index (in the back).
And finally, if you enjoy learning about random subjects, you choose a random page number (see module
random) and read a section or two. Regardless of the order in which you read the sections of this manual, it
helps to start with chapter Built-in Functions, as the remainder of the manual assumes familiarity with this
material.

Let the show begin!

The Python Library Reference, Release 2.7.15rcl

4 Chapter 1. Introduction

CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

Built-in Functions
abs() divmod() input() open() staticmethod ()
all() enumerate() | int() ord() str()
any() eval() isinstance() pow() sum()
basestring() execfile() issubclass() print() super()
bin() file() iter() property() tuple()
bool() filter() len() range() type()
bytearray() float() list() raw_input() | unichr()
callable() format() locals() reduce() unicode()
chr() frozenset() long() reload() vars()
classmethod() | getattr() map() repr() xrange()
cmp() globals() max() reversed() zip()
compile() hasattr() memoryview|() round() __import__ ()
complex() hash() min() set()
delattr() help() next() setattr()
dict() hex() object() slice()
dir() id() oct() sorted()

In addition, there are other four built-in functions that are no longer considered essential: apply(), buffer(),
coerce(), and intern(). They are documented in the Non-essential Built-in Functions section.

abs(x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

all(iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

New in version 2.5.

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:

The Python Library Reference, Release 2.7.15rcl

if element:
return True
return False

New in version 2.5.

basestring()
This abstract type is the superclass for str and unicode. It cannot be called or instantiated, but it
can be used to test whether an object is an instance of str or unicode. isinstance(obj, basestring) is
equivalent to isinstance(obj, (str, unicode)).

New in version 2.3.

bin(x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a
Python int object, it has to define an __index () method that returns an integer.

New in version 2.6.

class bool([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing
procedure. If x is false or omitted, this returns False; otherwise it returns True. bool is also a class,
which is a subclass of int. Class bool cannot be subclassed further. Its only instances are False and
True.

New in version 2.2.1.

Changed in version 2.3: If no argument is given, this function returns False.

class bytearray([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x
< 256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types,
as well as most methods that the str type has, see String Methods.

The optional source parameter can be used to initialize the array in a few different ways:

« If it is unicode, you must also give the encoding (and optionally, errors) parameters; bytearray|()
then converts the unicode to bytes using unicode.encode().

e If it is an integer, the array will have that size and will be initialized with null bytes.

e If it is an object conforming to the buffer interface, a read-only buffer of the object will be used
to initialize the bytes array.

e If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used
as the initial contents of the array.

Without an argument, an array of size 0 is created.
New in version 2.6.

callable(object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling
a class returns a new instance); class instances are callable if they have a __ call () method.

chr(i)
Return a string of one character whose ASCII code is the integer i. For example, chr(97) returns

the string 'a'. This is the inverse of ord(). The argument must be in the range [0..255], inclusive;
ValueError will be raised if i is outside that range. See also unichr().

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.15rcl

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the
instance. To declare a class method, use this idiom:

class C(object):
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is
passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod()
in this section.

For more information on class methods, consult the documentation on the standard type hierarchy in
types.

New in version 2.2.

Changed in version 2.4: Function decorator syntax added.

cmp(x, y)
Compare the two objects x and y and return an integer according to the outcome. The return value is
negative if x <y, zero if x == y and strictly positive if x > y.

compile(source, filename, mode[, ﬂags[, dont_inherit”)
Compile the source into a code or AST object. Code objects can be executed by an exec statement or
evaluated by a call to eval(). source can either be a Unicode string, a Latin-1 encoded string or an AST
object. Refer to the ast module documentation for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value
if it wasn’t read from a file (' <string>' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists
of a sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a
single interactive statement (in the latter case, expression statements that evaluate to something other
than None will be printed).

The optional arguments flags and dont _inherit control which future statements (see PEP 236) affect
the compilation of source. If neither is present (or both are zero) the code is compiled with those
future statements that are in effect in the code that is calling compile(). If the flags argument is given
and dont_inherit is not (or is zero) then the future statements specified by the flags argument are used
in addition to those that would be used anyway. If dont inherit is a non-zero integer then the flags
argument is it — the future statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple state-
ments. The bitfield required to specify a given feature can be found as the compiler flag attribute on
the Feature instance in the _ future _ module.

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source contains
null bytes.

If you want to parse Python code into its AST representation, see ast.parse().

https://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 2.7.15rcl

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be
terminated by at least one newline character. This is to facilitate detection of incomplete and complete
statements in the code module.

Changed in version 2.3: The flags and dont _inherit arguments were added.
Changed in version 2.6: Support for compiling AST objects.

Changed in version 2.7: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does
not have to end in a newline anymore.

class complex([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex
number. If the first parameter is a string, it will be interpreted as a complex number and the function
must be called without a second parameter. The second parameter can never be a string. Each
argument may be any numeric type (including complex). If imag is omitted, it defaults to zero and
the function serves as a numeric conversion function like int(), long() and float(). If both arguments
are omitted, returns 0j.

Note: When converting from a string, the string must not contain whitespace around the central +
or - operator. For example, complex('1+2j") is fine, but complex('1 + 2j') raises ValueError.

The complex type is described in Numeric Types — int, float, long, complex.

delattr(object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows
it. For example, delattr(x, 'foobar') is equivalent to del x.foobar.

class dict(**kwarg)

class dict(mapping, **kwarg)

class dict(iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict
for documentation about this class.

For other containers see the built-in list, set, and tuple classes, as well as the collections module.

dir([obj ect])
Without arguments, return the list of names in the current local scope. With an argument, attempt
to return a list of valid attributes for that object.

If the object has a method named _ dir (), this method will be called and must return the list
of attributes. This allows objects that implement a custom _ getattr () or __ getattribute ()
function to customize the way dir() reports their attributes.

object’s __dict__ attribute, if deﬁngd, and from its type object. The resulting list is not necessarily
complete, and may be inaccurate when the object has a custom __ getattr ().

If the object does not provide dir__ (), the function tries its best to gather information from the

The default dir() mechanism behaves differently with different types of objects, as it attempts to
produce the most relevant, rather than complete, information:

¢ If the object is a module object, the list contains the names of the module’s attributes.

 If the object is a type or class object, the list contains the names of its attributes, and recursively
of the attributes of its bases.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.15rcl

¢ Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and
recursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

import struct

dir() # show the names in the module namespace
['__builtins ', ' doc_ ', ' name_ ', 'struct']
dir(struct) # show the names in the struct module
['Struct', ' builtins ', ' doc_ ', ' file ', ' mame ',
' package ', ' clearcache', 'calcsize', 'error', 'pack', 'pack into',

'unpack', 'unpack from'|
class Shape(object):
def dir__ (self):
return ['area', 'perimeter', 'location’]
s = Shape()
dir(s)
['area', 'perimeter', 'location’]

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries
to supply an interesting set of names more than it tries to supply a rigorously or consistently defined
set of names, and its detailed behavior may change across releases. For example, metaclass attributes
are not in the result list when the argument is a class.

divmod(a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient
and remainder when using long division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a // b, a % b). For floating
point numbers the result is (q, a % b), where q is usually math.floor(a / b) but may be 1 less than

that. In any case q * b + a % b is very close to a, if a % b is non-zero it has the same sign as b, and
0 <= abs(a % b) < abs(b).

Changed in version 2.3: Using divmod() with complex numbers is deprecated.

enumerate(sequence, start=0)
Return an enumerate object. sequence must be a sequence, an iterator, or some other object which sup-
ports iteration. The next() method of the iterator returned by enumerate() returns a tuple containing
a count (from start which defaults to 0) and the values obtained from iterating over sequence:

seasons = ['Spring', 'Summer', 'Fall', "Winter']
list (enumerate(seasons))

[(0, 'Spring"), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
list (enumerate(seasons, start—1))

[(1, *Spring'), (2, 'Summer"'), (3, 'Fall'), (4, 'Winter")]

Equivalent to:

def enumerate(sequence, start=0):
n — start
for elem in sequence:
yield n, elem
n+=1

New in version 2.3.

Changed in version 2.6: The start parameter was added.

The Python Library Reference, Release 2.7.15rcl

eval(expression[, globals[, locals]])
The arguments are a Unicode or Latin-1 encoded string and optional globals and locals. If provided,
globals must be a dictionary. If provided, locals can be any mapping object.

Changed in version 2.4: formerly locals was required to be a dictionary.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a
condition list) using the globals and locals dictionaries as global and local namespace. If the globals
dictionary is present and lacks ‘ _ builtins __’, the current globals are copied into globals before
expression is parsed. This means that expression normally has full access to the standard ~ builtin
module and restricted environments are propagated. If the locals dictionary is omitted it defaults to
the globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval() is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

x=1
print eval('x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile()).
In this case pass a code object instead of a string. If the code object has been compiled with 'exec'
as the mode argument, eval()‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements
from a file is supported by the execfile() function. The globals() and locals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use by eval()
or execfile().

See ast.literal eval() for a function that can safely evaluate strings with expressions containing only
literals.

execﬁle(ﬁlename[, globals [, locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally
and does not create a new module.!

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as
global and local namespace. If provided, locals can be any mapping object. Remember that at module
level, globals and locals are the same dictionary. If two separate objects are passed as globals and
locals, the code will be executed as if it were embedded in a class definition.

Changed in version 2.4: formerly locals was required to be a dictionary.

If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are omitted,
the expression is executed in the environment where execfile() is called. The return value is None.

Note: The default locals act as described for function locals() below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects
of the code on locals after function execfile() returns. execfile() cannot be used reliably to modify a
function’s locals.

ﬁle(name[, mode[, buﬂering]])
Constructor function for the file type, described further in section File Objects. The constructor’s
arguments are the same as those of the open() built-in function described below.

L 1t is used relatively rarely so does not warrant being made into a statement.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.15rcl

When opening a file, it’s preferable to use open() instead of invoking this constructor directly. file is
more suited to type testing (for example, writing isinstance(f, file)).

New in version 2.2.

filter(function, iterable)
Construct a list from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If iterable is a string or a tuple, the
result also has that type; otherwise it is always a list. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter(function, iterable) is equivalent to [item for item in iterable if function(item)] if function
is not None and [item for item in iterable if item| if function is None.

See itertools.ifilter() and itertools.ifilterfalse() for iterator versions of this function, including a variation
that filters for elements where the function returns false.

class ﬂoat([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it must contain a possibly signed decimal or floating point number, possibly
embedded in whitespace. The argument may also be [+|-Jnan or [+]|-]inf. Otherwise, the argument
may be a plain or long integer or a floating point number, and a floating point number with the same
value (within Python’s floating point precision) is returned. If no argument is given, returns 0.0.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative
infinity. The case and a leading + are ignored as well as a leading - is ignored for NaN. Float always
represents NaN and infinity as nan, inf or -inf.

The float type is described in Numeric Types — int, float, long, complex.

format(value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format spec. The interpretation of
format_spec will depend on the type of the value argument, however there is a standard formatting
syntax that is used by most built-in types: Format Specification Mini-Language.

Note: format(value, format spec) merely calls value. format _ (format spec).

New in version 2.6.

class frozenset([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, list, tuple, and dict classes, as well as the collections module.
New in version 2.4.

getattr(object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name
of one of the object’s attributes, the result is the value of that attribute. For example, getattr(x,
'foobar') is equivalent to x.foobar. If the named attribute does not exist, default is returned if
provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of the

11

The Python Library Reference, Release 2.7.15rcl

current module (inside a function or method, this is the module where it is defined, not the module
from which it is called).

hasattr(object, name)
The arguments are an object and a string. The result is True if the string is the name of one of
the object’s attributes, False if not. (This is implemented by calling getattr(object, name) and seeing
whether it raises an exception or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is
given, the interactive help system starts on the interpreter console. If the argument is a string, then
the string is looked up as the name of a module, function, class, method, keyword, or documentation
topic, and a help page is printed on the console. If the argument is any other kind of object, a help
page on the object is generated.

This function is added to the built-in namespace by the site module.
New in version 2.2.

hex(x)
Convert an integer number (of any size) to a lowercase hexadecimal string prefixed with “0x”, for
example:

hex(255)
'OxAE"

hex(-42)
'-0x2a’

hex(1L)
'0x1L"

If x is not a Python int or long object, it has to define a __hex () method that returns a string.

