Python Library Reference
Release 1.5.2

Guido van Rossum

July 6, 1999

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright(© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum
or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation for National
Research Initiatives (CNRI) at the Internet addrigssftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, IN-
DIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manudkscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file 1/O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-inTYPES . . o o 3
2.2 BUIlt-IN EXCEPLiONS o o e e e e 12
2.3 BUIlt-in FUNCLONS e e 16

3 Python Services 25
3.1 sys — System-specific parameters and functions. oL oL 25
3.2 types — Namesforall built-intypes.. 28
3.3 UserDict — Class wrapper for dictionaryobjects 30
3.4 UserList —Classwrapperforlistobjects 30
3.5 operator — Standard operatorsasfunctions..o oL 31
3.6 traceback — Printorretrieve astacktraceback. o oo oL 33
3.7 linecache —Randomaccesstotextlines. 34
3.8 pickle — Pythonobjectserialization 35
3.9 cPickle — Alternate implementation giickle oo Lo 38
3.10 copy _reg — Registempickle supportfunctions. 38
3.11 shelve — Python object persistency. 39
3.12 copy — Shallow anddeep copyoperationso 40
3.13 marshal — Alternate Python object serialization. 41
3.14 imp — Accessthamport internals. e 41
3.15 parser — Access parse trees for Pythoncade. 44
3.16 symbol — Constants used with Python parsetrees 53
3.17 token — Constants used with Python parsetrees 54
3.18 keyword — Testing for Pythonkeywords 54
3.19 tokenize — Tokenizer for Pythonsource. 54
3.20 pyclbr — Python class browsersupport e 55
3.21 code — Codeobjectservices.. e 55
3.22 codeop — Compile Pythoncode e 56
3.23 pprint —Dataprettyprinter.. e e e e 56
3.24 repr — Alternaterepr() implementation.. e 58
3.25 py_compile — Compile Python sourcefiles.. 60
3.26 compileall =~ — Byte-compile Python libraries. o L. 60
3.27 dis —Disassembler.. L e 61
3.28 new — Runtime implementation object creation. L oL 66
3.29 site — Site-specific configurationhook. 67
3.30 user — User-specific configurationhook 68
3.31 __builtin __ —Built-infunctions. 68

CONTENTS

3.32 __main __ —Top-level scriptenvironment.

String Services

4.1 string —Commonstringoperations e e e
4.2 re — Perl-style regular expression operations.
4.3 regex — Regular expression search and match operations.
4.4 regsub — String operations using regular expressions

4.5 struct — Interpretstrings as packed binarydata.. 0o L
4.6 fpformat — Floating pointconversions. e
4.7 Stringl0 — Read and write stringsasfiles.
4.8 cStringl0 — Fasterversion oBtringlO L

Miscellaneous Services

5.1 math — Mathematical functions.
5.2 cmath — Mathematical functions for complexnumbers
5.3 whrandom — Floating point pseudo-random number generator.

5.4 random — Generate pseudo-randomnumbers.o oL

5.5 bisect — Array bisection algorithm
5.6 array — Efficientarraysofnumericvalues.,
5.7 ConfigParser — Configurationfileparser.
5.8 fileinput — Iterate over lines from multiple input streams
5.9 calendar — Functions that emulate theNuUx cal program..

5.10 cmd— Build line-oriented command interpreters..o
5.11 shlex — Simplelexicalanalysis e

Generic Operating System Services 105

6.1 o0s — Miscellaneous OS interfaces o o e e

6.2 os.path — Common pathname manipulations.
6.3 dircache — Cacheddirectorylistings. e
6.4 stat — Interpretingstat() results.
6.5 statcache — Anoptimization ofos.stat() Lo L
6.6 statvfs — Constants used withs.statvfs() o

6.7 cmp—File comparisons e e e e e
6.8 cmpcache — Efficientfile comparisons. L e
6.9 time —Timeaccessand CoOnVersionS.. v i i i it e e
6.10 sched — Eventscheduler. e

6.11 getpass — Portable passwordinput. L
6.12 curses — Terminal independantconsole handling.
6.13 getopt — Parserforcommand lineoptions. o
6.14 tempfile — Generate temporaryfilenames.,

6.15 errno — Standard errno systemsymbols.. oL
6.16 glob — UNIX style pathname patternexpansion
6.17 fnmatch — UNix filename patternmatching
6.18 shutii — High-levelfile operations
6.19 locale — Internationalizationservices e
6.20 mutex — Mutual exclusion Support. e

Optional Operating System Services 143

7.1 signal — Sethandlersforasynchronousevents.
7.2 socket — Low-level networkinginterface. Lo
7.3 select — Waiting for I/O completion. L
7.4 thread — Multiplethreadsofcontrol.
7.5 threading — Higher-level threadinginterface.
7.6 Queue —Asynchronizedqueueclass..
7.7 anydbm — Generic access to DBM-style databases o o oo

10

11

7.8 dumbdbm— Portable DBM implementation 159

7.9 dbhash — DBM-style interface to the BSD database libraty. 160
7.10 whichdb — Guess which DBM module created adatabase. 161
7.11 bsddb — Interfaceto Berkeley DB library 161
7.12 zlib — Compression compatible withzip 163
7.13 gzip — Supportforgzipfiles e 164
7.14 rlcompleter ~ — Completion functionforreadline, 165
Unix Specific Services 167
8.1 posix — The mostcommon POSIX systemcalls. 167
8.2 pwd—Thepassworddatabase. 168
8.3 grp —Thegroupdatabase 168
8.4 crypt — Function used to checklUx passwords 169
8.5 dl —CallCfunctionsinsharedobjects 169
8.6 dbm— Simple “database” interface. e 170
8.7 gdbm— GNU'sreinterpretationofdbm. 171
8.8 termios —POSIXstylettycontrol. 172
8.9 TERMIOS— Constants used with thermios module 173
8.10 tty — Terminal controlfunctions. 173
8.11 pty — Pseudo-terminal utilities e 174
8.12 fentl — Thefentl() andioctl() systemcalls. 174
8.13 pipes — Interface to shell pipelines 175
8.14 posixfile — File-like objects with locking support 176
8.15 resource — Resource usage information. L Lo oo 178
8.16 nis — Interfaceto Sun'sNIS (YelloPages) 180
8.17 syslog — UNix sysloglibraryroutines e 181
8.18 popen2 — Subprocesses with accessible I/Ostreams. 181
8.19 commands— Utilities for runningcommands Lo 182
The Python Debugger 185
9.1 Debugger Commands e e e 186
9.2 How ItWorks. e 188
The Python Profiler 191
10.1 Introductiontothe profiler L 191
10.2 How Is This Profiler Different From The Old Profiler?. 191
10.3 InstantUsers Manual. e 192
10.4 What Is Deterministic Profiling?. e 194
10.5 Reference Manual L e 194
10.6 Limitations. o o o e e 197
10.7 Calibration. e 197
10.8 Extensions — Deriving Better Profilers. 198
Internet Protocols and Support 203
11.1 cgi — Common Gateway Interface support.. e 203
11.2 urlib — Open an arbitrary objectgivenby URL. 209
11.3 httplib —HTTP protocolclient. e 211
11.4 ftplib —FTPprotocolclient. e 213
11.5 gopherlib — Gopher protocolclient 216
11.6 poplib —POP3protocolclient. 216
11.7 imaplib — IMAP4 protocolclient e 218
11.8 nntplib —NNTP protocolclient. e 220
11.9 smtplib — SMTP protocolclient. e 223
11.10telnetlib —Telnetclient 226
11.11urlparse — Parse URLsinto components.. o o i i i i i i e 228

12

13

14

15

16

11.12SocketServer — A framework for network servers.. o 229

11.13BaseHTTPServer —BasicHTTP server.. it e 231
11.14SimpleHTTPServer — A Do-Something RequestHandler. 233
11.15CGIHTTPServer — A Do-Something RequestHandler 234
11.16asyncore — Asyncronous sockethandler. 234
Internet Data Handling 239
12.1 sgmllib — Simple SGML parser. 0 e e 239
12.2 htmllib — AparserforHTML documents 241
12.3 htmlentitydefs — Definitions of HTML general entities 243
12.4 xmllib — Aparserfor XMLdocuments. 243
12.5 formatter = — Generic output formatting oL 246
12.6 rfc822 —Parse RFC822mailheaders. e 249
12.7 mimetools — Tools for parsing MIMEmessages i v v i v i i i i 252
12.8 MimeWriter — Generic MIME filewriter 253
12.9 multifile — Support for files containing distinctparts. oo oL 254
12.10binhex — Encode and decode binhex4files 256
12.11uu — Encode and decode uuencodefiles L Lo Lo 256
12.12binascii ~ — Convert between binary amdsCil Lo 257
12.13xdrlib — Encode and decode XDRdata.. 258
12.14mailcap — Mailcap file handling.. e 260
12.15mimetypes — Map filenamesto MIME types. oL 261
12.16base64 — Encode and decode MIME base64 data. 262
12.17quopri — Encode and decode MIME quoted-printabledata 263
12.18mailbox — Read various mailboxformats oL oL 263
12.19mhlib — Accessto MH mailboxes e 263
12.20mimify — MIME processing of mailmessages. e 265
12.21netrc —netrcfile processing. 266
Restricted Execution 269
13.1 rexec — Restricted execution framework oL 270
13.2 Bastion — Restrictingaccesstoobjects o 272
Multimedia Services 273
14.1 audioop — Manipulateraw audiodata 273
14.2 imageop — Manipulaterawimagedata. 276
14.3 aifc — Read and write AIFFand AIFCfiles. oo 277
14.4 sunau — Read and write Sun AUfiles 279
145 wave — Read and write WAV files. e 281
14.6 chunk —Read IFFchunkeddata. 283
14.7 colorsys — Conversions between colorsystems 284
14.8 rghimg — Read and write “SGIRGB"files 284
14.9 imghdr — Determinethetypeofanimage.., 285
14.10sndhdr — Determine type of soundfile.. o 286
Cryptographic Services 287
15.1 md5— MD5 message digestalgorithm. 287
15.2 sha — SHA message digestalgorithm. 288
15.3 mpz— GNU arbitrary magnitude integers 288
15.4 rotor — Enigma-like encryption and decryption.. oL ool 289
SGI IRIX Specific Services 291
16.1 al —Audio functionsonthe SGl e 291
16.2 AL — Constantsused withtted module 293
16.3 cd — CD-ROM access on SGISystems i i it e e 293

16.4 fl — FORMS library interface for GUl applications. 296
16.5 FL — Constants used withtife module 301
16.6 flp — Functions for loading stored FORMS designs. 302
16.7 fm — Font Managelinterface. e 302
16.8 gl — Graphics Libraryinterface 303
16.9 DEVICE— Constantsused withthgd module 305
16.10GL— Constants used withttgd module 305
16.11imgfile — Support for SGlimglibfiles o 305
16.12jpeg — Read and write JPEGfiles. 306
17 SunOS Specific Services 309
17.1 sunaudiodev — AccesstoSunaudiohardware., 309
17.2 SUNAUDIODEW- Constants used wittunaudiodev 310
18 MS Windows Specific Services 311
18.1 msvert — Useful routines from the MS VC++runtime. L. 311
18.2 winsound — Sound-playing interface for Windows. oL 312
19 Undocumented Modules 313
19.1 Frameworks. e e 313
19.2 Miscellaneous useful utilities. e 313
19.3 Platform specificmodules L e 313
19.4 Multimedia. e 314
195 Obsolete. 314
19.6 Extensionmodules L 315
Module Index 317
Index 319

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, like socket 1/O; others provide interfaces that are
specific to a particular application domain, like the World-Wide Web. Some modules are avaiable in all versions
and ports of Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out”: it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See Chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use iriffanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, e.d, OL, 0.0 .

e any empty sequence, e.y.,, () ,[] -

e any empty mapping, e.d} .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns zero.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retionfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex Q)
x and y | if xis false, therx, elsey 1)
not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operators, so a@. a == is interpreted asot(a == b) ,
anda == not b isasyntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarilyxeg.y <= z is equivalenttax < y and y

<= z, except thay is evaluated only once (but in both casess not evaluated at all whex < vy is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
<> not equal (1)
I= not equal (1)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’'t choose beteeeand C! :-)

Obijects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (e.g., win-
dows) support only a degenerate notion of comparison where any two objects of that type are unequal. Again, such
objects are ordered arbitrarily but consistently.

(Implementation note: objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.)

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

2.1.4 Numeric Types

There are four numeric typeglain integers long integers floating point numbersand complex numbersPlain
integers (also just calleititegers are implemented usinigng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendirjg ‘or ‘J’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the fame rule.
The functionsnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y guotient ofx andy Q)
X %y remainder ok / vy
- X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(X) x converted to long integer (2)
float(X) x converted to floating point
complex(re, im) | acomplex number with real pas, imaginary parim. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(X, V) thepair(x / 'y, x %) 3)
pow(X, YY) x to the powery
X ¥y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is O.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftian(s
andceil) in modulemath for well-defined conversions.

(3) See the section on built-in functions for an exact definition.

Bit-string Operations on Integer Types

2As a consequence, the Ijdt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofi * has the same priority as the other unary numeric operatiens(id ‘- °).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
X|y bitwiseor of x andy
X"y bitwise exclusive oof x andy
X &y bitwiseandof x andy
X << n | xshifted left byn bits (1), (2)
X >> n | xshifted right byn bits (1), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.

(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.1.5 Sequence Types

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quoteyzzy’ ,"frobozz" . See Chapter 2 of tHeython Reference
Manual for more about string literals. Lists are constructed with square brackets, separating items with commas:
[a, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parentheseas, p,gg or() . A single item tuple must

have a trailing comma, e.dd,)

Sequence types support the following operations. Tie &nd ‘not in ' operations have the same priorities as the
comparison operations. The 'and **’ operations have the same priority as the corresponding numeric operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
S * n, n* s | ncopies ofsconcatenated 3)
9] i'th item of s, origin O 1)
g i] slice ofsfromi toj @), @
len(9) length ofs
min(s) smallest item of
max(s) largest item of

Notes:

3They must have since the parser can't tell the type of the operands.

Chapter 2.

Built-in Types, Exceptions and Functions

(1) If i orj is negative, the index is relative to the end of the string,le@(s) + iorlen(s) + |is substituted.
But note thatO is still 0.

(2) The slice ofsfromi to] is defined as the sequence of items with indexich that <= k < j. If i orj is greater
thanlen(s), uselen(s). If i is omitted, usd. If j is omitted, usden(s) . If i is greater than or equal {p
the slice is empty.

(3) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typsg).as

More String Operations

String objects have one unique built-in operation: %heperator (modulo) with a string left argument interprets this
string as a Gprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple*cijedollowing format characters

are understood% c, s, i, d, u, 0, X, X, e, E, f, g, G Width and precision may be*ato specify that an integer
argument specifies the actual width or precision. The flag charactersblank,# and0 are understood. The size
specifiersh, | or L may be present but are ignored. T¥s conversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI featurédépand%nare not supported. Since Python strings have

an explicit length%sconversions don't assume tHel' is the end of the string.

For safety reasons, floating point precisions are clipped t&/&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bggconversions. All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after tR&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> |anguage = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard modtrlag and in built-in modulee .

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

4A tuple object in this case should be a singleton.
5These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 7

Operation Result Notes
gi] = x itemi of sis replaced by
gi:j] = t slice ofsfromi to is replaced by
del di:j] sameas i: j] =[]
s.append(x) same ag{len(s)len(9] = [X
s.extend(Xx) same agllen(s)len(9] = x (5)
scount(X) return number of's for whichg[i] == x
sindex(X) return smallest such that[i] == x 1)
sinsert(i, X) sameasi:i] = [x] ifi >= 0
s.pop([i]) sameax = di]; del g i]; return X (4)
s.remove(X) same aslel ¢ sindex(X)] D)
s.reverse() reverses the items afin place 3)
s.sort([cmpfund) sort the items o§in place (2), (3)

Notes:

(1) Raises an exception wheris not found ins.

(2) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should returnl , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list
in reverse order it is much faster to use calls to the metsod$) andreverse() than to use the built-in
functionsort() with a comparison function that reverses the ordering of the elements.

(3) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don't return the sorted or reversed list to remind you of this side effect.

(4) Thepop() method is experimental and not supported by other mutable sequence types than lists. The optional
argument defaults to-1 , so that by default the last item is removed and returned.

(5) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable types other than lists.

2.1.6 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thetionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (&.gnd1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wleaadb are mappingsk is a key, ands andx are arbitrary
objects):

8 Chapter 2. Built-in Types, Exceptions and Functions

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k (1)
akl = x seta k] tox
del a[kK removea k] froma D)
a.clear() remove all items frona
a.copy() a (shallow) copy of
a.has _key(k) | 1if ahas akey, else0
a.items() a copy ofa’s list of (key, value pairs (2)
a.keys() a copy ofa’s list of keys (2)
a.update(b) for k, v in b.items(): ak] = v 3
a.values() a copy ofa’s list of values (2)
aget(k[, x]) | a[K if ahas _key(K), elsex @)

Notes:

(1) Raises &eyError exception ifk is not in the map.

(2) Keys and values are listed in random order.

(3) b must be of the same type as

(4) Never raises an exceptionkifis not in the map, instead it returfsf is optional; wherf is not provided and is

not in the mapNone is returned.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anthameaccesses a hame

defined inm's symbol table. Module attributes can be assigned to. (Note thatribert
speaking, an operation on a module objauiport

it requires an (externatlefinitionfor a module nametbo somewhere.)

A special member of every module is dict __.

statement is not, strictly

foo does not require a module object naniedto exist, rather

This is the dictionary containing the module’s symbol table.

Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thiet __

attribute is not possible (i.e., you can write __dict __[a] = 1

write m. __dict

=0

Modules built into the interpreter are written like thismodule 'sys’ (built-in)>

they are written asmodule 'os’ from ’/usr/local/lib/pythonl.5/0s.pyc’>

Classes and Class Instances

See Chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions

Function objects are created by function definitions.

fung argument-lis} .

, which defineam.a to bel, but you can'’t

. If loaded from a file,

The only operation on a function object is to call it:

2.1. Built-in Types

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributésnc _code is a function’scode objec{see below) and
f.func _globals is the dictionary used as the function’s global name space (this is the same_aslict
wheremis the module in which the functidhwas defined).

Methods
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methimals:self is the object on
which the method operates, andm _func is the function implementing the method. Callim§arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the buitempile() function and can be extracted from function objects
through theirfunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtedhstatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhes defines names for all standard built-in types.

Types are written like thisctype ’'int’>

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (sedPytbon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nant&itipsis (a built-in name).

It is written asEllipsis

10 Chapter 2. Built-in Types, Exceptions and Functions

File Objects

File objects are implemented using G&lio package and can be created with the built-in functpen() de-
scribed section 2.3, “Built-in Functions.” They are also returned by some other built-in functions and methods, e.g.,
posix.popen() andposix.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/0O-related reason, the excep@&mror is raised. This includes situations where
the operation is not defined for some reason, $igek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()

Close the file. A closed file cannot be read or written anymore.
flush ()

Flush the internal buffer, liketdio s fflush()
isatty ()

Returnl if the file is connected to a tty(-like) device, elBe

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl oros.read() and friends.

read ([size])
Read at mossizebytes from the file (less if the read hi®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned wheBoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after aOFis hit.) Note that this method may call the underlying C funci@ad() more than once
in an effort to acquire as close sizebytes as possible.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tmg may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned¢aien
is hitimmediately. Note: unlikstdio ’'sfgets() ,the returned string contains null characté® () if they
occurred in the input.

readlines ([sizehint])
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mehint
argument is present, instead of reading ugaa, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read.

seek (offse{, Whencd)
Set the file’s current position, likstdio s fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values dréseek relative to the current position) addseek relative to the
file’s end). There is no return value.

tell ()
Return the file’s current position, likedio s ftell()

truncate ([size])
Truncate the file's size. If the optional size argument present, the file is truncated to (at most) that size. The size
defaults to the current position. Availability of this function depends on the operating system version (e.g., not
all UNIX versions support this operation).

write (str)

6The advantage of leaving the newline on is that an empty string can be returned t@ areaithout being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 11

Write a string to the file. There is no return value. Note: due to buffering, the string may not actually show up
in the file until theflush() orclose() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to meatdhnes() ;
writelines() does not add line separators.)

File objects also offer the following attributes:

closed
Boolean indicating the current state of the file object. This is a read-only attributesldbe() method
changes the value.

mode
The 1/0 mode for the file. If the file was created using tipen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the forrs!..> . This is a read-only attribute.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vetifdfpace attribute,
which should be initialized to zero. This will be automatic for classes implemented in Python; types imple-
mented in C will have to provide a writabseftspace attribute.

Internal Objects

See thePython Reference Manu#br this information. It describes code objects, stack frame objects, traceback
objects, and slice objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

__dict
A dictionary of some sort used to store an object’s (writable) attributes.

__methods __
List of the methods of many built-in object types, e[f§., __methods __ yields['append’, 'count’,
'index’, 'insert’, 'pop’, 'remove’, 'reverse’, 'sort’]

__members__
Similar to__methods __, but lists data attributes.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string objects, in
Python 1.5, all standard exceptions have been converted to class objects, and users are encouraged to do the same. The

12 Chapter 2. Built-in Types, Exceptions and Functions

source code for those exceptions is present in the standard library neoagletions ; this module never needs to
be imported explicitly.

For backward compatibility, when Python is invoked with tXeoption, most of the standard exceptions are stfings
This option may be used to run code that breaks because of the different semantics of class based excepons. The
option will become obsolete in future Python versions, so the recommended solution is to fix the code.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with aexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofékeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootElaeption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions. When string-based standard exceptions
are used, they are tuples containing the directly derived classes.

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsiffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

StandardError
The base class for all built-in exceptions excB8gstemExit . StandardError itself is derived from the
root class€Exception

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verflowError
ZeroDivisionError , FloatingPointError

LookupError

The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError

EnvironmentError
The base class for exceptions that can occur outside the Python sy®termor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instarcets attribute (it is assumed
to be an error number), and the second item is available osttbror attribute (it is usually the associated
error message). The tuple itself is also available oratigs attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as

"For forward-compatibility the new exceptiofxception , LookupError , ArithmeticError , EnvironmentError , andStan-
dardError are tuples.

2.2. Built-in Exceptions 13

above, while the third item is available on tlilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefihe and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised. They are class objects, exceptheptibe
is used to revert back to string-based standard exceptions.

AssertionError
Raised when aassert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError s raised.)

EOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiongoF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hitEOF.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined
in the ‘config.h’ file.

IOError
Raised when an I/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frorenvironmentError . See the discussion above for more information on exception
instance attributes.

ImportError
Raised when aimport statement fails to find the module definition or whefniam ... import fails to

find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

Keyboardinterrupt
Raised when the user hits the interrupt key (norm@lntrol-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipnt() orraw _input()) is waiting
for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@doc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

NotlmplementedError

14 Chapter 2. Built-in Types, Exceptions and Functions

This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

OSEtrror
This class is derived frof&environmentError and is used primarily as thies module’'sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
1.5.2.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occurimpan statement, in arexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttfileutase , lineno , offset and

text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptionsir() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string

of the Python interpretersys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemEXxit

This exception is raised by thsys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

When class exceptions are used, the instance has an attrdagewhich is set to the proposed exit status or
error message (defaulting done). Also, this exception derives directly froException and notStan-
dardError , since it is not technically an error.

A call to sys.exit() is translated into an exception so that clean-up handferally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after dork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sincteg&rror

2.2. Built-in Exceptions 15

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thgnport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghe statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_ owmport __()

function.

For example, the statementmport spam ' results in the following call: __import __(’'spam’,
globals(), locals(), [1) ; the statementfrom spam.ham import eggs results in
__import __('spam.ham’, globals(), locals(), ['eggs’) . Note that even thouglo-

cals() and[eggs’] are passed in as arguments, theémport __() function does not set the local
variable nameakggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitgls argument at all, and uses bfobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named hyame However, when a non-emptgomlistargument is given, the
module named bpameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfngm spam.ham import eggs ', the spam.ham
subpackage must be used to find dggs variable. As a workaround for this behavior, ugstattr() to
extract the desired components. For example, you could define the following helper:

import string

def my_import(name):
mod = __import__(name)
components = string.split(name, '.")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg{, keywordé)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence (if it is not a tuple, the sequence is first converted to a tuple). The
functionis called withargsas the argument list; the number of arguments is the the length of the tuple. (This is
different from just callingund args) , since in that case there is always exactly one argument.) If the optional
keywordsargument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to
be added to the end of the the argument list.

buffer (objec{, offse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdbgctargument. The buffer object will be a slice from

16 Chapter 2. Built-in Types, Exceptions and Functions

the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by theizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whascil code is the integer e.g.,chr(97) returns the stringg’ . This
is the inverse obrd() . The argument must be in the range [0..255], inclusive.

cmp(X, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

coerce (X,Y)

Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, king
Compile thestringinto a code object. Code objects can be executed lBxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; passstgng>’
if it wasn't read from a file. Th&ind argument specifies what kind of code must be compiled,; it caaxss’
if string consists of a sequence of statemetgsal’ if it consists of a single expression, @ingle’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else tharNone will printed).

complex (real[, imag])
Create a complex number with the vaheal + imagj or convert a string or number to a complex number. Each
argument may be any numeric type (including compleximiigis omitted, it defaults to zero and the function
serves as a numeric conversion function lik) , long() andfloat() ; in this case it also accepts a
string argument which should be a valid complex number.

delattr (object, namg
This is a relative ofetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(%, ' foobar) is equivalenttalel x. foobar.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attribute for that object. This information is gleaned from the objectfict __,
__methods __and__members__ attributes, if defined. The listis not necessarily complete; e.g., for classes,
attributes defined in base classes are not included, and for class instances, methods are not included. The
resulting list is sorted alphabetically. For example:

>>> jmport sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, 'exit’, 'modules’, 'path’, ’'stderr’, 'stdin’, 'stdout’]
>>>

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same(as/ b, a % b). For floating point numbers the result(iig, a %
b) , whereq is usuallymath.floor(a / b) but may be 1 less than that. Inany casé¢ b + a % bis

2.3. Built-in Functions 17

very close ta, if a % bis non-zero it has the same signtagand0 <= abs(a % b) < abs(b).

eval (expressio[n, globale[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usinglthizalsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thrglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéneak is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. createchpiye()). In this case
pass a code object instead of a string. The code object must have been compiled’paasing to thekind
argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (file[, globals[, Iocals]])
This function is similar to theexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ¢ihabals andlocals dictionaries as global and local name

space. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted,

the expression is executed in the environment weeesfile() is called. The return value None.

filter (function, lis)
Construct a list from those elementslist for which functionreturns true. Hist is a string or a tuple, the result
also has that type; otherwise it is always a listfufictionis None, the identity function is assumed, i.e. all
elements ofist that are false (zero or empty) are removed.

float (X)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensital goatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, namg
The arguments are an object and a string. The string must be the name of one of the object’s attributes. The
result is the value of that attribute. For exampgjetattr(x, ' foobar) is equivalent toc. foobar.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The resultis 1 if the string is the name of one of the object’s attributes,

8|t is used relatively rarely so does not warrant being made into a statement.

18 Chapter 2. Built-in Types, Exceptions and Functions

0 if not. (This is implemented by callingetattr(object namg and seeing whether it raises an exception
or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit macHie&(-1) yields 'Oxffffffff’ . When

evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

id (objec)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. (Two objects whose lifetimes are disjunct may have the &i{ne value.) (Implementation
note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(promp)) .

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

int (x)
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical
to string.atoi(X) . Otherwise, the argument may be a plain or long integer or a floating point number.
Conversion of floating point numbers to integers is defined by the C semantics; normally the conversion truncates
towards zerd.

isinstance (object, clasy
Return true if theobjectargument is an instance of tledassargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassis a type object andbjectis an object of that type. Ibbjectis not a class
instance or a object of the given type, the function always returns falstad$is neither a class object nor a
type object, al'ypeError exception is raised.

issubclass (classl, classp
Return true iftlasslis a subclass (direct or indirect) dfass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence
Return a list whose items are the same and in the same ordegasncs items. If sequencés already a list,
a copy is made and returned, similardequende] . For instancelist('abc’) returns returng§'a’,
b, ¢ andlist((1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAldning: the contents of this dictionary should

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 19

not be modified; changes may not affect the values of local variables used by the interpreter.

long (X)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves idersicagatol(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint()

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioniédt arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wWitne items. Iffunctionis None, the identity function is assumed,; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Tis¢ arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumend, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerd, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit mactoo;1) vyields’'037777777777 . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

open (filename{, mode{, bufsizd])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 's fopen() : filenameis the file name to be openethodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), anid’ opens it for appending (which @aomeUNIx
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

If modeis omitted, it defaults t&’ . When opening a binary file, you should appéod to themodevalue

for improved portability. (It's useful even on systems which don't treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is u¥ed.

ord (¢)
Return theascii value of a string of one character. E.grd('a’) returns the integed7. This is the inverse
of chr()

pow(X, y[z])
Returnx to the powery; if z is present, returx to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2. The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; eagw(2, -1) orpow(2, 35000) is not allowed.

10specifying a buffer size currently has no effect on systems that don'tdetvbuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

20 Chapter 2. Built-in Types, Exceptions and Functions

range ([start,] stop{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmmedloops.
The arguments must be plain integers. If gtepargument is omitted, it defaults th. If the start argument
is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2
* step ...] . If stepis positive, the last element is the largesrt + i * stepless tharstop if stepis
negative, the last element is the largstrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4,5, 6, 7, 8 9]
>>> range(1, 11)

[1, 2, 3, 4,5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

1

>>> range(1, 0)

1

>>>

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &@res read,
EOFError israised. Example:

>>> s = raw_input(-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python's Flying Circus"
>>>

If the readline module was loaded, thenaw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequen{einitializer])
Apply functionof two arguments cumulatively to the items sfquencefrom left to right, so as to reduce
the sequence to a single value. For exampdeluce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateq(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload (modulg

Re-parse and re-initialize an already imponteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as theoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsiport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the patrtially initialized module object) before you
canreload() it

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions

2.3. Built-in Functions 21

of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepgsfor
__main __and__builtin ~ __. In certain cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usirgm ... import ..., callingreload() for the
other module does not redefine the objects imported from it — one way around this is to re-exefuamthe
statement, another is to ugeport and qualified namesr{odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed teval()

round (x[, n])
Return the floating point valuerounded tan digits after the decimal point. Hi is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenynifinus
two multiples are equally close, rounding is done away from 0 (soregnd(0.5) is 1.0 andround(-
0.5) is-1.0).

setattr (object, name, valye
This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] sto;{, step])
Return a slice object representing the set of indices specifiedrime(start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attrittais , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. fa[start:stop:step] " or ‘a[start:stop, i] .

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string.

tuple (sequence
Return a tuple whose items are the same and in the same ordegasncs items. If sequencas already
a tuple, it is returned unchanged. For instartagle(abc’) returns returng’a’, 'b’, 'c’) and
tuple([1, 2, 3]) returns(1, 2, 3)

type (objec)
Return the type of anbject The return value is a type object. The standard motiygdes defines names for
all built-in types. For instance:

>>> jmport types
>>> if type(x) == types.StringType: print "It's a string"

vars ([object])

22 Chapter 2. Built-in Types, Exceptions and Functions

Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefiriéd.

xrange ([start,] stop{, step])
This function is very similar t#ange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantagexfange() overrange() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.

MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

11 the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 23

24

CHAPTER
THREE

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
types
UserDict
UserList
operator
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
imp

parser
symbol
token
keyword
tokenize
pyclbr
code
codeop
pprint

repr

py _compile
compileall
dis

new

site

user
__builtin __
__main __

Access system-specific parameters and functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

All Python’s standard operators as built-in functions.

Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle support functions.

Python object persistency.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Access the implementation of thmport statement.

Access parse trees for Python source code.

Constants representing internal nodes of the parse tree.
Constants representing terminal nodes of the parse tree.
Test whether a string is a keyword in Python.

Lexical scanner for Python source code.

Supports information extraction for a Python class browser.
Code object services.

Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr() implementation with size limits.

Compile Python source files to byte-code files.

Tools for byte-compiling all Python source files in a directory tree.
Disassembler.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

25

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python saigiv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usintdtiamand
line option to the interpreteargv[0] is set to the stringc’ . If no script name was passed to the Python
interpreterargv has zero length.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way wodules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned dnype valug tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class objaa)ie gets the exception parameter (&ssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning theracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something likgpe, value = sys.exc _info()[:2] to extract only the exception

type and value. If you do need the traceback, make sure to delete it after use (best dorteywith &nally

statement) or to caltxc _info() in a function that does not itself handle an exception.

exc _type
exc _value
exc _traceback
Deprecated since release 1.®Iseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handi&d,_type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefix argument to
the configure script. Specifically, all configuration files (e.g. thephfig.h’ header file) are installed in the
directoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + ’/lib/python versiorilib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer level.

26 Chapter 3. Python Services

The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.

If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasdedne is equivalent to passing zero, and any other
object is printed tesys.stderr and results in an exit code of 1. In particulgys.exit("some error

message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Note: the exit function is not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() s called.

getrefcount (objec)
Return the reference count of tlkject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgeitréscount()

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isrport pdb; pdb.pm() ' to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke faype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
modules

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

path

A list of strings that specifies the search path for modules. Initialized from the environment variable $PYTHON-
PATH, or an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python

interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard inpupath[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is insertezforethe entries inserted as a result of $PYTHON-

PATH.
platform
This string contains a platform identifier, e.gunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.
prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed; by
default, this is the stringfusr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the diregboeyix
+ 'llib/python versiori while the platform independent header files (all excephfig.h’) are stored in
prefix + ’linclude/python versiori , whereversionis equal toversion[:3]

3.1. sys — System-specific parameters and functions 27

psl

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case &®&> ' and’... ' . If a non-string object is
assigned to either variable, #&() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQltseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuee= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace()), butitisn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just fgture.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

stdin
stdout
stderr
File objects corresponding to the interpreter’'s standard input, output and error stretims. is used for
all interpreter input except for scripts but including callsnput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the promptsamit() andraw _input()
The interpreter’s own prompts and (almost all of) its error messages gléor . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it hadtey) method that takes a
string argument. (Changing these objects doesn’t affect the standard 1/0 streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout __

__stderr __
These objects contain the original valuesstfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defdl008. When set to O or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter.

3.2 types — Names for all built-in types.

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freet types import * ' — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will allygred in *

Typical use is for functions that do different things depending on their argument types, like the following:

28 Chapter 3. Python Services

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

IntType

The type of integers (e.d.).
LongType

The type of long integers (e.gL).

FloatType
The type of floating point numbers (e 4.0).

ComplexType

The type of complex numbers (e .0j).
StringType

The type of character strings (e!§pam’).

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).

ListType
The type of lists (e.g[0, 1, 2, 3]).

DictType

The type of dictionaries (e.g'Bacon’: 1, 'Ham’. 0}
DictionaryType

An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

3.2. types — Names for all built-in types.

29

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects such sygs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Isice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

3.3 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviours to dictionaries.

TheUserDict module defines theserDict class:

UserDict ()
Return a class instance that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which
is accessible via théata attribute ofUserDict instances.

In addition to supporting the methods and operations of mappings (see section2séff)ict instances provide
the following attribute:

data
A real dictionary used to store the contents of theerDict class.

3.4 UserList — Class wrapper for list objects

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviours to lists.

TheUserList module defines thelserList class:

UserList ([Iist])
Return a class instance that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via thedata attribute ofUserList instances. The instance’s contents are initially set to a cofdistof
defaulting to the empty lisf] . list can be either a regular Python list, or an instancé&sérList (or a
subclass).

30 Chapter 3. Python Services

In addition to supporting the methods and operations of mutable sequences (see sectiodsedL&, instances
provide the following attribute:

data
A real Python list object used to store the contents ottherList class.

3.5 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

Theoperator module defines the following functions:

add(a, b
__add__(a,b
Returna + b, for a andb numbers.

sub (a, b)
__sub__(a,b
Returna- b.

mul (a, b)
__mul__(a,b
Returna* b, for a andb numbers.

div (a, b
_div __(a,b
Returna/ b.

mod(a, b)
__mod__(a,b
Returna %b.

neg(o)
__neg__(0)
Returno negated.

pos (0)
__pos__(0)
Returno positive.

abs (0)
__abs__(0)
Return the absolute value of

inv (0)
__inv __(0)
Return the inverse aj.

Ishift (a, b)
__Ishift __(a,b
Returna shifted left byb.

rshift (a, b
__rshift __(a, b
Returna shifted right byb.

and _(a, b
__and__(a, b

3.5. operator — Standard operators as functions. 31

Return the bitwise and & andb.

or (a,b
__or__(a,b
Return the bitwise or o andb.

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

not _(o)

__not __(0)
Return the outcome afiot 0. (Note that there is na_not __() discipline for object instances; only the
interpreter core defines this operation.)

truth (o)
Returnl if ois true, and 0 otherwise.

concat (a, b)
__concat __(a,b
Returna + b for a andb sequences.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence artgis an integer.

contains (a, b
sequencelncludes (a, b
Return the outcome of the tdsin a. Note the reversed operands.

countOf (a,b)
Return the number of occurrencestah a.

indexOf (a, b)
Return the index of the first of occurrenceloi a.

getitem (a,b)
__getitem __(a,b)
Return the value ad at indexb.

setitem (a,b,Q
__setitem __(a,b,q
Set the value o at indexb to c.

delitem (a,b)
__delitem __(a,b)
Remove the value af at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o& from indexb to indexc-1 to the sequence

delslice (a,b,9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

32 Chapter 3. Python Services

>>> jmport operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.6 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayaldes _traceback
andsys.last _traceback and returned as the third item frosys.exc _info()

The module defines the following functions:

print _tb (tracebacl[, Iimit[, file]])
Print up tolimit stack trace entries frormaceback If limit is omitted orNone, all entries are printed. file
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

print _exception (type, value, traceba&klimit[, file]])
Print exception information and up tamit stack trace entries fronracebackto file. This differs from
print _tb() inthe following ways: (1) itracebackis notNone, it prints a headerTraceback (inner-
most last): ’; (2) it prints the exceptionypeandvalueafter the stack trace; (3) ffpeis SyntaxError
andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret indicating
the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file)’. (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, timit[, file]]])
This function prints a stack trace from its invocation point. The optidnatgument can be used to spec-
ify an alternate stack frame to start. The optiohalit and file arguments have the same meaning as for
print _exception()

extract _tb (tracebacl{, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback thajeeback
It is useful for alternate formatting of stack traces.litfit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilename line number function nametexy) representing the
information that is usually printed for a stack trace. Thetis a string with leading and trailing whitespace
stripped; if the source is not available ithne.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same formagxas for
tract _tb() . The optionaF andlimit arguments have the same meaning apfort _stack()

format _list (list)

3.6. traceback — Print or retrieve a stack traceback 33

Given a list of tuples as returned lextract _tb() orextract _stack() , return a list of strings ready

for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.ast _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8ntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments t@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are contatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb (tb[, limit)

A shorthand foformat _list(extract _tb(th, limit)) .
format _stack ([f[, limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This is normally the same as the
tb.tb _lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;
this function calculates the correct value.

3.6.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectaléhenodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print ’-*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.7 linecache — Random access to text lines

34 Chapter 3. Python Services

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢back module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelinenofrom file namedfilename This function will never throw an exception — it will returh on
errors.

If a file namedfilenameis not found, the function will look for it in the module search pays.path

clearcache ()
Clear the cache. Use this function if you know that you do not need to read lines from many of files you already
read from using this module.

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> import linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\012’

3.8 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). This is a more primitive notion than persistency — althopigkle reads and writes file objects, it

does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thaickle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to
write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as th#Pickle module. This has the same interface exceptfiektler —andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Unlike the built-in modulemarshal , pickle handles the following correctly:

e recursive objects (objects containing references to themselves)
e object sharing (references to the same object in different places)

e user-defined classes and their instances

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printablell (and of some other characteristicspkle s

3.8. pickle — Python object serialization 35

representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value fonthe
argument to th@ickler constructor or thelump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, whichitmershal module does. | suppogeckle could, and
maybe it should, but there’s probably no great need for it right now (as lomgaashal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistency modules written uspickle , it supports the notion of a reference to an object
outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of gsintiable
characters. The resolution of such names is not defined hyitkke module — the persistent object module will
have to implement a methqebrsistent _load() . To write references to persistent objects, the persistent module
must define a methqggersistent _id() which returns eitheNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

When a pickled class instance is unpickled,tsinit __() method is normallynot invoked. Note: This is a
deviation from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the
change is that in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to
have to provide a _getinitargs __() method.

If it is desirable that the__init __() method be called on unpickling, a class can define a method
__getinitargs __() , which should return #uple containing the arguments to be passed to the class construc-
tor (__init __()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

Classes can further influence how their instances are pickled — if the class defines the mefbisthte __()

it is called and the return state is pickled as the contents for the instance, and if the class defines the method
__setstate __() , itis called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is nogetstate __() method, the instance’s_dict __ is pickled. If there
isno__setstate __() method, the pickled object must be a dictionary and its items are assigned to the new in-
stance’s dictionary. (If a class defines bathgetstate () and__setstate __() , the state object needn’t be

a dictionary — these methods can do what they want.) This protocol is also used by the shallow and deep copying
operations defined in theopy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class's__setstate __() method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.

To pickle an objeck onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

36 Chapter 3. Python Services

A shorthand for this is:

pickle.dump(x, f)

To unpickle an object from a filef , open for reading:

pickle.Unpickler(f)
u.load()

A shorthand is:

x = pickle.load(f)

ThePickler class only calls the methddwrite() with a string argument. Thenpickler calls the meth-
odsf.read() (with an integer argument) arfdeadline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for thPickler class has an optional second argumbint, If this is present and nonzero, the binary
pickle format is used; if it is zero or absent, the (less efficient, but backwards compatible) text pickle format is used.
The Unpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts
either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

e strings

e tuples, lists and dictionaries containing only picklable objects
e classes that are defined at the top level in a module

e instances of such classes whasalict __ or __setstate __() is picklable

Attempts to pickle unpicklable objects will raise tReklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

It is possible to make multiple calls to tltump() method of the sam®ickler instance. These must then be
matched to the same number of calls tolthexd() method of the correspondingnpickler instance. If the same

object is pickled by multiplelump() calls, theload() will all yield references to the same objetarning this

is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify

an object and then pickle it again using the sd®itkler instance, the object is not pickled again — a reference to

it is pickled and thdJnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. | have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the following functions, and an exception:

dump(object, fild, bin])
Write a pickled representation abectto the open file objectile. This is equivalent toPickler(file,
bin).dump(objec) . If the optionalbin argument is present and nonzero, the binary pickle format is used; if
it is zero or absent, the (less efficient) text pickle format is used.

3.8. pickle — Python object serialization 37

load (file)
Read a pickled object from the open file objélet. This is equivalent toUnpickler(file).load() .

dumps(objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the offtional
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object is passBakber.dump()

See Also:

Modulecopy _reg (section 3.10):
pickle interface constructor registration

Moduleshelve (section 3.11):
indexed databases of objects; upekle

Modulecopy (section 3.12):
shallow and deep object copying

Modulemarshal (section 3.13):
high-performance serialization of built-in types

3.9 cPickle — Alternate implementation of pickle

ThecPickle module provides a similar interface and identical functionality agpthele module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to noteRectiat() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced usingitide module, so it is possible to ugéckle
andcPickle interchangably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some freedoms in
the encodings of certain objects, it's possible that the two modules produce different pickled data for the same input
objects; however they will always be able to read each others pickles back in.)

3.10 copy _reg — Register pickle support functions

Thecopy _reg module provides support for thckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor.

pickle (type, functimﬁ, constructoﬂ)
Declares thatunctionshould be used as a “reduction” function for objects of type or digses functionshould
return either a string or a tuple. The optiorahstructorparameter, if provided, is a callable object which can
be used to reconstruct the object when called with the tuple of arguments returhatttignat pickling time.

38 Chapter 3. Python Services

3.11 shelve — Python object persistency

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatithee module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interfac&dy is a string,data is an arbitrary object):

import shelve
d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

e The choice of which database package will be used (#&mor gdbm) depends on which interface is available.
Therefore it is not safe to open the database directly usiimy The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

e Theshelve module does not suppazbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. Wix file locking can be used to solve this, but this differs acrossxUversions and
requires knowledge about the database implementation used.

See Also:

Moduleanydbm (section 7.7):
Generic interface tdbm-style databases.

Moduledbhash (section 7.9):
BSDdb database interface.

Moduledbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.8):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondbeninterface.

Modulepickle (section 3.8):
Obiject serialization used tshelve .

3.11. shelve — Python object persistency 39

ModulecPickle (section 3.9):
High-performance version gfickle

3.12 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy
X = copy.copy(y) # make a shallow copy of y
X = copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ieferémcesnto it to
the objects found in the original.

e A deep copyonstructs a new compound object and then, recursively, insgptesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:
e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a

recursive loop.

e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memao” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called
__getinitargs _ () ,__getstate __() and__setstate __() . See the description of modubéckle for
information on these methods. Thepy module does not use tlepy _reg registration module.

In order for a class to define its own copy implementation, it can define special methedpy __() and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the__deepcopy __() implementation needs to make a deep copy of a component, it should cadiepeopy()

function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.8):
Discussion of the special disciplines used to support object state retrieval and restoration.

40 Chapter 3. Python Services

3.13 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistency” module. For general persistency and transfer of Python objects through RPC calls,
see the modulepickle andshelve . Themarshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules gfy/c’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supp¢otes:integers, long

integers, floating point numbers, strings, tuples, lists, dictionaries, and code objects, where it should be understood
that tuples, lists and dictionaries are only supported as long as the values contained therein are themselves supported;
and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the comaesttal module uses 32 bits to transfer

plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from thepyc’ instead?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen()

If the value has (or contains an object that has) an unsupported tyjfady@Error exception is raised — but
garbage data will also be written to the file. The object will not be properly read baldady)

load (file)
Read one value from the open file and return it. If no valid value is read, E&)$eError , ValueError or
TypeError . The file must be an open file object.

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

dumps(value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, rei&@FError , ValueError or TypeError
Extra characters in the string are ignored.

3.14 imp — Access the import internals

This module provides an interface to the mechanisms used to implememigbe statement. It defines the follow-
ing constants and functions:

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would beratshtie
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

3.13. marshal — Alternate Python object serialization 41

get _magic ()
Return the magic string value used to recognize byte-compiled code fipgs' files). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has th¢ $offrx mode
type , wheresuffixis a string to be appended to the module name to form the filename to searafofte,
is the mode string to pass to the builtépen() function to open the file (this can Bbe for text files or
'rb’ for binary files), andypeis the file type, which has one of the value¥_SOURCHEY_COMPILED or
C_EXTENSION described below.

find _module (nam({, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedyey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_BUILTIN), then a frozen moduldPY_FROZEN, and on some systems some other places are
looked in as well (on the Mac, it looks for a resour&/(RESOURCEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triplde, pathname descriptior) wherefile is an open file

object positioned at the beginningathnameis the pathname of the file found, addscriptionis a triple as
contained in the list returned tget _suffixes() describing the kind of module found. If the module does

not live in afile, the returnefile is None, filenameis the empty string, and traescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses dabove. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In ordePtdAfine.,
submoduleM of packageP, usefind _module() andload _module() to find and load package, and
then usdfind _module() with the pathargument set t®. __path __. WhenP itself has a dotted name,
apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfioyd _module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported, it
is equivalent to aeload() ! Thenameargument indicates the full module name (including the package name,
if this is a submodule of a package). Tfike argument is an open file, aritenameis the corresponding file
name; these can done and” , respectively, when the module is not being loaded from a file.dBseription
argument is a tuple as returnedfilyd _module() describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (uspattError)
is raised.

Important: the caller is responsible for closing tfike argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module (namg
Return a new empty module object calleaime This object ismotinserted insys.modules

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE

42 Chapter 3. Python Services

The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (e _frozen()).

The following constant and functions are obsolete; their functionality is available thrindjh _module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin ~ (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it
will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise animportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callestame None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin (namg
Returnl if there is a built-in module calledamewhich can be initialized again. Returh if there is a built-in
module callechamewhich cannot be initialized again (sest _builtin()). Return0 if there is no built-in
module callechame

is _frozen (nameg
Returnl if there is a frozen module (sé@t _frozen()) calledname or 0 if there is no such module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeagain The nameargument is used to create or access a
module object. Thepathnameargument points to the byte-compiled code file. Tifeargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (name, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializeasbain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. TlEeneargument is used to construct
the name of the initialization function: an external C function calied ‘' namd) ' in the shared library is
called. The optiondfile argment is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffigyc’ or ‘.pyo’) exists, it will be used instead of
parsing the given source file.

3.14. imp — Access the import internals 43

3.14.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical mod-
ule names). (Thismplementatiorwouldn’t work in that version, sincénd _module() has been extended and
load _module() hasbeenaddedin1.4.)

import imp import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incleelead() function can be
found in the standard modulmee (which is intended as an example only — don't rely on any part of it being a
standard interface).

3.15 parser — Access parse trees for Python code

Theparser module provides an interface to Python’s internal parser and byte-code compiler. The primary purpose
for this interface is to allow Python code to edit the parse tree of a Python expression and create executable code from
this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because parsing is
performed in a manner identical to the code forming the application. It is also faster.

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of ugiagsre module are
presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For
full information on the language syntax, refer to fAgthon Language Referenc&he parser itself is created from

a grammar specification defined in the fi@ammar/Grammar’ in the standard Python distribution. The parse trees
stored in the AST objects created by this module are the actual output from the internal parser when created by
theexpr() orsuite() functions, described below. The AST objects createddgyuence2ast() faithfully

simulate those structures. Be aware that the values of the sequences which are considered “correct” will vary from one
version of Python to another as the formal grammar for the language is revised. However, transporting code from one
Python version to another as source text will always allow correct parse trees to be created in the target version, with
the only restriction being that migrating to an older version of the interpreter will not support more recent language
constructs. The parse trees are not typically compatible from one version to another, whereas source code has always
been forward-compatible.

44 Chapter 3. Python Services

Each element of the sequences returnedastlist() or ast2tuple() has a simple form. Sequences rep-
resenting non-terminal elements in the grammar always have a length greater than one. The first element is an in-
teger which identifies a production in the grammar. These integers are given symbolic names in the C header file
‘Include/graminit.h’ and the Python moduleymbol . Each additional element of the sequence represents a compo-
nent of the production as recognized in the input string: these are always sequences which have the same form as the
parent. An important aspect of this structure which should be noted is that keywords used to identify the parent node
type, such as the keywoifl in anif _stmt , are included in the node tree without any special treatment. For exam-
ple, theif keyword is represented by the tugle 'if’) , Wherel is the numeric value associated with JAME

tokens, including variable and function names defined by the user. In an alternate form returned when line humber
information is requested, the same token might be representéd &8, 12) , Where thel2 represents the line
number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of ithe keyword above is representative. The various types of
terminal symbols are defined in the C header filelide/token.h’ and the Python moduleken .

The AST objects are not required to support the functionality of this module, but are provided for three purposes:
to allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation of
additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to hide the
use of AST objects.

Theparser module defines functions for a few distinct purposes. The most important purposes are to create AST
objects and to convert AST objects to other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an AST object.

See Also:

Modulesymbol (section 3.16):
Useful constants representing internal nodes of the parse tree.

Moduletoken (section 3.17):
Useful constants representing leaf nodes of the parse tree and functions for testing node values.

3.15.1 Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from source,
different functions are used to create teeal’ and’exec’ forms.

expr (string)
Theexpr() function parses the parametgring as if it were an input tocompile(string, 'eval’)
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

suite (' string)
Thesuite() function parses the parametdring as if it were an input tocompile(string, 'exec’)
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

sequence2ast (sequence
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an AST object is created from the internal representation and returned to the called. If there is
a problem creating the internal representation, or if the tree cannot be valid®edeaError exception is
thrown. An AST object created this way should not be assumed to compile correctly; normal exceptions thrown
by compilation may still be initiated when the AST object is passecbtopileast() . This may indicate
problems not related to syntax (such dd@amoryError exception), but may also be due to constructs such as
the result of parsingel f(0) , which escapes the Python parser but is checked by the bytecode compiler.

3.15. parser — Access parse trees for Python code 45

Sequences representing terminal tokens may be represented as either two-element lists of {ie form
‘'name’) or as three-element lists of the for(h, 'name’, 56) . If the third element is present, it is
assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols in
the input tree.

tuple2ast (sequence
This is the same function agquence2ast() . This entry point is maintained for backward compatibility.

3.15.2 Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or tuple-
trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line numbering
information.

ast2list (ast[, Iine_info])
This function accepts an AST object from the calleastand returns a Python list representing the equivelent
parse tree. The resulting list representation can be used for inspection or the creation of a new parse tree in list
form. This function does not fail so long as memory is available to build the list representation. If the parse
tree will only be used for inspectiomast2tuple() should be used instead to reduce memory consumption
and fragmentation. When the list representation is required, this function is significantly faster than retrieving a
tuple representation and converting that to nested lists.

If line_info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which thendkerhis
information is omitted if the flag is false or omitted.

ast2tuple (ast[, Iine_info])
This function accepts an AST object from the calleagtand returns a Python tuple representing the equivelent
parse tree. Other than returning a tuple instead of a list, this function is identasttiost()

If line_info is true, line number information will be included for all terminal tokens as a third element of the list
representing the token. This information is omitted if the flag is false or omitted.

compileast (ast[, filename = ’'<ast>’])
The Python byte compiler can be invoked on an AST object to produce code objects which can be used as
part of anexec statement or a call to the built-eval() function. This function provides the interface to
the compiler, passing the internal parse tree fastto the parser, using the source file name specified by the
filenameparameter. The default value suppliedfitenameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example woulslylodexEr-

ror caused by the parse tree fitgl f(0) : this statement is considered legal within the formal grammar for
Python but is not a legal language construct. BlgataxError raised for this condition is actually generated
by the Python byte-compiler normally, which is why it can be raised at this point hyafser module. Most
causes of compilation failure can be diagnosed programmatically by inspection of the parse tree.

3.15.3 Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expression or a suite.
Neither of these functions can be used to determine if an AST was created from source @gh(Yia or suite()
or from a parse tree visequence2ast()

isexpr (asi
Whenastrepresents aeval'’ form, this function returns true, otherwise it returns false. This is useful, since
code objects normally cannot be queried for this information using existing built-in functions. Note that the
code objects created lmpmpileast() cannot be queried like this either, and are identical to those created
by the built-incompile() function.

46 Chapter 3. Python Services

issuite (asi
This function mirrorgsexpr() in that it reports whether an AST object represent&eaerc’ form, com-
monly known as a “suite.” It is not safe to assume that this function is equivelenotoisexpr(asf) ’, as
additional syntactic fragments may be supported in the future.

3.15.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of the
Python runtime environment. See each function for information about the exceptions it can raise.

ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failures rather than the built iByntaxError thrown during normal parsing. The exception argument is either
a string describing the reason of the failure or a tuple containing a sequence causing the failure from a parse
tree passed teequence2ast() and an explanatory string. Calls $equence2ast() need to be able to
handle either type of exception, while calls to other functions in the module will only need to be aware of the
simple string values.

Note that the functionsompileast() ,expr() ,andsuite() may throw exceptions which are normally thrown
by the parsing and compilation process. These include the built in excepliem®ryError , OverflowError
SyntaxError , andSystemError . In these cases, these exceptions carry all the meaning normally associated

with them. Refer to the descriptions of each function for detailed information.

3.15.5 AST Objects

AST objects returned bgxpr() ,suite() andsequence2ast() have no methods of their own.

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (usicigehe
module) is also supported.

ASTType
The type of the objects returned bypr() ,suite() andsequence2ast()

AST objects have the following methods:

compile ([filenamd)
Same agompileast(ast filenam@g.

isexpr ()

Same assexpr(as) .
issuite ()

Same asssuite(as) .

tolist ([line_info])
Same asist2list(ast, line_info) .

totuple ([Iine,info])
Same asst2tuple(ast line_info) .

3.15.6 Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstrates emulationobthpile() built-in function and the complex example

shows the use of a parse tree for information discovery.

3.15. parser — Access parse trees for Python code 47

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is to
do nothing. For this purpose, using tharser module to produce an intermediate data structure is equivelent to the
code

>>> code = compile(a + 5’, ’eval’)
>>> g = 5

>>> eval(code)

10

The equivelent operation using tparser module is somewhat longer, and allows the intermediate internal parse
tree to be retained as an AST object:

>>> import parser
>>> ast = parser.expr(a + 5)
>>> code = parser.compileast(ast)

>>> g = 5
>>> eval(code)
10

An application which needs both AST and code objects can package this code into readily available functions:

import parser

def load_suite(source_string):
ast = parser.suite(source_string)
code = parser.compileast(ast)
return ast, code

def load_expression(source_string):
ast = parser.expr(source_string)
code = parser.compileast(ast)
return ast, code

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to module documentation defined in docstrings without requiring that the code being exam-
ined be loaded into a running interpreter ing@ort . This can be very useful for performing analyses of untrusted
code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and the
other function defines a high-level interface to the classes by handling file operations on behalf of the caller. All source
files mentioned here which are not part of the Python installation are located iDéhw/parser/’ directory of the
distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only a limited

48 Chapter 3. Python Services

measure of this when defining classes, functions, and methods. In this example, the only definitions that will be
considered are those which are defined in the top level of their context, e.g., a function defingef bgtatement at
column zero of a module, but not a function defined within a branch df an. else construct, though there are

some good reasons for doing so in some situations. Nesting of definitions will be handled by the code developed in
the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large
number of intermediate nodes. It is important to read and understand the formal grammar used by Python. This is
specified in the fileGrammar/Grammar’ in the distribution. Consider the simplest case of interest when searching for
docstrings: a module consisting of a docstring and nothing else. (Sedofikring.py’.)

Some documentation.

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and parentheses, with the
documentation buried deep in nested tuples.

>>> jmport parser
>>> import pprint
>>> ast = parser.suite(open(’docstring.py’).read())
>>> tup = parser.ast2tuple(ast)
>>> pprint.pprint(tup)
(257,
(264,
(265,
(266,
(267,
(307,
(287,
(288,
(289,
(290,
(292,
(293,
(294,
(295,
(296,
(297,
(298,
(299,
(300, (3, ™"Some documentation.\OL2"")M,
C))P
4 "),
©, ")

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbols in the grammar. Unfortunately, they are represented as integers in the internal representation, and
the Python structures generated do not change that. Howevesyitiigol andtoken modules provide symbolic

names for the node types and dictionaries which map from the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the2bgerd three additional tuples.
Node type257 has the symbolic namide _input . Each of these inner tuples contains an integer as the first ele-
ment; these integergp4, 4, andO, represent the node typssnt , NEWLINE andENDMARKERespectively. Note
that these values may change depending on the version of Python you are using; spmsoltgy’ and ‘token.py’ for

3.15. parser — Access parse trees for Python code 49

details of the mapping. It should be fairly clear that the outermost node is related primarily to the input source rather
than the contents of the file, and may be disregarded for the momensstifihe node is much more interesting. In

particular, all docstrings are found in subtrees which are formed exactly as this node is formed, with the only difference
being the string itself. The association between the docstring in a similar tree and the defined entity (class, function,
or module) which it describes is given by the position of the docstring subtree within the tree defining the described

structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a simple
pattern matching approach to check any given subtree for equivelence to the general pattern for docstrings. Since the
example demonstrates information extraction, we can safely require that the tree be in tuple form rather than list form,
allowing a simple variable representation to[lvariable _name’] . A simple recursive function can implement

the pattern matching, returning a boolean and a dictionary of variable name to value mappings. (Seenfile.py’.)

from types import ListType, TupleType

def match(pattern, data, vars=None):

if vars is None:
vars = {}

if type(pattern) is ListType:
vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return 0, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomes fairly readable. (Seesfitariple.py’.)

50 Chapter 3. Python Services

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,
(symbol.small_stmt,
(symbol.expr_stmt,
(symbol.testlist,
(symbol.test,
(symbol.and_test,
(symbol.not_test,
(symbol.comparison,
(symbol.expr,
(symbol.xor_expr,
(symbol.and_expr,
(symbol.shift_expr,
(symbol.arith_expr,
(symbol.term,
(symbol.factor,
(symbol.power,
(symbol.atom,
(token.STRING, ['docstring’])
MMM
(token.NEWLINE, ™)

)

Using thematch() function with this pattern, extracting the module docstring from the parse tree created previously
is easy:

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found

1

>>> vars

{docstring”: "™"Some documentation.\012"""}

Once specific data can be extracted from a location where it is expected, the question of where information can be
expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring is the first
stmt nodeinacode blocKile _input orsuite node types). Amodule consists ofasinfile _input node,

and class and function definitions each contain exactlysoite node. Classes and functions are readily identified

as subtrees of code block nodes which start \{gtimt, (compound _stmt, (classdef, ... or (stmt,

(compound _stmt, (funcdef, Note that these subtrees cannot be matcheohditigh() since it does

not support multiple sibling nodes to match without regard to number. A more elaborate matching function could be
used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string from the statement,
some work needs to be performed to walk the parse tree for an entire module and extract information about the names
defined in each context of the module and associate any docstrings with the names. The code to perform this work is
not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each “major”
block of the module is described by an object providing several methods for inquiry and a constructor which accepts
at least the subtree of the complete parse tree which it representdlcthielnfo constructor accepts an optional
nameparameter since it cannot otherwise determine the name of the module.

3.15. parser — Access parse trees for Python code 51

The public classes includ€lassinfo , Functioninfo , and Modulelnfo . All objects provide the meth-

odsget _name() , get _docstring() , get _class _names() , andget _class _info() . TheClass-
Info objects supporget _method _names() and get _method _info() while the other classes provide
get _function _names() andget _function _info()

Within each of the forms of code block that the public classes represent, most of the required information is in the
same form and is accessed in the same way, with classes having the distinction that functions defined at the top level
are referred to as “methods.” Since the difference in nomenclature reflects a real semantic distinction from functions
defined outside of a class, the implementation needs to maintain the distinction. Hence, most of the functionality of
the public classes can be implemented in a common base SlaissinfoBase , with the accessors for function

and method information provided elsewhere. Note that there is only one class which represents function and method
information; this parallels the use of tdef statement to define both types of elements.