See also int() for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the float.hex() method.

Changed in version 2.4: Formerly only returned an unsigned literal.

id(object)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique
and constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have
the same id() value.

CPython implementation detail: This is the address of the object in memory.

input([prompt])
Equivalent to eval(raw _input(prompt)).

This function does not catch user errors. If the input is not syntactically valid, a SyntaxError will be
raised. Other exceptions may be raised if there is an error during evaluation.

If the readline module was loaded, then input() will use it to provide elaborate line editing and history
features.

Consider using the raw _input() function for general input from users.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.15rcl

class int(x=0)
class int(x, base=10)

Return an integer object constructed from a number or string x, or return 0 if no arguments are given.
If x is a number, it can be a plain integer, a long integer, or a floating point number. If x is floating
point, the conversion truncates towards zero. If the argument is outside the integer range, the function
returns a long object instead.

If x is not a number or if base is given, then x must be a string or Unicode object representing an
integer literal in radix base. Optionally, the literal can be preceded by + or - (with no space in between)
and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or A to Z)
having values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and
-16 literals can be optionally prefixed with 0b/0B, 00/00/0, or 0x/0X, as with integer literals in code.
Base 0 means to interpret the string exactly as an integer literal, so that the actual base is 2, 8, 10, or
16.

The integer type is described in Numeric Types — int, float, long, complex.

isinstance(object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect
or virtual) subclass thereof. Also return true if classinfo is a type object (new-style class) and object
is an object of that type or of a (direct, indirect or virtual) subclass thereof. If object is not a class
instance or an object of the given type, the function always returns false. If classinfo is a tuple of class
or type objects (or recursively, other such tuples), return true if object is an instance of any of the
classes or types. If classinfo is not a class, type, or tuple of classes, types, and such tuples, a TypeError
exception is raised.

Changed in version 2.2: Support for a tuple of type information was added.

issubclass(class, classinfo)

iter(o

Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a
subclass of itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will
be checked. In any other case, a TypeError exception is raised.

Changed in version 2.3: Support for a tuple of type information was added.

[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the pres-
ence of the second argument. Without a second argument, o must be a collection object which sup-
ports the iteration protocol (the iter () method), or it must support the sequence protocol (the
__getitem () method with integer arguments starting at 0). If it does not support either of those
protocols, TypeError is raised. If the second argument, sentinel, is given, then o must be a callable
object. The iterator created in this case will call o with no arguments for each call to its next()
method; if the value returned is equal to sentinel, Stoplteration will be raised, otherwise the value will
be returned.

One useful application of the second form of iter() is to read lines of a file until a certain line is reached.
The following example reads a file until the readline() method returns an empty string:

with open('mydata.txt") as fp:
for line in iter(fp.readline, ' '):
process_ line(line)

len(s)

New in version 2.2.

Return the length (the number of items) of an object. The argument may be a sequence (such as a
string, bytes, tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

13

The Python Library Reference, Release 2.7.15rcl

class list([iterable])
Return a list whose items are the same and in the same order as iterable‘s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a
list, a copy is made and returned, similar to iterable[:]. For instance, list('abc') returns ['a', 'b"',
'c'] and list((1, 2, 3)) returns [1, 2, 3]. If no argument is given, returns a new empty list, [].

list is a mutable sequence type, as documented in Sequence Types — str, unicode, list, tuple, bytearray,
buffer, xrange. For other containers see the built in dict, set, and tuple classes, and the collections
module.

locals()
Update and return a dictionary representing the current local symbol table. Free variables are returned
by locals() when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of
local and free variables used by the interpreter.

class long(x=0)

class long(x, base=10)
Return a long integer object constructed from a string or number x. If the argument is a string,
it must contain a possibly signed number of arbitrary size, possibly embedded in whitespace. The
base argument is interpreted in the same way as for int(), and may only be given when x is a string.
Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer
with the same value is returned. Conversion of floating point numbers to integers truncates (towards
zero). If no arguments are given, returns OL.

The long type is described in Numeric Types — int, float, long, complex.

map(function, iterable, ...)

Apply function to every item of iterable and return a list of the results. If additional iterable arguments
are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. If one iterable is shorter than another it is assumed to be extended with None items. If
function is None, the identity function is assumed; if there are multiple arguments, map() returns
a list consisting of tuples containing the corresponding items from all iterables (a kind of transpose
operation). The iterable arguments may be a sequence or any iterable object; the result is always a
list.

max(iterable[, key])
max(argl, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, iterable must be a non-empty iterable (such as a non-empty
string, tuple or list). The largest item in the iterable is returned. If two or more positional arguments
are provided, the largest of the positional arguments is returned.

The optional key argument specifies a one-argument ordering function like that used for list.sort().
The key argument, if supplied, must be in keyword form (for example, max(a,b,c,key=func)).

Changed in version 2.5: Added support for the optional key argument.

memoryview(obj)
Return a “memory view” object created from the given argument. See memoryview type for more
information.

min (iterable [, key])

min(argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.15rcl

If one positional argument is provided, iterable must be a non-empty iterable (such as a non-empty
string, tuple or list). The smallest item in the iterable is returned. If two or more positional arguments
are provided, the smallest of the positional arguments is returned.

The optional key argument specifies a one-argument ordering function like that used for list.sort().
The key argument, if supplied, must be in keyword form (for example, min(a,b,c,key=func)).

Changed in version 2.5: Added support for the optional key argument.

next(iterator[, default])
Retrieve the next item from the iterator by calling its next() method. If default is given, it is returned
if the iterator is exhausted, otherwise Stoplteration is raised.

New in version 2.6.

class object
Return a new featureless object. object is a base for all new style classes. It has the methods that are
common to all instances of new style classes.

New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments
but ignored them.

oct(x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression.

Changed in version 2.4: Formerly only returned an unsigned literal.

open(name[, mode[, buffering]])
Open a file, returning an object of the file type described in section File Objects. If the file cannot be
opened, IOError is raised. When opening a file, it’s preferable to use open() instead of invoking the
file constructor directly.

The first two arguments are the same as for stdio‘s fopen(): name is the file name to be opened, and
mode is a string indicating how the file is to be opened.

The most commonly-used values of mode are 'r' for reading, 'w' for writing (truncating the file if it
already exists), and 'a' for appending (which on some Unix systems means that all writes append to
the end of the file regardless of the current seek position). If mode is omitted, it defaults to 'r'. The
default is to use text mode, which may convert '\n' characters to a platform-specific representation
on writing and back on reading. Thus, when opening a binary file, you should append 'b' to the
mode value to open the file in binary mode, which will improve portability. (Appending 'b' is useful
even on systems that don’t treat binary and text files differently, where it serves as documentation.)
See below for more possible values of mode.

The optional buffering argument specifies the file’s desired buffer size: 0 means unbuffered, 1 means
line buffered, any other positive value means use a buffer of (approximately) that size (in bytes). A
negative buffering means to use the system default, which is usually line buffered for tty devices and
fully buffered for other files. If omitted, the system default is used.?

Modes 'r+', 'w+' and 'a+' open the file for updating (reading and writing); note that 'w+'
truncates the file. Append 'b' to the mode to open the file in binary mode, on systems that differentiate
between binary and text files; on systems that don’t have this distinction, adding the 'b ' has no effect.

In addition to the standard fopen() values mode may be 'U' or 'rU'. Python is usually built with
universal newlines support; supplying 'U' opens the file as a text file, but lines may be terminated
by any of the following: the Unix end-of-line convention '\n', the Macintosh convention '\r', or the

2 Specifying a buffer size currently has no effect on systems that don’t have setvbuf(). The interface to specify the buffer size
is not done using a method that calls setvbuf(), because that may dump core when called after any I/O has been performed,
and there’s no reliable way to determine whether this is the case.

15

The Python Library Reference, Release 2.7.15rcl

Windows convention '\r\n'. All of these external representations are seen as '\n' by the Python
program. If Python is built without universal newlines support a mode with 'U" is the same as normal
text mode. Note that file objects so opened also have an attribute called newlines which has a value
of None (if no newlines have yet been seen), '\n', "\r', '\r\n"', or a tuple containing all the newline
types seen.

Python enforces that the mode, after stripping 'U"', begins with 'r', 'w' or 'a’'.
Python provides many file handling modules including fileinput, os, os.path, tempfile, and shutil.

Changed in version 2.5: Restriction on first letter of mode string introduced.

ord(c)

Given a string of length one, return an integer representing the Unicode code point of the character
when the argument is a unicode object, or the value of the byte when the argument is an 8-bit string.
For example, ord('a') returns the integer 97, ord(u'\u2020') returns 8224. This is the inverse of
chr() for 8-bit strings and of unichr() for unicode objects. If a unicode argument is given and Python
was built with UCS2 Unicode, then the character’s code point must be in the range [0..65535] inclusive;
otherwise the string length is two, and a TypeError will be raised.

pow(x, v, z)

Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow(x, y) % z). The two-argument form pow(x, y) is equivalent to using the power operator:
x**y,

The arguments must have numeric types. With mixed operand types, the coercion rules for binary
arithmetic operators apply. For int and long int operands, the result has the same type as the operands
(after coercion) unless the second argument is negative; in that case, all arguments are converted to
float and a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01. (This last
feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types
and the second argument was negative, an exception was raised.) If the second argument is negative,
the third argument must be omitted. If z is present, x and y must be of integer types, and y must be
non-negative. (This restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argument
pow() returned platform-dependent results depending on floating-point rounding accidents.)

print(*objects, sep=" ¢, end="\n’, file=sys.stdout)

Print objects to the stream file, separated by sep and followed by end. sep, end and file, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means
to use the default values. If no objects are given, print() will just write end.

The file argument must be an object with a write(string) method; if it is not present or None, sys.stdout
will be used. Output buffering is determined by file. Use file.flush() to ensure, for instance, immediate
appearance on a screen.

Note: This function is not normally available as a built-in since the name print is recognized as the
print statement. To disable the statement and use the print() function, use this future statement at
the top of your module:

’from __future_ import print_function

New in version 2.6.

class property([fget[, fset[, fdel[, doc]]]])

Return a property attribute for new-style classes (classes that derive from object).

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.15rcl

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is
a function for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C(object):
def _ init__ (self):
self. x = None

def getx(self):
return self. x

def setx(self, value):
self. x = value

def delx(self):
del self. x

x = property(getx, setx, delx, "I'm the 'x' property.")

If ¢ is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s
docstring (if it exists). This makes it possible to create read-only properties easily using property() as
a decorator:

class Parrot(object):
def _ init__ (self):
self. _voltage — 100000

@property

def voltage(self):
"""Get the current voltage.
return self. _voltage

nnn

The @property decorator turns the voltage() method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C(object):
def _ init__ (self):
self. _x — None

@property

def x(self):
"""Trm the 'x' property.
return self. x

nmnn

@Qx.setter
def x(self, value):
self. _x — value

@Qx.deleter
def x(self):
del self. x

17

The Python Library Reference, Release 2.7.15rcl

This code is exactly equivalent to the first example. Be sure to give the additional functions the same
name as the original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

New in version 2.2.
Changed in version 2.5: Use fget‘s docstring if no doc given.

Changed in version 2.6: The getter, setter, and deleter attributes were added.

range(stop)

range(start, stop[, step])

This is a versatile function to create lists containing arithmetic progressions. It is most often used in
for loops. The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If
the start argument is omitted, it defaults to 0. The full form returns a list of plain integers [start, start
+ step, start + 2 * step, ...]. If step is positive, the last element is the largest start + i * step less than
stop; if step is negative, the last element is the smallest start + i * step greater than stop. step must
not be zero (or else ValueError is raised). Example:

range(10)
[0,1,2, 3,4,5,6,7,8, 9|
range(1, 11)
[1,2,3,4,5,6,7, 8,9, 10]
range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
range(0, 10, 3)
[0, 3, 6, 9]
range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9
range(0)
l

[

range(1, 0)

raw__input([prompt])

If the prompt argument is present, it is written to standard output without a trailing newline. The

function then reads a line from input, converts it to a string (stripping a trailing newline), and returns
that. When EOF is read, EOFError is raised. Example:

s = raw_input('--> ')

--> Monty Python's Flying Circus
s

"Monty Python's Flying Circus"

If the readline module was loaded, then raw _input() will use it to provide elaborate line editing and
history features.

reduce(function, iterable[, initializer])

Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to
reduce the iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((142)43)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the
update value from the iterable. If the optional initializer is present, it is placed before the items of the
iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given
and iterable contains only one item, the first item is returned. Roughly equivalent to:

def reduce(function, iterable, initializer—None):
it — iter(iterable)

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.15rcl

if initializer is None:
try:
initializer = next(it)
except Stoplteration:
raise TypeError('reduce() of empty sequence with no initial value')
accum_ value — initializer
for x in it:
accum_value — function(accum_ value, x)
return accum_value

reload (module)
Reload a previously imported module. The argument must be a module object, so it must have been
successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value
is the module object (the same as the module argument).

When reload(module) is executed:

¢ Python modules’ code is recompiled and the module-level code reexecuted, defining a new set
of objects which are bound to names in the module’s dictionary. The init function of extension
modules is not called a second time.

¢ As with all other objects in Python the old objects are only reclaimed after their reference counts
drop to zero.

¢ The names in the module namespace are updated to point to any new or changed objects.

* Other references to the old objects (such as names external to the module) are not rebound to
refer to the new objects and must be updated in each namespace where they occur if that is
desired.

There are a number of other caveats:

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Re-
definitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache of
objects — with a try statement it can test for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache — {}

It is generally not very useful to reload built-in or dynamically loaded modules. Reloading sys,
__main___, builtins and other key modules is not recommended. In many cases extension modules
are not designed to be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload() for the
other module does not redefine the objects imported from it — one way around this is to re-execute
the from statement, another is to use import and qualified names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect
the method definitions of the instances — they continue to use the old class definition. The same is
true for derived classes.

repr(object)
Return a string containing a printable representation of an object. This is the same value yielded by
conversions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary
function. For many types, this function makes an attempt to return a string that would yield an object

19

The Python Library Reference, Release 2.7.15rcl

with the same value when passed to eval(), otherwise the representation is a string enclosed in angle
brackets that contains the name of the type of the object together with additional information often
including the name and address of the object. A class can control what this function returns for its
instances by defining a __repr () method.

reversed(seq)

Return a reverse iterator. seq must be an object which hasa __ reversed () method or supports the
sequence protocol (the len () method and the getitem () method with integer arguments
starting at 0).

New in version 2.4.

Changed in version 2.6: Added the possibility to write a custom _ reversed () method.

round(number [, ndigits])

Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is
omitted, it defaults to zero. The result is a floating point number. Values are rounded to the closest
multiple of 10 to the power minus ndigits; if two multiples are equally close, rounding is done away
from 0 (so, for example, round(0.5) is 1.0 and round(-0.5) is -1.0).

Note: The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives 2.67
instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions
can’t be represented exactly as a float. See tut-fp-issues for more information.

class set([iterable])

Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set
and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the collections
module.

New in version 2.4.

setattr(object, name, value)

This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary value.
The string may name an existing attribute or a new attribute. The function assigns the value to the
attribute, provided the object allows it. For example, setattr(x, 'foobar', 123) is equivalent to x.foobar
= 123.

class slice(stop)

class slice(start, stop|, step])

Return a slice object representing the set of indices specified by range(start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also
generated when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, i].
See itertools.islice() for an alternate version that returns an iterator.

sorted(iterable[, cmp[, key[, reverse]]])

Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as those for the list.sort()
method (described in section Mutable Sequence Types).

cmp specifies a custom comparison function of two arguments (iterable elements) which should return
a negative, zero or positive number depending on whether the first argument is considered smaller
than, equal to, or larger than the second argument: cmp=lambda x,y: cmp(x.lower(), y.lower()). The
default value is None.

20

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.15rcl

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp
function. This is because cmp is called multiple times for each list element while key and reverse touch
each element only once. Use functools.cmp to key() to convert an old-style cmp function to a key
function.

The built-in sorted() function is guaranteed to be stable. A sort is stable if it guarantees not to change
the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.
New in version 2.4.

staticmethod (function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C(object):
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. Also see classmethod() for a
variant that is useful for creating alternate class constructors.

For more information on static methods, consult the documentation on the standard type hierarchy in
types.

New in version 2.2.
Changed in version 2.4: Function decorator syntax added.

class str(object="")
Return a string containing a nicely printable representation of an object. For strings, this returns the
string itself. The difference with repr(object) is that str(object) does not always attempt to return
a string that is acceptable to eval(); its goal is to return a printable string. If no argument is given,
returns the empty string, ''.

For more information on strings see Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange
which describes sequence functionality (strings are sequences), and also the string-specific methods
described in the String Methods section. To output formatted strings use template strings or the %
operator described in the String Formatting Operations section. In addition see the String Services
section. See also unicode().

sum(iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0.
The iterable‘s items are normally numbers, and the start value is not allowed to be a string.

21

The Python Library Reference, Release 2.7.15rcl

For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a
sequence of strings is by calling ' ' .join(sequence). To add floating point values with extended precision,
see math.fsum(). To concatenate a series of iterables, consider using itertools.chain().

New in version 2.3.

super(type[, object—or—type])

Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful
for accessing inherited methods that have been overridden in a class. The search order is same as that
used by getattr() except that the type itself is skipped.

and super(). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

The mro attribute of the type lists the method resolution search order used by both getattr()

If the second argument is omitted, the super object returned is unbound. If the second argument is an
object, isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2, type)
must be true (this is useful for classmethods).

Note: super() only works for new-style classes.

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used
to refer to parent classes without naming them explicitly, thus making the code more maintainable.
This use closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that
only support single inheritance. This makes it possible to implement “diamond diagrams” where
multiple base classes implement the same method. Good design dictates that this method have the
same calling signature in every case (because the order of calls is determined at runtime, because that
order adapts to changes in the class hierarchy, and because that order can include sibling classes that
are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super(C, self). method(arg)

Note that super() is implemented as part of the binding process for explicit dotted attribute lookups
such as super(). _ getitem __ (name). It does so by implementing its own __ getattribute () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super() is undefined for implicit lookups using statements or operators such as super()[name].

Also note that super() is not limited to use inside methods. The two argument form specifies the
arguments exactly and makes the appropriate references.

For practical suggestions on how to design cooperative classes using super(), see guide to using super().

New in version 2.2.

tuple([iterable])

Return a tuple whose items are the same and in the same order as iterable‘s items. iterable may be a
sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is
returned unchanged. For instance, tuple('abc') returns ('a', 'b', 'c¢') and tuple([1, 2, 3]) returns
(1, 2, 3). If no argument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, unicode, list, tuple,
bytearray, buffer, xrange. For other containers see the built in dict, list, and set classes, and the
collections module.

22

Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 2.7.15rcl

class type(object)

class type(name, bases, dict)
With one argument, return the type of an object. The return value is a type object. The isinstance()
built-in function is recommended for testing the type of an object.

With three arguments, return a new type object. This is essentially a dynamic form of the class
statement. The name string is the class name and becomes the = name attribute; the bases
tuple itemizes the base classes and becomes the bases attribute; and the dict dictionary is the
namespace containing definitions for class body and becomes the dict attribute. For example,
the following two statements create identical type objects:

class X(object):
a=1

X = type(' X", (object,), dict(a=1))

New in version 2.2.

unichr(i)
Return the Unicode string of one character whose Unicode code is the integer i. For example, unichr(97)
returns the string u'a'. This is the inverse of ord() for Unicode strings. The valid range for the argu-
ment depends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF].
ValueError is raised otherwise. For ASCII and 8-bit strings see chr().

New in version 2.0.

unicode(object=")

unicode(object[, encoding[, errors]])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec for encoding. The encoding parameter is a string giving the name
of an encoding; if the encoding is not known, LookupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encoding. If errors is
'strict ' (the default), a ValueError is raised on errors, while a value of 'ignore' causes errors to be
silently ignored, and a value of 'replace' causes the official Unicode replacement character, U+FFFD,
to be used to replace input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode() will mimic the behaviour of str() except that it returns
Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a __unicode () method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested
and then converted to a Unicode string using the codec for the default encoding in 'strict' mode.

For more information on Unicode strings see Sequence Types — str, unicode, list, tuple, bytearray,
buffer, xrange which describes sequence functionality (Unicode strings are sequences), and also the
string-specific methods described in the String Methods section. To output formatted strings use
template strings or the % operator described in the String Formatting Operations section. In addition
see the String Services section. See also str().

New in version 2.0.

Changed in version 2.2: Support for __ unicode () added.

vars([object])
Return the dict _ attribute for a module, class, instance, or any other object with a _ dict
attribute.

23

The Python Library Reference, Release 2.7.15rcl

Objects such as modules and instances have an updateable dict attribute; however, other ob-
jects may have write restrictions on their dict attributes (for example, new-style classes use a
dictproxy to prevent direct dictionary updates).

Without an argument, vars() acts like locals(). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

xrange(stop)

xrange(start, stop[, step])
This function is very similar to range(), but returns an xrange object instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing
them all simultaneously. The advantage of xrange() over range() is minimal (since xrange() still has to
create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break). For more information on xrange objects, see XRange Type and Sequence Types — str,
unicode, list, tuple, bytearray, buffer, xrange.

CPython implementation detail: xrange() is intended to be simple and fast. Implementations may
impose restrictions to achieve this. The C implementation of Python restricts all arguments to native
C longs (“short” Python integers), and also requires that the number of elements fit in a native C
long. If a larger range is needed, an alternate version can be crafted using the itertools module:
islice(count(start, step), (stop-start+step-14+2*(step<0))//step).

Zip([iterable,])
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of the
argument sequences or iterables. The returned list is truncated in length to the length of the shortest
argument sequence. When there are multiple arguments which are all of the same length, zip() is
similar to map() with an initial argument of None. With a single sequence argument, it returns a list
of 1-tuples. With no arguments, it returns an empty list.

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for
clustering a data series into n-length groups using zip(*[iter(s)]*n).

zip() in conjunction with the * operator can be used to unzip a list:

x = [1, 2, 3]
y = [47 5, 6]
zipped = zip(x, y)
> zipped
(1, 4), 2. 5), (3, 6)]
> x2, y2 = zip(*zipped)
x —— list(x2) and y —= list(y2)
True

New in version 2.0.

Changed in version 2.4: Formerly, zip() required at least one argument and zip() raised a TypeError
instead of returning an empty list.

__import__(name[, globals[, locals[, fromlist[, leveI]]]])

Note: This is an advanced function that is not needed in everyday Python programming, unlike
importlib.import _module().

This function is invoked by the import statement. It can be replaced (by importing the builtin
module and assigning to __builtin_ . import) in order to change semantics of the import

24 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.15rcl

statement, but nowadays it is usually simpler to use import hooks (see PEP 302). Direct use of
~ _import__ () is rare, except in cases where you want to import a module whose name is only known
at runtime.

The function imports the module name, potentially using the given globals and locals to determine
how to interpret the name in a package context. The fromlist gives the names of objects or submodules
that should be imported from the module given by name. The standard implementation does not use
its locals argument at all, and uses its globals only to determine the package context of the import
statement.

level specifies whether to use absolute or relative imports. The default is -1 which indicates both
absolute and relative imports will be attempted. 0 means only perform absolute imports. Positive
values for level indicate the number of parent directories to search relative to the directory of the
module calling import ().

When the name variable is of the form package.module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist
argument is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

’spam = __import __ ("spam', globals(), locals(), [], -1)

The statement import spam.ham results in this call:

’spam = __import___ ('spam.ham', globals(), locals(), [], -1)

Note how import () returns the toplevel module here because this is the object that is bound to
a name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

_temp = import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage'], -1)
eggs — _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from import (). From this object, the names to import
are retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module().

Changed in version 2.5: The level parameter was added.

Changed in version 2.5: Keyword support for parameters was added.

25

https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.7.15rcl

26 Chapter 2. Built-in Functions

CHAPTER

THREE

NON-ESSENTIAL BUILT-IN FUNCTIONS

There are several built-in functions that are no longer essential to learn, know or use in modern Python
programming. They have been kept here to maintain backwards compatibility with programs written for
older versions of Python.