Most of the accessor functions are declared®intelnfoBase and do not need to be overriden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuitelnfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is the
relevant part of th&uiteInfoBase definition from ‘example.py’:

class SuitelnfoBase:
_docstring = "
_hame =’

def _ init_ (self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:
self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) == 2:
found, vars = match(DOCSTRING_STMT_PATTERNI1], tree[l])
else:
found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:
self._docstring = eval(vars['docstring’])
discover inner definitions
for node in tree[l:]:
found, vars = match(COMPOUND_STMT_PATTERN, node)

if found:
cstmt = vars['compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]

self._function_info[name] = FunctionInfo(cstmt)
elif cstmt[0] == symbol.classdef:

name = cstmt[2][1]

self._class_info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls tleatract _info() method. This method performs

the bulk of the information extraction which takes place in the entire example. The extraction has two distinct phases:
the location of the docstring for the parse tree passed in, and the discovery of additional definitions within the code
block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The short form is
used when the code block is on the same line as the definition of the code block, as in

52 Chapter 3. Python Services

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent ‘exp’."
def raiser(x, y=exp):
return x ** vy
return raiser

When the short form is used, the code block may contain a docstring as the first, and possitdynalfily, stmt

element. The extraction of such a docstring is slightly different and requires only a portion of the complete pattern used
in the more common case. As implemented, the docstring will only be found if there is ongmaile _stmt node

in thesimple _stmt node. Since most functions and methods which use the short form do not provide a docstring,
this may be considered sufficient. The extraction of the docstring proceeds usimgtittg) function as described
above, and the value of the docstring is stored as an attribute SlitelnfoBase object.

After docstring extraction, a simple definition discovery algorithm operates ostihie nodes of thesuite node.
The special case of the short form is not tested; since there atnto nodes in the short form, the algorithm will
silently skip the singlsimple _stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something else.
For the definition statements, the name of the element defined is extracted and a representation object appropriate to
the definition is created with the defining subtree passed as an argument to the constructor. The repesentation objects
are stored in instance variables and may be retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provideSuitgline
foBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-level function
can be used to extract the complete set of information from a source file. (Sesditele.py’.)

def get_docs(fileName):
source = open(fileName).read()
import os
basename = os.path.basename(os.path.splitext(fileName)[0])
import parser
ast = parser.suite(source)
tup = parser.ast2tuple(ast)
return Modulelnfo(tup, basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined points to provide additional capa-
bilities.

3.16 symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to th@dilenar/Grammar’ in the Python distribution for the
defintions of the names in the context of the language grammar. The specific numeric values which the names map to
may change between Python versions.

This module also provides one additional data object:

3.16. symbol — Constants used with Python parse trees 53

sym_name
Dictionary mapping the numeric values of the constants defined in this module back to nhame strings, allowing
more human-readable representation of parse trees to be generated.

See Also:

Moduleparser (section 3.15):
second example uses this module

3.17 token — Constants used with Python parse trees

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer to the file Grammar/Grammar’ in the Python distribution for the defintions of the names in the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

This module also provides one data object and some functions. The functions mirror definitions in the Python C header
files.

tok _name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

ISTERMINAL(X)
Return true for terminal token values.

ISNONTERMINAL x)
Return true for non-terminal token values.

ISEOF(X)
Return true ifx is the marker indicating the end of input.

See Also:

Moduleparser (section 3.15):
second example uses this module

3.18 keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword (9
Return true ifsis a Python keyword.

3.19 tokenize — Tokenizer for Python source

Thetokenize module provides a lexical scanner for Python source code, implemented in Python. The scanner
in this module returns comments as tokens as well, making it useful for implementing “pretty-printers,” including
colorizers for on-screen displays.

The scanner is exposed by a single function:

tokenize (readline{, tokeneate])
Thetokenize() function accepts two parameters: one representing the input stream, and one providing an
output mechanism faokenize()

The first parametergadling must be a callable object which provides the same interface asdléne()

54 Chapter 3. Python Services

method of built-in file objects (see section 2.1.7). Each call to the function should return one line of input as a
string.

The second parametdgkeneater must also be a callable object. It is called with five parameters: the token
type, the token string, a tuplesrow, scol) specifying the row and column where the token begins in the

source, a tupl€ erow, eco) giving the ending position of the token, and the line on which the token was
found. The line passed is thagical line; continuation lines are included.

All constants from theoken module are also exported frotokenize , as is one additional token type value that
might be passed to thtekeneatefunction bytokenize()

COMMENT
Token value used to indicate a comment.

3.20 pyclbr — Python class browser support

Thepyclbr can be used to determine some limited information about the classes and methods defined in a module.
The information provided is sufficient to implement a traditional three-pane class browser. The information is extracted
from the source code rather than from an imported module, so this module is safe to use with untrusted source code.
This restriction makes it impossible to use this module with modules not implemented in Python, including many
standard and optional extension modules.

readmodule (module[, path])
Read a module and return a dictionary mapping class names to class descriptor objects. The pamiukter
should be the name of a module as a string; it may be the name of a module within a packguethpasameter
should be a sequence, and is used to augment the vakys.giath , which is used to locate module source
code.

3.20.1 Class Descriptor Objects

The class descriptor objects used as values in the dictionary returmeddiyodule() provide the following data
members:

module
The name of the module defining the class described by the class descriptor.

name
The name of the class.

super
A list of class descriptors which describe the immediate base classes of the class being described. Classes which
are named as superclasses but which are not discoverab&atisnodule() are listed as a string with the
class name instead of class descriptors.

methods
A dictionary mapping method names to line numbers.

file
Name of the file containing the class statement defining the class.

lineno
The line number of the class statement within the file namefildoy .

3.21 code — Code object services.

3.20. pyclbr — Python class browser support 55

Thecode module defines operations pertaining to Python code objects. It defines the following function:

compile _command source,[filenameE, symbo]])
This function is useful for programs that want to emulate Python'’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This &lmaisin
always makes the same decision as the real interpreter main loop.

Arguments:sourceis the source strindilenameis the optional filename from which source was read, defaulting
to '<input>" ; andsymbolis the optional grammar start symbol, which should be eitsiegle’ (the
default) oreval’

Return a code object (the samecasnpile(source filename symbo)) if the command is complete and
valid; returnNone if the command is incomplete; raiSyntaxError if the command is a syntax error.

3.22 codeop — Compile Python code

Thecodeop module provides a function to compile Python code with hints on whether it certainly complete, possible
complete or definitely incomplete. This is used by thhele module and should not normally be used directly.

Thecodeop module defines the following function:

compile _command source[, filenam{, symboﬂ])
Try to compilesource which should be a string of Python code. Return a code objsctifceis valid Python
code. In that case, the filename attribute of the code object willddeme which defaults to<input>’

ReturnNone if sourceis notvalid Python code, but is a prefix of valid Python code.
Raise an exception if there is a problem wsthurce

eSyntaxError if there is invalid Python syntax.
eOverflowError if there is an invalid numeric constant.

The symbolargument means whether to compile it as a staten&ng(e’ , the default) or as an expression

(eval').

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

3.23 pprint — Data pretty printer.

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width. Construd®rettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint module defines one class:

PrettyPrinter (..)
Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using tereamkeyword; the only method used on the stream object is the file protocol's
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywordisdeng depth andwidth. The amount

56 Chapter 3. Python Services

of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘... ". By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>>
>>>
>>>
>>>
>>>

[

>>>
>>>
>>>
>>>
>>>

[

import pprint, sys

stuff = sys.path[:]

stuff.insert(0, stuff[:])

pp = pprint.PrettyPrinter(indent=4)

pp.pprint(stuff)

'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’],
"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

import parser

tup = parser.ast2tuple(
parser.suite(open(’pprint.py’).read()))[1][1][1]

pp = pprint.PrettyPrinter(depth=6)

pp.pprint(tup)

(266, (267, (307, (287, (288, (...))N))

ThePrettyPrinter

class supports several derivative functions:

pformat (objec)
Return the formatted representatiombifectas a string. The default parameters for formatting are used.

pprint (objec{, stream])
Prints the formatted representation object on stream followed by a newline. Ifstreamis omitted,

sys.stdout

is used. This may be used in the interactive interpreter insteacpdhts statement for in-

specting values. The default parameters for formatting are used.

>>>
>>>
>>>

stuff = sys.path[:]
stuff.insert(0, stuff)
pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/python1.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

isreadable (objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

3.23. pprint — Data pretty printer. 57

>>> pprint.isreadable(stuff)
0

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation object protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representelexsifsion on typename
with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", 'lusr/local/lib/pythonl.5’, '/usr/loca
Illib/pythonl.5/test’, '/usr/local/lib/pythonl.5/sunos5’, '/usr/local/lib/python
1.5/sharedmodules’, ’/ust/local/lib/pythonl.5/tkinter’]"

3.23.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation aifject This takes into Account the options passed to Fhet-
tyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don't need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th@rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

3.24 repr — Alternate repr() implementation.

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

Repr ()
Class which provides formatting services useful in implementing functions similar to the brelpif) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits usediepr() and the Python debugger.

58 Chapter 3. Python Services

repr (obj)
Thisis therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.24.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defafilt is

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The defaulxdict is 4, for the
others6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The defadt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner agxstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used tgpr() . This uses the type abjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should a&prl() to perform recursive formatting,
with level - 1 for the value oflevelin the recursive call.

repr _typg obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method nameypeis replaced bystring.join(string.split(type(obj). __name__, ') .
Dispatch to these methods is handledrégrl() . Type-specific methods which need to recursively format a
value should callself.repri(subobj level - 1) .

3.24.2 Subclassing Repr Objects

The use of dynamic dispatching Repr.repri() allows subclasses &tepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

3.24. repr — Alternate repr() implementation. 59

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in ['<stdin>’, '<stdout>’, '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.25 py_compile — Compile Python source files.

Thepy _compile module provides a single function to generate a byte-code file from a source file.

Though not often needed, this function can be useful when installing modules for shared use, especially if some of the
users may not have permission to write the byte-code cache files in the directory containing the source code.

compile (file[, cfilg], dfile]])
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded from the
file namefile. The byte-code is written tofile, which defaults tdile + 'c’ (‘o' if optimization is enabled in
the current interpreter). Hfileis specified, it is used as the name of the source file in error messages instead of
file.

See Also:

Modulecompileall (section 3.26):
Utilities to compile all Python source files in a directory tree.

3.26 compileall — Byte-compile Python libraries.

This module provides some utility functions to support installing Python libraries. These functions compile Python
source files in a directory tree, allowing users without permission to write to the libraries to take advantage of cached
byte-code files.

The source file for this module may also be used as a script to compile Python sources in directories hamed on the
command line or irsys.path

compile _dir (dir[, maxleveIE, ddir]])
Recursively descend the directory tree namedliny compiling all “py’ files along the way. Thenaxlevels
parameter is used to limit the depth of the recursion; it default®tdf ddir is given, it is used as the base path
from which the filenames used in error messages will be generated.

compile _path ([skip_curdir[, maxlevels}])
Byte-compile all the.py’ files found alongsys.path . If skip_curdir is true (the default), the current directory
is not included in the search. Timeaxlevelgparameter defaults t0 and is passed to theompile _dir()
function.

See Also:

Modulepy _compile (section 3.25):
Byte-compile a single source file.

60 Chapter 3. Python Services

3.27 dis — Disassembler.

Thedis module supports the analysis of Python byte code by disassembling it. Since there is no Python assembler,
this module defines the Python assembly language. The Python byte code which this module takes as an input is
defined in the fileIhclude/opcode.h’ and used by the compiler and the interpreter.

Example: Given the functiomyfunc :

def myfunc(alist):
return len(alist)

the following command can be used to get the disassembstyyfiinc()

>>> dis.dis(myfunc)

0 SET_LINENO 1
3 SET_LINENO 2

6 LOAD_GLOBAL 0 (len)
9 LOAD_FAST 0 (alist)
12 CALL_FUNCTION 1

15 RETURN_VALUE

16 LOAD_CONST 0 (None)

19 RETURN_VALUE

Thedis module defines the following functions:

dis ([bytesourcé)
Disassemble thbytesourcebject. bytesourcean denote either a class, a method, a function, or a code object.
For a class, it disassembles all methods. For a single code sequence, it prints one line per byte code instruction.
If no object is provided, it disassembles the last traceback.

disto ([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed. The instruc-
tion causing the exception is indicated.

disassemble (code[, Iasti])
Disassembles a code object, indicating the last instructitastf was provided. The output is divided in the
following columns:

1.the current instruction, indicated as> ’,

2.a labelled instruction, indicated with>’,

3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

disco (code[, Iasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

3.27. dis — Disassembler. 61

opname
Sequence of a operation names, indexable using the byte code.

cmp_op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access a attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a a local variable.

hascompare
Sequence of byte codes of boolean operations.

3.27.1 Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOP_CODE
Indicates end-of-code to the compiler, not used by the interpreter.

POR_TOP
Removes the top-of-stack (TOS) item.

ROTTWO
Swaps the two top-most stack items.

ROT.THREE
Lifts second and third stack item one position up, moves top down to position three.

DUP_TOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARYPOSITIVE
ImplementsTOS = +TOS
UNARYNEG
ImplementsTOS = -TOS
UNARYNOT
ImplementsTOS = not TOS.
UNARY CONVERT
ImplementsTOS = ‘TOS*.

UNARY.INVERT
ImplementsTOS = "TOS

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack. They
perform the operation, and put the result back on the stack.

BINARY_POWER

62 Chapter 3. Python Services

ImplementsTOS = TOS1 ** TOS

BINARY_MULTIPLY
ImplementsTOS = TOS1 * TOS

BINARY_DIVIDE
ImplementsTOS = TOS1 / TOS

BINARY_MODULO
ImplementsTOS = TOS1 %TQS

BINARY_ADD
ImplementsTOS = TOS1 + TOS

BINARY_SUBTRACT
ImplementsTOS = TOS1 - TOS

BINARY_SUBSCR
ImplementsTOS = TOS1[TOS].

BINARY_LSHIFT
ImplementsTOS = TOS1 << TOS

BINARY_RSHIFT
ImplementsTOS = TOS1 >> TOS

BINARY_AND

ImplementsTOS = TOS1 and TOS
BINARY_XOR

ImplementsTOS = TOS1 = TOS
BINARY_OR

ImplementsTOS = TOS1 or TOS
The slice opcodes take up to three parameters.
SLICE+0

ImplementsTOS = TOS[:] .
SLICE+1

ImplementsTOS = TOS1[TOS].
SLICE+2

ImplementsTOS = TOS1[:TOS1] .
SLICE+3

ImplementsTOS = TOS2[TOS1:TOS].
Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.
STORESLICE+0

ImplementsTOS[:]] = TOS1 .
STORESLICE+1

ImplementsTOS1[TOS:] = TOS2 .
STORESLICE+2

ImplementsTOS1[:TOS] = TOS2.

STORESLICE+3
ImplementsTOS2[TOS1:TOS] = TOS3.

DELETE_SLICE+0
Implementsdel TOS[:]

3.27. dis — Disassembler.

DELETE SLICE+1
Implementsdel TOS1[TOS:]

DELETE_SLICE+2
Implementsdel TOS1[:TOS]

DELETE_SLICE+3
Implementgdel TOS2[TOS1:TOS] .

STORESUBSCR
ImplementsTOS1[TOS] = TOS2.
DELETE_SUBSCR
Implementgdel TOS1[TOS] .
PRINT_EXPR

Implements the expression statement for the interactive mode. TOS is removed from the stack and printed. In
non-interactive mode, an expression statement is terminateP@EhSTACK

PRINT_ITEM
Prints TOS. There is one such instruction for each item in the print statement.

PRINT_NEWLINE

Prints a new line orsys.stdout . This is generated as the last operation of a print statement, unless the
statement ends with a comma.

BREAK LOOP
Terminates a loop due to a break statement.

LOAD LOCALS

Pushes a reference to the locals of the current scope on the stack. This is used in the code for a class definition:
After the class body is evaluated, the locals are passed to the class definition.

RETURNVALUE
Returns with TOS to the caller of the function.

EXEC.STMT
Implementseexec TOS2,TOS1,TOS . The compiler fills missing optional parameters with None.

POP_BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

END_FINALLY
Terminates a finally-block. The interpreter recalls whether the exception has to be re-raised, or whether the
function returns, and continues with the outer-next block.

BUILD _CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the base classes, and
TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORENAME namei
Implementsname = TOS nameiis the index ofnamein the attributeco _names of the code object. The
compiler tries to usSSTORE.LOCALor STORE GLOBALIf possible.

DELETE_NAME namei
Implementgdel name , wherenameiis the index intaco _names attribute of the code object.

UNPACKTUPLE count
Unpacks TOS int@ountindividual values, which are put onto the stack right-to-left.

UNPACKLIST count

64 Chapter 3. Python Services

Unpacks TOS int@ountindividual values.

STOREATTR namei
ImplementsTOS.name = TOSJ, wherenameiis the index of name iBo _names.

DELETE_ATTR namei
Implementgdel TOS.name , usingnameias index intaco _names.

STOREGLOBAL namei
Works asSTORE.NAMEDbut stores the name as a global.

DELETE_GLOBAL namei
Works asDELETE_NAMEbut deletes a global name.

LOAD_CONST consti
Pushesco _consts[const] ' onto the stack.

LOAD_NAME namei
Pushes the value associated witb names[name] ' onto the stack.

BUILD _TUPLE count
Creates a tuple consumirguntitems from the stack, and pushes the resulting tuple onto the stack.

BUILD_LIST count
Works asBUILD _TUPLE, but creates a list.

BUILD _MAP zero
Pushes an empty dictionary object onto the stack. The argument is ignored and set to zero by the compiler.

LOADATTR namei
Replaces TOS witlgetattr(TOS,co _names[hame] .

COMPAREOP opname
Performs a boolean operation. The operation name can be fowngpnop[opnamé.

IMPORT_NAME namei
Imports the moduleo _names[name] . The module object is pushed onto the stack. The current name space
is not affected: for a proper import statement, a subseddiERE FAST instruction modifies the name space.

IMPORT_FROM namei
Imports the attributeo _names[name] . The module to import from is found in TOS and left there.

JUMP_FORWARDdelta
Increments byte code counter dglta

JUMP_IF _TRUE delta
If TOS is true, increment the byte code counterdajta TOS is left on the stack.

JUMPLIF _FALSE delta
If TOS is false, increment the byte code countedejta TOS is not changed.

JUMP_ABSOLUTE target
Set byte code counter target

FOR_LOOP delta
Iterate over a sequence. TOS is the current index, TOS1 the sequence. First, the next element is computed. If the
sequence is exhausted, increment byte code countdeltyy Otherwise, push the sequence, the incremented
counter, and the current item onto the stack.

LOAD GLOBAL namei
Loads the global namezb _names[name] onto the stack.

SETUR_LOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with alsita of

3.27. dis — Disassembler. 65

bytes.

SETUP_EXCEPT delta
Pushes a try block from a try-except clause onto the block sthdta points to the first except block.

SETUPRP_FINALLY delta
Pushes a try block from a try-except clause onto the block stidtapoints to the finally block.

LOADFAST var_num
Pushes a reference to the local_varnames[var_nuni onto the stack.

STOREFAST var_num
Stores TOS into the locab _varnames|[var_nuni .

DELETE_FAST var_num
Deletes locato _varnames[var_num .

SET_LINENO lineno
Sets the current line number lineno.

RAISE_VARARGS argc
Raises an exceptiorargc indicates the number of parameters to the raise statement, ranging from 1 to 3. The
handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL_FUNCTION argc
Calls a function. The low byte @frgcindicates the number of positional parameters, the high byte the number of
keyword parameters. On the stack, the opcode finds the keyword parameters first. For each keyword argument,
the value is on top of the key. Below the keyword parameters, the positional parameters are on the stack, with
the right-most parameter on top. Below the parameters, the function object to call is on the stack.

MAKE.FUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The function object is
defined to havargc default parameters, which are found below TOS.

BUILD_SLICE argc
Pushes a slice object on the stagkgc must be 2 or 3. If it is 2glice(TOS1, TOS) s pushed; ifitis 3,
slice(TOS2, TOS1, TOS) s pushed. See thadice() built-in function.

3.28 new — Runtime implementation object creation

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module.

Thenew module defines the following functions:

instance (class, dic}
This function creates an instance @ésswith dictionarydict without calling the__init __() constructor.
Note that there are no guarantees that the object will be in a consistent state.

instancemethod (function, instance, cla¥s
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust be
callable, andnstancemust be an instance objectbne.

function (code, gIobaIE, name[argdefs]])
Returns a (Python) function with the given code and globalsaifieis given, it must be a string d&fone. Ifitis
a string, the function will have the given name, otherwise the function name will be takedaeoo _name.
If argdefsis given, it must be a tuple and will be used to the determine the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Inotab

66 Chapter 3. Python Services

This function is an interface to tHeyCode_New() C function.

module (namg
This function returns a new module object with nana@ne namemust be a string.

classobj (name, baseclasses, gdict
This function returns a new class object, with namaene derived frombaseclasse@vhich should be a tuple of
classes) and with namespatiet.

3.29 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place import site ' somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsitaipesfix and
sys.exec _prefix ;empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses firstlib/pythonversiorisite-packages’ and then lib/site-python’ (on UNIX). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addgdpath , and also inspected for path
configuration files.

A path configuration file is a file whose name has the fopackagepth’; its contents are additional items (one per
line) to be added teys.path . Non-existing items are never addedstgs.path , but no check is made that the
item refers to a directory (rather than a file). No item is addesytopath more than once. Blank lines and lines
beginning with# are skipped.

For example, supposys.prefix andsys.exec _prefix are setto/usr/local’. The Python 1.5.2 library is then
installed in fusr/local/lib/pythonl1.5" (note that only the first three characterssyk.version are used to form the
path name). Suppose this has a subdirectagy/local/lib/pythonl.5/site-packages’ with three subsubdirectoriesipb’,
‘bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains the following:

foo package configuration

foo
bar
bletch

and ar.pth’ contains:
bar package configuration
bar
Then the following directories are addedslgs.path , in this order:

/usr/local/lib/pythonl.5/site-packages/bar
lusr/local/lib/pythonl.5/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; thaal’ directory precedes thdoo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration

3.29. site — Site-specific configuration hook 67

file.

After these path manipulations, an attempt is made to import a module ref@eastomize , which can perform
arbitrary site-specific customizations. If this import fails withlexportError exception, it is silently ignored.

Note that for some non-Mix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importsifecustomize is still attempted.

3.30 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the $PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

Theuser module looks for a file .pythonrc.py’ in the user's home directory and if it can be opened, exececutes it
(usingexecfile()) in its own (i.e. the moduleser 's) global namespace. Errors during this phase are not caught;
that's up to the program that imports theer module, if it wishes. The home directory is assumed to be named by
the SHOME environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabfer.spam _verbose , as follows:

import user
try:

verbose = user.spam_verbose # user's verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoutdtimport this module; it may interfere with the operation of the importing program.
See Also:

Modulesite (section 3.29):
site-wide customization mechanism

3.31 __Dbuiltin ___ — Built-in functions

68 Chapter 3. Python Services

This module provides direct access to all ‘built-in’ identifiers of Python; e.chuiltin -~ __.open is the full name
for the built-in functionopen() . See section 2.3, “Built-in Functions.”

3.32 __main __ — Top-level script environment.

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input or from a script file.

3.32. __main __ — Top-level script environment. 69

70

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.
re Perl-style regular expression search and match operations.
regex Regular expression search and match operations.
regsub Substitution and splitting operations that use regular expressions.
struct Interpret strings as packed binary data.
fpformat General floating point formatting functions.
StringlO Read and write strings as if they were files.
cStringlO Faster version oBtringlO , but not subclassable.
4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are are:
digits
The string0123456789’

hexdigits
The string'0123456789abcdefABCDEF

letters
The concatenation of the stringavercase() anduppercase() described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijkimnopqgrstuvwxyz’ . Do not change its definition — the effect on the routinpper()
andswapcase() is undefined.

octdigits
The string01234567’

uppercase

A string containing all the characters that are considered uppercase letters. On most systems this is the string
"ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routifeser()
andswapcase() is undefined.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines

71

strip() andsplit() is undefined.
The functions defined in this module are:

atof (s)
Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'('or ‘-). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s[, basﬂ)
Convert strings to an integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign{' or ‘- ’). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sigx’ ‘or ‘0X’ means 16, 0’ means 8, anything else
means 10. Ibaseis 16, a leading0x’ or ‘0X’ is always accepted. Note that when invoked withbaseor
with baseset to 10, this behaves identical to the built-in functiotf) when passed a string. (Also note: for
a more flexible interpretation of numeric literals, use the built-in functieal() .)

atol (s[, bas@)
Convert strings to a long integer in the givebhase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- ’). The baseargument has the same meaning asafoi() . Atrailing ‘I "or ‘L’
is not allowed, except if the base is 0. Note that when invoked withasieor with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize ('word)
Capitalize the first character of the argument.

capwords (9)
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the
capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s, [tabsizd)
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sul{, starl[,end]])
Return the lowest index iswhere the substringubis found such thatubis wholly contained irg] start end .
Return-1 on failure. Defaults fostartandendand interpretation of negative values is the same as for slices.

rfind (s, suki, starl[, end]])
Like find() but find the highest index.
index (s, suk{, starl[, end]])
Like find() but raiseValueError when the substring is not found.

rindex (s, suk[, starl{, end]])
Like rfind() but raisevValueError when the substring is not found.

count (s, sut{, starl{, end]])
Return the number of (non-overlapping) occurrences of substtibin string g start end . Defaults forstart
andendand interpretation of negative values is the same as for slices.

lower (9)
Return a copy o§, but with upper case letters converted to lower case.

maketrans (from, to
Return a translation table suitable for passingramslate() or regex.compile() , that will map each

72 Chapter 4. String Services

character iffrominto the character at the same positiondnfrom andto must have the same length.

Warning: don’t use strings derived frohowercase anduppercase as arguments; in some locales, these
don’t have the same length. For case conversions, alwayswee) andupper()

split (s[, sep[, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesgpis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and ndtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumemaxsplitdefaults to O. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahexcstit-1

elements).

splitfields (s[, se;{, maxspliﬂ])
This function behaves identically split() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (Words[, sep])
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single

space character. It is always true thatting.join(string.split(S, sep, sep’equalss.
joinfields (Words{, sep])
This function behaves identical foin() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.)
Istrip (9
Return a copy o$ but without leading whitespace characters.
rstrip (9
Return a copy of but without trailing whitespace characters.
strip (9

Return a copy o$ without leading or trailing whitespace.

swapcase (9)
Return a copy o§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters frommthat are indeletechargif present), and then translate the characters usibp
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (9
Return a copy 0§, but with lower case letters converted to upper case.

ljust (s, width

riust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastidth characters wide, created by padding the stemgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill - (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, nev[, maxsplit])
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxsplitis given, the firstnaxsplitoccurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in module
strop . However, you shouldeverimport the latter module directly. Whestring discovers thastrop exists, it

4.1. string — Common string operations 73

transparently replaces parts of itself with the implementation fstnop . After initialization, there isno overhead
in usingstring instead ofstrop

4.2 re — Perl-style regular expression operations.

This module provides regular expression matching operations similar to those found in Perl. It's 8-bit clean: the strings
being processed may contain both null bytes and characters whose high bit is set. Regular expression pattern strings
may not contain null bytes, but can specify the null byte using thembernotation. Characters with the high bit set

may be included. Thee module is always available.

Regular expressions use the backslash charaétgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have td\Write as the pattern

string, because the regular expression must\be, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ™. So r'\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidagidiB are both regular expressions,
thenABis also an regular expression. If a stripgnatches A and another striggmatches B, the stringq will match

AB. Thus, complex expressions can easily be constructed from simpler primitive expressions like the ones described
here. For details of the theory and implementation of regular expressions, consult the Friedl book referenced below,
or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapy/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characteés,‘ Bkedr

‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last ; matches the strindast . (In the rest of this section, we’ll write RE’s itthis special style I

usually without quotes, and strings to be matcliedsingle quotes’)

Some characters, lik¢ *or * (’, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

‘. (Dot.) In the default mode, this matches any character except a newline. BE@FALLflag has been
specified, this matches any character including a newline.

(Caret.) Matches the start of the string, andMULTILINE mode also matches immediately after each
newline.

‘$’ Matches the end of the string, and MULTILINE mode also matches before a newliffeo ; matches
both 'foo’ and 'foobar’, while the regular expressiioo$; matches only 'foo’.

“*' Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.lab* ;will match 'a’, 'ab’, or 'a’ followed by any number of 'b’s.

74 Chapter 4. String Services

()

1?)

7,472,727

{m, n}

{m, n}?

(.)

..)

(?iLmsx)

Causes the resulting RE to match 1 or more repetitions of the precedingREwill match 'a’ followed
by any non-zero number of 'b’s; it will not match just 'a’.

Causes the resulting RE to match 0 or 1 repetitions of the precedindgBE.will match either 'a’ or
‘ab’.

The *’, *+’, and “?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn’'t desired; if the RE.*> | is matched againstH1>title</H1>’ , it will match the
entire string, and not juskH1>' . Adding ‘?’ after the qualifier makes it perform the matchrion-
greedyor minimal fashion; affew characters as possible will be matched. Usiig ;in the previous
expression will match onRgH1>" .

Causes the resulting RE to match fremto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For examfd€3,5} will match from 3 to 5 &’ characters. Omitting
specifies an infinite upper bound; you can’t omit

Causes the resulting RE to match framto n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character strinpaaaaa’ , 'a{3,5} ;will match 5 ‘a’ characters, whiléa{3,5}? ;will only match

3 characters.

Either escapes special characters (permitting you to match charactefs Jike', and so forth), or signals
a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn't recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it's highly recommended that you use raw strings for all but the simplest expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by.aSpecial characters are not active
inside sets. For exampléakm$] ; will match any of the charactera”, ‘k’, ‘m, or ‘$’; Ta-z] ; will

match any lowercase letter, afadzA-Z0-9] matches any letter or digit. Character classes subtl as

or\S (defined below) are also acceptable inside a range. If you want to inclydeoaa ‘-’ inside a

set, precede it with a backslash, or place it as the first character. The dgkterwill match’] , for
example.

You can match the characters not within a rangedayplementinghe set. This is indicated by including
a "’ as the first character of the sef;’‘elsewhere will simply match the ° character. For example,
T'5] ;will match any character excef"

A|B, where A and B can be arbitrary RES, creates a regular expression that will match either A or B.
This can be used inside groups (see below) as well. To match a literalse\| ;, or enclose it inside a
character class, as fif] .

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the\ numberspecial sequence, described below. To match the litgfats“’) ’, use\(;or

\)), or enclose them inside a character cldgk:[)] .

This is an extension notation (2'*following a ‘(' is not meaningful otherwise). The first character after

the 2’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group{?P< name-...) | is the only exception to this rule. Following are the currently
supported extensions.