Python programmers, trainers, students and book writers should feel free to bypass these functions without
concerns about missing something important.

apply (function, args[, keywords])

The function argument must be a callable object (a user-defined or built-in function or method, or
a class object) and the args argument must be a sequence. The function is called with args as the
argument list; the number of arguments is the length of the tuple. If the optional keywords argument
is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to be added
to the end of the argument list. Calling apply() is different from just calling function(args), since in
that case there is always exactly one argument. The use of apply() is equivalent to function(*args,
**keywords).

Deprecated since version 2.3: Use function(*args, **keywords) instead of apply(function, args, key-
words) (see tut-unpacking-arguments).

buffer(object[7 offset[, size]])
The object argument must be an object that supports the buffer call interface (such as strings, arrays,
and buffers). A new buffer object will be created which references the object argument. The buffer
object will be a slice from the beginning of object (or from the specified offset). The slice will extend
to the end of object (or will have a length given by the size argument).

coerce(x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same
rules as used by arithmetic operations. If coercion is not possible, raise TypeError.

intern(string)
Enter string in the table of “interned” strings and return the interned string — which is string itself or
a copy. Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a
dictionary are interned, and the lookup key is interned, the key comparisons (after hashing) can be
done by a pointer compare instead of a string compare. Normally, the names used in Python programs
are automatically interned, and the dictionaries used to hold module, class or instance attributes have
interned keys.

Changed in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and
before); you must keep a reference to the return value of intern() around to benefit from it.

27

The Python Library Reference, Release 2.7.15rcl

28 Chapter 3. Non-essential Built-in Functions

CHAPTER

FOUR

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type.

New in version 2.3.

True
The true value of the bool type.

New in version 2.3.

None
The sole value of types.NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function.

Changed in version 2.4: Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq (), It (),
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

__debug
This constant is true if Python was not started with an -O option. See also the assert statement.

Note: The names None and __ debug cannot be reassigned (assignments to them, even as an attribute
name, raise SyntaxError), so they can be considered “true” constants.

Changed in version 2.7: Assignments to _ debug_ as an attribute became illegal.

4.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the -S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell
and should not be used in programs.

quit([code:None])

exit([code:None])
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when
called, raise SystemExit with the specified exit code.

29

The Python Library Reference, Release 2.7.15rcl

copyright
credits
Objects that when printed or called, print the text of copyright or credits, respectively.

license
Object that when printed, prints the message “Type license() to see the full license text”, and when
called, displays the full license text in a pager-like fashion (one screen at a time).

30 Chapter 4. Built-in Constants

CHAPTER

FIVE

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

Note: Historically (until release 2.2), Python’s built-in types have differed from user-defined types because
it was not possible to use the built-in types as the basis for object-oriented inheritance. This limitation no
longer exists.

The principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared,
tested for truth value, and converted to a string (with the repr() function or the slightly different str()
function). The latter function is implicitly used when an object is written by the print() function.

5.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

* None

* False

¢ zero of any numeric type, for example, 0, OL, 0.0, 0j.

* any empty sequence, for example, ' ', (), [].

* any empty mapping, for example, {}.

* instances of user-defined classes, if the class defines a __nonzero () or __len () method, when
that method returns the integer zero or bool value False.'

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True
for true, unless otherwise stated. (Important exception: the Boolean operations or and and always return
one of their operands.)

I Additional information on these special methods may be found in the Python Reference Manual (customization).

31

The Python Library Reference, Release 2.7.15rcl

5.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes

XOory if x is false, then y, else x (1)

x and y if x is false, then x, else y (2)

not x if x is false, then True, else False | (3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is false.
2. This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

3. not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b is a syntax error.

5.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than
that of the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is
equivalent to x < y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated
at all when x < y is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
1= not equal (1)
is object identity
is not negated object identity
Notes:
1. != can also be written <>, but this is an obsolete usage kept for backwards compatibility only. New

code should always use !=.

Objects of different types, except different numeric types and different string types, never compare equal;
such objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent
result). Furthermore, some types (for example, file objects) support only a degenerate notion of comparison
where any two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently.
The <, <=, > and >= operators will raise a TypeError exception when any operand is a complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the eq ()
method or the cmp () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types
of object, unless the class defines either enough of the rich comparison methods (_ It (), le (),
gt (),and _ge () orthe cmp () method.

CPython implementation detail: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’t support proper comparison are ordered by their address.

32 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types
(below).

5.4 Numeric Types — int, float, long, complex

There are four distinct numeric types: plain integers, long integers, floating point numbers, and complex
numbers. In addition, Booleans are a subtype of plain integers. Plain integers (also just called integers) are
implemented using long in C, which gives them at least 32 bits of precision (sys.maxint is always set to the
maximum plain integer value for the current platform, the minimum value is -sys.maxint - 1). Long integers
have unlimited precision. Floating point numbers are usually implemented using double in C; information
about the precision and internal representation of floating point numbers for the machine on which your
program is running is available in sys.float _info. Complex numbers have a real and imaginary part, which
are each a floating point number. To extract these parts from a complex number z, use z.real and z.imag.
(The standard library includes additional numeric types, fractions that hold rationals, and decimal that hold
floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including binary, hex, and octal numbers) yield plain integers unless the value they denote
is too large to be represented as a plain integer, in which case they yield a long integer. Integer literals with
an 'L' or 'l" suffix yield long integers ('L" is preferred because 11 looks too much like eleven!). Numeric
literals containing a decimal point or an exponent sign yield floating point numbers. Appending 'j' or 'J"'
to a numeric literal yields an imaginary number (a complex number with a zero real part) which you can
add to an integer or float to get a complex number with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where plain integer is narrower
than long integer is narrower than floating point is narrower than complex. Comparisons between numbers
of mixed type use the same rule.? The constructors int(), long(), float(), and complex() can be used to
produce numbers of a specific type.

All built-in numeric types support the following operations. See power and later sections for the operators’
priorities.

Operation Result Notes

X+y sum of x and y

X-y difference of x and y

x*y product of x and y

x/y quotient of x and y (1)

x//y (floored) quotient of x and y (4)(5)

x%y remainder of x / y (4)

-X x negated

+x x unchanged

abs(x) absolute value or magnitude of x (3)

int(x) x converted to integer (2)

long(x) x converted to long integer (2)

float(x) x converted to floating point (6)

complex(re,im) | a complex number with real part re, imaginary part im. im defaults to zero.

c.conjugate() conjugate of the complex number c. (Identity on real numbers)

divmod(x, y) the pair (x // v, x % y) (3)(4)

pow(x, y) X to the power y (3)(7)

x ¥y x to the power y (7)
Notes:

2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

5.4. Numeric Types — int, float, long, complex 33

The Python Library Reference, Release 2.7.15rcl

7.

. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus

infinity: 1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if
either operand is a long integer, regardless of the numeric value.

Conversion from floats using int() or long() truncates toward zero like the related function, math.
trunc(). Use the function math.floor() to round downward and math.ceil() to round upward.

See Built-in Functions for a full description.

Deprecated since version 2.3: The floor division operator, the modulo operator, and the divmod()
function are no longer defined for complex numbers. Instead, convert to a floating point number using
the abs() function if appropriate.

Also referred to as integer division. The resultant value is a whole integer, though the result’s type is
not necessarily int.

float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number
(NaN) and positive or negative infinity.

New in version 2.6.

Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.

All numbers.Real types (int, long, and float) also include the following operations:

Operation Result

math.trunc(x) | x truncated to Integral

round (x|, n]) x rounded to n digits, rounding ties away from zero. If n is omitted, it defaults to 0.
math.floor(x) | the greatest integer as a float <= x

math.ceil(x) the least integer as a float >= x

5.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. Negative numbers are treated as their 2’s complement value
(this assumes a sufficiently large number of bits that no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bitwise operations sorted in ascending priority:

Operation | Result Notes
x|y bitwise or of x and y
x "y bitwise exclusive or of x and y
x&y bitwise and of x and y
X << n x shifted left by n bits (1)(2)
X >>n x shifted right by n bits (1)(3)
“x the bits of x inverted
Notes:
1. Negative shift counts are illegal and cause a ValueError to be raised.
2. A left shift by n bits is equivalent to multiplication by pow(2, n). A long integer is returned if the
result exceeds the range of plain integers.
3. A right shift by n bits is equivalent to division by pow(2, n).
34 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

5.4.2 Additional Methods on Integer Types

The integer types implement the numbers.Integral abstract base class. In addition, they provide one more
method:

int.bit _length()

long.bit_length()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading
Z€eros:

n — -37

bin(n)
'-0b100101"

n.bit_length()
6

More precisely, if x is nonzero, then x.bit_length() is the unique positive integer k such that 2**(k-1)
<= abs(x) < 2**k. Equivalently, when abs(x) is small enough to have a correctly rounded logarithm,
then k = 1 + int(log(abs(x), 2)). If x is zero, then x.bit_length() returns 0.

Equivalent to:

def bit_length(self):
s = bin(self) # binary representation: bin(-37) --> '-0b100101 '
s = sIstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101") > 6

New in version 2.7.

5.4.3 Additional Methods on Float

The float type implements the numbers.Real abstract base class. float also has the following additional
methods.

float.as_integer ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denomi-
nator. Raises OverflowError on infinities and a ValueError on NaNs.

New in version 2.6.

float.is_integer()
Return True if the float instance is finite with integral value, and False otherwise:

(-2.0).is_integer()
True

(3.2).is_integer()
False

New in version 2.6.

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally
as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In
contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This
can be useful when debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point
numbers, this representation will always include a leading Ox and a trailing p and exponent.

5.4. Numeric Types — int, float, long, complex 35

The Python Library Reference, Release 2.7.15rcl

New in version 2.6.

float.fromhex(s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading
and trailing whitespace.

New in version 2.6.
Note that float.hex() is an instance method, while float.fromhex() is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at
least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified
in section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the
output of float.hex() is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal
strings produced by C’s %a format character or Java’s Double.toHexString are accepted by float.fromhex().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by
which to multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point
number (3 + 10./16 + 7./16%*2) * 2.0**10, or 3740.0:

float.fromhex('0x3.a7p10")
3740.0

Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:

float.hex(3740.0)
'0x1.d380000000000p+11"

5.5 Iterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods;
these are used to allow user-defined classes to support iteration. Sequences, described below in more detail,
always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container. _iter ()
Return an iterator object. The object is required to support the iterator protocol described below.
If a container supports different types of iteration, additional methods can be provided to specifically
request iterators for those iteration types. (An example of an object supporting multiple forms of
iteration would be a tree structure which supports both breadth-first and depth-first traversal.) This
method corresponds to the tp _iter slot of the type structure for Python objects in the Python/C APL

The iterator objects themselves are required to support the following two methods, which together form the
iterator protocol:

iterator. _iter ()
Return the iterator object itself. This is required to allow both containers and iterators to be used
with the for and in statements. This method corresponds to the tp_iter slot of the type structure for
Python objects in the Python/C APL

36 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

iterator.next()
Return the next item from the container. If there are no further items, raise the Stoplteration exception.
This method corresponds to the tp iternext slot of the type structure for Python objects in the
Python/C API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictio-
naries, and other more specialized forms. The specific types are not important beyond their implementation
of the iterator protocol.

The intention of the protocol is that once an iterator’s next() method raises Stoplteration, it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This
constraint was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

5.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (techni-
cally, a generator object) supplying the iter () and next() methods. More information about generators
can be found in the documentation for the yield expression.

5.6 Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange

There are seven sequence types: strings, Unicode strings, lists, tuples, bytearrays, buffers, and xrange objects.
For other containers see the built in dict and set classes, and the collections module.

String literals are written in single or double quotes: 'xyzzy', "frobozz". See strings for more about
string literals. Unicode strings are much like strings, but are specified in the syntax using a preceding 'u'
character: u'abc', u"def". In addition to the functionality described here, there are also string-specific
methods described in the String Methods section. Lists are constructed with square brackets, separating
items with commas: [a, b, c]. Tuples are constructed by the comma operator (not within square brackets),
with or without enclosing parentheses, but an empty tuple must have the enclosing parentheses, such as a,
b, c or (). A single item tuple must have a trailing comma, such as (d,).

Bytearray objects are created with the built-in function bytearray().

Buffer objects are not directly supported by Python syntax, but can be created by calling the built-in function
buffer(). They don’t support concatenation or repetition.

Objects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are
created using the xrange() function. They don’t support slicing, concatenation or repetition, and using in,
not in, min() or max() on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities
as the comparison operations. The + and * operations have the same priority as the corresponding numeric
operations.? Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority. In the table, s and t are sequences of
the same type; n, i and j are integers:

3 They must have since the parser can’t tell the type of the operands.

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 37

The Python Library Reference, Release 2.7.15rcl

Operation | Result Notes
xins True if an item of s is equal to x, else False | (1)
xnot in s | False if an item of s is equal to x, else True | (1)
s+t the concatenation of s and t (6)

s *n,n *s | equivalent to adding s to itself n times (2)
s|i] ith item of s, origin 0 (3)
s[izj] slice of s from i to j (3)(4)
si:j:k] slice of s from i to j with step k (3)(5)
len(s) length of s

min(s) smallest item of s

max(s) largest item of s

s.index(x) | index of the first occurrence of x in s

s.count(x) | total number of occurrences of x in s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by
comparing corresponding elements. This means that to compare equal, every element must compare equal
and the two sequences must be of the same type and have the same length. (For full details see comparisons
in the language reference.)

Notes:

1. When s is a string or Unicode string object the in and not in operations act like a substring test. In

Python versions before 2.3, x had to be a string of length 1. In Python 2.3 and beyond, x may be a
string of any length.

. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note

that items in the sequence s are not copied; they are referenced multiple times. This often haunts new
Python programmers; consider:

lists — [[|]] * 3
lists

(M 11, 1
lists[0].append(3)
lists

(131, 131, 311

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of
[[]] * 3 are references to this single empty list. Modifying any of the elements of lists modifies this
single list. You can create a list of different lists this way:

lists = [[] for i in range(3)]
lists[0].append(3)
lists[1].append(5)
lists[2].append(7)

lists

(131, [5], [7]]

Further explanation is available in the FAQ entry fag-multidimensional-list.

. If i or j is negative, the index is relative to the end of sequence s: len(s) + i or len(s) + j is substituted.

But note that -0 is still 0.

. The slice of s from i to j is defined as the sequence of items with index k such that i <=k < j. If i or

j is greater than len(s), use len(s). If i is omitted or None, use 0. If j is omitted or None, use len(s).
If i is greater than or equal to j, the slice is empty.

. The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such

that 0 <=n < (j-i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping when j
is reached (but never including j). When k is positive, i and j are reduced to len(s) if they are greater.

38

Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

When k is negative, i and j are reduced to len(s) - 1 if they are greater. If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None,
it is treated like 1.

6. CPython implementation detail: If s and t are both strings, some Python implementations such as
CPython can usually perform an in-place optimization for assignments of the form s =s + t or s +=
t. When applicable, this optimization makes quadratic run-time much less likely. This optimization
is both version and implementation dependent. For performance sensitive code, it is preferable to use
the str.join() method which assures consistent linear concatenation performance across versions and
implementations.

Changed in version 2.4: Formerly, string concatenation never occurred in-place.

5.6.1 String Methods

Below are listed the string methods which both 8-bit strings and Unicode objects support. Some of them
are also available on bytearray objects.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str,
unicode, list, tuple, bytearray, buffer, xrange section. To output formatted strings use template strings or
the % operator described in the String Formatting Operations section. Also, see the re module for string
functions based on regular expressions.

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

For 8-bit strings, this method is locale-dependent.

str.center(width[, ﬁllchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is a
space).

Changed in version 2.4: Support for the fillchar argument.

str.count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

str.decode([encoding[, errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string
encoding. errors may be given to set a different error handling scheme. The default is 'strict',
meaning that encoding errors raise UnicodeError. Other possible values are 'ignore', 'replace' and
any other name registered via codecs.register error(), see section Codec Base Classes.

New in version 2.2.
Changed in version 2.3: Support for other error handling schemes added.

Changed in version 2.7: Support for keyword arguments added.

str.encode([encoding[, errors]])
Return an encoded version of the string. Default encoding is the current default string encoding.
errors may be given to set a different error handling scheme. The default for errors is 'strict',
meaning that encoding errors raise a UnicodeError. Other possible values are 'ignore', 'replace’',
'xmlcharrefreplace', 'backslashreplace' and any other name registered via codecs.register error(),
see section Codec Base Classes. For a list of possible encodings, see section Standard Encodings.

New in version 2.0.

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 39

The Python Library Reference, Release 2.7.15rcl

Changed in version 2.3: Support for 'xmlcharrefreplace’ and 'backslashreplace' and other error
handling schemes added.

Changed in version 2.7: Support for keyword arguments added.

str.endswith(sufﬁx[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a
tuple of suffixes to look for. With optional start, test beginning at that position. With optional end,
stop comparing at that position.

Changed in version 2.5: Accept tuples as suffix.

str.expandtabs([tabsize])

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on
the current column and the given tab size. Tab positions occur every tabsize characters (default is 8,
giving tab positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to
zero and the string is examined character by character. If the character is a tab (\t), one or more space
characters are inserted in the result until the current column is equal to the next tab position. (The
tab character itself is not copied.) If the character is a newline (\n) or return (\r), it is copied and the
current column is reset to zero. Any other character is copied unchanged and the current column is
incremented by one regardless of how the character is represented when printed.

"01\t012\t0123\t01234 ' .expandtabs()
'01 012 0123 01234

"01\t012\t0123\t01234 ' .expandtabs(4)
'01 012 0123 01234"

str.ﬁnd(sub[, start[, end]])

Return the lowest index in the string where substring sub is found within the slice s[start:end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.

Note: The find() method should be used only if you need to know the position of sub. To check if
sub is a substring or not, use the in operator:

'"Py" in 'Python'
True

str.format(*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal
text or replacement fields delimited by braces {}. Each replacement field contains either the numeric
index of a positional argument, or the name of a keyword argument. Returns a copy of the string
where each replacement field is replaced with the string value of the corresponding argument.

"The sum of 1 + 2 is " format(1+2)
"The sum of 1 + 2 is 3"

See Format String Syntax for a description of the various formatting options that can be specified in
format strings.

This method of string formatting is the new standard in Python 3, and should be preferred to the %
formatting described in String Formatting Operations in new code.

New in version 2.6.

str.index(sub[, start[, end]])

Like find(), but raise ValueError when the substring is not found.

40

Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

str.isalnum()
Return true if all characters in the string are alphanumeric and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

str.isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

str.isdigit()
Return true if all characters in the string are digits and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

str.islower()
Return true if all cased characters® in the string are lowercase and there is at least one cased character,
false otherwise.

For 8-bit strings, this method is locale-dependent.

str.isspace()
Return true if there are only whitespace characters in the string and there is at least one character,
false otherwise.

For 8-bit strings, this method is locale-dependent.

str.istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

For 8-bit strings, this method is locale-dependent.

str.isupper()
Return true if all cased characters® in the string are uppercase and there is at least one cased character,
false otherwise.

For 8-bit strings, this method is locale-dependent.

str.join(iterable)
Return a string which is the concatenation of the strings in iterable. If there is any Unicode object
in iterable, return a Unicode instead. A TypeError will be raised if there are any non-string or non
Unicode object values in iterable. The separator between elements is the string providing this method.

strljust(width], fillchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar
(default is a space). The original string is returned if width is less than or equal to len(s).

Changed in version 2.4: Support for the fillchar argument.

str.lower()
Return a copy of the string with all the cased characters* converted to lowercase.

For 8-bit strings, this method is locale-dependent.

str.lstrip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase),
or “Lt” (Letter, titlecase).

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 41

The Python Library Reference, Release 2.7.15rcl

the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped:

' spacious ".strip()
'spacious '

'www.example.com '.Istrip(' cmowz. ")
'example.com'

Changed in version 2.2.2: Support for the chars argument.

str.partition(sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator itself, and the part after the separator. If the separator is not found, return a
3-tuple containing the string itself, followed by two empty strings.

New in version 2.5.

str.replace(old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

str.rﬁnd(sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

str.rindex(sub[, start[, end]])
Like rfind() but raises ValueError when the substring sub is not found.

str.rjust(width], fillchar |)
Return the string right justified in a string of length width. Padding is done using the specified fillchar
(default is a space). The original string is returned if width is less than or equal to len(s).

Changed in version 2.4: Support for the fillchar argument.

str.rpartition(sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator itself, and the part after the separator. If the separator is not found, return a
3-tuple containing two empty strings, followed by the string itself.

New in version 2.5.

str.rsplit([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most
maxsplit splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a
separator. Except for splitting from the right, rsplit() behaves like split() which is described in detail
below.

New in version 2.4.

str.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying
the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped:

' spacious '.rstrip()
' spacious'

" mississippi ' .rstrip('ipz")
' mississ '

Changed in version 2.2.2: Support for the chars argument.

42 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

str.split([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most
maxsplit splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not
specified or -1, then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty
strings (for example, '1,2".split(',") returns ['1', "', '2']). The sep argument may consist of
multiple characters (for example, '1<>2<>3".split('<>") returns ['1', '2", '3']). Splitting an
empty string with a specified separator returns ['].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the
string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting
of just whitespace with a None separator returns [].

For example, ' 12 3 '.split() returns ['1', '2', '3"],and ' 1 2 3 '.split(None, 1) returns ['1', '2 3
v]'

str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. This method uses the universal
newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends
is given and true.

Python recognizes "\r", "\n", and "\r\n" as line boundaries for 8-bit strings.

For example:

"ab ¢\n\nde fg\rkl\r\n".splitlines()
[taber, ', 'defg', 'kI']

"ab c¢\n\nde fg\rkl\r\n'.splitlines(True)
[fabc\n', "\n"', 'de fg\r', 'kl\r\n"]

Uunlike split() when a delimiter string sep is given, this method returns an empty list for the empty
string, and a terminal line break does not result in an extra line:

nn

.splitlines()

[
"One line\n" .splitlines()
['One line']

For comparison, split('\n") gives:

"split(t\n")

("]
"Two lines\n "' .split('\n")
['Two lines', ' ']

unicode.splitlines([keepends])
Return a list of the lines in the string, like str.splitlines(). However, the Unicode method splits on the
following line boundaries, which are a superset of the universal newlines recognized for 8-bit strings.

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 43

The Python Library Reference, Release 2.7.15rcl

Representation | Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\v or \x0Ob Line Tabulation

\f or \x0c Form Feed

\x1c File Separator

\x1d Group Separator

\x1le Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

Changed in version 2.7: \v and \f added to list of line boundaries.

str.startswith(preﬁx[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of
prefixes to look for. With optional start, test string beginning at that position. With optional end,
stop comparing string at that position.

Changed in version 2.5: Accept tuples as prefix.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a
string specifying the set of characters to be removed. If omitted or None, the chars argument defaults
to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its
values are stripped:

' spacious '.strip()
'spacious'
'www.example.com'.strip('cmowz. ")
'example'

Changed in version 2.2.2: Support for the chars argument.

str.swapcase()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the re-
maining characters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives
form word boundaries, which may not be the desired result:

"they 're bill's friends from the UK" .title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

import re
def titlecase(s):
return re.sub(r"[A-Za-z|+ (' [A-Za-z]+)?",
lambda mo: mo.group(0)[0].upper() +
mo.group(0)[1:].lower(),
s)

44 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

titlecase("they 're bill's friends.")
"They 're Bill's Friends."

For 8-bit strings, this method is locale-dependent.

str.translate(table[, deletechars])
Return a copy of the string where all characters occurring in the optional argument deletechars are
removed, and the remaining characters have been mapped through the given translation table, which
must be a string of length 256.

You can use the maketrans() helper function in the string module to create a translation table. For
string objects, set the table argument to None for translations that only delete characters:

"read this short text'.translate(None, 'aeiou")
'rd ths shrt txt'

New in version 2.6: Support for a None table argument.

For Unicode objects, the translate() method does not accept the optional deletechars argument. In-
stead, it returns a copy of the s where all characters have been mapped through the given translation
table which must be a mapping of Unicode ordinals to Unicode ordinals, Unicode strings or None. Un-
mapped characters are left untouched. Characters mapped to None are deleted. Note, a more flexible
approach is to create a custom character mapping codec using the codecs module (see encodings.cp1251
for an example).

str.upper()
Return a copy of the string with all the cased characters* converted to uppercase. Note that str.

upper().isupper() might be False if s contains uncased characters or if the Unicode category of the
resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

For 8-bit strings, this method is locale-dependent.

str.zfill(width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled
correctly. The original string is returned if width is less than or equal to len(s).