(One or more letters from the sét’, ‘L', ‘m, ‘s’, ‘x’.) The group matches the empty string; the letters
set the corresponding flage(l ,re.L ,re.M ,re.S ,re.X) for the entire regular expression. This is
useful if you wish to include the flags as part of the regular expression, instead of pa8amgrgument

to thecompile() function.

4.2. re — Perl-style regular expression operations. 75

(?:...)

A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the greamotbe retrieved after performing a match or referenced
later in the pattern.

(?P<name-...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-

bolic group nhamename Group names must be valid Python identifiers. A symbolic group is also a
numbered group, just as if the group were not named. So the group named 'id’ in the example above can
also be referenced as the numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z _]\w*) |, the group can be referenced by its name
in arguments to methods of match objects, sucmagoup(’id’) or m.end(’id") , and also by
name in pattern text (e.§?P=id)) and replacement text (e.\g<id>).

(?P=namg Matches whatever text was matched by the earlier group naiared

(?#...)
(?=..)
(2L...)

A comment; the contents of the parentheses are simply ignored.

Matchesifl... ;matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For examplellsaac (?=Asimov) will match’lsaac ' only ifit's followed by 'Asimov’
Matches if... | doesn't match next. This is a negative lookahead assertion. For exatsphs

(?'Asimov) ;will match’lsaac only if it's notfollowed by’Asimov’

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exarkplenatches the charactep’

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For

\b

\B
\d
\D
\s
\S

\w

\W

\Z
\

example/(.+) \1 ;matchesthe the’ or’55 55 | butnot'the end” (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit
of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valueumber Inside the [' and ‘] ' of a character class, all numeric escapes are
treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
Inside a character rang#h | represents the backspace character, for compatibility with Python’s string
literals.

Matches the empty string, but only when itist at the beginning or end of a word.
Matches any decimal digit; this is equivalent to the e8] .

Matches any non-digit character; this is equivalent to thg€e8] .

Matches any whitespace character; this is equivalent to the S&t\r\fiv] 5
Matches any non-whitespace character; this is equivalent to ti{g $8n\r\fiv] 5

When theLOCALEflag is not specified, matches any alphanumeric character; this is equivalent to the set
Ta-zA-Z0-9 _] . With LOCALE it will match the set[0-9 _], plus whatever characters are defined
as letters for the current locale.

When theLOCALEflag is not specified, matches any non-alphanumeric character; this is equivalent to
the set["a-zA-Z0-9 _],. With LOCALE it will match any character not in the sf@-9 _], and not
defined as a letter for the current locale.

Matches only at the end of the string.

Matches a literal backslash.

76

Chapter 4. String Services

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl's semantics, the search operation is what you're looking for. Sex#ineh() function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning Wit ° matches only at the start

of the string, or iNMULTILINE mode also immediately following a newline. The “match” operation succeeds only
if the pattern matches at the start of the string regardless of mode, or at the starting position given by thepmstional
argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile(""a", re.M).search("\na", 1) # succeeds
re.compile(""a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a single
program.

I

IGNORECASE
Perform case-insensitive matching; expressions TikeZ] ; will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE
Make \w, \W, \b ;, \B , dependent on the current locale.

M

MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara®ematches at the end of the string and at
the end of each line (immediately preceding each newline). By defatihatches only at the beginning of the
string, and $’ only at the end of the string and immediately before the newline (if any) at the end of the string.

4.2. re — Perl-style regular expression operations. 77

S

DOTALL
Make the : ’ special character match any character at all, including a newline; without this.flagilt match
anythingexcepta newline.

X
VERBOSE
This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line egsmaitisea *
in a character class or preceded by an unescaped backslash, all characters from the leftm&5sttsocigh
the end of the line are ignored.

search (pattern, stringi, flags])
Scan througlstring looking for a location where the regular expresspatternproduces a match, and return a
correspondingMatchObject instance. ReturiNone if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

match (pattern, string{, flags])
If zero or more characters at the beginningtring match the regular expressipattern return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywheredtring, usesearch() instead.

split (pattern, string,[, maxsplit = 0])
Split string by the occurrences gattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishalfsplitis nonzero, at moshaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 releasepaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(\W+’, 'Words, words, words.’)
[Words’, 'words’, 'words’, "]

>>> re.split((\W+)', 'Words, words, words.")
[Words’, ’, ’, 'words’, ’, ', 'words’, ", "]
>>> re.split(\W+', 'Words, words, words.’, 1)
['Words’, 'words, words.]

This function combines and extends the functionality of theefgub.split() andregsub.splitx()

findall ~ (pattern, string
Return a list of all non-overlapping matchespatternin string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result. New in version 1.5.2.

sub (pattern, repl, strin&, count = 0])
Return the string obtained by replacing the leftmost non-overlapping occurrenpast@fin string by the
replacementepl. If the pattern isn’t foundstringis returned unchangedepl can be a string or a function; if a
function, it is called for every non-overlapping occurrencgattern The function takes a single match object
argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == '-": return '’
else: return -’
>>> re.sub(’-{1,2}, dashrepl, 'pro----gram-files’)
‘pro--gram files’

The pattern may be a string or a regex object; if you need to specify regular expression flags, you must use
a regex object, or use embedded modifiers in a pattern; suh(*“(?i)b+", "x", "bbbb BBBB") '
returnsx x’

78 Chapter 4. String Services

The optional argumertountis the maximum number of pattern occurrences to be replasaditmust be a
non-negative integer, and the default value of 0 means to replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous matab('s¥’; -,

‘abc’) returns’-a-b-c-’

If replis a string, any backslash escapes in it are processed. That'iss tonverted to a single newline charac-
ter, \r " is converted to a linefeed, and so forth. Unknown escapes sudh aare left alone. Backreferences,
such as\6 ’, are replaced with the substring matched by group 6 in the pattern.

In addition to character escapes and backreferences as described &ipaveme> ' will use the substring
matched by the group namedame’, as defined by th?P<name>...) | syntax. \g<number> ’ uses the
corresponding group numbeig<2> ’ is therefore equivalent td2 ’, but isn’t ambiguous in a replacement
such as\g<2>0 '. ‘\20 " would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal charactel0".

subn (pattern, repl, strini, count = O])
Perform the same operationsgh() , but return a tuplé new_string, number of_subs madg .

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. It is never an error if a
string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search (string[, pos][, endpog)
Scan througtstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. ReturiNone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionabosandendpogarameters have the same meaning as fonmtaeh() method.

match (string[, pos][, endpog)
If zero or more characters at the beginningstring match this regular expression, return a corresponding
MatchObject instance. ReturiNone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywheredtring, usesearch() instead.

The optional second paramef®sgives an index in the string where the search is to start; it defaults This
is not completely equivalent to slicing the string; thie pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parametendpodimits how far the string will be searched; it will be as if the stringeisdpos
characters long, so only the characters fomsto endposwill be searched for a match.

split (string,[, maxsplit = O])
Identical to thesplit() function, using the compiled pattern.

findall (' string)
Identical to theindall() function, using the compiled pattern.

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

4.2. re — Perl-style regular expression operations. 79

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the regex object was compil€df oo flags were provided.

groupindex
A dictionary mapping any symbolic group names defined(®l< id>) | to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the regex object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

group ([groupl, group2, ..])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there
are multiple arguments, the result is a tuple with one item per argument. Without argugrentsl defaults
to zero (i.e. the whole match is returned). IgeupN argument is zero, the corresponding return value is
the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anindexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result illone. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses tfeP< name-...) ;syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattetex&ror
exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchm.group(1) is'3’ , asism.group(’int’) , andm.group(2) is’'14’

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The defaultargument is used for groups that did not participate in the match; it defauMsrte. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all teamedsubgroups of the match, keyed by the subgroup namedéfailt
argument is used for groups that did not participate in the match; it defaisrte.

start ([group])

end (| group])
Return the indices of the start and end of the substring matchedooys group defaults to zero (meaning the
whole matched substring). Retudone if groupexists but did not contribute to the match. For a match oloject
and a groum that did contribute to the match, the substring matched by ggdeguivalent tan.group(g))
is

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, after=
re.search(’b(c?)’, 'cba’) , m.start(0) is 1, m.end(0) is 2, m.start(1) andm.end(1)

80 Chapter 4. String Services

are both 2, andh.start(2) raises arindexError exception.

span ([group])
ForMatchObject m, return the 2-tuplé m.start(group), m.end(group) . Note that ifgroupdid not
contribute to the match, this {plone, None) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to tleearch() ormatch() function. This is the index into the string at
which the regex engine started looking for a match.

endpos
The value ofendposwhich was passed to treearch() or match() function. This is the index into the
string beyond which the regex engine will not go.

re
The regular expression object whosatch() orsearch() method produced thiglatchObject instance.

string
The string passed tmatch() or search()

See Also:

Jeffrey Friedl,Mastering Regular Expression®’Reilly. The Python material in this book dates from beforeréhe
module, but it covers writing good regular expression patterns in great detail.

4.3 regex — Regular expression search and match operations.

This module provides regular expression matching operations similar to those found in Emacs.

Obsolescence note: This module is obsolete as of Python version 1.5; it is still being maintained because
much existing code still uses it. All new code in need of regular expressions should use the newd-

ule, which supports the more powerful and regular Perl-style regular expressions. Existing code should be con-
verted. The standard library moduieconvert helps in convertingegex style regular expressions i@

style regular expressions. (For more conversion help, see Andrew Kuchliregex-to-re HOWTO” at
http://www.python.org/doc/howto/regex-to-re/.)

By default the patterns are Emacs-style regular expressions (with one exception). There is a way to change the syntax
to match that of several well-knownnux utilities. The exception is that Emac$s*’ pattern is not supported, since
the original implementation references the Emacs syntax tables.

This module is 8-bit clean: both patterns and strings may contain null bytes and characters whose high bit is set.

Please note: There is a little-known fact about Python string literals which means that you don't usually have to
worry about doubling backslashes, even though they are used to escape special characters in string literals as well as
in regular expressions. This is because Python doesn’t remove backslashes from string literals if they are followed
by an unrecognized escape charactdowever if you want to include a literabackslashin a regular expression
represented as a string literal, you havegt@drupleit or enclose it in a singleton character class. E.g. to extract

IATEX “\section{ ...}’ headers from a document, you can use this patt@ieection{\(.*\)}’ . Another
exceptionithe escape sequede ' is significant in string literals (where it means the ASCII bell character) as well as

in Emacs regular expressions (where it stands for a word boundary), so in order to search for a word boundary, you
should use the pattef\b’ . Similarly, a backslash followed by a digit 0-7 should be doubled to avoid interpretation

as an octal escape.

4.3.1 Regular Expressions

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which

4.3. regex — Regular expression search and match operations. 81

comes down to the same thing).

Regular expressions can be concatenated to form new regular expresshaanslB are both regular expressions, then

ABis also an regular expression. If a stripgnatches A and another strimgnatches B, the stringg will match AB.

Thus, complex expressions can easily be constructed from simpler ones like the primitives described here. For details
of the theory and implementation of regular expressions, consult almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Ordinary charactéy's, ikeor '0’, are
the simplest regular expressions; they simply match themselves. You can concatenate ordinary chardastrs, so’
matches the characters ’last’. (In the rest of this section, we’ll write RElsi#n special font , usually without
guotes, and strings to be matched ’in single quotes’.)

Special characters either stand for classes of ordinary characters, or affect how the regular expressions around them
are interpreted.

The special characters are:

(Dot.) Matches any character except a newline.
(Caret.) Matches the start of the string.

$ Matches the end of the stringoo matches both 'foo’ and 'foobar’, while the regular expressitoo$ ’
matches only 'foo’.

* Causes the resulting RE to match 0 or more repetitions of the precedingbREwill match 'a’, 'ab’, or ’a’
followed by any number of ’'b’s.

+ Causes the resulting RE to match 1 or more repetitions of the precedingbREBEwill match 'a’ followed by
any non-zero number of 'b’s; it will not match just 'a’.

? Causes the resulting RE to match 0 or 1 repetitions of the precedingtREwill match either 'a’ or 'ab’.

\ Either escapes special characters (permitting you to match characters like *?+&$’), or signals a special se-
quence; special sequences are discussed below. Remember that Python also uses the backslash as an escape
sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and subse-
guent character are included in the resulting string. However, if Python would recognize the resulting sequence,
the backslash should be repeated twice.

[Used to indicate a set of characters. Characters can be listed individually, or a range is indicated by giving two
characters and separating them by a ’-’. Special characters are not active inside sets. For gaamntkjle will
match any of the characters 'a’, 'k’, 'm’, or '$[a-z] will match any lowercase letter.

If you want to include § inside a set, it must be the first character of the set; to includeptace it as the first
or last character.

Charactergiot within a range can be matched by including as the first character of the sétglsewhere will
simply match the™’ character.

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exandplejatches the character '$’. Ones where the
backslash should be doubled in string literals are indicated.

\| A\[B ,where A and B can be arbitrary RES, creates a regular expression that will match either A or B. This can
be used inside groups (see below) as well.

\(\) Indicates the start and end of a group; the contents of a group can be matched later in the string i8] the
special sequence, described next.

82 Chapter 4. String Services

\1, ... \7,\8, \9
Matches the contents of the group of the same number. For exaifiplg, \\1 matches 'the the’ or '55
55, but not 'the end’ (note the space after the group). This special sequence can only be used to match one of
the first 9 groups; groups with higher numbers can be matched usiig tbequence\§ and\9 don't need a
double backslash because they are not octal digits.)

\\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.

\B Matches the empty string, but when itristat the beginning or end of a word.

\v Must be followed by a two digit decimal number, and matches the contents of the group of the same number.
The group number must be between 1 and 99, inclusive.

\w Matches any alphanumeric character; this is equivalent to tHa-2#t-Z0-9]
\W Matches any non-alphanumeric character; this is equivalent to tli@se-Z0-9]

\< Matches the empty string, but only at the beginning of a word. A word is defined as a sequence of alphanumeric
characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.

\> Matches the empty string, but only at the end of a word.
\W Matches a literal backslash.
\' Like ", this only matches at the start of the string.

\\' Like $, this only matches at the end of the string.

4.3.2 Module Contents

The module defines these functions, and an exception:

match (pattern, string
Return how many characters at the beginningtahg match the regular expressipattern Return-1 if the
string does not match the pattern (this is different from a zero-length match!).

search (pattern, string
Return the first position istring that matches the regular expresspattern Return-1 if no position in the
string matches the pattern (this is different from a zero-length match anywhere!).

compile (patterr{, translate])
Compile a regular expression pattern into a regular expression object, which can be used for matching using
its match() andsearch() methods, described below. The optional argunteanslate if present, must
be a 256-character string indicating how characters (both of the pattern and of the strings to be matched) are
translated before comparing them; thth element of the string gives the translation for the characteragth
codei. This can be used to implement case-insensitive matching; seasbéold data item below.

The sequence

prog = regex.compile(pat)
result = prog.match(str)

is equivalent to
result = regex.match(pat, str)

but the version usingompile() is more efficient when multiple regular expressions are used concurrently in a
single program. (The compiled version of the last pattern passedjéx.match() or regex.search()

4.3. regex — Regular expression search and match operations. 83

is cached, so programs that use only a single regular expression at a time needn’t worry about compiling regular
expressions.)

set _syntax (flag9
Set the syntax to be used by future callsctimpile() , match() andsearch() . (Already compiled
expression objects are not affected.) The argument is an integer which is the OR of several flag bits. The
return value is the previous value of the syntax flags. Names for the flags are defined in the standard module
regex _syntax ;read the file fegex_syntax.py’ for more information.

get _syntax ()
Returns the current value of the syntax flags as an integer.

symcomp(patterr{, translate])
This is like compile() , but supports symbolic group names: if a parenthesis-enclosed group begins with
a group name in angular brackets, e{<id>[a-z][a-z0-9]*\)’ , the group can be referenced by
its name in arguments to tlgroup() method of the resulting compiled regular expression object, like this:
p.group(id’) . Group names may contain alphanumeric characters ahdnly.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. (It is never an error if a
string contains no match for a pattern.)

casefold
A string suitable to pass as tlianslateargument tocompile() to map all upper case characters to their
lowercase equivalents.

Compiled regular expression objects support these methods:

match (string[, pos])
Return how many characters at the beginningtahg match the compiled regular expression. Retdrnf the
string does not match the pattern (this is different from a zero-length match!).

The optional second parametegs gives an index in the string where the search is to start; it defaultsTbis
is not completely equivalent to slicing the string; tlie pattern character matches at the real beginning of the
string and at positions just after a newline, not necessarily at the index where the search is to start.

search (string[, pos])
Return the first position istring that matches the regular expresspaitern . Return-1 if no position in the
string matches the pattern (this is different from a zero-length match anywhere!).

The optional second parameter has the same meaning as foatbk() method.

group (index, index, .).
This method is only valid when the last call to theatch() orsearch() method found a match. It returns
one or more groups of the match. If there is a sirigiiexargument, the result is a single string; if there are
multiple arguments, the result is a tuple with one item per argument. lihthexis zero, the corresponding
return value is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the
corresponding parenthesized group (using the default syntax, groups are parenthesiz¢d asutly). If no
such group exists, the corresponding resuNdase.

If the regular expression was compiledfymcomp() instead ofcompile() , theindexarguments may also
be strings identifying groups by their group name.

Compiled regular expressions support these data attributes:

regs
When the last call to thenatch() or search() method found a match, this is a tuple of pairs of indexes
corresponding to the beginning and end of all parenthesized groups in the pattern. Indices are relative to the
string argument passed toatch() or search() . The 0-th tuple gives the beginning and end or the whole
pattern. When the last match or search failed, thidage.

84 Chapter 4. String Services

last
When the last call to thmatch() orsearch() method found a match, this is the string argument passed to
that method. When the last match or search failed, tHiise.

translate
This is the value of thé&ranslateargument taegex.compile() that created this regular expression object.
If the translateargument was omitted in thregex.compile() call, this isNone.

givenpat

The regular expression pattern as passamtopile() or symcomp() .

realpat
The regular expression after stripping the group names for regular expressions compilsgimdgtimp() .
Same agjivenpat otherwise.

groupindex
A dictionary giving the mapping from symbolic group names to numerical group indexes for regular expressions
compiled withsymcomp() . None otherwise.

4.4 regsub — String operations using regular expressions

This module defines a number of functions useful for working with regular expressions (see built-in neggule).
Warning: these functions are not thread-safe.

Obsolescence noteThis module is obsolete as of Python version 1.5; it is still being maintained because much
existing code still uses it. All new code in need of regular expressions should use the meadule, which supports

the more powerful and regular Perl-style regular expressions. Existing code should be converted. The standard library
modulereconvert helps in convertingegex style regular expressionste style regular expressions. (For more
conversion help, see Andrew Kuchling’s “regex-to-re HOWTOR@i://www.python.org/doc/howto/regex-to-re/.)

sub (pat, repl, st)
Replace the first occurrence of pattgatin stringstr by replacemenepl. If the pattern isn’t found, the string is
returned unchanged. The pattern may be a string or an already compiled pattern. The replacement may contain
references\'digit’ to subpatterns and escaped backslashes.

gsub (pat, repl, st)
Replace all (non-overlapping) occurrences of patpatin stringstr by replacemenepl. The same rules as for
sub() apply. Empty matches for the pattern are replaced only when not adjacent to a previous match, so e.g.
gsub(”, -, 'abc’) returns’-a-b-c-’

split ~ (str, pal[, maxsplit])
Splitthe stringstr in fields separated by delimiters matching the patpathand return a list containing the fields.
Only non-empty matches for the pattern are considered, sosplit(a:b’, ':*) returns['a’,
‘'] andsplit(abc’,) returns['abc’] . Themaxsplitdefaults to O. If it is nonzero, onigpaxsplit
number of splits occur, and the remainder of the string is returned as the final element of the list.

splitx (str, pal[, maxsplit])
Split the stringstr in fields separated by delimiters matching the patfat) and return a list containing the
fields as well as the separators. For examgdditx('a:::b’, ":*") returnsf'a’, "', 'b’]
Otherwise, this function behaves the samsai

capwords (s[, pat])
Capitalize words separated by optional patigsih The default pattern uses any characters except letters, digits
and underscores as word delimiters. Capitalization is done by changing the first character of each word to upper
case.

clear _cache ()
The regsub module maintains a cache of compiled regular expressions, keyed on the regular expression string

4.4. regsub — String operations using regular expressions 85

and the syntax of the regex module at the time the expression was compiled. This function clears that cache.

4.5 struct — Interpret strings as packed binary data.

This module performs conversions between Python values and C structs represented as Python stringniatises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values.

The module defines the following exception and functions:

error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2,..)
Return a string containing the values v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packed gck(fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (i.e.len(string) must equatalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format | C Type Python
‘X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
i int integer
‘1’ unsigned int integer
‘07 long integer
‘L unsigned long integer
‘£ float float
‘d’ double float
‘s’ charf] string
‘p’ charf] string
‘P void * integer

A format character may be preceded by an integral repeat count; e.g. the formatstringneans exactly the same
as’hhhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; e.d10s’ means a single 10-byte string, whildc’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special &&8e, means a single, empty string (whildc’ means

0 characters).

The ‘p’ format character can be used to encode a Pascal string. The first byte is the length of the stored string, with the

86 Chapter 4. String Services

bytes of the string following. If count is given, it is used as the total number of bytes used, including the length byte.
If the string passed in tpack() is too long, the stored representation is truncated. If the string is too short, padding
is used to ensure that exactly enough bytes are used to satisfy the count.

For the 1 ' and ‘L’ format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer typ&WA_L pointer will always be returned as the Python integ@er

When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size and alignment
‘@ native native
‘= native standard
< little-endian standard
> big-endian standard
i network (= big-endian) standard

If the first character is not one of thes@ls assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun are big-endian;
Intel and DEC are little-endian).

Native size and alignment are determined using the C compiizenf expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes;int andlong are 4 bytes.float anddouble are 32-bit and 64-bit IEEE floating point
numbers, respectively.

Note the difference betwee@and ‘=": both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form 1’ is available for those poor souls who claim they can’'t remember whether network byte order is big-endian
or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate chdioe ‘of"

The ‘P’ format character is only available for the native byte ordering (selected as the default or wighlilyte' order
character). The byte order character thooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, sdXHermat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(’hhl’, 1, 2, 3)
"\000\001\000\002\000\000\000\003’

>>> unpack(’hhI’, \000\001\000\002\000\000\000\003’)

1, 2, 3)
>>> calcsize(’hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code

4.5. struct — Interpret strings as packed binary data. 87

for that type with a repeat count of zero, e.g. the foritiadl’ specifies two pad bytes at the end, assuming longs
are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size and
alignment does not enforce any alignment.

See Also:

Modulearray (section 5.6):
packed binary storage of homogeneous data

Modulexdrlib (section 12.13):
packing and unpacking of XDR data

4.6 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done vig#teng interpolation operator.

Thefpformat module defines the following functions and an exception:

fix (x,dig9
Formatx as[-]ddd.ddd with digs digits after the point and at least one digit before.dijs <= 0, the
decimal point is suppressed.

X can be either a number or a string that looks like afigsis an integer.
Return value is a string.
sci (X, dig9

Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedis <= 0,
one digit is kept and the point is suppressed.

X can be either a real number, or a string that looks like digsis an integer.
Return value is a string.

NotANumber
Exception raised when a string does not look like a number when the documentation says it should.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
1.2

4.7 StringlO — Read and write strings as files

This module implements a file-like clasStringlO , that reads and writes a string buffer (also knownresnory
files). See the description on file objects for operations (section 2.1.7).

StringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, ti&tringlO will start empty.

The following methods o$tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time beforeSkiinglO object'sclose() method is called.

88 Chapter 4. String Services

close ()
Free the memory buffer.

4.8 cStringlO — Faster version of StringlO

The modulecStringlO provides an interface similar to that of tisringlO module. Heavy use dbtrin-
glO.StringlO objects can be made more efficient by using the funcitsimglO() from this module instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the origiBainglO module in that case.

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO with a string parameter.

OutputType
The type object of the objects returned by callBtginglO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8. cStringlO — Faster version of StringlO 89

90

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

math Mathematical functionss{n() etc.).

cmath Mathematical functions for complex numbers.

whrandom Floating point pseudo-random number generator.

random Generate pseudo-random numbers with various common distributions.
bisect Array bisection algorithms for binary searching.

array Efficient arrays of uniformly typed numeric values.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
calendar Functions that emulate theNux cal program.

cmd Build line-oriented command interpreters; this is used by mogdke.
shlex Simple lexical analysis for Nix shell-like languages.

5.1 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard. They are:

acos (X)
Return the arc cosine of

asin (x)
Return the arc sine of

atan (x)
Return the arc tangent &f

atan2 (y, X%
Returnatan(y / X).

ceil (X)
Return the ceiling ok as a real.

cos (X
Return the cosine of.

cosh (X)
Return the hyperbolic cosine &f

exp (X)
Returne** x.

fabs (x)

91

Return the absolute value of the real

floor (x)
Return the floor ok as a real.
fmod (x, y)
Returnx % y.
frexp (X)
Return the matissa and exponentXoiThe mantissa is positive.
hypot (X, Y)
Return the Euclidean distanagrt(x*x + y*y).
Idexp (X, i)
Returnx * (2** i) .
log (X)
Return the natural logarithm of
log1l0 (X)
Return the base-10 logarithm xf
modf (X)
Return the fractional and integer partsxoBoth results carry the sign af The integer part is returned as a real.
pow(X, y)
Returnx** y.
sin (X)
Return the sine of.
sinh (x)
Return the hyperbolic sine af
sqrt (X)
Return the square root a&f
tan (X)
Return the tangent of
tanh (x)

Return the hyperbolic tangent »f

Note thatfrexp() andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi

The mathematical constapit
e

The mathematical constaat
See Also:

Modulecmath (section 5.2):
Complex number versions of many of these functions.

5.2 cmath — Mathematical functions for complex numbers

92 Chapter 5. Miscellaneous Services

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (x)

Return the arc cosine aof
acosh (x)

Return the hyperbolic arc cosine xf
asin (x)

Return the arc sine of
asinh (x)

Return the hyperbolic arc sine »f
atan (x)

Return the arc tangent &f
atanh (x)

Return the hyperbolic arc tangentof
cos (X)

Return the cosine of.
cosh (X)

Return the hyperbolic cosine &f
exp (x)

Return the exponential valug™* x.
log (X)

Return the natural logarithm of
l0g10 (X)

Return the base-10 logarithm xf
sin (X)

Return the sine af.
sinh (X)

Return the hyperbolic sine af
sqrt (X)

Return the square root af
tan ()

Return the tangent of
tanh (x)

Return the hyperbolic tangent »f

The module also defines two mathematical constants:

pi
The mathematical constapt, as a real.

The mathematical constaatas a real.

Note that the selection of functions is similar, but not identical, to that in maodialén . The reason for having two
modules is that some users aren'’t interested in complex numbers, and perhaps don't even know what they are. They
would rather havenath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

5.2. cmath — Mathematical functions for complex numbers 93

5.3 whrandom — Floating point pseudo-random number generator.

This module implements a Wichmann-Hill pseudo-random number generator class that is alsontaarstbm .
Instances of thevhrandom class have the following methods:

choice (seq
Chooses a random element from the non-empty sequesgzd returns it.

randint (a, b
Returns a random integsf such thab<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (X, Y, 2
Initializes the random number generator from the integessandz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b
Returns a random real numkersuch that<=N<b.

When imported, thevhrandom module also creates an instance of Wlgandom class, and makes the methods of
that instance available at the module level. Therefore one can write Bitherwhrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

See Also:

Modulerandom (section 5.4):
generators for various random distributions

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190

5.4 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions: on the real line, there are func-
tions to compute normal or Gaussian, lognormal, negative exponential, gamma, and beta distributions. For generating
distribution of angles, the circular uniform and von Mises distributions are available.

The module exports the following functions, which are exactly equivalent to those imthendom module:
choice() ,randint() ,random() anduniform() . See the documentation for théhrandom module for
these functions.

The following functions specific to theandom module are also defined, and all return real values. Function pa-
rameters are named after the corresponding variables in the distribution’s equation, as used in common mathematical
practice; most of these equations can be found in any statistics text.

betavariate (alpha, beta
Beta distribution. Conditions on the parametersapha >- 1 andbeta > -1 . Returned values will range
between 0 and 1.

cunifvariate (mean, arg
Circular uniform distributionmeanis the mean angle, aratc is the range of the distribution, centered around
the mean angle. Both values must be expressed in radians, and can range betwepn Randned values
will range betweemean - arc/2 andmean + arc/2 .

94 Chapter 5. Miscellaneous Services

expovariate (lambg
Exponential distributionlambdis 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values will range from 0 to positive infinity.

gammd alpha, beta
Gamma distribution.Notthe gamma function!) Conditions on the parametersafpka > -1 andbeta > 0.

gauss (mu, sigma
Gaussian distributionmu is the mean, andigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate ~ (mu, sigma
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with meanmuand standard deviatissigma mucan have any value, arsigmamust be greater than zero.

normalvariate (mu, sigma
Normal distribution.muis the mean, andigmais the standard deviation.

vonmisesvariate (mu, kappa
muis the mean angle, expressed in radians between 0 gnida2tdkappais the concentration parameter, which
must be greater than or equal to zerokadppais equal to zero, this distribution reduces to a uniform random
angle over the range 0 to @i

paretovariate (alphg)
Pareto distributionalphais the shape parameter.

weibullvariate (alpha, beta
Weibull distribution.alphais the scale parameter abdtais the shape parameter.

See Also:

Modulewhrandom (section 5.3):
the standard Python random number generator

5.5 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is callbisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (i.e., the boundary conditions are already right!).

The following functions are provided:

bisect (list, itenq, lo[, hi]])
Locate the proper insertion point fitlemin list to maintain sorted order. The parametkrsandhi may be
used to specify a subset of the list which should be considered. The return value is suitable for use as the first
parameter tdist.insert()

insort (list, itenq, lo[, hi]])
Insertitemin list in sorted order. This is equivalent tist.insert(bisect.bisect(list, item lo,
hi), item) .

5.5.1 Example

Thebisect() function is generally useful for categorizing numeric data. This examplehisest() to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A, 75..84 is a
‘B’, etc.

5.5. bisect — Array bisection algorithm 95

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect(breakpoints, total)]

>>> grade(66)

cr

>>> map(grade, [33, 99, 77, 44, 12, 88])
[1E7’ 1A1, 1Bl’ IDI’ 7F1, 1A1]

5.6 array — Efficient arrays of numeric values

This module defines a new object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by usipg eode which is a single
character. The following type codes are defined:

Type code | C Type Minimum size in bytes
'c’ character 1
b’ signed int 1
B’ unsigned int 1
'n signed int 2
'H unsigned int 2
T signed int 2
T unsigned int 2
T signed int 4
L unsigned int 4
' float 4
o’ double 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed througitdhesize attribute. The values stored far and’l’ items

will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following function and type object:

array (typecodE, initializer])
Return a new array whose items are restrictedyipecode and initialized from the optionahitializer value,
which must be a list or a string. The list or string is passed to the new afraxitist() or fromstring()
method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returneadgy()

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

96 Chapter 5. Miscellaneous Services

append (X)
Append a new item with valueto the end of the array.

buffer _info ()
Return a tupl€ address length giving the current memory address and the length in bytes of the buffer used
to hold array’s contents. This is occasionally useful when working with low-level (and inherently unsafe) 1/0
interfaces that require memory addresses, such as cextdif operations. The returned numbers are valid
as long as the array exists and no length-changing operations are applied to it.

byteswap (X)
“Byteswap” all items of the array. This is only supported for integer values; for other types of vRlues,
timeError is raised. It is useful when reading data from a file written on a machine with a different byte
order.

fromfile (f, n)
Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availableEOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else wittead() method won't do.

fromlist (list)
Append items from the list. This is equivalent for x in list: a.append(x) ' except that if thereis a
type error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (i.e. as if it had been read

from a file using thdromfile() method).
insert (i, X)
Insert a new item with valurin the array before position
read (f, n)
Deprecated since release 1.5.Use thefromfile() method.

Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availablezOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else wittead() method won't do.

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be written to a file by thifile() method.)

write ()
Deprecated since release 1.5.Use thetofile() method.

Write all items (as machine values) to the file object

When an array object is printed or converted to a string, it is representadag typecode initializer) . The

initializer is omitted if the array is empty, otherwise it is a string if typecodeis 'c’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes’(). Examples:

5.6. array — Efficient arrays of numeric values 97

array('l')

array(’c’, ’hello world’)
array(l', [1, 2, 3, 4, 5))
array('d’, [1.0, 2.0, 3.14])

See Also:

Modulestruct (section 4.5):
packing and unpacking of heterogeneous binary data

Modulexdrlib (section 12.13):
packing and unpacking of XDR data

5.7 ConfigParser = — Configuration file parser

This module defines the cla@onfigParser . TheConfigParser class implements a basic configuration file
parser language which provides a structure similar to what you would find on Microsoft Windows INI files. You can
use this to write Python programs which can be customized by end users easily.

The configuration file consists of sections, lead bysaction] ' header and followed bynfame: value ’en-
tries, with continuations in the style of RFC 82Bame=value ' is also accepted. The optional values can contain
format strings which refer to other values in the same section, or values in a dpEEAULTsection. Additional
defaults can be provided upon initialization and retrieval. Lines beginning withre ignored and may be used to
provide comments.

For example:

foodir: %(dir)s/whatever

would resolve the%(dir)s ' to the value of dir. All reference expansions are done late, on demand.

Intrinsic defaults can be specified by passing them intdtbefigParser constructor as a dictionary. Additional
defaults may be passed into thet method which will override all others.

ConfigParser ([defaultﬁ)
Return a new instance of tli@onfigParser class. Whemlefaultsis given, it is initialized into the dictionairy
of intrinsic defaults. They keys must be strings, and the values must be appropriate fé6(jge string
interpolation. Note that _name__ is always an intrinsic default; its value is the section name.

NoSectionError
Exception raised when a specified section is not found.

DuplicateSectionError
Exception raised when mutliple sections with the same name are found.

NoOptionError
Exception raised when a specified option is not found in the specified section.

InterpolationError
Exception raised when problems occur performing string interpolation.

MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

ParsingError
Exception raised when errors occur attempting to parse a file.

98 Chapter 5. Miscellaneous Services

See Also:

Moduleshlex (section 5.11):
Support for a creating Nix shell-like minilanguages which can be used as an alternate format for application
configuration files.

5.7.1 ConfigParser Objects

ConfigParser instances have the following methods:

defaults ()
Return a dictionairy containing the instance-wide defaults.

sections ()
Return a list of the sections available.

has _section (sectior)

Indicates whether the named section is present in the configuratiodHRAUL Tsection is not acknowledged.
options (section

Returns a list of options available in the specifsettion

read (filename}
Read and parse a list of filenames.

get (section, optiofl, raw[, vars]])
Get anoptionvalue for the providedection All the ‘% interpolations are expanded in the return values, based
on the defaults passed into the constructor, as well as the optiosgrovided, unless theaw argument is true.

getint (section, optioh
A convenience method which coerces tpionin the specifiedectionto an integer.

getfloat (' section, optioh
A convenience method which coerces tptionin the specifiegectionto a floating point number.

getboolean (section, optioh
A convenience method which coerces tiionin the specifiedsectionto a boolean value. Note that the only
accepted values for the option &end1, any others will rais&alueError

5.8 fileinput — lterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

import fileinput
for line in fileinput.input():
process(line)

This iterates over the lines of all files listed sys.argv|[1:] , defaulting tosys.stdin if the list is empty. If
a filename is-’ , itis also replaced bgys.stdin . To specify an alternative list of filenames, pass it as the first
argument tanput() . A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading EXteror s raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. ussys.stdin.seek(0)).

5.8. fileinput — lterate over lines from multiple input streams 99

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

input ([files[, inplace[, backud]])
Create an instance of thdlelnput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration.

The following functions use the global state createdrput() ; if there is no active statedRuntimeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, Keinms

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

filelineno 0
Return the line number in the current file. Before the first line has been read, rétukfter the last line of the
last file has been read, returns the line number of that line within the file.

isfirstline 0
Return true iff the line just read is the first line of its file.

isstdin ()
Returns true iff the last line was read fraps.stdin

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

Filelnput ([files[, inplace[, backud]])
ClassFilelnput is the implementation; its methoddename() , lineno() , fileline() , is-
firstline() , isstdin() , nhextfile() and close() correspond to the functions of the same
name in the module. In addition it hasreadline() method which returns the next input line, and a
__getitem __() method which implements the sequence behavior. The sequence must be accessed in strictly
sequential order; random access apadline() cannot be mixed.

Optional in-place filtering: if the keyword argumentplace=1 is passed tinput() or to theFilelnput con-

structor, the file is moved to a backup file and standard output is directed to the input file. This makes it possible to
write a filter that rewrites its input file in place. If the keyword argumestkup=’.<some extension>’ is also

given, it specifies the extension for the backup file, and the backup file remains around; by default, the extension is
"bak’ anditis deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.9 calendar — Functions that emulate the UNix cal program.

100 Chapter 5. Miscellaneous Services

This module allows you to output calendars like theild cal(1) program.

isleap (yean
Returnsl if yearis a leap year.

leapdays (yearl, year?
Return the number of leap years in the rangsafl . .year?.

weekday (year, month, day
Returns the day of the weeR (s Monday) foryear(1970—...),month(1-12), day(1-31).

monthrange (year, month
Returns weekday of first day of the month and number of days in month, for the spgeifiemhdmonth

monthcalendar (year, month
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros.

prmonth (year, montlﬁ, Width[, Iength]])
Prints a month’s calendar. ifidth is provided, it specifies the width of the columns that the numbers are
centered in. Hengthis given, it specifies the number of lines that each week will use.

prcal (yea
Prints the calendar for the yegear.

timegm (tuple)
An unrelated but handy function that takes a time tuple such are returned yntirae() function in the
time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the POSIX
encoding. In factgmtime() andtimegm() are each others inverse.

5.10 cmd— Build line-oriented command interpreters.

The Cmdclass provides a simple framework for writing line-oriented command interpreters. These are often useful
for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface.

Cmd)
A Cmdinstance or subclass instance is a line-oriented interpreter framework. There is no good reason to instan-
tiate Cmditself; rather, it's useful as a superclass of an interpreter class you define yourself in order to inherit
Cmds methods and encapsulate action methods.

5.10.1 Cmd Objects

A Cmdinstance has the following methods:

cmdloop ([intro])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this override®s the
class member).

If thereadline module is loaded, input will automatically inhebiashlike history-list editing (e.gCtrl-P
scrolls back to the last comman@irl-N forward to the next oneCtrl-F moves the cursor to the right
non-destructivelyCtrl-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the sttEQF’ .

An interpreter instance will recognize a command nafoe ° if and only if it has a methodlo_foo() . As
a special case, a line containing only the chara&eiis dispatched to the methadb _help() . As another

5.10. cmd — Build line-oriented command interpreters. 101

special case, a line containing only the charadtéis dispatched to the methatb _shell (if such a method
is defined).

All subclasses o€mdinherit a predefinedo _help . This method, called with an argumdudr , invokes the
corresponding methokelp _bar() . With no argumentdo_help() lists all available help topics (that is,
all commands with correspondimglp _*() methods), and also lists any undocumented commands.

onecmd(str)
Interpret the argument as though it had been typed in in response to the prompt.

emptyline ()
Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden, it
prints an error message and returns.

precmd ()
Hook method executed just before the input prompt is issued. This method is a <Buhdint exists to be
overridden by subclasses.

postcmd ()
Hook method executed just after a command dispatch is finished. This method is a Gl ihexists to be
overridden by subclasses.

preloop ()
Hook method executed once whemdloop() is called. This method is a stub @md it exists to be overrid-
den by subclasses.

postloop ()
Hook method executed once whemdloop() is about to return. This method is a stubdmd it exists to be
overridden by subclasses.

Instances o€mdsubclasses have some public instance variables:

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by givingttdioop() method an argument.

doc _header
The header to issue if the help output has a section for documented commands.

misc _header
The header to issue if the help output has a section for miscellaneous help topics (that is, thele art)
methods without correspondimtp _*() methods).

undoc _header
The header to issue if the help output has a section for undocumented commands (that is, there(@re
methods without corresponditglp _*() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn. It
defaults to ='.

102 Chapter 5. Miscellaneous Services

5.11 shlex — Simple lexical analysis

New in version 1.5.2.

Theshlex class makes it easy to write lexical analyzers for simple syntaxes resembling that ofithetell. This
will often be useful for writing minilanguages, e.g. in run control files for Python applications.

shlex ([stream])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if present,
specifies where to read characters from. It must be a file- or stream-like objectwilf) andreadline()
methods. If no argument is given, input will be taken freps.stdin

See Also:

Module ConfigParser (section 5.7):
Parser for configuration files similar to the Windowisi* files.

5.11.1 shlex Objects

A shlex instance has the following methods:

get _token ()
Return a token. If tokens have been stacked ugirgh _token() , pop a token off the stack. Otherwise, read
one from the input stream. If reading encounters an immediate end-of-file, an empty string is returned.

push _token (str)
Push the argument onto the token stack.

Instances okhlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment beginner
to end of line are ignored. Includes jugt by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includsgalblphanu-
merics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, inglsidessingle and
double quotes.

Note that any character not declared to be a word character, whitespace, or a quote will be returned as a single-character
token.

Quote and comment characters are not recognized within words. Thus, the bareawstds™and ‘ain#t ' would
be returned as single tokens by the default parser.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

5.11. shlex — Simple lexical analysis 103

104

CHAPTER
SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (almost) all
operating systems, such as files and a clock. The interfaces are generally modelled aftaxtbe © interfaces, but
they are available on most other systems as well. Here’s an overview:

0S Miscellaneous OS interfaces.

o0s.path Common pathname manipulations.

dircache Return directory listing, with cache mechanism.

stat Utilities for interpreting the results afs.stat() , 0S.Istat() andos.fstat()
statcache Stat files, and remember results.

statvfs Constants for interpreting the resultas.statvfs()

cmp Compare files very efficiently.

cmpcache Compare files very efficiently.

time Time access and conversions.

sched General purpose event scheduler.

getpass Portable reading of passwords and retrieval of the userid.
curses An interface to the curses library.

getopt Parser for command line options.

tempfile Generate temporary file names.

errno Standard errno system symbols.

glob UNix shell style pathname pattern expansion.

fnmatch UNix shell style filename pattern matching.

shutil High-level file operations, including copying.

locale Internationalization services.

mutex Lock and queue for mutual exclusion.

6.1 o0s — Miscellaneous OS interfaces

This module provides a more portable way of using operating system (OS) dependent functionality than importing an
OS dependent built-in module lik@six ornt .

This module searches for an OS dependent built-in moduledaeor posix and exports the same functions and data

as found there. The design of all Python’s built-in OS dependent modules is such that as long as the same functionality
is available, it uses the same interface; e.g., the funafostat(path) returns stat information aboptthin the

same format (which happens to have originated with the POSIX interface).

Extensions peculiar to a particular OS are also available througbsthmeodule, but using them is of course a threat
to portability!

Note that after the first times is imported, there i:i0 performance penalty in using functions fram instead of
directly from the OS dependent built-in module, so there shoulddreason not to uses !

105

error
This exception is raised when a function returns a system-related error (e.g., not for illegal argument types). This
is also known as the built-in excepti@SError . The accompanying value is a pair containing the numeric
error code fromerrno and the corresponding string, as would be printed by the C funpgoror() . See
the modulezrrno , which contains names for the error codes defined by the underlying operating system.

When exceptions are classes, this exception carries two attrileutas, andstrerror . The first holds the
value of the Cerrno variable, and the latter holds the corresponding error messagesfremor() . For
exceptions that involve a file system path (esladir() orunlink()), the exception instance will contain a
third attribute filename , which is the file name passed to the function.

When exceptions are strings, the string for the exceptid@$Error’

name
The name of the OS dependent module imported. The following names have currently been registered:
‘posix’ ,'nt'" ,’dos’

,'mac’ ,’'os2’ ,’ce’

path
The corresponding OS dependent standard module for pathname operatiommsixgath or macpath .
Thus, given the proper importgs.path.split(file) is equivalent to but more portable th@osix-
path.split(file) . Note that this is also a valid module: it may be imported directlysaapath

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

chdir (path)
Change the current working directorypath Availability: Macintosh, Wix, Windows.

environ
A mapping object representing the string environment. For exarapié;onHOME'] is the pathname of
your home directory (on some platforms), and is equivalegetenv("HOME") in C.
If the platform supports thputenv() function, this mapping may be used to modify the environment as well
as query the environmentutenv() will be called automatically when the mapping is modified.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation functions to
cause child processes to use a modified environment.

getcwd ()
Return a string representing the current working directory. Availability: Macintoshx [MWindows.

getegid ()
Return the current process’ effective group id. Availabilitysid.

geteuid ()
Return the current process’ effective user id. Availabilitysii.

getgid ()
Return the current process’ group id. AvailabilityNLX.

getpgrp ()
Return the current process group id. Availabilityn it .

getpid ()
Return the current process id. Availability:Nux, Windows.

getppid ()
Return the parent’s process id. Availability NiX.

getuid ()
Return the current process’ user id. AvailabilityNLX.

106 Chapter 6. Generic Operating System Services

putenv (varname, valug
Set the environment variable namesinameto the stringvalue Such changes to the environment affect sub-
processes started withs.system() , popen() orfork() andexecv() . Availability: most flavors of
UNIX, Windows.

Whenputenv() is supported, assignments to itemsmenviron are automatically translated into cor-
responding calls t@utenv() ; however, calls tqputenv() don’t updateos.environ , so it is actually
preferable to assign to items o$.environ

setgid (gid)
Set the current process’ group id. AvailabilityNuX.

setpgrp ()
Calls the system cafletpgrp() or setpgrp(0, 0) depending on which version is implemented (if any).
See the Wix manual for the semantics. Availability: NUX.

setpgid (pid, pgrp
Calls the system cadletpgid() . See the Wix manual for the semantics. Availability: NUX.

setsid ()
Calls the system cafletsid() . See the Wix manual for the semantics. Availability: NuX.

setuid (uid)
Set the current process’ user id. AvailabilityNUX.

strerror (code
Return the error message corresponding to the error cattadi|n Availability: UNIX, Windows.

umask(mask
Set the current numeric umask and returns the previous umask. Availabitity, Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:
(sysnamg nodenamg release version maching. Some systems truncate the nodename to 8 charac-
ters or to the leading component; a better way to get the hostnaseekst.gethostname() or even
socket.gethostbyaddr(socket.gethostname()) . Availability: recent flavors of Wix.

6.1.2 File Object Creation

These functions create new file objects.

fdopen (fd[, mode{, bufsize]])
Return an open file object connected to the file descrifstoiThe modeandbufsizearguments have the same
meaning as the corresponding arguments to the buipien() function. Availability: Macintosh, Wix,
Windows.

popen (commantﬂ, mode{, bufsize]])
Open a pipe to or fromommand The return value is an open file object connected to the pipe, which can be read
or written depending on whetharodeis'r’ (default) or'w’ . Thebufsizeargument has the same meaning as
the corresponding argument to the builteipen() function. The exit status of the command (encoded in the
format specified fowait()) is available as the return value of thlese() method of the file object, except
that when the exit status is zero (termination without errdis)je is returned. Availability: Wix, Windows.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close (fd)
Close file descriptofd. Availability: Macintosh, Wix, Windows.

6.1. os — Miscellaneous OS interfaces 107

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returnpe gy
orpipe() . To close a “file object” returned by the built-in functiopen() or bypopen() orfdopen() |,
use itsclose() method.

dup (fd)

Return a duplicate of file descriptéd. Availability: Macintosh, Wix, Windows.

dup2 (fd, fd2)

fstat

Duplicate file descriptofd to fd2, closing the latter first if necessary. Availability:Nux, Windows.

(fd)
Return status for file descriptéd, like stat() . Availability: UNix, Windows.

fstatvfs (fd)

Return information about the filesystem containing the file associated with file desddipike statvfs()
Availability: UNIX.

ftruncate (fd, length

Truncate the file corresponding to file descridthrso that it is at modengthbytes in size. Availability: Wix.

Iseek (fd, pos, hoy

Set the current position of file descriptiafto positionpos modified byhow. 0 to set the position relative to
the beginning of the filel to set it relative to the current positio@; to set it relative to the end of the file.
Availability: Macintosh, WNIX, Windows.

open (file, ﬂags[, modd)

pipe

Open the filefile and set various flags accordingftagsand possibly its mode accordingitwode The default
modeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly
opened file. Availability: Macintosh, Nix, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constaDt&R@KENLY
andO_WRONL)are defined in this module too (see below).

Note: this function is intended for low-level I/O. For normal usage, use the built-in funopen() , which
returns a “file object” wittread() andwrite() methods (and many more).

0

Create a pipe. Return a pair of file descriptors w) usable for reading and writing, respectively. Availability:
UNIx, Windows.

read (fd, n)

Read at most bytes from file descriptoid. Return a string containing the bytes read. Availability: Macintosh,
UNIx, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returnpe gy
orpipe() . To read a “file object” returned by the built-in functiopen() or by popen() orfdopen()
orsys.stdin , useitsread() orreadline() methods.

tcgetpgrp (fd)

Return the process group associated with the terminal givefd lfgn open file descriptor as returned by
open()). Availability: UNIX.

tcsetpgrp (fd, pg

Set the process group associated with the terminal givéd tgn open file descriptor as returneddyyen())
to pg. Availability: UNIX.

ttyname (fd)

Return a string which specifies the terminal device associated with file-desddptbfd is not associated with
a terminal device, an exception is raised. Availabilitysiitd.

write (fd, str)

Write the stringstr to file descriptorfd. Return the number of bytes actually written. Availability: Macintosh,
UNIX, Windows.

108

Chapter 6. Generic Operating System Services

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returnpe gy
orpipe() . To write a “file object” returned by the built-in functiawpen() or by popen() orfdopen()
orsys.stdout orsys.stderr ,useitswrite() method.

The following data items are available for use in constructinglgsparameter to thepen() function.

O_RDONLY

O_WRONLY

O_RDWR

O_NDELAY

O_NONBLOCK

O_APPEND

O_DSYNC

O_RSYNC

O_SYNC

O_NOCTTY

O_CREAT

O_EXCL

O_TRUNC
Options for theflag argument to theopen() function. These can be bit-wise OR'd together. Availability:
Macintosh, Wix, Windows.

6.1.4 Files and Directories

access (path, modg
Check read/write/execute permissions for this process or extance péfileReturnl if access is granted, if
not. See the Nix manual for the semantics. Availability: NUX.

chmod(path, modg
Change the mode gfathto the numerienode Availability: UNix, Windows.

chown (path, uid, gig
Change the owner and group idmdithto the numeriaiid andgid. Availability: UNIX.

link (src, ds)
Create a hard link pointing terc nameddst Availability: UNIX.

listdir (path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not include
the special entries’ and’.. even if they are present in the directory. Availability: Macintoshyix,
Windows.

Istat (path
Like stat() , but do not follow symbolic links. Availability: Biix.

mkfifo (path], modd])
Create a FIFO (a named pipe) nanpath with numeric modenode The defaultmodeis 0666 (octal). The
current umask value is first masked out from the mode. Availability1XJ

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Notertkiifio() doesn’t open the

FIFO — it just creates the rendezvous point.

mkdir (patl‘[, modd)
Create a directory namgmhthwith numeric modenode The defaulimodeis 0777 (octal). On some systems,
modeis ignored. Where it is used, the current umask value is first masked out. Availability: Macintesh, U
Windows.

6.1. os — Miscellaneous OS interfaces 109

makedirs (patr{, modd)
Recursive directory creation function. Likekdir() , but makes all intermediate-level directories needed to
contain the leaf directory. Throws @&mror exception if the leaf directory already exists or cannot be created.
The defaulimodeis 0777 (octal). New in version 1.5.2.

readlink (path
Return a string representing the path to which the symbolic link points. Availabilityx U

remove (path)
Remove the filpath Seermdir() below to remove a directory. This is identical to tim@ink() function
documented below. Availability: Macintosh,Nix, Windows.

removedirs (path)
Recursive directory removal function. Works likedir() except that, if the leaf directory is successfully
removed, directories corresponding to rightmost path segments will be pruned way until either the whole path
is consumed or an error is raised (which is ignored, because it generally means that a parent directory is not
empty). Throws amerror exception if the leaf directory could not be successfully removed. New in version
15.2.

rename (src, ds}
Rename the file or directoisrc to dst Availability: Macintosh, Wix, Windows.

renames (old, new
Recursive directory or file renaming function. Works lilemame() , except creation of any intermediate di-
rectories needed to make the new pathname good is attempted first. After the rename, directories corresponding
to rightmost path segments of the old hame will be pruned away usmgvedirs()

Note: this function can fail with the new directory structure made if you lack permissions needed to remove the
leaf directory or file. New in version 1.5.2.

rmdir (path)
Remove the directorgath Availability: Macintosh, WNix, Windows.

stat (path)
Perform astat() system call on the given path. The return value is a tuple of at least 10 integers giving
the most important (and portable) members of dta structure, in the ordest _mode, st _ino , st _dev,
st _nlink ,st _uid ,st _gid , st _size ,st _atime ,st _mtime, st _ctime . More items may be added
at the end by some implementations. (On MS Windows, some items are filled with dummy values.) Availability:
Macintosh, Wix, Windows.

Note: The standard modutéat defines functions and constants that are useful for extracting information from
astat structure.

statvfs (path)
Perform astatvfs() system call on the given path. The return value is a tuple of 10 integers giving the most
common members of thetatvfs structure, in the ordefr _bsize , f _frsize , f _blocks , f _bfree |,
f _bavail ,f _files ,f _ffree ,f _favail ,f_flag ,f _namemax Availability: UNIX.

Note: The standard modukgatvfs defines constants that are useful for extracting information from a
statvfs structure.

symlink (' src, ds})
Create a symbolic link pointing terc nameddst Availability: UNiX.

unlink (path)
Remove the filgpath This is the same function asmove() ; theunlink() name is its traditional dix
name. Availability: Macintosh, Nix, Windows.

utime (path, (atime, mtimé@)
Set the access and modified time of the file to the given values. (The second argument is a tuple of two items.)
Availability: Macintosh, WNix, Windows.

110 Chapter 6. Generic Operating System Services

6.1.5 Process Management

These functions may be used to create and manage additional processes.

execl (path, arg0, arg1, .).
This is equivalent toéxecv(path (arg0, argl, ...)) ". Availability: U Nix, Windows.

execle (path, arg0, argl, ..., env
This is equivalent toéxecve(path (argO, argl, ..., eny) '. Availability: U Nix, Windows.

execlp (path, arg0, arg1, .).
This is equivalent toéxecvp(path, (arg0, argl, ...)) . Availability: U Nix, Windows.

execv (path, arg3
Execute the executabpathwith argument listargs replacing the current process (i.e., the Python interpreter).
The argument list may be a tuple or list of strings. Availabilitysid, Windows.

execve (path, args, eny
Execute the executabfmth with argument lisiargs, and environmenény, replacing the current process (i.e.,
the Python interpreter). The argument list may be a tuple or list of strings. The environment must be a dictionary
mapping strings to strings. Availability: \x, Windows.

execvp (path, arg$
This is like ‘execv(path —args) ' but duplicates the shell’s actions in searching for an executable file in a list
of directories. The directory list is obtained franviron[PATH’] . Availability: UNIx, Windows.

execvpe (path, args, eny
This is a cross betweesxecve() andexecvp() . The directory listis obtained fromn{'PATH’] . Avail-
ability: UNix, Windows.

_exit (n)
Exit to the system with status without calling cleanup handlers, flushing stdio buffers, etc. Availabilityi
Windows.

Note: the standard way to exitsys.exit(n). _exit() should normally only be used in the child process
after afork()

fork ()
Fork a child process. Retufhin the child, the child’s process id in the parent. Availabilityniy.

kil (pid, sig
Kill the processid with signalsig. Availability: UNIX.

nice (incremeny
Add incremento the process’s “niceness”. Return the new niceness. AvailabilityxU

plock (op)
Lock program segments into memory. The valuepf(defined in<sys/lock.h>) determines which seg-

ments are locked. Availability: Nix.

spawnv (mode, path, args
Execute the prograathin a new process, passing the arguments specifiadjsas command-line parameters.
args may be a list or a tuplemodeis a magic operational constant. See the Visuat @untime Library
documentation for further information; the constants are exposed to the Python programmer as listed below.
Availability: Windows. New in version 1.5.2.

spawnve (mode, path, args, ehv
Execute the programmathin a new process, passing the arguments specifiadjgas command-line parameters
and the contents of the mappiagvas the environmenargsmay be a list or a tuplenodeis a magic operational
constant. See the Visuat@ Runtime Library documentation for further information; the constants are exposed
to the Python programmer as listed below. Availability: Windows. New in version 1.5.2.

6.1. os — Miscellaneous OS interfaces 111

P_WAIT

P_NOWAIT

P_NOWAITO

P_OVERLAY

P_DETACH
Possible values for thmmodeparameter tespawnv() andspawnve() . Availability: Windows. New in
version 1.5.2.

system (commangl
Execute the command (a string) in a subshell. This is implemented by calling the Standard C faystion
tem() , and has the same limitations. Changegdsix.environ , sys.stdin , etc. are not reflected in
the environment of the executed command. The return value is the exit status of the process encoded in the
format specified fowait() , except on Windows 95 and 98, where it is alw@ysNote that POSIX does not
specify the meaning of the return value of theydtem() function, so the return value of the Python function
is system-dependent. Availability: Nux, Windows.

times ()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds. The items
are: user time, system time, children’s user time, children’s system time, and elapsed real time since a fixed
point in the past, in that order. See theild manual pagémeg?2) or the corresponding Windows Platform API
documentation. Availability: ®ix, Windows.

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if
the signal number is zero); the high bit of the low byte is set if a core file was produced. Availability. U

waitpid (pid, option3
Wait for completion of a child process given by process id, and return a tuple containing its process id and exit
status indication (encoded as forit()). The semantics of the call are affected by the value of the integer
options which should bé® for normal operation. Availability: ®1x.

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately. Availability:
UNIX.

The following functions take a process stats code as returnecabipid() as a parameter. They may be used to
determine the disposition of a process.

WIFSTOPPEDstatug
Return true if the process has been stopped. AvailabilityiXJ

WIFSIGNALEL statug
Return true if the process exited due to a signal. AvailabilityxJ

WIFEXITED(statug
Return true if the process exited using &ef(2) system call. Availability: Wix.

WEXITSTATUS statug
If WIFEXITED(statug is true, return the integer parameter to thét(2) system call. Otherwise, the return
value is meaningless. Availability: NIX.

WSTOPSIGstatug
Return the signal which caused the process to stop. AvailabilixU

WTERMSIGstatug
Return the signal which caused the process to exit. AvailabilitytxU

112 Chapter 6. Generic Operating System Services

6.1.6 Miscellanenous System Data

The follow data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined inshgath module.

curdir
The constant string used by the OS to refer to the current directory,.’e.g. for POSIX or’:’ for the
Macintosh.

pardir
The constant string used by the OS to refer to the parent directory,.e.g. for POSIX or’”:’ for the
Macintosh.

sep

The character used by the OS to separate pathname components, éog.POSIX or *: ' for the Mac-
intosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames — use
os.path.split() andos.path.join() — but it is occasionally useful.

altsep
An alternative character used by the OS to separate pathname compondidts)eoif only one separator
character exists. This is set tb’'on DOS and Windows systems whesep is a backslash.

pathsep
The character conventionally used by the OS to separate search patch components (as in $PATHjoe.g.
POSIX or %’ for DOS and Windows.

defpath
The default search path usedéxec*p*() if the environment doesn’t have BRATH’ key.

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single character,
e.g’\n" for POSIXor\r for MacOS, or multiple characters, e’g\n’ for MS-DOS and MS Windows.

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

abspath (path
Return a normalized absolutized version of the pathnpatle On most platforms, this is equivalentriorm-
path(join(os.getcwd()), path) . New in version 1.5.2.

basename (path)
Return the base name of pathnapagh This is the second half of the pair returneddpfit(path) .

commonprefix (list)
Return the longest string that is a prefix of all stringéisth If list is empty, return the empty string ().

dirname (path
Return the directory name of pathnapegh This is the first half of the pair returned Bplit(path) .

exists (path
Return true ifpathrefers to an existing path.

expanduser (path)
Return the argument with an initial component of or ‘™ user replaced by thatisers home directory. An
initial ‘7" is replaced by the environment variable $HOME; an initialser is looked up in the password
directory through the built-in modulewd. If the expansion fails, or if the path does not begin with a tilde, the
path is returned unchanged. On the Macintosh, this always rgtathsinchanged.

6.2. os.path — Common pathname manipulations 113

expandvars (path)
Return the argument with environment variables expanded. Substrings of theffioamé or ‘ ${ namé ' are
replaced by the value of environment variabbeme Malformed variable names and references to non-existing
variables are left unchanged. On the Macintosh, this always repathsinchanged.

getatime (path
Return the time of last access filEname The return value is integer giving the number of seconds since the
epoch (see theme module). Rais®s.error if the file does not exist or is inaccessible. New in version
15.2.

getmtime (path)
Return the time of last modification fifename The return value is integer giving the number of seconds since
the epoch (see thtene module). Rais@s.error if the file does not exist or is inaccessible. New in version
15.2.

getsize (path
Return the size, in bytes, dflename Raiseos.error if the file does not exist or is inaccessible. New in
version 1.5.2.

isabs (path)
Return true ifpathis an absolute pathname (begins with a slash).

isfile (path
Return true ifpathis an existing regular file. This follows symbolic links, so battnk() andisfile()
can be true for the same path.

isdir (path)
Return true ifpathis an existing directory. This follows symbolic links, so baghink() andisdir() can
be true for the same path.

islink (path)
Return true ifpath refers to a directory entry that is a symbolic link. Always false if symbolic links are not
supported.

ismount (path
Return true if pathnampathis amount point a point in a file system where a different file system has been
mounted. The function checks whethgaths parent, path'..’, is on a different device thapath, or whether
‘path..” and pathpoint to the same i-node on the same device — this should detect mount points fomall U
and POSIX variants.

join (pathl[, pathi,]])
Joins one or more path components intelligently. If any component is an absolute path, all previous components
are thrown away, and joining continues. The return value is the concatenafiathdf and optionallypath2
etc., with exactly one slast’() inserted between components, unlpathis empty.

normcase (path)
Normalize the case of a pathname. ORI, this returns the path unchanged; on case-insensitive filesystems,
it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (path
Normalize a pathname. This collapses redundant separators and up-level refereno®4Be,g?/./B and
Al/fool..IB all becomeA/B . It does not normalize the case (usermcase() for that). On Windows, it
does converts forward slashes to backward slashes.

samefile (pathl, path?
Return true if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception ibs.stat() call on either pathname fails. Availability: Macintosh,
UNIX.

sameopenfile (fpl, fp2
Return true if the file objectipl andfp2 refer to the same file. The two file objects may represent different file

114 Chapter 6. Generic Operating System Services

descriptors. Availability: Macintosh, hix.

samestat (statl, stat®

split

splitd

Return true if the stat tuplestatl and stat2refer to the same file. These structures may have been returned

by fstat() ,Istat() ,orstat() . This function implements the underlying comparison useddye-
file() andsameopenfile() . Availability: Macintosh, Wix.