New in version 2.2.2.
The following methods are present only on unicode objects:

unicode.isnumeric()
Return True if there are only numeric characters in S, False otherwise. Numeric characters include digit
characters, and all characters that have the Unicode numeric value property, e.g. U42155, VULGAR
FRACTION ONE FIFTH.

unicode.isdecimal()
Return True if there are only decimal characters in S, False otherwise. Decimal characters include
digit characters, and all characters that can be used to form decimal-radix numbers, e.g. U+0660,
ARABIC-INDIC DIGIT ZERO.

5.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also
known as the string formatting or interpolation operator. Given format % values (where format is a string
or Unicode object), % conversion specifications in format are replaced with zero or more elements of values.
The effect is similar to the using sprintf() in the C language. If format is a Unicode object, or if any of

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 45

The Python Library Reference, Release 2.7.15rcl

the objects being converted using the %s conversion are Unicode objects, the result will also be a Unicode
object.

If format requires a single argument, values may be a single non-tuple object.” Otherwise, values must be
a tuple with exactly the number of items specified by the format string, or a single mapping object (for
example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur
in this order:

1. The '%"' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (some-
name)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the
next element of the tuple in values, and the object to convert comes after the minimum field width
and optional precision.

5. Precision (optional), given as a '.' (dot) followed by the precision. If specified as '*' (an asterisk),
the actual width is read from the next element of the tuple in values, and the value to convert comes
after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must
include a parenthesised mapping key into that dictionary inserted immediately after the '%"' character.
The mapping key selects the value to be formatted from the mapping. For example:

print ' has quote types.' % \
{"language": "Python", "number": 2}

Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

'#' | The value conversion will use the “alternate form” (where defined below).

'0' | The conversion will be zero padded for numeric values.

'-' | The converted value is left adjusted (overrides the '0' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

'+ | A sign character ('+"' or '-') will precede the conversion (overrides a “space” flag).

A})

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. %ld
is identical to %d.

The conversion types are:

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

46 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

Con- Meaning Note
version
'd! Signed integer decimal.
i Signed integer decimal.
o' Signed octal value. (1)
"u' Obsolete type — it is identical to 'd"'. (7)
'x! Signed hexadecimal (lowercase). (2)
"X Signed hexadecimal (uppercase). (2)
e! Floating point exponential format (lowercase). (3)
'E’ Floating point exponential format (uppercase). (3)
fr Floating point decimal format. (3)
'Fr Floating point decimal format. (3)
'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or (4)
not less than precision, decimal format otherwise.
'G!' Floating point format. Uses uppercase exponential format if exponent is less than -4 or | (4)
not less than precision, decimal format otherwise.
'c!' Single character (accepts integer or single character string).
T String (converts any Python object using repr()). (5)
gt String (converts any Python object using str()). (6)
"% No argument is converted, results in a '%"' character in the result.
Notes:
1. The alternate form causes a leading zero ('0') to be inserted between left-hand padding and the
formatting of the number if the leading character of the result is not already a zero.
2. The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X"' format was
used) to be inserted before the first digit.
3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.
4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not
removed as they would otherwise be.
The precision determines the number of significant digits before and after the decimal point and defaults
to 6.
5. The %r conversion was added in Python 2.0.
The precision determines the maximal number of characters used.
6. If the object or format provided is a unicode string, the resulting string will also be unicode.
The precision determines the maximal number of characters used.
7. See PEP 237.
Since Python strings have an explicit length, %s conversions do not assume that '\0' is the end of the
string.

Changed in version 2.7: %f conversions for numbers whose absolute value is over 1e50 are no longer replaced
by %g conversions.

Addit

ional string operations are defined in standard modules string and re.

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 47

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 2.7.15rcl

5.6.3 XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange
type is that an xrange object will always take the same amount of memory, no matter the size of the range
it represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, and the len() function.

5.6.4 Mutable Sequence Types

List and bytearray objects support additional operations that allow in-place modification of the object.
Other mutable sequence types (when added to the language) should also support these operations. Strings
and tuples are immutable sequence types: such objects cannot be modified once created. The following
operations are defined on mutable sequence types (where x is an arbitrary object):

Operation Result Notes
sfi] = x item i of s is replaced by x
s[izj] =t slice of s from i to j is replaced by the contents of the

iterable t
del s[i:j] same as s[i;j] =[]
s[izjk] =t the elements of s[i:j:k] are replaced by those of t (1)
del s[i:j:k] removes the elements of s[i:j:k| from the list
s.append(x) same as s[len(s):len(s)] = [x] (2)
s.extend(t) or s +=1 for the most part the same as s[len(s):len(s)] =t (3)
s*=n updates s with its contents repeated n times (11)

s.count(x)

return number of i‘s for which s[i] == x

(
s.index(x], i, j||)

return smallest k such that sk] == x and i <=k < j (4)
s.insert(i, x) same as s[i:i] = [x] (5)
s.pop([i]) same as x = sli|; del s[i]; return x (6)
s.remove(x) same as del s[s.index(x)] (4)
s.reverse() reverses the items of s in place (7)
s.sort([cmp][, key|, sort the items of s in place (7)(8)(9)(10)
reverse]]])

Notes:

1. t must have the same length as the slice it is replacing.

2.

The C implementation of Python has historically accepted multiple parameters and implicitly joined
them into a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since
Python 1.4.

t can be any iterable object.

Raises ValueError when x is not found in s. When a negative index is passed as the second or third
parameter to the index() method, the list length is added, as for slice indices. If it is still negative, it
is truncated to zero, as for slice indices.

Changed in version 2.3: Previously, index() didn’t have arguments for specifying start and stop posi-
tions.

When a negative index is passed as the first parameter to the insert() method, the list length is added,
as for slice indices. If it is still negative, it is truncated to zero, as for slice indices.

Changed in version 2.3: Previously, all negative indices were truncated to zero.

The pop() method’s optional argument i defaults to -1, so that by default the last item is removed and
returned.

48

Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

7. The sort() and reverse() methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed
list.

8. The sort() method takes optional arguments for controlling the comparisons.

cmp specifies a custom comparison function of two arguments (list items) which should return a neg-
ative, zero or positive number depending on whether the first argument is considered smaller than,
equal to, or larger than the second argument: cmp=lambda x,y: cmp(x.lower(), y.lower()). The default
value is None.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp
function. This is because cmp is called multiple times for each list element while key and reverse touch
each element only once. Use functools.cmp to key() to convert an old-style cmp function to a key
function.

Changed in version 2.3: Support for None as an equivalent to omitting cmp was added.
Changed in version 2.4: Support for key and reverse was added.

9. Starting with Python 2.3, the sort() method is guaranteed to be stable. A sort is stable if it guarantees
not to change the relative order of elements that compare equal — this is helpful for sorting in multiple
passes (for example, sort by department, then by salary grade).

10. CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python 2.3 and newer makes the list
appear empty for the duration, and raises ValueError if it can detect that the list has been mutated
during a sort.

11. The value n is an integer, or an object implementing _ index (). Zero and negative values of n clear
the sequence. Items in the sequence are not copied; they are referenced multiple times, as explained
for s * n under Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange.

5.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership
testing, removing duplicates from a sequence, and computing mathematical operations such as intersection,
union, difference, and symmetric difference. (For other containers see the built in dict, list, and tuple classes,
and the collections module.)

New in version 2.4.

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection, sets
do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can
be changed using methods like add() and remove(). Since it is mutable, it has no hash value and cannot
be used as either a dictionary key or as an element of another set. The frozenset type is immutable and
hashable — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or
as an element of another set.

5.7. Set Types — set, frozenset 49

The Python Library Reference, Release 2.7.15rcl

As of Python 2.7, non-empty sets (not frozensets) can be created by placing a comma-separated list of
elements within braces, for example: {'jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set([iterable])

class frozenset([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set
must be hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not
specified, a new empty set is returned.

Instances of set and frozenset provide the following operations:
len(s)

Return the number of elements in set s (cardinality of s).
xins

Test x for membership in s.

X not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

New in version 2.6.

issubset(other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset(other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, that is, set >= other and set != other.

union(*others)
set | other | ...
Return a new set with elements from the set and all others.

Changed in version 2.6: Accepts multiple input iterables.

intersection(*others)
set & other & ...
Return a new set with elements common to the set and all others.

Changed in version 2.6: Accepts multiple input iterables.

difference(*others)
set, - other - ...
Return a new set with elements in the set that are not in the others.

Changed in version 2.6: Accepts multiple input iterables.

symmetric_ difference(other)
set, ~ other
Return a new set with elements in either the set or other but not both.

30

Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

copy()
Return a new set with a shallow copy of s.

Note, the non-operator versions of union(), intersection(), difference(), and symmetric _difference(),
issubset(), and issuperset() methods will accept any iterable as an argument. In contrast, their operator
based counterparts require their arguments to be sets. This precludes error-prone constructions like
set('abc') & 'cbs' in favor of the more readable set('abc').intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and
only if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater
than another set if and only if the first set is a proper superset of the second set (is a superset, but is
not equal).

Instances of set are compared to instances of frozenset based on their members. For example,
set('abc') == frozenset('abc') returns True and so does set('abc') in set([frozenset('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any
two non-empty disjoint sets are not equal and are not subsets of each other, so all of the following
return False: a<b, a==b, or a>b. Accordingly, sets do not implement the ~_cmp () method.

Since sets only define partial ordering (subset relationships), the output of the list.sort() method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For
example: frozenset('ab') | set('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of
frozenset:

update(*others)
set |= other | ...
Update the set, adding elements from all others.

Changed in version 2.6: Accepts multiple input iterables.

intersection _update(*others)
set &= other & ...
Update the set, keeping only elements found in it and all others.

Changed in version 2.6: Accepts multiple input iterables.

difference update(*others)
set -= other | ...
Update the set, removing elements found in others.

Changed in version 2.6: Accepts multiple input iterables.

symmetric_ difference update(other)
set ~= other
Update the set, keeping only elements found in either set, but not in both.

add(elem)
Add element elem to the set.

remove(elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard(elem)
Remove element elem from the set if it is present.

3.7.

Set Types — set, frozenset 51

The Python Library Reference, Release 2.7.15rcl

pop()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection update(), difference update(), and sym-
metric_ difference update() methods will accept any iterable as an argument.

Note, the elem argument to the __ contains (), remove(), and discard() methods may be a set. To
support searching for an equivalent frozenset, a temporary one is created from elem.

See also:

Comparison to the built-in set types Differences between the sets module and the built-in set types.

5.8 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is
currently only one standard mapping type, the dictionary. (For other containers see the built in list, set,
and tuple classes, and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be
used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers
compare equal (such as 1 and 1.0) then they can be used interchangeably to index the same dictionary entry.
(Note however, that since computers store floating-point numbers as approximations it is usually unwise to
use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{'jack"': 4098, 'sjoerd': 4127} or {4098: 'jack', 4127: 'sjoerd'}, or by the dict constructor.

class dict(**kwarg)

class dict(mapping, **kwarg)

class dict(iterable, **kwarg)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of
keyword arguments.

If no positional argument is given, an empty dictionary is created. If a positional argument is given
and it is a mapping object, a dictionary is created with the same key-value pairs as the mapping object.
Otherwise, the positional argument must be an iterable object. Each item in the iterable must itself be
an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary,
and the second object the corresponding value. If a key occurs more than once, the last value for that
key becomes the corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary
created from the positional argument. If a key being added is already present, the value from the
keyword argument replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2, "three": 3}:

a = dict(one=1, two=2, three—3)
b={'one': 1, "two': 2, "three': 3}
¢ — dict(zip(['one', "two', "three'], [1, 2, 3]))
d = dict([("two", 2), ("one', 1), ("three', 3)])
e = dict({"three': 3, 'one': 1, "two': 2})
~a——b—-——c——d——¢e
True

52 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

Providing keyword arguments as in the first example only works for keys that are valid Python iden-
tifiers. Otherwise, any valid keys can be used.

New in version 2.2.
Changed in version 2.3: Support for building a dictionary from keyword arguments added.

These are the operations that dictionaries support (and therefore, custom mapping types should sup-
port too):

len(d)
Return the number of items in the dictionary d.
d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method _ missing () and key is not present, the d[key] operation
calls that method with the key key as argument. The d[key| operation then returns or raises

whatever is returned or raised by the = missing (key) call. No other operations or methods
invoke missing (). If _ missing () is not defined, KeyError is raised. _ missing ()
must be a method; it cannot be an instance variable:

class Counter(dict):

def _ missing (self, key):

return 0

¢ = Counter()

c['red ']
0

c['red'] +=1

: c['red ']

1

The example above shows part of the implementation of collections.Counter. A different miss-
ing ~ method is used by collections.defaultdict.

New in version 2.5: Recognition of ~ missing methods of dict subclasses.

d[key] = value
Set d[key] to value.

del d[key]
Remove d[key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

New in version 2.2.

key not in d
Equivalent to not key in d.

New in version 2.2.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iterkeys().

clear()
Remove all items from the dictionary.

copy()
Return a shallow copy of the dictionary.

5.8. Mapping Types — dict 53

The Python Library Reference, Release 2.7.15rcl

fromkeys(seq[, value])
Create a new dictionary with keys from seq and values set to value.

fromkeys() is a class method that returns a new dictionary. value defaults to None.
New in version 2.3.

get(key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults
to None, so that this method never raises a KeyError.

has _key(key)
Test for the presence of key in the dictionary. has key() is deprecated in favor of key in d.

items()
Return a copy of the dictionary’s list of (key, value) pairs.

CPython implementation detail: Keys and values are listed in an arbitrary order which is non-
random, varies across Python implementations, and depends on the dictionary’s history of inser-
tions and deletions.

If items(), keys(), values(), iteritems(), iterkeys(), and itervalues() are called with no intervening
modifications to the dictionary, the lists will directly correspond. This allows the creation of
(value, key) pairs using zip(): pairs = zip(d.values(), d.keys()). The same relationship holds for
the iterkeys() and itervalues() methods: pairs = zip(d.itervalues(), d.iterkeys()) provides the same
value for pairs. Another way to create the same list is pairs = [(v, k) for (k, v) in d.iteritems()].

iteritems()
Return an iterator over the dictionary’s (key, value) pairs. See the note for dict.items().

Using iteritems() while adding or deleting entries in the dictionary may raise a RuntimeError or
fail to iterate over all entries.

New in version 2.2.

iterkeys()
Return an iterator over the dictionary’s keys. See the note for dict.items().

Using iterkeys() while adding or deleting entries in the dictionary may raise a RuntimeError or
fail to iterate over all entries.

New in version 2.2.

itervalues()
Return an iterator over the dictionary’s values. See the note for dict.items().

Using itervalues() while adding or deleting entries in the dictionary may raise a RuntimeError or
fail to iterate over all entries.

New in version 2.2.

keys()
Return a copy of the dictionary’s list of keys. See the note for dict.items().

pop(key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not
given and key is not in the dictionary, a KeyError is raised.

New in version 2.3.

popitem()
Remove and return an arbitrary (key, value) pair from the dictionary.

94

Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If
the dictionary is empty, calling popitem() raises a KeyError.

setdefault(key [, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return
default. default defaults to None.

update([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return
None.

update() accepts either another dictionary object or an iterable of key/value pairs (as tuples or
other iterables of length two). If keyword arguments are specified, the dictionary is then updated
with those key/value pairs: d.update(red=1, blue=2).

Changed in version 2.4: Allowed the argument to be an iterable of key/value pairs and allowed
keyword arguments.

values()
Return a copy of the dictionary’s list of values. See the note for dict.items().

viewitems()
Return a new view of the dictionary’s items ((key, value) pairs). See below for documentation of
view objects.

New in version 2.7.

viewkeys()
Return a new view of the dictionary’s keys. See below for documentation of view objects.

New in version 2.7.

viewvalues()
Return a new view of the dictionary’s values. See below for documentation of view objects.

New in version 2.7.

Dictionaries compare equal if and only if they have the same (key, value) pairs.

5.8.1 Dictionary view objects

The objects returned by dict.viewkeys(), dict.viewvalues() and dict.viewitems() are view objects. They
provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view
reflects these changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len(dictview)

Return the number of entries in the dictionary.

iter(dictview)

Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictionary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python
implementations, and depends on the dictionary’s history of insertions and deletions. If keys, values
and items views are iterated over with no intervening modifications to the dictionary, the order of
items will directly correspond. This allows the creation of (value, key) pairs using zip(): pairs =
zip(d.values(), d.keys()). Another way to create the same list is pairs = [(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a RuntimeError or fail to
iterate over all entries.

3.8.

Mapping Types — dict 59

The Python Library Reference, Release 2.7.15rcl

x in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be
a (key, value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key,
value) pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as
set-like since the entries are generally not unique.) Then these set operations are available (“other” refers
either to another view or a set):

dictview & other
Return the intersection of the dictview and the other object as a new set.

dictview | other
Return the union of the dictview and the other object as a new set.

dictview - other
Return the difference between the dictview and the other object (all elements in dictview that aren’t
in other) as a new set.

~

dictview ~ other
Return the symmetric difference (all elements either in dictview or other, but not in both) of the
dictview and the other object as a new set.

An example of dictionary view usage:

dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
keys = dishes.viewkeys()
values — dishes.viewvalues()

iteration
n—0
for val in values:
n += val

- print(n)

504

keys and values are iterated over in the same order

list(keys)

['eggs', "bacon', 'sausage', 'spam'’|
list(values)

[2, 1, 1, 500]

view objects are dynamic and reflect dict changes
del dishes|'eggs'|
del dishes|'sausage ']
list(keys)
['spam', "bacon']

#+ set operations
keys & {'eggs', 'bacon', 'salad'}
{'bacon"}

5.9 File Objects

File objects are implemented using C’s stdio package and can be created with the built-in open() function.
File objects are also returned by some other built-in functions and methods, such as os.popen() and os.
fdopen() and the makefile() method of socket objects. Temporary files can be created using the tempfile

o6 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

module, and high-level file operations such as copying, moving, and deleting files and directories can be
achieved with the shutil module.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes situations
where the operation is not defined for some reason, like seek() on a tty device or writing a file opened for
reading.

Files have the following methods:

file.close()
Close the file. A closed file cannot be read or written any more. Any operation which requires that
the file be open will raise a ValueError after the file has been closed. Calling close() more than once is
allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you use the with statement.
For example, the following code will automatically close f when the with block is exited:

from future import with statement # This isn 't required in Python 2.6

with open("hello.txt") as f:
for line in f:
print line,

In older versions of Python, you would have needed to do this to get the same effect:

f = open("hello.txt")
try:
for line in f:
print line,
finally:
f.close()

Note: Not all “file-like” types in Python support use as a context manager for the with statement. If
your code is intended to work with any file-like object, you can use the function contextlib.closing()
instead of using the object directly.

file.flush()
Flush the internal buffer, like stdio‘s fllush(). This may be a no-op on some file-like objects.

Note: flush() does not necessarily write the file’s data to disk. Use flush() followed by os.fsync() to
ensure this behavior.

file.fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request I/0
operations from the operating system. This can be useful for other, lower level interfaces that use file
descriptors, such as the fcntl module or os.read() and friends.

Note: File-like objects which do not have a real file descriptor should not provide this method!

file.isatty()
Return True if the file is connected to a tty(-like) device, else False.

5.9. File Objects 57

The Python Library Reference, Release 2.7.15rcl

Note: If a file-like object is not associated with a real file, this method should not be implemented.

file.next()

A file object is its own iterator, for example iter(f) returns f (unless f is closed). When a file is used
as an iterator, typically in a for loop (for example, for line in f: print line.strip()), the next() method
is called repeatedly. This method returns the next input line, or raises Stoplteration when EOF is hit
when the file is open for reading (behavior is undefined when the file is open for writing). In order to
make a for loop the most efficient way of looping over the lines of a file (a very common operation),
the next() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer,
combining next() with other file methods (like readline()) does not work right. However, using seek()
to reposition the file to an absolute position will flush the read-ahead buffer.

New in version 2.3.

file.read([size])

Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the
size argument is negative or omitted, read all data until EOF is reached. The bytes are returned as a
string object. An empty string is returned when EOF is encountered immediately. (For certain files,
like ttys, it makes sense to continue reading after an EOF is hit.) Note that this method may call the
underlying C function fread() more than once in an effort to acquire as close to size bytes as possible.
Also note that when in non-blocking mode, less data than was requested may be returned, even if no
size parameter was given.

Note: This function is simply a wrapper for the underlying fread() C function, and will behave the
same in corner cases, such as whether the EOF value is cached.

file.readline([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent
when a file ends with an incomplete line).® If the size argument is present and non-negative, it is a
maximum byte count (including the trailing newline) and an incomplete line may be returned. When
size is not 0, an empty string is returned only when EOF is encountered immediately.

Note: Unlike stdio‘s fgets(), the returned string contains null characters ('\0') if they occurred in
the input.

file.readlines([Sizehint])
Read until EOF using readline() and return a list containing the lines thus read. If the optional sizehint
argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes
(possibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface
may choose to ignore sizehint if it cannot be implemented, or cannot be implemented efficiently.

file.xreadlines()
This method returns the same thing as iter(f).

New in version 2.1.

Deprecated since version 2.3: Use for line in file instead.

ﬁle.seek(offset[, Whence])
Set the file’s current position, like stdio‘s fseek(). The whence argument is optional and defaults to

6 The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is
also possible (in cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines)
to tell whether the last line of a file ended in a newline or not (yes this happens!).

o8 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

0s.SEEK _SET or 0 (absolute file positioning); other values are os.SEEK_CUR or 1 (seek relative to
the current position) and 0s.SEEK END or 2 (seek relative to the file’s end). There is no return value.

For example, f.seek(2, 0s.SEEK CUR) advances the position by two and f.seek(-3, os.SEEK END)
sets the position to the third to last.

Note that if the file is opened for appending (mode 'a' or 'a+ "), any seek() operations will be undone
at the next write. If the file is only opened for writing in append mode (mode 'a'), this method is
essentially a no-op, but it remains useful for files opened in append mode with reading enabled (mode
"a+"). If the file is opened in text mode (without 'b"'), only offsets returned by tell() are legal. Use
of other offsets causes undefined behavior.

Note that not all file objects are seekable.
Changed in version 2.6: Passing float values as offset has been deprecated.

file.tell()
Return the file’s current position, like stdio‘s ftell().

Note: On Windows, tell() can return illegal values (after an fgets()) when reading files with Unix-style
line-endings. Use binary mode ('rb'") to circumvent this problem.

ﬁle.truncate([size])
Truncate the file’s size. If the optional size argument is present, the file is truncated to (at most) that
size. The size defaults to the current position. The current file position is not changed. Note that if a
specified size exceeds the file’s current size, the result is platform-dependent: possibilities include that
the file may remain unchanged, increase to the specified size as if zero-filled, or increase to the specified
size with undefined new content. Availability: Windows, many Unix variants.

file.write(str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show
up in the file until the flush() or close() method is called.

file.writelines(sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings,
typically a list of strings. There is no return value. (The name is intended to match readlines();
writelines() does not add line separators.)

Files support the iterator protocol. Each iteration returns the same result as readline(), and iteration ends
when the readline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects,
but should be implemented if they make sense for the particular object.

file.closed
bool indicating the current state of the file object. This is a read-only attribute; the close() method
changes the value. It may not be available on all file-like objects.

file.encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to
byte strings using this encoding. In addition, when the file is connected to a terminal, the attribute
gives the encoding that the terminal is likely to use (that information might be incorrect if the user has
misconfigured the terminal). The attribute is read-only and may not be present on all file-like objects.
It may also be None, in which case the file uses the system default encoding for converting Unicode
strings.

New in version 2.3.

5.9. File Objects 59

The Python Library Reference, Release 2.7.15rcl

file.errors
The Unicode error handler used along with the encoding.