(path)
Split the pathnam@ath into a pair,(head tail) wheretail is the last pathname component amead is
everything leading up to that. Thail part will never contain a slash; jfathends in a slashail will be empty.
If there is no slash ipath headwill be empty. If pathis empty, bottheadandtail are empty. Trailing slashes
are stripped froniheadunless it is the root (one or more slashes only). In nearly all cgmag, head tail)
equalspath (the only exception being when there were multiple slashes sepahatautirom tail).
rive (path

Split the pathnampathinto a pair(drive, tail) wheredriveis either a drive specification or the empty string.
On systems which do not use drive specificatiase will always be the empty string. In all caseBjve +
tail will be the same apath

splitext (path

walk

6.3

Split the pathnamg@athinto a pair(root, exf) such thatoot + ext == path andextis empty or begins
with a period and contains at most one period.

(path, visit, arg

Calls the functiorvisit with argumentg arg, dirname name$ for each directory in the directory tree rooted
at path (including path itself, if it is a directory). The argumerdirnamespecifies the visited directory, the
argumennhamedists the files in the directory (gotten froos.listdir(dirname@). Thevisit function may
modify namego influence the set of directories visited beldisname e.g., to avoid visiting certain parts of the
tree. (The object referred to mamesmust be modified in place, usimtgl or slice assignment.)

dircache — Cached directory listings

Thedircache module defines a function for reading directory listing using a cache, and cache invalidation using
themtimeof the directory. Additionally, it defines a function to annotate directories by appending a slash.

Thedircache module defines the following functions:

listdir

(path)
Return a directory listing gbath as gotten fronos.listdir() . Note that unlespathchanges, further call
to listdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should change it to return
atuple?)

opendir (path

Same adistdir() . Defined for backwards compatability.

annotate (head, lis)

Assumdist is a list of pathes relative teead and append, in place, &"'to each path which points to a directory.

6.3. dircache — Cached directory listings 115

>>> jmport dircache

>>> a=dircache.listdir(’/")

>>> g=a[:] # Copy the return value so we can change 'a’

>>> a

[bin’, ’boot’, 'cdrom’, 'dev’, ’etc’, 'floppy’, ’home’, ’initrd’, ’lib’, ’'lost+
found’, 'mnt’, 'proc’, 'root’, 'sbin’, 'tmp’, 'usr’, 'var’, 'vmlinuz’]

>>> dircache.annotate(’/’, a)

>>> a

['bin/, 'boot/, 'cdrom/’, 'dev/’, ’etcl’, ‘floppy/, home/’, 'initrd/, ’lib/
', ’lost+found/’, 'mnt/’, 'proc/’, ’'root/’, 'sbin/’, 'tmp/’, 'ust/’, 'var/’, 'vm
linuz’]

6.4 stat — Interpreting stat() results

Thestat module defines constants and functions for interpreting the resutis.stat() , 0s.fstat() and
os.Istat() (if they exist). For complete details about tsat() , fstat() andlstat() calls, consult the
documentation for your system.

Thestat module defines the following functions to test for specific file types:

S_ISDIR (modg
Return non-zero if the mode is from a directory.

S_ISCHR(mode¢
Return non-zero if the mode is from a character special device file.

S_ISBLK (modg
Return non-zero if the mode is from a block special device file.

S_ISREG(modg
Return non-zero if the mode is from a regular file.

S_ISFIFO (modg
Return non-zero if the mode is from a FIFO (named pipe).

S_ISLNK (mode¢
Return non-zero if the mode is from a symbolic link.

S_ISSOCK(modg
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S_IMODK mod§
Return the portion of the file’'s mode that can be sebbyhmod() —that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S_IFMT(modg
Return the portion of the file’'s mode that describes the file type (used & t#8%() functions above).

Normally, you would use thes.path.is*() functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overheadstdti)e system call for each
test. These are also useful when checking for information about a file that isn't handbexdolayh |, like the tests

for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returneaststat() , 0s.fstat() or
os.Istat()

116 Chapter 6. Generic Operating System Services

ST_MODE
Inode protection mode.

ST_INO

Inode number.
ST_DEV

Device inode resides on.
ST_NLINK

Number of links to the inode.
ST_UID

User id of the owner.
ST_GID

Group id of the owner.
ST_SIZE

File size in bytes.
ST_ATIME

Time of last access.
ST_MTIME

Time of last modification.
ST_CTIME

Time of last status change (see manual pages for details).
Example:

import 0s, sys
from stat import *

def process(dir, func):
"recursively descend the directory rooted at dir, calling func for
each regular file™

for f in os.listdir(dir):
mode = os.stat('%s/%s’ % (dir, f))[ST_MODE]
if S_ISDIR(mode):
recurse into directory
process('%s/%s’ % (dir, f), func)
elif S_ISREG(mode):
func('%s/%s’ % (dir, f))
else:
print 'Skipping %s/%s’ % (dir, f)

def f(file):
print 'frobbed’, file

if _name__ =="'_main__"
process(sys.argv[1], f)

6.5 statcache — An optimization of os.stat()

6.5. statcache — An optimization of os.stat() 117

Thestatcache module provides a simple optimizationds.stat() : remembering the values of previous invo-
cations.

Thestatcache module defines the following functions:

stat (path
This is the main module entry-point. Identical fos.stat() , except for remembering the result for future
invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset ()
Clear the cache: forget all results of previatat() calls.

forget (path
Forget the result oftat(path) , if any.

forget _prefix (prefix)
Forget all results oftat(path) for pathstarting withprefix

forget _dir (prefiy
Forget all results oftat(path) for patha file in the directoryprefix includingstat(prefix) .

forget _except _prefix (prefiX
Similar toforget _prefix() , but for allpathvaluesnot starting withprefix

Example:

>>> import o0s, statcache

>>> statcache.stat(.")

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)
>>> os.stat(’.’)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()

Thestatvfs module defines constants so interpreting the resob gtatvfs() , Which returns a tuple, can be
made without remembering “magic numbers.” Each of the constants defined in this modulmdettef the entry in
the tuple returned bgs.statvfs() that contains the specified information.

F_BSIZE
Preferred file system block size.

F_FRSIZE
Fundamental file system block size.

F_BFREE
Total number of free blocks.

F_BAVAIL
Free blocks available to non-super user.

F_FILES
Total number of file nodes.

F_FFREE
Total number of free file nodes.

F_FAVAIL

118 Chapter 6. Generic Operating System Services

Free nodes available to non-superuser.

F_FLAG
Flags. System dependant: statvfs() man page.

F_NAMEMAX
Maximum file name length.

6.7 cmp— File comparisons

Thecmp module defines a function to compare files, taking all sort of short-cuts to make it a highly efficient operation.
Thecmp module defines the following function:

cmp(f1, f2)
Compare two files given as names. The following tricks are used to optimize the comparisons:

eFiles with identical type, size and mtime are assumed equal.

eFiles with different type or size are never equal.

eThe module only compares files it already compared if their signature (type, size and mtime) changed.
eNo external programs are called.

Example:

>>> import cmp

>>> cmp.cmp(’libundoc.tex’, 'libundoc.tex’)
1

>>> cmp.cmp(libundoc.tex’, ’lib.tex’)

0

6.8 cmpcache — Efficient file comparisons

Thecmpcache module provides an identical interface and similar functionality asthe module, but can be a bit
more efficient as it usegatcache.stat() instead obs.stat() (see thestatcache module for information
on the difference).

Note: Using thestatcache = module to providestat() information results in trashing the cache invalidation
mechanism: results are not as reliable. To ensure “current” resultsmysemp() instead of the version defined in
this module, or usstatcache.forget() to invalidate the appropriate entries.

6.9 time — Time access and conversions.

This module provides various time-related functions. It is always available.

An explanation of some terminology and conventions is in order.

e Theepochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch”
is zero. For WX, the epoch is 1970. To find out what the epoch is, loafnatime(0)

6.7. cmp— File comparisons 119

e The functions in this module do not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; fonlX, it is typically in 2038.

e Year 2000 (Y2K) issues Python depends on the platform’s C library, which generally doesn’t have year 2000
issues, since all dates and times are represented internally as seconds since the epoch. Functions accepting a time
tuple (see below) generally require a 4-digit year. For backward compatibility, 2-digit years are supported if the
module variableaccept2dyear is a non-zero integer; this variable is initializedtainless the environment
variable $PYTHONY2K is set to a non-empty string, in which case it is initialize@.toThus, you can set
$PYTHONY2K to a non-empty string in the environment to require 4-digit years for all year input. When
2-digit years are accepted, they are converted according to the POSIX or X/Open standard: values 69-99 are
mapped to 1969-1999, and values 0—68 are mapped to 2000—-2068. Values 100-1899 are always illegal. Note
that this is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2a1, would add 1900 to year
values below 1900.

e UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym UTC
is not a mistake but a compromise between English and French.

e DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and can change from year to year. The C library has a table containing
the local rules (often it is read from a system file for flexibility) and is the only source of True Wisdom in this
respect.

e The precision of the various real-time functions may be less than suggested by the units in which their value or
argument is expressed. E.g. on mostix systems, the clock “ticks” only 50 or 100 times a second, and on the
Mac, times are only accurate to whole seconds.

e On the other hand, the precisiontihe() andsleep() is better than their Nix equivalents: times are
expressed as floating point numbetime() returns the most accurate time available (usingXJget-
timeofday() where available), angleep() will accept a time with a nonzero fraction (ux select()
is used to implement this, where available).

e Thetime tuple as returned lgyntime() , localtime() , andstrptime() , and accepted bgsctime()
mktime() andstrftime() , is a tuple of 9 integers: year (e.g. 1993), month (1-12), day (1-31), hour (0—
23), minute (0-59), second (0-59), weekday (0—6, monday is 0), Julian day (1-366) and daylight savings flag
(-1, 0 or 1). Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be
handled as descibed under “Year 2000 (Y2K) issues” abovd. Argument as daylight savings flag, passed to
mktime() will usually result in the correct daylight savings state to be filled in.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default, but will be set
to false if the environment variable $PYTHONY2K has been set to a non-empty string. It may also be modified
at run time.

altzone
The offset of the local DST timezone, in seconds west of the Oth meridian, if one is defined. Negative if the local
DST timezone is east of the Oth meridian (as in Western Europe, including the UK). Only uselthyikght
is nonzero.

asctime (tuple
Convert a tuple representing a time as returnedryime() orlocaltime() to a 24-character string of the
following form: ’Sun Jun 20 23:21:05 1993’ . Note: unlike the C function of the same name, there is
no trailing newline.

clock ()
Return the current CPU time as a floating point number expressed in seconds. The precision, and in fact the
very definiton of the meaning of “CPU time”, depends on that of the C function of the same name, but in any
case, this is the function to use for benchmarking Python or timing algorithms.

120 Chapter 6. Generic Operating System Services

ctime (sec$
Convert a time expressed in seconds since the epoch to a string representing locattimes. sec3 is
equivalent taasctime(localtime(secy) .

daylight
Nonzero if a DST timezone is defined.

gmtime (sec3
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag is always zero.
Fractions of a second are ignored. See above for a description of the tuple lay-out.

localtime (sec$
Like gmtime() but converts to local time. The dst flag is setltavhen DST applies to the given time.

mktime (tuple
This is the inverse function dbcaltime() . Its argument is the full 9-tuple (since the dst flag is needed
— pass-1 as the dst flag if it is unknown) which expresses the timéogal time, not UTC. It returns a
floating point number, for compatibility witime() . If the input value cannot be represented as a valid time,
OverflowError is raised.

sleep (sec$
Suspend execution for the given number of seconds. The argument may be a floating point number to indicate a
more precise sleep time.

stritime (format, tuple
Convert a tuple representing a time as returnedryime() orlocaltime() to a string as specified by the
formatargumentformatmust be a string.

The following directives can be embedded in thematstring. They are shown without the optional field width

and precision specification, and are replaced by the indicated charactersiritthe() result:
Directive | Meaning

%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%] Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%p Locale’s equivalent of either AM or PM.

%S Second as a decimal number [00,61].

%U Week number of the year (Sunday as the first day of the
week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.
%w Weekday as a decimal number [0(Sunday),6].

%W Week number of the year (Monday as the first day of the
week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

%Z Time zone name (or by no characters if no time zone exists).
%% %

6.9. time — Time access and conversions. 121

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the #itél *
a directive in the following order; this is also not portable. The field width is normally 2 exceptjfarhere it
is 3.

strptime (string[, format])

Parse a string representing a time according to a format. The return value is a tuple as retgmgicniey)

or localtime() . Theformat parameter uses the same directives as those usgttftiye() ; it defaults

to "%a %b %d %H:%M:%S %Which matches the formatting returned tyme() . The same platform
caveats apply; see the locaNx documentation for restrictions or additional supported directivestririg
cannot be parsed accordingftrmat, ValueError is raised. This function may not be defined on all plat-
forms.

time ()

Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even though
the time is always returned as a floating point number, not all systems provide time with a better precision than
1 second.

timezone

The offset of the local (non-DST) timezone, in seconds west of the Oth meridian (i.e. negative in most of Western
Europe, positive in the US, zero in the UK).

tzname

A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used.

6.10 sched — Event scheduler

Thesched module defines a class which implements a general purpose event scheduler:

scheduler (timefunc, delayfurc

Thescheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” —timefuncshould be callable without arguments, and return a number (the “time”,

in any units whatsoever). Thielayfuncfunction should be callable with one argument, compatible with the
output oftimefun¢ and should delay that many time unitdelayfuncwill also be called with the argumeit

after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

122

Chapter 6. Generic Operating System Services

>>> import sched, time
>>> s=sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()

>>> def print_some_times():
print time.time()
s.enter(5, 1, print_time, ())
s.enter(10, 1, print_time, ())
s.run()
print time.time()

>>> print_some_times()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

6.10.1 Scheduler Objects

scheduler instances have the following methods:

enterabs (time, priority, action, argumet
Schedule a new event. Thiemeargument should be a numeric type compatible to the return valtimefunc
Events scheduled for the santi@e will be executed in the order of thgdriority.

Executing the event means executagply(action argumen}. argumentmust be a tuple holding the pa-
rameters foaction

Return value is an event which may be used for later cancellation of the eveob(sad()).

enter (delay, priority, action, argumeit
Schedule an event fatelaymore time units. Other then the relative time, the other arguments, the effect and
the return value are the same as thosesfaerabs()

cancel (evenj}
Remove the event from the queue. elfentis not an event currently in the queue, this method will raise a
RuntimeError

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using tredayfunc function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Eitheraction or delayfunccan raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raiseadtipn, the event will not be attempted in future calls
torun()

If a sequence of events takes longer to run than the time available before the next event, the scheduler will simply
fall behind. No events will be dropped; the calling code is responsible for cancelling events which are no longer
pertinent.

6.11 getpass — Portable password input

Thegetpass module provides two functions:

6.11. getpass — Portable password input 123

getpass ([prompt])
Prompt the user for a password without echoing. The user is prompted using thestrimg, which defaults
to’Password: ' . Availability: Macintosh, WNix, Windows.

getuser ()
Return the “login name” of the user. Availability: Nux, Windows.

This function checks the environment variables $LOGNAME, $USER, $LNAME and $USERNAME, in order,
and returns the value of the first one which is set to a non-empty string. If none are set, the login name from the
password database is returned on systems which suppanivthenodule, otherwise, an exception is raised.

6.12 curses — Terminal independant console handling

The curses module provides an interface to the cursesiXJlibrary, the de-facto standard for portable advanced
terminal handling.

While curses is most widely used in theNlx environment, versions are available for DOS, OS/2, and possibly other
systems as well. The extension module has not been tested with all available versions of curses.

See Also:

Tutorial material on using curses with Python is available on the Python Web site as Andrew KucGlimgés
Programming with Pytharat http://www.python.org/doc/howto/curses/curses.html.

6.12.1 Constants and Functions

Thecurses module defines the following data members:

version
A string representing the current version of the module.

A_NORMAL
Normal attribute.

A_STANDOUT
Standout mode.

A_UNDERLINE
Underline mode.

A_BLINK
Blink mode.

A_DIM
Dim mode.

A_BOLD
Bold mode.

A_ALTCHARSET
Alternate character set mode.

KEY_*
Names for various keys. The exact names available are system dependant.

ACS *
Names for various characterdACS_ULCORNERACS LLCORNERACS URCORNERACS LRCORNER
ACS RTEE ACS.LTEE, ACSBTEE ACS TTEE ACSHLINE, ACSVLINE, ACS PLUS ACS S1,
ACS_S9, ACS DIAMONDACS_CKBOARMACS DEGREFACS PLMINUS ACS BULLET, ACS_ LARROW
ACS_RARROVWACS DARROW

124 Chapter 6. Generic Operating System Services

Note: These are available only afteitscr() has been called.

The modulecurses defines the following exception:
error
Curses function returned an error status.
Note: Whenevelx or y arguments to a function or a method are optional, they default to the current cursor location.
Wheneveiattr is optional, it defaults té&_NORMAL

The modulecurses defines the following functions:

initscr ()
Initialize the library. Returns ®WindowObject which represents the whole screen.

endwin ()
De-initialize the library, and return terminal to normal status.

isendwin ()
Returns true iendwin() has been called.

doupdate ()
Update the screen.

newwin ([nlines, ncols] begin_y, beginx)
Return a new window, whose left-upper corner is(dtegin.y, begin x), and whose height/width is
nlinegncols

By default, the window will extend from the specified position to the lower right corner of the screen.

beep ()
Emit a short sound.

flash ()
Flash the screen.

ungetch (ch)
Pushch so the nexgetch() will return it; chis an integer specifying the character to be pusiate: only
onechcan be pushed befogetch() is called.

flushinp ()
Flush all input buffers.

cbreak ()
Enter cbreak mode.

nocbreak ()
Leave cbreak mode.

echo ()
Enter echo mode.

noecho ()
Leave echo mode.

nl-()

Enter nl mode.

nonl ()
Leave nl mode.

raw ()
Enter raw mode.

noraw ()
Leave raw mode.

6.12. curses — Terminal independant console handling 125

meta (yeg
If yesis 1, allow 8-bit characters. {fesis 0, allow only 7-bit chars.

keyname (k)
Return the name of the key numbeted

6.12.2 Window Objects

Window objects, as returned lyitscr() andnewwin() above, have the following methods:

refresh ()
Update the display immediately (sync actual screen with previous drawing/deleting methods).

nooutrefresh ()
Mark for refresh but wait.

mvwin (Nnew_y, new x)
Move the window so its upper-left corner is(@ew_y, new.x) .

move(new_y, new x)
Move cursor tq new_y, new.x).

subwin ([nlines, ncols] begin_y, begin.y)
Return a sub-window, whose upper-left corner is(dteginy, beginx), and whose width/height is
ncolgnlines

By default, the sub-window will extend from the specified position to the lower right corner of the window.
addch ([y, x,] ch[, attr])

Note: A charactermeans a C character (i.e., aBcll code), rather then a Python character (a string of length
1). (This note is true whenever the documentation mentions a character.)

Paint charactechat(y, x) with attributesattr, overwriting any character previously painter at that location.
By default, the character position and attributes are the current settings for the window object.

insch ([y, x,] ch[, attr])
Paint charactechat(y, X) with attributesattr, moving the line from position right by one character.

delch ([x, y])
Delete any character &, x) .

echochar (ch[, attr])
Add charactechwith attributeattr, and immediately callefresh

addstr ([y, x,] str[, attr])
Paint stringstr at(y, X) with attributesattr, overwriting anything previously on the display.

attron (attr)
Turn on attributeattr.

attroff (attr)
Turn off attributeattr.

setattr (attr)
Set the current attributes &dtr.

standend ()
Turn off all attributes.

standout ()
Turn on attributeA_STANDOUT

border ([Is[, rs[, ts], b, [, [, wi[, br]]]]]11T)

126 Chapter 6. Generic Operating System Services

Draw a border around the edges of the window. Each parameter specifies the character to use for a specific
part of the border; see the table below for more details. The characters must be specified as integers; using
one-character strings will cau$gpeError to be raised.

Note: A 0 value for any parameter will cause the default character to be used for that parameter. Keyword
parameters canotbe used. The defaults are listed in this table:

Parameter | Description Default value

Is Left side ACS VLINE

rs Right side ACS_VLINE

ts Top ACS HLINE

bs Bottom ACS HLINE

tl Upper-left corner | ACS_ ULCORNER
tr Upper-right corner | ACS_URCORNER
bl Bottom-left corner | ACS_BLCORNER
br Bottom-right corner| ACS BRCORNER

box ([vertch, horcr])
Similar toborder() , but bothls andrs arevertchand bothts and bs ardiorch The default corner characters
are always used by this function.

hine ([y,x] ch,n
Display a horizontal line starting &ty, Xx) with lengthn consisting of the characteh.

vline ([y, x,] ch,n
Display a vertical line starting &ty, x) with lengthn consisting of the characteh.

erase ()
Clear the screen.

deletin ()
Delete the line under the cursor. All following lines are moved up by 1 line.

insertin ()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

getyx ()
Return atuplé y, X) of current cursor position.

getbegyx ()
Return atupl€ y, X) of co-ordinates of upper-left corner.

getmaxyx ()
Return atupl€ y, x) of the height and width of the window.

clear ()
Like erase() , but also causes the whole screen to be repainted upon next cfildsh()

clrtobot ()
Erase from cursor to the end of the screen: all lines below the cursor are deleted, and then the equivalent of
clrtoeol() is performed.

clrtoeol ()

Erase from cursor to the end of the line.

scroll ([lines = 1])
Scroll the screen upward bineslines.

touchwin ()
Pretend the whole window has been changed, for purposes of drawing optimizations.

touchline (start, coun}
Pretenccountlines have been changed, starting with lgtart.

6.12. curses — Terminal independant console handling 127

getch ([x, y])
Get a character. Note that the integer returned do¢bave to be imscii range: function keys, keypad keys
and so on return numbers higher then 256. In no-delay mode, an exception is raised if there is no input.

getstr ([x, y])
Read a string from the user, with primitive line editing capacity.

inch ([x,y])
Return the character at the given position in the window. The bottom 8 bits are the character proper, and upper
bits are the attributes.

clearok (yes
If yesis 1, the next call toefresh() will clear the screen completely.

idlok (ye9
If called with yesequal to 1,curses will try and use hardware line editing facilities. Otherwise, line inser-
tion/deletion are disabled.

leaveok (ye9
If yesis 1, cursor is left where it is, instead of being at “cursor position.” This reduces cursor movement where
possible. If possible it will be made invisible.

If yesis 0, cursor will always be at “cursor position” after an update.

setscrreg (top, bottom
Set the scrolling region from lin®p to line bottom All scrolling actions will take place in this region.

keypad (ye3
If yesis 1, escape sequences generated by some keys (keypad, function keys) will be interpcatsdsy.

If yesis 0, escape sequences will be left as is in the input stream.

nodelay (yeg
If yesis 1,getch() will be non-blocking.

notimeout (yes
If yesis 1, escape sequences will not be timed out.

If yesis 0O, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the input
stream as is.

6.13 getopt — Parser for command line options.

This module helps scripts to parse the command line argumestsiargv . It supports the same conventions as

the UNIX getopt() function (including the special meanings of arguments of the ferrand ‘-- ’). Long options

similar to those supported by GNU software may be used as well via an optional third argument. This module provides
a single function and an exception:

getopt (args, optiong, Iong_options])
Parses command line options and parameter &sgs is the argument list to be parsed, without the leading
reference to the running program. Typically, this measys.argv[1:] '. optionsis the string of option
letters that the script wants to recognize, with options that require an argument followed by a colon (i.e., the
same format that Nix getopt() uses). If specifiedong_optionsis a list of strings with the names of the
long options which should be supported. The leading characters should not be included in the option
name. Options which require an argument should be followed by an equal=sigi (

The return value consists of two elements: the first is a ligtagtion value pairs; the second is the list

of program arguments left after the option list was stripped (this is a trailing slice of the first argument). Each
option-and-value pair returned has the option as its first element, prefixed with a hyphenxe.g,, and the

option argument as its second element, or an empty string if the option has no argument. The options occur in

128 Chapter 6. Generic Operating System Services

the list in the same order in which they were found, thus allowing multiple occurrences. Long and short options
may be mixed.

error
This is raised when an unrecognized option is found in the argument list or when an option requiring an argument
is given none. The argument to the exception is a string indicating the cause of the error. For long options, an
argument given to an option which does not require one will also cause this exception to be raised.

An example using only Nix style options:

>>> jmport getopt, string

>>> args = string.split(-a -b -cfoo -d bar al a2’)
>>> args

[-a’, -b’, ’-cfoo’, ’-d’, 'bar, 'al’, 'a2?’]

>>> optlist, args = getopt.getopt(args, 'abc:d:’)
>>> optlist

[(’_alﬁ ”)1 ('_b’v ”)l ('-C’, 'fOO')‘ (’-d’, ’bar’)]

>>> args

[al’, 'a2’]

>>>

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x al a2’
>>> args = string.split(s)
>>> args

['--condition=foo’, '--testing’, '--output-file’, 'abc.def, '-x’, 'al’, 'a2’]
>>> optlist, args = getopt.getopt(args, X, [
‘condition=", 'output-file=", 'testing’])
>>> optlist
[(--condition’, 'foo’), (--testing’, "), (--output-file’, 'abc.def’), (-x’,
")
>>> args
[al', 'a2]
>>>

6.14 tempfile — Generate temporary file names

This module generates temporary file names. It is netxUspecific, but it may require some help on norii
systems.

Note: the modules does not create temporary files, nor does it automatically remove them when the current process
exits or dies.

The module defines a single user-callable function:

mktemp()
Return a unique temporary filename. This is an absolute pathname of a file that does not exist at the time the
call is made. No two calls will return the same filename.

The module uses two global variables that tell it how to construct a temporary name. The caller may assign values to
them; by default they are initialized at the first calindtemp() .

tempdir

6.14. tempfile = — Generate temporary file names 129

When set to a value other th&one, this variable defines the directory in which filenames returnedhky
temp() reside. The defaultis taken from the environment variable $TMPDIR; if this is not set, ditbrémp’

is used (on Wix), or the current working directory (all other systems). No check is made to see whether its
value is valid.

template
When set to a value other th&one, this variable defines the prefix of the final component of the filenames
returned bymktemp() . A string of decimal digits is added to generate unique filenames. The default is either
‘@pid.” wherepid is the current process ID (onNux), or ‘tmp’ (all other systems).

Warning: if a UNIX process usemktemp() , then callsfork() and both parent and child continue to usk-
temp() , the processes will generate conflicting temporary names. To resolve this, the child process should assign
None totemplate , to force recomputing the default on the next calitktemp() .

6.15 errno — Standard errno system symbols.

This module makes available standard errno system symbols. The value of each symbol is the corresponding integer
value. The names and descriptions are borrowed fiibx/include/errno.h’, which should be pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For instance,
errno.errorcodeferrno.EPERM] maps toEPERM’ .

To translate a numeric error code to an error message&austeerror()

Of the following list, symbols that are not used on the current platform are not defined by the module. Symbols
available can include:

EPERM

Operation not permitted
ENOENT

No such file or directory
ESRCH

No such process
EINTR

Interrupted system call
EIO

I/O error
ENXIO

No such device or address
E2BIG

Arg list too long
ENOEXEC

Exec format error
EBADF

Bad file number
ECHILD

No child processes
EAGAIN

Try again

130 Chapter 6. Generic Operating System Services

ENOMEM
Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
lllegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

6.15. errno — Standard errno system symbols.

131

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

132

Chapter 6. Generic Operating System Services

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO
Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

6.15. errno — Standard errno system symbols.

133

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
Jib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
lllegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

134

Chapter 6. Generic Operating System Services

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

6.15. errno — Standard errno system symbols.

135

EDQUOT
Quota exceeded

6.16 glob — UNIx style pathname pattern expansion

Theglob module finds all the pathnames matching a specified pattern according to the rules used foytisbell.

No tilde expansion is done, btif ?, and character ranges expressed {ittwill be correctly matched. This is done by
using theos.listdir() andfnmatch.fnmatch() functions in concert, and not by actually invoking a subshell.
(For tilde and shell variable expansion, usepath.expanduser() andos.path.expandvars())

glob (pathnamég
Returns a possibly-empty list of path names that mpsthnamewhich must be a string containing a path spec-
ification. pathnamesan be either absolute (lik&isr/src/Python-1.5/Makefile”) or relative (like *../../Tools/*/*.gif"),
and can contain shell-style wildcards.

For example, consider a directory containing only the following fildsgif’, ‘ 2.txt’, and ‘card.gif’. glob() will
produce the following results. Notice how any leading components of the path are preserved.

>>> import glob

>>> glob.glob(’./[0-9].*")
[./1.gif, "./2.txt]

>>> glob.glob(**.gif")
['1.gif", ’card.gif’]

>>> glob.glob(’?.gif")
[1.gif]

See Also:

Modulefnmatch (section 6.17):
Shell-style filename (not path) expansion

6.17 fnmatch — UNIX filename pattern matching

This module provides support forNix shell-style wildcards, which aneot the same as regular expressions (which
are documented in the module). The special characters used in shell-style wildcards are:

* matches everything
? matches any single character
[sed matches any character seq

[' sed matches any character notsaq

Note that the filename separatdt (on UNIX) is not special to this module. See modul®b for pathname
expansiondlob usesfnmatch() to match filename segments).

fnmatch (filename, pattern
Test whether thdéilenamestring matches thpatternstring, returning true or false. If the operating system is
case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparision is
performed. If you require a case-sensitive comparision regardless of whether that's standard for your operating
system, usénmatchcase() instead.

136 Chapter 6. Generic Operating System Services

fnmatchcase (filename, pattern
Test whethefilenamematchegattern returning true or false; the comparision is case-sensitive.

See Also:

Moduleglob (section 6.16):
Shell-style path expansion

6.18 shutil — High-level file operations

Theshutil module offers a number of high-level operations on files and collections of files. In particular, functions
are provided which support file copying and removal.

Caveat: On MacOS, the resource fork and other metadata are not used. For file copies, this means that resources will
be lost and file type and creator codes will not be correct.

copyfile ('src, ds)
Copy the contents afrcto dst If dstexists, it will be replaced, otherwise it will be created.

copymode (src, ds)
Copy the permission bits frosrcto dst The file contents, owner, and group are unaffected.

copystat (src, ds)
Copy the permission bits, last access time, and last modification timesioto dst The file contents, owner,
and group are unaffected.

copy (src, ds)
Copy the filesrc to the file or directorydst If dstis a directory, a file with the same basenamsrass created
(or overwritten) in the directory specified. Permission bits are copied.

copy?2 (src, ds)
Similar to copy() , but last access time and last modification time are copied as well. This is similar to the
UNIX commancep -p.

copytree (src, ds[, symlinks])
Recursively copy an entire directory tree rootedrat The destination directory, named > must not already
exist; it will be created. Individual files are copied usicmpy2() . If symlinksis true, symbolic links in the
source tree are represented as symbolic links in the new tree; if false or omitted, the contents of the linked files
are copied to the new tree. Errors are reported to standard output.

The source code for this should be considered an example rather than a tool.

rmtree (patl{, ignor&errors[, onerror]])
Delete an entire directory tree. ijnore_errors is true, errors will be ignored; if false or omitted, errors are
handled by calling a handler specified dayerror or raise an exception.

If onerroris provided, it must be a callable that accepts three paraméteiction path, andexcinfa The first
parameterfunction is the function which raised the exception; it will bs.remove() or os.rmdir()

The second parametgrath, will be the path name passedftmction The third parametegxcinfq will be the
exception information return byys.exc _info() . Exceptions raised bgnerror will not be caught.

6.18.1 Example

This example is the implementation of thepytree() function, described above, with the docstring omitted. It
demonstrates many of the other functions provided by this module.

6.18. shutil — High-level file operations 137

def copytree(src, dst, symlinks=0):
names = os.listdir(src)
os.mkdir(dst)
for name in names:
srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)
try:
if symlinks and os.path.islink(srcname):
linkto = os.readlink(srcname)
os.symlink(linkto, dstname)
elif os.path.isdir(srcname):
copytree(srcname, dstname)
else:
copy2(srcname, dstname)
XXX What about devices, sockets etc.?
except (IOError, os.error), why:
print "Can’t copy %s to %s: %s" % (‘srcname’, ‘dstname’, str(why))

6.19 locale — Internationalization services

Thelocale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows programmers to deal with certain cultural issues in an application, without requiring the programmer to know
all the specifics of each country where the software is executed.

Thelocale module is implemented on top of théocale module, which in turn uses an ANSI C locale imple-
mentation if available.

Thelocale module defines the following exception and functions:

setlocale (categor)[, value])
If valueis specified, modifies the locale setting for tetegory The available categories are listed in the data
description below. The value is the name of a locale. An empty string specifies the user’s default settings. If the
modification of the locale fails, the excepti&nror s raised. If successful, the new locale setting is returned.

If no valueis specified, the current setting for tbategoryis returned.
setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL,™)

This sets the locale for all categories to the user’s default setting (typically specified in the $LANG environment
variable). If the locale is not changed thereafter, using multithreading should not cause problems.

Error
Exception raised whesetlocale() fails.

localeconv ()
Returns the database of of the local conventions as a dictionary. This dictionary has the following strings as

keys:
edecimal _point specifies the decimal point used in floating point nhumber representations for the
LC_NUMERIGCcategory.
egrouping is a sequence of numbers specifying at which relative positionshitesands _sep is

expected. If the sequence is terminated V@ithAR MAX no further grouping is performed. If the sequence
terminates with @, the last group size is repeatedly used.

138 Chapter 6. Generic Operating System Services

ethousands _sep is the character used between groups.

eint _curr _symbol specifies the international currency symbol from tii2 MONETAR¥ategory.

ecurrency _symbol is the local currency symbol.

emon_decimal _point is the decimal point used in monetary values.

emon_thousands _sep is the separator for grouping of monetary values.

emon_grouping has the same format as theouping key; it is used for monetary values.

epositive _sign andnegative _sign gives the sign used for positive and negative monetary quan-
tities.

eint _frac _digits andfrac _digits specify the number of fractional digits used in the interna-
tional and local formatting of monetary values.

ep_cs _precedes andn_cs _precedes specifies whether the currency symbol precedes the value for
positive or negative values.

ep_sep _by_space andn_sep _by_space specifies whether there is a space between the positive or
negative value and the currency symbol.

ep_sign _posn andn_sign _posn indicate how the sign should be placed for positive and negative
monetary values.

The possible values f@r_sign _posn andn_sign _posn are given below.

Value | Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.
LC_MAX]| Nothing is specified in this locale.

strcoll (stringl,string3
Compares two strings according to the curle@t COLLATEsetting. As any other compare function, returns a
negative, or a positive value, 0t depending on whethetringl collates before or aftestring2or is equal to it.

strxfrm (' string)
Transforms a string to one that can be used for the built-in funatiop() , and still returns locale-aware
results. This function can be used when the same string is compared repeatedly, e.g. when collating a sequence
of strings.

format (format, val,[grouping =0])
Formats a numberal according to the curreitC_NUMERIGCsetting. The format follows the conventions of
the %operator. For floating point values, the decimal point is modified if appropriatgolipingis true, also
takes the grouping into account.

str (floaf)
Formats a floating point number using the same format as the built-in fursttionfloat) , but takes the decimal
point into account.

atof (string)
Converts a string to a floating point number, following th@ NUMERIGsettings.

atoi (string)
Converts a string to an integer, following th€ _NUMERICconventions.

LC_CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions of
modulestring dealing with case change their behaviour.

6.19. locale — Internationalization services 139

LC_COLLATE

Locale category for sorting strings. The functistecoll() andstrxfrm() of thelocale module are
affected.

LC_TIME
Locale category for the formatting of time. The functiime.strftime() follows these conventions.

LC_MONETARY
Locale category for formatting of monetary values. The available options are available frdocahe
conv() function.

LC_MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware mes-
sages. Messages displayed by the operating system, like those retuosesttsrror() might be affected
by this category.

LC_NUMERIC
Locale category for formatting numbers. The functidosnat() , atoi() , atof() andstr() of the
locale module are affected by that category. All other numeric formatting operations are not affected.

LC_ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for all
categories is attempted. If that fails for any category, no category is changed at all. When the locale is retrieved
using this flag, a string indicating the setting for all categories is returned. This string can be later used to restore
the settings.

CHARMAX
This is a symbolic constant used for different values returnelddsleconv()

Example:

>>> import locale

>>> |oc = locale.setlocale(locale.LC_ALL) # get current locale

>>> |ocale.setlocale(locale.LC_ALL, "de") # use German locale

>>> |ocale.strcoll("\344n", "foo") # compare a string containing an umlaut
>>> |ocale.setlocale(locale.LC_ALL, ") # use user's preferred locale

>>> |ocale.setlocale(locale.LC_ALL, "C") # use default (C) locale

>>> |ocale.setlocale(locale.LC_ALL, loc) # restore saved locale

6.19.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top of
that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This makes
the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is ti& locale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by cadittagale(LC ~ _ALL,

™)

It is generally a bad idea to cadketlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run before
the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected by the
locale (e.gstring.lower() , or certain formats used witime.strftime())), you will have to find a way to

do it without using the standard library routine. Even better is convincing yourself that using locale settings is okay.
Only as a last resort should you document that your module is not compatible witlChioegdle settings.

140 Chapter 6. Generic Operating System Services

The case conversion functions in theging andstrop modules are affected by the locale settings. When

a call to thesetlocale() function changes thé C_CTYPE settings, the variablestring.lowercase ,
string.uppercase andstring.letters (and their counterparts istrop) are recalculated. Note that this
code that uses these variable throufstbrh ... import .., e.g. from string import letters , IS not af-
fected by subsequesttlocale() calls.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module:atof() ,atoi() ,format() ,str()

6.19.2 For extension writers and programs that embed Python

Extension modules should never caditlocale() , except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or not
the locale isC).

When Python is embedded in an application, if the application sets the locale to something specific before initializing
Python, that is generally okay, and Python will use whatever locale is)sspthat theLC_NUMERIQocale should
always be C.

The setlocale() function in thelocale module gives the Python progammer the impression that you can
manipulate the.C_NUMERIClocale setting, but this not the case at the C level: C code will always find that the
LC_NUMERIQocale setting isC. This is because too much would break when the decimal point character is set to
something else than a period (e.g. the Python parser would break). Caveat: threads that run without holding Python’s
global interpreter lock may occasionally find that the numeric locale setting differs; this is because the only portable
way to implement this feature is to set the numeric locale settings to what the user requests, extract the relevant
characteristics, and then restore t@eriumeric locale.

When Python code uses tlaezale module to change the locale, this also affects the embedding application. If the
embedding application doesn’t want this to happen, it should removeltitale extension module (which does

all the work) from the table of built-in modules in theohfig.c’ file, and make sure that thelocale module is not
accessible as a shared library.

6.20 mutex — Mutual exclusion support

Themutex defines a class that allows mutual-exclusion via aquiring and releasing locks. It does not require (or imply)
threading or multi-tasking, though it could be useful for those purposes.

Themutex module defines the following class:

mutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue
is empty. Otherwise, the queue contains 0 or mdiwnction argumen} pairs representing functions (or
methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first queue
entry is removed and ifsinctior(argumen} pair called, implying it now has the lock.

Of course, no multi-threading is implied — hence the funny interface for lock, where a function is called once
the lock is aquired.

6.20.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

6.20. mutex — Mutual exclusion support 141

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and return true, otherwise, return false.

lock (function, argument
Executefunction(argumeny, unless the mutex is locked. In the case it is locked, place the function and argu-
ment on the queue. Sealock for explanation of wheffunction(argumeny is executed in that case.

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

142 Chapter 6. Generic Operating System Services

CHAPTER
SEVEN

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on selected
operating systems only. The interfaces are generally modelled aftemthedyd C interfaces but they are available on
some other systems as well (e.g. Windows or NT). Here’s an overview:

signal Set handlers for asynchronous events.
socket Low-level networking interface.
select Wait for I/O completion on multiple streams.
thread Create multiple threads of control within one interpreter.
threading Higher-level threading interface.
Queue A synchronized queue class.
anydbm Generic interface to DBM-style database modules.
dumbdbm Portable implementation of the simple DBM interface.
dbhash DBM-style interface to the BSD database library.
whichdb Guess which DBM-style module created a given database.
bsddb Interface to Berkeley DB database library
zlib Low-level interface to compression and decompression routines compatiblgazigth
gzip Interfaces foilgzip compression and decompression using file objects.
ricompleter Python identifier completion in the readline library.
7.1 signal — Set handlers for asynchronous events.

This module provides mechanisms to use signal handlers in Python. Some general rules for working with signals and
their handlers:

e A handler for a particular signal, once set, remains installed until it is explicitly reset (i.e. Python emulates
the BSD style interface regardless of the underlying implementation), with the exception of the handler for
SIGCHLD which follows the underlying implementation.

e There is no way to “block” signals temporarily from critical sections (since this is not supported byidl U
flavors).

e Although Python signal handlers are called asynchronously as far as the Python user is concerned, they can only
occur between the “atomic” instructions of the Python interpreter. This means that signals arriving during long
calculations implemented purely in C (e.g. regular expression matches on large bodies of text) may be delayed
for an arbitrary amount of time.

e When a signal arrives during an I/O operation, it is possible that the 1/O operation raises an exception after
the signal handler returns. This is dependent on the underlying Wystem’s semantics regarding interrupted
system calls.

143

e Because the C signal handler always returns, it makes little sense to catch synchronous el$6@&HHE or
SIGSEGV

e Python installs a small number of signal handlers by def@IEPIPE is ignored (so write errors on pipes and
sockets can be reported as ordinary Python exceptionspEBINT is translated into &eyboardinter-
rupt exception. All of these can be overridden.

e Some care must be taken if both signals and threads are used in the same program. The fundamental thing to
remember in using signals and threads simultaneously is: always pesignail() operations in the main
thread of execution. Any thread can performadarm() , getsignal() ,orpause() ;onlythe mainthread
can set a new signal handler, and the main thread will be the only one to receive signals (this is enforced by the
Pythonsignal module, even if the underlying thread implementation supports sending signals to individual
threads). This means that signals can’t be used as a means of interthread communication. Use locks instead.

The variables defined in treéggnal module are:

SIG_DFL
This is one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default actiorSIGQUIT is to dump core and exit, while the default action
for SIGCLD s to simply ignore it.

SIG_IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defirgd- as
nal.SIGHUP ; the variable names are identical to the names used in C programs, as fotsidrial.h>
The UNIX man page forsignal() ' lists the existing signals (on some systems thisignal2), on others the
list is in signal7)). Note that not all systems define the same set of sighal names; only those names defined by
the system are defined by this module.

NSIG
One more than the number of the highest signal number.

Thesignal module defines the following functions:

alarm (time)
If timeis non-zero, this function requests thaSBEGALRMsignal be sent to the processtime seconds. Any
previously scheduled alarm is canceled (i.e. only one alarm can be scheduled at any time). The returned value
is then the number of seconds before any previously set alarm was to have been delivéinegliszero, no
alarm id scheduled, and any scheduled alarm is canceled. The return value is the number of seconds remaining
before a previously scheduled alarm. If the return value is zero, no alarm is currently scheduled. (Se&the U
man pagelarm(2).)

getsignal (signalnum
Return the current signal handler for the sigsighalnum The returned value may be a callable Python object,
or one of the special valuesgnal.SIG _IGN, signal.SIG _DFL or None. Here,signal.SIG _IGN
means that the signal was previously ignomdnal.SIG ~ _DFL means that the default way of handling the
signal was previously in use, afbne means that the previous signal handler was not installed from Python.

pause ()
Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns nothing.
(See the Wix man pagesignal2).)

signal (signalnum, handlér
Set the handler for signaignalnumto the functionhandler. handlercan be a callable Python object taking
two arguments (see below), or one of the special vasigsal.SIG _IGN or signal.SIG _DFL. The
previous signal handler will be returned (see the descriptiogetdignal() above). (See the X man
pagesignal2).)

144 Chapter 7. Optional Operating System Services

When threads are enabled, this function can only be called from the main thread; attempting to call it from other
threads will cause ®alueError exception to be raised.

The handleris called with two arguments: the signal number and the current stack fidoree (or a frame
object; see the reference manual for a description of frame objects).

7.1.1 Example

Here is a minimal example program. It uses #t@m() function to limit the time spent waiting to open a file; this

is useful if the file is for a serial device that may not be turned on, which would normally causs.tien() to

hang indefinitely. The solution is to set a 5-second alarm before opening the file; if the operation takes too long, the
alarm signal will be sent, and the handler raises an exception.

import signal, os, FCNTL

def handler(signum, frame):
print 'Signal handler called with signal’, signum
raise IOError, "Couldn’t open device!"

Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)

This open() may hang indefinitely
fd = os.open(/dev/ttyS0’, FCNTL.O_RDWR)

signal.alarm(0) # Disable the alarm

7.2 socket — Low-level networking interface

This module provides access to the BS@xketnterface. It is available on Nix systems that support this interface.

For an introduction to socket programming (in C), see the following pap¥mstntroductory 4.3BSD Interprocess
Communication Tutorialby Stuart Sechrest anéin Advanced 4.3BSD Interprocess Communication Tutobgl
Samuel J. Leffler et al, both in theNix Programmer’s Manual, Supplementary Documents 1 (sections PS1:7 and
PS1:8). The Wix manual pages for the various socket-related system calls are also a valuable source of information
on the details of socket semantics.

The Python interface is a straightforward transliteration of thaxXJsystem call and library interface for sockets

to Python’s object-oriented style: ttsocket() function returns asocket objectvhose methods implement the
various socket system calls. Parameter types are somewhat higher-level than in the C interfacereasl{yithand

write() operations on Python files, buffer allocation on receive operations is automatic, and buffer length is implicit
on send operations.

Socket addresses are represented as a single string faFtiéNIX address family and as a pdihost port) for

the AF_INET address family, wherbostis a string representing either a hostname in Internet domain notation like
'daring.cwi.nl’ or an IP address likdd00.50.200.5’ , andport is an integral port number. Other address
families are currently not supported. The address format required by a particular socket object is automatically selected
based on the address family specified when the socket object was created.

For IP addresses, two special forms are accepted instead of a host address: the empty string 1&FxEE2RIANY,
and the string<broadcast>’ representtNADDR_BROADCAST

7.2. socket — Low-level networking interface 145

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be
raised; errors related to socket or address semantics raise theaaket.error

Non-blocking mode is supported through getblocking() method.
The modulesocket exports the following constants and functions:

error
This exception is raised for socket- or address-related errors. The accompanying value is either a string telling
what went wrong or a pairerrno, string) representing an error returned by a system call, similar to the value
accompanyings.error . See the modulerrno , which contains names for the error codes defined by the
underlying operating system.

AF_UNIX

AF_INET
These constants represent the address (and protocol) families, used for the first argeoekat® . If the
AF_UNIX constant is not defined then this protocol is unsupported.

SOCKSTREAM

SOCKDGRAM

SOCKRAW

SOCKRDM

SOCK SEQPACKET
These constants represent the socket types, used for the second argusoeket) . (Only SOCK STREAM
andSOCK DGRAMppear to be generally useful.)

SO *

SOMAXCONN

MSG*

SOL_*

IPPROTQ_ *

IPPORT_*

INADDR_*

P _*
Many constants of these forms, documented in theXUdocumentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in argumentsstishekopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined mixhe U
header files are defined; for a few symbols, default values are provided.

gethostbyname (hostnamg
Translate a host name to IP address format. The IP address is returned as a stridg)0e5§.,200.5’
If the host name is an IP address itself it is returned unchanged g&kestbyname _ex() for a more
complete interface.

gethostbyname _ex(hostnamg
Translate a host name to IP address format, extended interface. Return éhogileame, aliaslist,
ipaddrlist) wherehostname is the primary host name responding to the giieraddressaliaslist
is a (possibly empty) list of alternative host names for the same addres#paautlist is a list of IP
addresses for the same interface on the same host (often but not always a single address).

gethostname ()
Return a string containing the hostname of the machine where the Python interpreter is currently execut-
ing. If you want to know the current machine’s IP address, gsthostbyname(gethostname())
Note: gethostname() doesn’t always return the fully qualified domain name; ugethost-
byaddr(gethostname()) (see below).

gethostbyaddr (ip_addres$
Return a triplg hostname aliaslist, ipaddrlist) wherehostnamas the primary host name responding to the
givenip_addressaliaslistis a (possibly empty) list of alternative host names for the same addrespaaddist

146 Chapter 7. Optional Operating System Services

is a list of IP addresses for the same interface on the same host (most likely containing only a single address).
To find the fully qualified domain name, chebkstnameand the items o#liaslist for an entry containing at
least one period.

getprotobyname (protocolnamég
Translate an Internet protocol name (éigmp’) to a constant suitable for passing as the (optional) third argu-
ment to thesocket() function. This is usually only needed for sockets opened in “raw” m8@@QGK RAVY,
for the normal socket modes, the correct protocol is chosen automatically if the protocol is omitted or zero.

getservbyname (servicename, protocolname
Translate an Internet service name and protocol name to a port number for that service. The protocol name
should bétcp’ or’udp’

socket (family, type[, proto])
Create a new socket using the given address family, socket type and protocol number. The address family should
be AF_INET or AF_UNIX. The socket type should i BOCK STREAMSOCK DGRAMr perhaps one of the
other ‘SOCK constants. The protocol number is usually zero and may be omitted in that case.

fromfd (fd, family, typ¢, proto])
Build a socket object from an existing file descriptor (an integer as returned by a file olfjlectty))
method). Address family, socket type and protocol number are as faotiet() function above. The file
descriptor should refer to a socket, but this is not checked — subsequent operations on the object may fail if the
file descriptor is invalid. This function is rarely needed, but can be used to get or set socket options on a socket
passed to a program as standard input or output (e.g. a server started by xhimé&t daemon).

ntohl (x)
Convert 32-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs (X)
Convert 16-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl (x)
Convert 32-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons (x)
Convert 16-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

SocketType
This is a Python type object that represents the socket object type. It is the stype(ascket(...))

7.2.1 Socket Objects

Socket objects have the following methods. Exceptnfiaikefile() these correspond toNdx system calls appli-
cable to sockets.

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair(conn addres3 whereconnis anewsocket object usable to send and receive data on the connection,
andaddresss the address bound to the socket on the other end of the connection.

bind (addres}
Bind the socket taddress The socket must not already be bound. (The formadidfressdepends on the
address family — see above.)

close ()

7.2. socket — Low-level networking interface 147

Close the socket. All future operations on the socket object will fail. The remote end will receive no more data
(after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

connect (addres}
Connect to a remote socketaddress (The format ofaddressdepends on the address family — see above.)

connect _ex(addres$
Like connect(addres$, but return an error indicator instead of raising an exception for errors returned by
the C-levelconnect() call (other problems, such as “host not found,” can still raise exceptions). The error
indicator isO if the operation succeeded, otherwise the value ofetineo variable. This is useful, e.g., for
asynchronous connects.

fileno ()
Return the socket’s file descriptor (a small integer). This is useful satbct.select()

getpeername ()
Return the remote address to which the socket is connected. This is useful to find out the port number of a
remote IP socket, for instance. (The format of the address returned depends on the address family — see above.)
On some systems this function is not supported.

getsockname ()
Return the socket’'s own address. This is useful to find out the port number of an IP socket, for instance. (The
format of the address returned depends on the address family — see above.)

getsockopt (level, optnam[e, buflen])
Return the value of the given socket option (see theXUman pagegetsockof®)). The needed symbolic
constants$Q_* etc.) are defined in this module.btiflenis absent, an integer option is assumed and its integer
value is returned by the function. buflenis present, it specifies the maximum length of the buffer used to
receive the option in, and this buffer is returned as a string. It is up to the caller to decode the contents of the
buffer (see the optional built-in modutg#ruct for a way to decode C structures encoded as strings).

listen (backlog
Listen for connections made to the socket. Taeklogargument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

makefile ([modd, bufsizd])
Return afile objectassociated with the socket. (File objects were described earlier in 2.1.7, “File Objects.”)
The file object referencesdup() ped version of the socket file descriptor, so the file object and socket object
may be closed or garbage-collected independently. The opticodéandbufsizearguments are interpreted the
same way as by the built-impen() function.

recv (bufsiz{, flags])
Receive data from the socket. The return value is a string representing the data received. The maximum amount
of data to be received at once is specifiedbbysize See the Wix manual pageec?2) for the meaning of the
optional argumentiags it defaults to zero.

recvfrom (bufsize{, flags])
Receive data from the socket. The return value is a(sning, addres$ wherestringis a string representing
the data received aratidresds the address of the socket sending the data. The opfiagaklrgument has the
same meaning as foecv() above. (The format ciddressdepends on the address family — see above.)

send (string[, flags])
Send data to the socket. The socket must be connected to a remote socket. The ftaugeengument has the
same meaning as foecv() above. Returns the number of bytes sent.

sendto (string[, flags], addres}
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified byaddress The optionafflagsargument has the same meaning aséav() above. Return the
number of bytes sent. (The formataddressdepends on the address family — see above.)

setblocking (flag)

148 Chapter 7. Optional Operating System Services

Set blocking or non-blocking mode of the sockefflafy is 0, the socket is set to non-blocking, else to blocking
mode. Initially all sockets are in blocking mode. In non-blocking moderéfcv() call doesn't find any data,
orifasend() call can'timmediately dispose of the dategor exception is raised; in blocking mode, the
calls block until they can proceed.

setsockopt (level, optname, valje
Set the value of the given socket option (see thexXUman pagesetsockogR)). The needed symbolic constants
are defined in theocket module SO_* etc.). The value can be an integer or a string representing a buffer.
In the latter case it is up to the caller to ensure that the string contains the proper bits (see the optional built-in
modulestruct for a way to encode C structures as strings).

shutdown (how)
Shut down one or both halves of the connectioadivis O, further receives are disallowed.Hbwis 1, further
sends are disallowed. owis 2, further sends and receives are disallowed.

Note that there are no methoasad() orwrite() ;userecv() andsend() withoutflagsargumentinstead.

7.2.2 Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives back
(servicing only one client), and a client using it. Note that a server must perform the segoeke) , bind()

listen() , accept() (possibly repeating thaccept() to service more than one client), while a client only
needs the sequensecket() , connect() . Also note that the server does rs&@nd() /recv() on the socket it

is listening on but on the new socket returnecklogept()

Echo server program
from socket import *
HOST =~ # Symbolic name meaning the local host
PORT = 50007 # Arbitrary non-privileged server
s = socket(AF_INET, SOCK_STREAM)
s.bind(HOST, PORT)
s.listen(1)
conn, addr = s.accept()
print 'Connected by’, addr
while 1:
data = conn.recv(1024)
if not data: break
conn.send(data)
conn.close()

Echo client program

from socket import *

HOST = 'daring.cwi.nl’ # The remote host

PORT = 50007 # The same port as used by the server
s = socket(AF_INET, SOCK_STREAM)

s.connect(HOST, PORT)

s.send('Hello, world’)

data = s.recv(1024)

s.close()

print 'Received’, ‘data’

See Also:

Module SocketServer (section 11.12):
classes that simplify writing network servers

7.2. socket — Low-level networking interface 149

7.3 select — Waiting for I/O completion

This module provides access to the functsahect() available in most operating systems. Note that on Windows,
it only works for sockets; on other operating systems, it also works for other file types (in particulax,onitdvorks
on pipes). It cannot be used or regular files to determine whether a file has grown since it was last read.

The module defines the following:

error
The exception raised when an error occurs. The accompanying value is a pair containing the numeric error code
fromerrno and the corresponding string, as would be printed by the C funptoror()

select (iwtd, owtd, ewt«ﬂ, timeout])
This is a straightforward interface to thenk select() system call. The first three arguments are lists of
‘waitable objects’: either integers representingii file descriptors or objects with a parameterless method
namedfileno() returning such an integer. The three lists of waitable objects are for input, output and
‘exceptional conditions’, respectively. Empty lists are allowed. The optitim&loutargument specifies a time-
out as a floating point number in seconds. Whenttimeoutargument is omitted the function blocks until at
least one file descriptor is ready. A time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Amongst the acceptable object types in the lists are Python file objectsys.gtdin , or objects returned
by open() oros.popen()), socket objects returned tspcket.socket() , and the modulestdwin
which happens to define a functiditeno() for just this purpose. You may also definewaapper class
yourself, as long as it has an approprifiteno() method (that really returns aNUx file descriptor, not just
a random integer).

7.4 thread — Multiple threads of control

This module provides low-level primitives for working with multiple threads (a.kght-weight processesr taskg
— multiple threads of control sharing their global data space. For synchronization, simple locksnjaiiexeor
binary semaphorgsare provided.

The module is optional. It is supported on Windows NT and '95, SGI IRIX, Solaris 2.x, as well as on systems that
have a POSIX thread (a.k.a. “pthread”) implementation.

It defines the following constant and functions:

error
Raised on thread-specific errors.

LockType
This is the type of lock objects.

start _new_thread (function, arg{, kwargs])
Start a new thread. The thread executes the fundtiontionwith the argument lisargs (which must be a
tuple). The optionakwargsargument specifies a dictionary of keyword arguments. When the function returns,
the thread silently exits. When the function terminates with an unhandled exception, a stack trace is printed and
then the thread exits (but other threads continue to run).

exit ()
Raise theSystemExit exception. When not caught, this will cause the thread to exit silently.

exit _thread ()
Deprecated since release 1.5.RPIseexit()

This is an obsolete synonym fexit()

150 Chapter 7. Optional Operating System Services

allocate _lock ()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get _ident ()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers
may be recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire ([waitﬂag])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence), and
returnsNone. If the integermwaitflagargument is present, the action depends on its value: if it is zero, the lock
is only acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired
unconditionally as before. If an argument is present, the return vallié the lock is acquired successfull,

if not.
release ()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.
locked ()
Return the status of the lock:if it has been acquired by some thre@df not.
Caveats:
e Threads interact strangely with interrupts: teyboardinterrupt exception will be received by an arbi-
trary thread. (When theignal module is available, interrupts always go to the main thread.)
e Calling sys.exit() or raising theSystemExit exception is equivalent to callirexit _thread()
e Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(time.sleep() ,fileread() , select.select()) work as expected.)
e Itis not possible to interrupt thecquire() method on a lock — th&eyboardinterrupt exception will

happen after the lock has been acquired.

e When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the
native thread implementation, they survive. On most other systems, they are killed without exeguting
finally clauses or executing object destructors.

e When the main thread exits, it does not do any of its usual cleanup (exceptythat. finally clauses are
honored), and the standard I/O files are not flushed.

7.5 threading — Higher-level threading interface

This module constructs higher-level threading interfaces on top of the lowettheggeld module.
This module is safe for use witfrom threading import * . It defines the following functions and objects:

activeCount ()
Return the number of currently actiidhread objects. The returned count is equal to the length of the list
returned byenumerate() . A function that returns the number of currently active threads.

Condition ()
A factory function that returns a new condition variable object. A condition variable allows one or more threads
to wait until they are notified by another thread.

7.5. threading — Higher-level threading interface 151

currentThread ()
Return the currenThread object, corresponding to the caller's thread of control. If the caller’s thread of
control was not created through ttigeading module, a dummy thread object with limited functionality is
returned.

enumerate ()
Return a list of all currently activéhread objects. The list includes daemonic threads, dummy thread objects
created bycurrentThread() , and the main thread. It excludes terminated threads and threads that have not
yet been started.

Event ()
A factory function that returns a new event object. An event manages a flag that can be set to true with the
set() method and reset to false with thiear() method. Thavait() method blocks until the flag is true.

Lock ()
A factory function that returns a new primitive lock object. Once a thread has acquired it, subsequent attempts
to acquire it block, until it is released; any thread may release it.

RLock ()
A factory function that returns a new reentrant lock object. A reentrant lock must be released by the thread that
acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking;
the thread must release it once for each time it has acquired it.

Semaphore ()
A factory function that returns a new semaphore object. A semaphore manages a counter representing the
number ofrelease() calls minus the number @cquire() calls, plus an initial value. Thacquire()
method blocks if necessary until it can return without making the counter negative.

Thread ()
A class that represents a thread of control. This class can be safely subclassed in a limited fashion.

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks and condition
variables basic behavior of every object, they are separate objects in Python. Pytivead class supports a subset

of the behavior of Java’s Thread class; currently, there are no priorities, no thread groups, and threads cannot be
destroyed, stopped, suspended, resumed, or interrupted. The static methods of Java’s Thread class, when implemented,
are mapped to module-level functions.

All of the methods described below are executed atomically.

7.5.1 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In Python, it is
currently the lowest level synchronization primitive available, implemented directly biyithed extension module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state. It has two basic
methodsacquire() andrelease() . When the state is unlockedcquire() changes the state to locked and
returns immediately. When the state is lockadquire() blocks until a call torelease() in another thread
changes it to unlocked, then thequire() call resets it to locked and returns. Tredease() method should

only be called in the locked state; it changes the state to unlocked and returns immediately. When more than one thread
is blocked inacquire() waiting for the state to turn to unlocked, only one thread proceeds whelease()

call resets the state to unlocked; which one of the waiting threads proceeds is not defined, and may vary across
implementations.

All methods are executed atomically.

acquire ([blocking = 1])
Acquire a lock, blocking or non-blocking.