New in version 2.6.

file.mode
The I/O mode for the file. If the file was created using the open() built-in function, this will be the
value of the mode parameter. This is a read-only attribute and may not be present on all file-like
objects.

file.name
If the file object was created using open(), the name of the file. Otherwise, some string that indicates
the source of the file object, of the form <...>. This is a read-only attribute and may not be present
on all file-like objects.

file.newlines
If Python was built with universal newlines enabled (the default) this read-only attribute exists, and
for files opened in universal newline read mode it keeps track of the types of newlines encountered
while reading the file. The values it can take are '"\r', '\n', '\r\n', None (unknown, no newlines
read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conventions
were encountered. For files not opened in universal newlines read mode the value of this attribute will
be None.

file.softspace
Boolean that indicates whether a space character needs to be printed before another value when us-
ing the print statement. Classes that are trying to simulate a file object should also have a writable
softspace attribute, which should be initialized to zero. This will be automatic for most classes imple-
mented in Python (care may be needed for objects that override attribute access); types implemented
in C will have to provide a writable softspace attribute.

Note: This attribute is not used to control the print statement, but to allow the implementation of
print to keep track of its internal state.

5.10 memoryview type

New in version 2.7.

memoryview objects allow Python code to access the internal data of an object that supports the buffer
protocol without copying. Memory is generally interpreted as simple bytes.

class memoryview(obj)
Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that
support the buffer protocol include str and bytearray (but not unicode).

A memoryview has the notion of an element, which is the atomic memory unit handled by the origi-
nating object obj. For many simple types such as str and bytearray, an element is a single byte, but
other third-party types may expose larger elements.

len(view) returns the total number of elements in the memoryview, view. The itemsize attribute will
give you the number of bytes in a single element.

A memoryview supports slicing to expose its data. Taking a single index will return a single element
as a str object. Full slicing will result in a subview:

v = memoryview("abcefg')
v[1]

60 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

lbv
v[-1]
g
v[1:4]
<memory at 0x77ab28>
v[1:4].tobytes()
"bee’

If the object the memoryview is over supports changing its data, the memoryview supports slice
assignment:

data — bytearray('abcefg")
v = memoryview(data)
v.readonly
False
v[0] = 'z’
data
bytearray(b ' zbcefg ")
v[1:4] = 123"
data
bytearray(b'z123fg")
v[2] = 'spam'
Traceback (most recent call last):
File "<stdin>"| line 1, in <module>
ValueError: cannot modify size of memoryview object

Notice how the size of the memoryview object cannot be changed.
memoryview has two methods:

tobytes()
Return the data in the buffer as a bytestring (an object of class str).

m — memoryview("abc'")
m.tobytes()
"abc!

tolist()
Return the data in the buffer as a list of integers.

memoryview("abc").tolist()
[97, 98, 99]

There are also several readonly attributes available:

format
A string containing the format (in struct module style) for each element in the view. This defaults

to 'B', a simple bytestring.

itemsize
The size in bytes of each element of the memoryview.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

5.10. memoryview type 61

The Python Library Reference, Release 2.7.15rcl

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each
dimension of the array.

readonly
A bool indicating whether the memory is read only.

5.11 Context Manager Types

New in version 2.5.

Python’s with statement supports the concept of a runtime context defined by a context manager. This is
implemented using two separate methods that allow user-defined classes to define a runtime context that is
entered before the statement body is executed and exited when the statement ends.

The context management protocol consists of a pair of methods that need to be provided for a context
manager object to define a runtime context:

contextmanager. _enter ()
Enter the runtime context and return either this object or another object related to the runtime context.
The value returned by this method is bound to the identifier in the as clause of with statements using
this context manager.

An example of a context manager that returns itself is a file object. File objects return themselves
from _enter () to allow open() to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext(). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body
of the with statement without affecting code outside the with statement.

contextmanager. _exit _ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be
suppressed. If an exception occurred while executing the body of the with statement, the arguments
contain the exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception
and continue execution with the statement immediately following the with statement. Otherwise the
exception continues propagating after this method has finished executing. Exceptions that occur during
execution of this method will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false
value to indicate that the method completed successfully and does not want to suppress the raised
exception. This allows context management code (such as contextlib.nested) to easily detect whether
ornot an __exit_ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or
other objects, and simpler manipulation of the active decimal arithmetic context. The specific types are
not treated specially beyond their implementation of the context management protocol. See the contextlib
module for some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter () and __exit () methods, rather than
the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the
Python/C API. Extension types wanting to define these methods must provide them as a normal Python

62 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

accessible method. Compared to the overhead of setting up the runtime context, the overhead of a single
class dictionary lookup is negligible.

5.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

5.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses
a name defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement
is not, strictly speaking, an operation on a module object; import foo does not require a module object
named foo to exist, rather it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is _ dict . This is the dictionary containing the module’s symbol
table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment to
the dict attribute is not possible (you can write m. _dict __['a'] = 1, which defines m.a to be 1,

but you can’t write m. _dict = {}). Modifying dict __ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file,
they are written as <module 'os' from ' /usr/local/lib/pythonX.Y /os.pyc' >.

5.12.2 Classes and Class Instances

See objects and class for these.

5.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support
the same operation (to call the function), but the implementation is different, hence the different object

types.

See function for more information.

5.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods
(such as append() on lists) and class instance methods. Built-in methods are described with the types that
support them.

The implementation adds two special read-only attributes to class instance methods: m.im _self is the object
on which the method operates, and m.im_func is the function implementing the method. Calling m(arg-1,
arg-2, ..., arg-n) is completely equivalent to calling m.im _func(m.im _self, arg-1, arg-2, ..., arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed through
an instance or a class, respectively. When a method is unbound, its im_self attribute will be None and if
called, an explicit self object must be passed as the first argument. In this case, self must be an instance of
the unbound method’s class (or a subclass of that class), otherwise a TypeError is raised.

5.12. Other Built-in Types 63

The Python Library Reference, Release 2.7.15rcl

Like function objects, methods objects support getting arbitrary attributes. However, since method at-
tributes are actually stored on the underlying function object (meth.im func), setting method attributes
on either bound or unbound methods is disallowed. Attempting to set an attribute on a method results
in an AttributeError being raised. In order to set a method attribute, you need to explicitly set it on the
underlying function object:

class C:
def method(self):
pass

¢~ C()
c.method.whoami — "my name is method' # can 't set on the method

Traceback (most recent call last):

File "<stdin>"| line 1, in <module>

AttributeError: 'instancemethod' object has no attribute 'whoami'
c.method.im_func.whoami — 'my name is method’
c.method.whoami

'my name is method'

See types for more information.

5.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such
as a function body. They differ from function objects because they don’t contain a reference to their global
execution environment. Code objects are returned by the built-in compile() function and can be extracted
from function objects through their func code attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement
or the built-in eval() function.

See types for more information.

5.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type().
There are no special operations on types. The standard module types defines names for all standard built-in

types.
Types are written like this: <type 'int'>.

5.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name).

It is written as None.

5.12.8 The Ellipsis Object

This object is used by extended slice notation (see slicings). It supports no special operations. There is
exactly one ellipsis object, named Ellipsis (a built-in name).

It is written as Ellipsis. When in a subscript, it can also be written as ..., for example seq]...].

64 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.15rcl

5.12.9 The NotImplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types
they don’t support. See comparisons for more information.

It is written as NotImplemented.

5.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values
(although other values can also be considered false or true). In numeric contexts (for example when used as
the argument to an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in
function bool() can be used to convert any value to a Boolean, if the value can be interpreted as a truth
value (see section Truth Value Testing above).

They are written as False and True, respectively.

5.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

5.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant.
Some of these are not reported by the dir() built-in function.

object. dict_
A dictionary or other mapping object used to store an object’s (writable) attributes.

object. methods
Deprecated since version 2.2: Use the built-in function dir() to get a list of an object’s attributes. This
attribute is no longer available.

object. members
Deprecated since version 2.2: Use the built-in function dir() to get a list of an object’s attributes. This
attribute is no longer available.

instance. _ class
The class to which a class instance belongs.

class. _bases
The tuple of base classes of a class object.

definition. name
The name of the class, type, function, method, descriptor, or generator instance.

The following attributes are only supported by new-style classes.

class. _mro
This attribute is a tuple of classes that are considered when looking for base classes during method
resolution.

class.mro()
This method can be overridden by a metaclass to customize the method resolution order for its in-
stances. It is called at class instantiation, and its result is stored in __mro

5.13. Special Attributes 65

The Python Library Reference, Release 2.7.15rcl

class. _subclasses ()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns

a list of all those references still alive. Example:

int.

___subclasses__ ()

[<type "bool'>]

66

Chapter 5. Built-in Types

CHAPTER

SIX

BUILT-IN EXCEPTIONS

Exceptions should be class objects. The exceptions are defined in the module exceptions. This module
never needs to be imported explicitly: the exceptions are provided in the built-in namespace as well as the
exceptions module.

For class exceptions, in a try statement with an except clause that mentions a particular class, that clause
also handles any exception classes derived from that class (but not exception classes from which it is derived).
Two exception classes that are not related via subclassing are never equivalent, even if they have the same
name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where
mentioned, they have an “associated value” indicating the detailed cause of the error. This may be a string
or a tuple containing several items of information (e.g., an error code and a string explaining the code). The
associated value is the second argument to the raise statement. If the exception class is derived from the
standard root class BaseException, the associated value is present as the exception instance’s args attribute.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error
condition “just like” the situation in which the interpreter raises the same exception; but beware that there
is nothing to prevent user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to
derive new exceptions from the Exception class or one of its subclasses, and not from BaseException. More
information on defining exceptions is available in the Python Tutorial under tut-userexceptions.

The following exceptions are only used as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes
(for that, use Exception). If str() or unicode() is called on an instance of this class, the representation
of the argument(s) to the instance are returned, or the empty string when there were no arguments.

New in version 2.5.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like IOError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple,
while others are usually called only with a single string giving an error message.

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions
should also be derived from this class.

Changed in version 2.5: Changed to inherit from BaseException.

exception StandardError
The base class for all built-in exceptions except Stoplteration, GeneratorExit, KeyboardInterrupt and
SystemExit. StandardError itself is derived from Exception.

67

The Python Library Reference, Release 2.7.15rcl

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndexError, KeyError. This can be raised directly by codecs.lookup().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, OSError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s errno
attribute (it is assumed to be an error number), and the second item is available on the strerror
attribute (it is usually the associated error message). The tuple itself is also available on the args
attribute.

New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on the filename attribute. However, for backwards compatibility,
the args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The errno
and strerror attributes are also None when the instance was created with other than 2 or 3 arguments.
In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object
does not support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input() or raw _input()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: the file.read() and file.readline() methods return an empty string
when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised
when Python is configured with the --with-fpectl option, or the WANT SIGFPE_HANDLER symbol
is defined in the pyconfig.h file.

exception GeneratorExit
Raised when a generator‘s close() method is called. It directly inherits from BaseException instead of
StandardError since it is technically not an error.

New in version 2.5.
Changed in version 2.6: Changed to inherit from BaseException.

exception IOError
Raised when an I/O operation (such as a print statement, the built-in open() function or a method of
a file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on excep-
tion instance attributes.

68 Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.7.15rcl

Changed in version 2.6: Changed socket.error to use this as a base class.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import fails to
find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in function input() or raw _input() is
waiting for input also raise this exception. The exception inherits from BaseException so as to not be
accidentally caught by code that catches Exception and thus prevent the interpreter from exiting.

Changed in version 2.5: Changed to inherit from BaseException.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some
objects). The associated value is a string indicating what kind of (internal) operation ran out of mem-
ory. Note that because of the underlying memory management architecture (C’s malloc() function),
the interpreter may not always be able to completely recover from this situation; it nevertheless raises
an exception so that a stack traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method.

New in version 1.5.2.

exception OSError
This exception is derived from EnvironmentError. It is raised when a function returns a system-related
error (not for illegal argument types or other incidental errors). The errno attribute is a numeric error
code from errno, and the strerror attribute is the corresponding string, as would be printed by the
C function perror(). See the module errno, which contains names for the error codes defined by the
underlying operating system.

For exceptions that involve a file system path (such as chdir() or unlink()), the exception instance will
contain a third attribute, filename, which is the file name passed to the function.

New in version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur
for long integers (which would rather raise MemoryError than give up) and for most operations with
plain integers, which return a long integer instead. Because of the lack