152 Chapter 7. Optional Operating System Services

When invoked without arguments, block until the lock is unlocked, then set it to locked, and return. There is no
return value in this case.

When invoked with thdlockingargument set to true, do the same thing as when called without arguments, and
return true.

When invoked with thélockingargument set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a lock.

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting for the lock to
become unlocked, allow exactly one of them to proceed.

Do not call this method when the lock is unlocked.
There is no return value.

7.5.2 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread. Internally, it
uses the concepts of “owning thread” and “recursion level” in addition to the locked/unlocked state used by primitive
locks. In the locked state, some thread owns the lock; in the unlocked state, no thread owns it.

To lock the lock, a thread calls itscquire() method; this returns once the thread owns the lock. To unlock the
lock, a thread calls itselease() method. acquire() /release() call pairs may be nested; only the final
release() (i.e. therelease() of the outermost pair) resets the lock to unlocked and allows another thread
blocked inacquire() to proceed.

acquire ([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment the recursion level by one, and
return immediately. Otherwise, if another thread owns the lock, block until the lock is unlocked. Once the lock
is unlocked (not owned by any thread), then grab ownership, set the recursion level to one, and return. If more
than one thread is blocked waiting until the lock is unlocked, only one at a time will be able to grab ownership
of the lock. There is no return value in this case.

When invoked with thdlockingargument set to true, do the same thing as when called without arguments, and
return true.

When invoked with thélockingargument set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to unlocked
(not owned by any thread), and if any other threads are blocked waiting for the lock to become unlocked, allow
exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock remains
locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. Do not call this method when the lock is unlocked.
There is no return value.

7.5.3 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be created by
default. (Passing one in is useful when several condition variables must share the same lock.)

7.5. threading — Higher-level threading interface 153

A condition variable haacquire() andrelease() = methods that call the corresponding methods of the associated
lock. It also has avait() method, andotify() andnotifyAll() methods. These three must only be called
when the calling thread has acquired the lock.

Thewait() method releases the lock, and then blocks until it is awakened rimtify() or notifyAll()
call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is also
possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The

notifyAll() method wakes up all threads waiting for the condition variable.

Note: thenotify() and notifyAll() methods don't release the lock; this means that the thread or threads
awakened will not return from thewait() call immediately, but only when the thread that caltemtify() or
notifyAll() finally relinquishes ownership of the lock.

Tip: the typical programming style using condition variables uses the lock to synchronize access to some shared state;
threads that are interested in a particular change of statwaif) repeatedly until they see the desired state, while
threads that modify the state cabtify() or notifyAll() when they change the state in such a way that it could
possibly be a desired state for one of the waiters. For example, the following code is a generic producer-consumer
situation with unlimited buffer capacity:

Consume one item

cv.acquire()

while not an_item_is_available():
cv.wait()

get_an_available_item()

cv.release()

Produce one item
cv.acquire()
make_an_item_available()
cv.notify()

cv.release()

To choose betweenotify() andnotifyAll() , consider whether one state change can be interesting for only
one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item to the buffer only needs
to wake up one consumer thread.

Condition ([lock])
If the lock argument is given and ndlone, it must be d.ock or RLock object, and itis used as the underlying
lock. Otherwise, a nelRLock object is created and used as the underlying lock.

acquire (*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the return
value is whatever that method returns.

release ()

Release the underlying lock. This method calls the corresponding method on the underlying lock; there is no
return value.

wait ([timeout])
Wait until notified or until a timeout occurs. This must only be called when the calling thread has acquired the
lock.

This method releases the underlying lock, and then blocks until it is awakenedbtyfyy) or noti-
fyAll() call for the same condition variable in another thread, or until the optional timeout occurs. Once
awakened or timed out, it re-acquires the lock and returns.

When thetimeoutargument is present and ngone, it should be a floating point number specifying a timeout

154 Chapter 7. Optional Operating System Services

for the operation in seconds (or fractions thereof).

When the underlying lock is aRLock, it is not released using itelease() method, since this may not
actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of the
RLock class is used, which really unlocks it even when it has been recursively acquired several times. Another
internal interface is then used to restore the recursion level when the lock is reacquired.

notify ()

Wake up a thread waiting on this condition, if any. This must only be called when the calling thread has acquired
the lock.

This method wakes up one of the threads waiting for the condition variable, if any are waiting; it is a no-op if
no threads are waiting.

The current implementation wakes up exactly one thread, if any are waiting. However, it's not safe to rely on
this behavior. A future, optimized implementation may occasionally wake up more than one thread.

Note: the awakened thread does not actually return fromvaif) call until it can reacquire the lock. Since
notify() does not release the lock, its caller should.

notifyAll ()

Wake up all threads waiting on this condition. This method acts ridfy() , but wakes up all waiting
threads instead of one.

7.5.4 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the early Dutch
computer scientist Edsger W. Dijkstra (he us&dl andV() instead ofacquire() andrelease()).

A semaphore manages an internal counter which is decremented bgapdte() call and incremented by each
release() call. The counter can never go below zero; wiaequire() finds that it is zero, it blocks, waiting
until some other thread calislease()

Semaphore ([value])
The optional argument gives the initial value for the internal counter; it defaults to

acquire ([blocking])
Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement it by one
and return immediately. If it is zero on entry, block, waiting until some other thread has calbade() to

make it larger than zero. This is done with proper interlocking so that if mublipdgiire() calls are blocked,
release() will wake exactly one of them up. The implementation may pick one at random, so the order in
which blocked threads are awakened should not be relied on. There is no return value in this case.

When invoked withblockingset to true, do the same thing as when called without arguments, and return true.

When invoked withblockingset to false, do not block. If a call without an argument would block, return false
immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()

Release a semaphore, incrementing the internal counter by one. When it was zero on entry and another thread
is waiting for it to become larger than zero again, wake up that thread.

7.5.5 Event Objects
This is one of the simplest mechanisms for communication between threads: one thread signals an event and one or
more other threads are waiting for it.

An event object manages an internal flag that can be set to true witetf)e method and reset to false with the
clear() method. Thewvait() method blocks until the flag is true.

7.5. threading — Higher-level threading interface 155

Event ()
The internal flag is initially false.

isSet ()
Return true if and only if the internal flag is true.

set ()
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads thaiit¢pll
once the flag is true will not block at all.

clear ()
Reset the internal flag to false. Subsequently, threads calaiif) will block until set() is called to set
the internal flag to true again.

wait ([timeout])
Block until the internal flag is true. If the internal flag is true on entry, return immediately. Otherwise, block
until another thread callset() to set the flag to true, or until the optional timeout occurs.

When the timeout argument is present andMohe, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

7.5.6 Thread Objects

This class represents an activity that is run in a separate thread of control. There are two ways to specify the activity:
by passing a callable object to the constructor, or by overridinguh® method in a subclass. No other methods
(except for the constructor) should be overridden in a subclass. In other woigsyerride the__init __() and

run() methods of this class.

Once athread object is created, its activity must be started by calling the thstt{s method. This invokes the
run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered 'alive’ and 'active’ (these concepts are almost, but not
quite exactly, the same; their definition is intentionally somewhat vague). It stops being alive and active when its
run() method terminates — either normally, or by raising an unhandled exceptionisAlne() method tests
whether the thread is alive.

Other threads can call a threadtdn() method. This blocks the calling thread until the thread wlos¥)
method is called is terminated.

A thread has a name. The name can be passed to the constructor, set sétiNdrae() method, and retrieved with
thegetName() method.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python program exits
when only daemon threads are left. The initial value is inherited from the creating thread. The flag can be set with the
setDaemon() method and retrieved with trgetDaemon() method.

There is a “main thread” object; this corresponds to the initial thread of control in the Python program. It is not a
daemon thread.

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding to “alien
threads”. These are threads of control started outside the threading module, e.g. directly from C code. Dummy thread
objects have limited functionality; they are always considered alive, active, and daemonic, and cgoimg} beed.

They are never deleted, since it is impossible to detect the termination of alien threads.

Thread (group=None, target=None, name=None, args=(), kwargsF—"
This constructor should always be called with keyword arguments. Arguments are:

group Should beNone; reserved for future extension whed areadGroup class is implemented.
targetCallable object to be invoked by tlen() method. Defaults tblone, meaning nothing is called.
nameThe thread name. By default, a unique name is constructed of the form “Threatiere N is a small

156 Chapter 7. Optional Operating System Services

decimal number.
argsArgument tuple for the target invocation. Defaultq}to.
kwargsKeyword argument dictionary for the target invocation. Default§ to

If the subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread. __init __()) before doing anything else to the thread.

start ()
Start the thread’s activity.

This must be called at most once per thread object. It arranges for the objeg)’'s method to be invoked in
a separate thread of control.

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standar() method invokes the callable object passed to
the object’s constructor as thargetargument, if any, with sequential and keyword arguments taken from the
argsandkwargsarguments, respectively.

join ([timeout])
Wait until the thread terminates. This blocks the calling thread until the thread Wdin§e method is called
terminates — either normally or through an unhandled exception — or until the optional timeout occurs.

When thetimeoutargument is present and ndobne, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

A thread can bgoin() ed many times.
A thread cannot join itself because this would cause a deadlock.
Itis an error to attempt tpin() a thread before it has been started.

getName ()
Return the thread’s name.

setName (namg
Set the thread’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple threads may be given
the same name. The initial name is set by the constructor.

isAlive ()
Return whether the thread is alive.

Roughly, a thread is alive from the moment gtart() method returns until itsun() method terminates.

isDaemon ()
Return the thread’s daemon flag.

setDaemon (daemonig
Set the thread’s daemon flag to the Boolean vademonic This must be called befosgart() is called.

The initial value is inherited from the creating thread.
The entire Python program exits when no active non-daemon threads are left.

7.6 Queue — A synchronized queue class.

The Queue module implements a multi-producer, multi-consumer FIFO queue. It is especially useful in threads
programming when information must be exchanged safely between multiple thread3u@te class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python.

The Queue module defines the following class and exception:

7.6. Queue — A synchronized queue class. 157

Queue(maxsizg
Constructor for the classnaxsizes an integer that sets the upperbound limit on the number of items that can
be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If
maxsizes less than or equal to zero, the queue size is infinite.

Empty
Exception raised when non-blockiggt() (orget _nowait()) is called on @ueue object which is empty
or locked.

Full

Exception raised when non-blockimpmyit() (or get _nowait()) is called on &ueue object which is full
or locked.

7.6.1 Queue Objects

ClassQueue implements queue objects and has the methods described below. This class can be derived from in order
to implement other queue organizations (e.g. stack) but the inheritable interface is not described here. See the source
code for details. The public methods are:

gsize ()
Return the approximate size of the queue. Because of multithreading semantics, this number is not reliable.

empty ()
Returnl if the queue is empty) otherwise. Because of multithreading semantics, this is not reliable.

full ()
Returnl if the queue is full0 otherwise. Because of multithreading semantics, this is not reliable.

put (item[, block])
Putiteminto the queue. If optional argumehtockis 1 (the default), block if necessary until a free slot is
available. Otherwiseb{ockis 0), putitemon the queue if a free slot is immediately available, else raise the
Full exception.

put _nowait (item)
Equivalent toput(item 0) .

get ([block])
Remove and return an item from the queue. If optional arguimeckis 1 (the default), block if necessary until

an item is available. Otherwisblpckis 0), return an item if one is immediately available, else rais&thpty
exception.

get _nowait ()
Equivalent toget(0)

7.7 anydbm — Generic access to DBM-style databases

anydbm is a generic interface to variants of the DBM databasdbkash (requiresbsddb), gdbm, ordbm. If none
of these modules is installed, the slow-but-simple implementation in maduddbmwill be used.

open (filenam({, flag[, mode]])
Open the database fifklenameand return a corresponding object.

If the database file already exists, thikichdb module is used to determine its type and the appropriate module
is used; if it does not exist, the first module listed above that can be imported is used.

The optionafflag argument can b&" to open an existing database for reading oy, to open an existing
database for reading and writing, to create the database if it doesn’t existror , which will always create
a new empty database. If not specified, the default valiré is

158 Chapter 7. Optional Operating System Services

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 (and will be modified by the prevailing umask).

error
A tuple containing the exceptions that can be raised by each of the supported modules, with a unique exception
anydbm.error as the first item — the latter is used whamydbm.error is raised.

The object returned bgpen() supports most of the same functionality as dictionaries; keys and their corresponding
values can be stored, retrieved, and deleted, andhdlse key() andkeys() methods are available. Keys and
values must always be strings.

See Also:

Moduleanydbm (section 7.7):
Generic interface tdbm-style databases.

Moduledbhash (section 7.9):
BSD db database interface.

Moduledbm (section 8.6):
Standard Wix database interface.

Module dumbdbm(section 7.8):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondbeninterface.

Moduleshelve (section 3.11):
General object persistence built on top of the Pytdbminterface.

Modulewhichdb (section 7.10):
Utility module used to determine the type of an existing database.

7.8 dumbdbm— Portable DBM implementation

A simple and slow database implemented entirely in Python. This should only be used when no other DBM-style
database is available.

open (filenam({, flag[, mode]])
Open the database fifdenameand return a corresponding object. The optidied argument can b&’ to
open an existing database for reading oy, to open an existing database for reading and writidg, to
create the database if it doesn’t exist,ror , which will always create a new empty database. If not specified,
the default value i§’

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 (and will be modified by the prevailing umask).

error
Raised for errors not reported KsyError errors.

See Also:

Moduleanydbm (section 7.7):
Generic interface tdbm-style databases.

Modulewhichdb (section 7.10):
Utility module used to determine the type of an existing database.

7.8. dumbdbm— Portable DBM implementation 159

7.9 dbhash — DBM-style interface to the BSD database library

The dbhash module provides a function to open databases using the @SDhbrary. This module mirrors the
interface of the other Python database modules that provide access to DBM-style databasesidibhenodule is
required to uselbhash .

This module provides an exception and a function:

error
Exception raised on database errors other KeyError . It is a synonym fobsddb.error

open (path, flag[, modd)
Open adb database and return the database object.patieargument is the name of the database file.
Theflagargument can b&' (the default),w’ ,’c’ (which creates the database if it doesn'’t exist))nor
(which always creates a new empty database). For platforms on which theB8rary supports locking, an
‘| * can be appended to indicate that locking should be used.

The optionalmodeparameter is used to indicate theutd permission bits that should be set if a new database
must be created; this will be masked by the current umask value for the process.

See Also:

Moduleanydbm (section 7.7):
Generic interface tdbm-style databases.

Modulebsddb (section 7.11):
Lower-level interface to the BSBb library.

Modulewhichdb (section 7.10):
Utility module used to determine the type of an existing database.

7.9.1 Database Objects

The database objects returneddpen() provide the methods common to all the DBM-style databases. The follow-
ing methods are available in addition to the standard methods.

first ()
It's possible to loop over every key in the database using this method anéxt®@ method. The traversal is
ordered by the databases internal hash values, and won't be sorted by the key values. This method returns the
starting key.

last ()
Return the last key in a database traversal. This may be used to begin a reverse-order travgnsali-see
ous() .

next (key)
Returns the key that followlseyin the traversal. The following code prints every key in the datalbsevithout
having to create a list in memory that contains them all:

k = db.first()
while k !'= None:
print k

k = db.next(k)

previous (key)
Return the key that comes befdteyin a forward-traversal of the database. In conjunction \>() , this
may be used to implement a reverse-order traversal.

160 Chapter 7. Optional Operating System Services

sync ()
This method forces any unwritten data to be written to the disk.

7.10 whichdb — Guess which DBM module created a database

The single function in this module attempts to guess which of the several simple database modules ail@itable—
gdbm, or dbhash —should be used to open a given file.

whichdb (filenameg
Returns one of the following valueslone if the file can’t be opened because it's unreadable or doesn't exist;
the empty string’{) if the file’s format can’t be guessed; or a string containing the required module name, such
as’dbm’ or’gdbm’ .

7.11 bsddb — Interface to Berkeley DB library

The bsddb module provides an interface to the Berkeley DB library. Users can create hash, btree or record based
library files using the appropriate open call. Bsddb objects behave generally like dictionaries. Keys and values must
be strings, however, so to use other objects as keys or to store other kinds of objects the user must serialize them
somehow, typically using marshal.dumps or pickle.dumps.

Thebsddb module is only available on Nix systems, so it is not built by default in the standard Python distribution.
Also, there are two incompatible versions of the underlying library. Version 1.85 is widely available, but has some
known bugs. Version 2 is not quite as widely used, but does offer some improvementbsddiz module uses

the 1.85 interface. Users wishing to use version 2 of the Berkeley DB library will have to modify the source for the
module to include db185.h instead of db.h.

The bsddb module defines the following functions that create objects that access the appropriate type of Berkeley
DB file. The first two arguments of each function are the same. For ease of portability, only the first two arguments
should be used in most instances.

hashopen (fiIename{, flag[, mod{, bsize{, ffactor[, nelen{, cachesiz[e, hast{, Iorder]]]]]]]])
Open the hash format file namétname The optionalflag identifies the mode used to open the file. It may
be “r" (read only), “w” (read-write), “c” (read-write - create if necessary) or “n” (read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult the
Berkeley DB documentation for their use and interpretation.

btopen (fiIenameE, ﬂag[, mode[, btflags[, cachesiz[a maxkeypade minkeypag[a psize{, Iorder]]]]]]]])
Open the btree format file namétename The optionalflag identifies the mode used to open the file. It may

be “r" (read only), “w” (read-write), “c” (read-write - create if necessary) or “n” (read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult the
Berkeley DB documentation for their use and interpretation.

rnopen (filenam{, flag[, mode{, rnflags[, cachesiz[a psize[, Iorder[, recler{, bval[, bfnamd]]]]]]]])
Open a DB record format file namditename The optionalflag identifies the mode used to open the file. It
may be “r’ (read only), “w” (read-write), “c” (read-write - create if necessary) or “n” (read-write - truncate to
zero length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult
the Berkeley DB documentation for their use and interpretation.

See Also:

Moduledbhash (section 7.9):
DBM-style interface to thésddb

7.10. whichdb — Guess which DBM module created a database 161

7.11.1 Hash, BTree and Record Objects

Once instantiated, hash, btree and record objects support the following methods:

close ()
Close the underlying file. The object can no longer be accessed. Since there is mpepemethod for these
objects, to open the file again a neaddb module open function must be called.

keys ()
Return the list of keys contained in the DB file. The order of the list is unspecified and should not be relied on.
In particular, the order of the list returned is different for different file formats.

has _key (key)
Return 1 if the DB file contains the argument as a key.

set _location (key)
Set the cursor to the item indicated by the key and return it.

first ()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases.

next ()
Set the cursor to the next item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases.

previous ()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases. This is not supported on hashtable databases (those opeastopéh()).

last ()
Set the cursor to the last item in the DB file and return it. The order of keys in the file is unspecified. This is not
supported on hashtable databases (those openetiagtopen()).

sync ()
Synchronize the database on disk.

Example:

162 Chapter 7. Optional Operating System Services

>>> import bsddb
>>> db = bsddb.btopen(/tmp/spam.db’, ’'c’)
>>> for i in range(10): db['%d'%i] = '%d'% (i*i)

>>> db['3]

>>> db.keys()

ro, 'v, 2, '3, 4,5, 6, 7, '8, 9]
>>> db.first()

(0", 0)

>>> db.next()

(1, ')

>>> db.last()

(9", '81)

>>> db.set_location('2’)
(2, '4)

>>> db.previous()

(1, 1)

>>> db.sync()

7.12 zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module allow compression and decompression,
using the zlib library. The zlib library has its own home pageétat//www.cdrom.com/pub/infozip/zlib/. Version 1.1.3

is the most recent version as of April 1999; use a later version if one is available. There are known incompatibilities
between the Python module and earlier versions of the zlib library.

The documentation for this module is woefully out of date. In some cases, the doc strings have been updated more
recently. In other cases, they are both stale.

The available exception and functions in this module are:

error
Exception raised on compression and decompression errors.

adler32 (string[, value])
Computes a Adler-32 checksumsgifing. (An Adler-32 checksum is almost as reliable as a CRC32 but can be
computed much more quickly.) \falueis present, it is used as the starting value of the checksum; otherwise,
a fixed default value is used. This allows computing a running checksum over the concatenation of several
input strings. The algorithm is not cryptographically strong, and should not be used for authentication or digital
signatures.

compress (string[, Ievel])
Compresses the data #tring, returning a string contained compressed d#tael is an integer fronil to 9
controlling the level of compressiof;is fastest and produces the least compres8ias slowest and produces
the most. The default value & Raises therror exception if any error occurs.

compressobj ([Ievel])
Returns a compression object, to be used for compressing data streams that won't fit into memoryletelnce.
is an integer fronl to 9 controlling the level of compressiod;is fastest and produces the least compression,
9 is slowest and produces the most. The default valée is

crc32 (string[, value])
Computes a CRC (Cyclic Redundancy Check) checksustriofg. If valueis present, it is used as the starting

7.12. zlib — Compression compatible with gzip 163

value of the checksum; otherwise, a fixed default value is used. This allows computing a running checksum over
the concatenation of several input strings. The algorithm is not cryptographically strong, and should not be used
for authentication or digital signatures.

decompress (string[, wbits[, buffsizd])
Decompresses the datastring, returning a string containing the uncompressed data. Wltits parameter
controls the size of the window buffer. bliffsizeis given, it is used as the initial size of the output buffer. Raises
theerror exception if any error occurs.

decompressobj ([Wbits])
Returns a compression object, to be used for decompressing data streams that won't fit into memory at once.
Thewbitsparameter controls the size of the window buffer.

Compression objects support the following methods:

compress (string)
Compressstring, returning a string containing compressed data for at least part of the datangp This data
should be concatenated to the output produced by any preceding call€topeess() method. Some input
may be kept in internal buffers for later processing.

flush ([mode])
All pending input is processed, and a string containing the remaining compressed output is rehotechn
be selected from the consta@sSYNC FLUSH Z_FULL_FLUSH or Z_FINISH , defaulting toZ_FINISH .
Z_SYNCFLUSHandZ_FULL_FLUSHallow compressing further strings of data and are used to allow patrtial
error recovery on decompression, whieFINISH finishes the compressed stream and prevents compressing
any more data. After callinffush() with modeset toZ_FINISH , thecompress() method cannot be
called again; the only realistic action is to delete the object.

Decompression objects support the following methods:

decompress (string)
Decompresstring, returning a string containing the uncompressed data corresponding to at least part of the
data instring. This data should be concatenated to the output produced by any preceding calldeodhe
press() method. Some of the input data may be preserved in internal buffers for later processing.

flush ()
All pending input is processed, and a string containing the remaining uncompressed output is returned. After
callingflush() , thedecompress() method cannot be called again; the only realistic action is to delete the
object.

See Also:

Modulegzip (section 7.13):
reading and writingyzip-format files

The zlib library home page is locatedratp://www.cdrom.com/pub/infozip/zlib/.

7.13 gzip — Support for gzip files

The data compression provided by &y module is compatible with that used by the GNU compression program
gzip. Accordingly, thegzip module provides th&zipFile class to read and writgzip-format files, automatically
compressing or decompressing the data so it looks like an ordinary file object. Note that additional file formats which
can be decompressed by theip and gunzip programs, such as those produceddoynpressand pack, are not
supported by this module.

The module defines the following items:

GzipFile ([filename{, mode[, compresslevél fileobj]]]])
Constructor for th&szipFile class, which simulates most of the methods of a file object, with the exception

164 Chapter 7. Optional Operating System Services

of theseek() andtell() methods. At least one difeobjandfilenamemust be given a non-trivial value.

The new class instance is basedfitlgobj, which can be a regular file,3tringlO object, or any other object
which simulates a file. It defaults téone, in which casdilenameis opened to provide a file object.

Whenfileobj is not None, the filenameargument is only used to be included in theip file header, which
may includes the original filename of the uncompressed file. It defaults to the filendite®bf if discernible;
otherwise, it defaults to the empty string, and in this case the original filename is not included in the header.

Themodeargument canbe any af ,'rb’ ,’a’ ,’ab’ ,'w’ , or'wb’ , depending on whether the file will
be read or written. The default is the modefitdobj if discernible; otherwise, the default'id’ . Be aware
that only therb’ ,’ab’ , and'wb’ values should be used for cross-platform portability.

The compresslevedrgument is an integer frorh to 9 controlling the level of compressior; is fastest and
produces the least compression, &nd slowest and produces the most compression. The def&ult is

Calling aGzipFile object'sclose() method does not clodéeobj, since you might wish to append more
material after the compressed data. This also allows you to p&&snglO object opened for writing as
fileobj, and retrieve the resulting memory buffer using 8tenglO object’sgetvalue() method.

open (filename{, mode[, compresslevél])
This is a shorthand foGzipFile(filename mode compresslevgl The filenameargument is required;
modedefaults tarb’ andcompresslevealefaults ta9.

See Also:

Modulezlib (section 7.12):
the basic data compression module

7.14 rlcompleter — Completion function for readline

Therlcompleter module defines a completion function for tteadline module by completing valid Python
identifiers and keyword.

Therlcompleter module defines th€ompleter class.

Example:

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete”)
>>> readline. <TAB PRESSED>

readline.__doc__ readline.get_line_buffer readline.read_init_file
readline.__ file_ readline.insert_text readline.set_completer
readline.__name___ readline.parse_and_bind

>>> readline.

Therlcompleter module is designed for use with Python’s interactive mode. A user can add the following lines
to his or her initialization file (identified by the $PYTHONSTARTUP environment variable) to get autoifeibic
completion:

7.14. rlcompleter — Completion function for readline 165

try:
import readline
except ImportError:
print "Module readline not available."
else:
import rlcompleter
readline.parse_and_bind("tab: complete")

7.14.1 Completer Objects

Completer objects have the following method:

complete (text, statg
Return thestateh completion fortext

If called for textthat doesn't includea period character’}; it will complete from names currently defined in
__main __, __builtin __ and keywords (as defined by theyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (i.e., functions will not
be evaluated, but it can generate calls t@etattr __()) upto the last part, and find matches for the rest via
thedir() function.

166 Chapter 7. Optional Operating System Services

CHAPTER
EIGHT

Unix Specific Services

The modules described in this chapter provide interfaces to features that are unique toxhapbrating system, or
in some cases to some or many variants of it. Here’s an overview:

posix The most common POSIX system calls (normally used via moadkije
pwd The password databasgetpwnam() and friends).

arp The group databasgdétgrnam() and friends).

crypt Thecrypt() function used to check Wix passwords.

dl Call C functions in shared objects.

dbm The standard “database” interface, based on ndbm.

gdbm GNUF's reinterpretation of dbm.

termios POSIX style tty control.

TERMIOS Symbolic constants required to use teemios module.

tty Utility functions that perform common terminal control operations.
pty Pseudo-Terminal Handling for SGI and Linux.

fentl Thefcntl() andioctl() system calls.

pipes A Python interface to tix shell pipelines.

posixfile A file-like object with support for locking.

resource An interface to provide resource usage information on the current process.
nis Interface to Sun’s N.1.S. (a.k.a. Yellow Pages) library.

syslog An interface to the Wix syslog library routines.

popen2 Subprocesses with accessible standard I/O streams.

commands Ultility functions for running external commands.

8.1 posix — The most common POSIX system calls

This module provides access to operating system functionality that is standardized by the C Standard and the POSIX
standard (a thinly disguisedNux interface).

Do not import this module directly. Instead, import the modules, which provides gortable version of this
interface. On Wix, theos module provides a superset of thesix interface. On non-Wix operating systems the
posix module is not available, but a subset is always available througbsthieterface. Onces is imported, there
is no performance penalty in using it insteadpafsix . In addition,os provides some additional functionality, such
as automatically callingutenv() when an entry iros.environ is changed.

The descriptions below are very terse; refer to the corresponding bhanual (or POSIX documentation) entry for
more information. Arguments callgzathrefer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the system
calls raiseerror (a synonym for the standard excepti@SError), described below.

167

8.1.1 Large File Support

Several operating systems (including AlX, HPUX, Irix and Solaris) provide support for files that are larger than 2 Gb
from a C programming model wheir@ andlong are 32-bit values. This is typically accomplished by defining the
relevant size and offset types as 64-bit values. Such files are sometimes referridde fikes

Large file support is enabled in Python when the size obfdn_t is larger than dong and thelong long type

is available and is at least as large a#n _t . Python longs are then used to represent file sizes, offsets and other
values that can exceed the range of a Python int. It may be necessary to configure and compile Python with certain
compiler flags to enable this mode. For example, it is enabled by default with recent versions of Irix, but with Solaris
2.6 and 2.7 you need to do something like:

CFLAGS="getconf LFS_CFLAGS"™ OPT="-g -O2 $CFLAGS" \
configure

8.1.2 Module Contents

Moduleposix defines the following data item:

environ
A dictionary representing the string environment at the time the interpreter was started. For exawviple,
ron[HOME'] is the pathname of your home directory, equivalerggtenv("HOME") in C.

Madifying this dictionary does not affect the string environment passed axégv() , popen() or sys-
tem() ;if you need to change the environment, pasgiron toexecve() or add variable assignments and
export statements to the command stringdgstem() or popen() .

Note: Theos module provides an alternate implementatioren¥iron which updates the environment on
modification. Note also that updatimg.environ will render this dictionary obsolete. Use of the for this
is recommended over direct access togbsix module.

Additional contents of this module should only be accessed viashmodule; refer to the documentation for that
module for further information.

8.2 pwd — The password database

This module provides access to thald password database. It is available on alik versions.

Password database entries are reported as 7-tuples containing the following items from the password database (see
<pwd.h>), in order:pw_name, pw_passwd , pw_uid , pw_gid , pw_gecos , pw_dir , pw_shell . The uid and
gid items are integers, all others are stringsyError is raised if the entry asked for cannot be found.

It defines the following items:

getpwuid (uid)
Return the password database entry for the given numeric user ID.

getpwnam (namg
Return the password database entry for the given user name.

getpwall ()
Return a list of all available password database entries, in arbitrary order.

8.3 grp — The group database

168 Chapter 8. Unix Specific Services

This module provides access to theid group database. It is available on alllX versions.

Group database entries are reported as 4-tuples containing the following items from the group database (see
<grp.h>), in order: gr _name, gr _passwd, gr _gid , gr _mem The gid is an integer, name and password are
strings, and the member list is a list of strings. (Note that most users are not explicitly listed as members of the group
they are in according to the password databaseyError is raised if the entry asked for cannot be found.

It defines the following items:

getgrgid (gid)
Return the group database entry for the given numeric group ID.

getgrnam (. namg
Return the group database entry for the given group name.

getgrall ()
Return a list of all available group entries, in arbitrary order.

8.4 crypt — Function used to check UNIX passwords

This module implements an interface to trgpt(3) routine, which is a one-way hash function based upon a modified
DES algorithm; see the 1Ux man page for further details. Possible uses include allowing Python scripts to accept
typed passwords from the user, or attempting to cragkxUpasswords with a dictionary.

crypt (word, sal)
word will usually be a user’s passwordsalt is a 2-character string which will be used to select one of 4096

variations of DES. The characters salt must be either.*’, */’, or an alphanumeric character. Returns the
hashed password as a string, which will be composed of characters from the same alphabet as the salt.

The module and documentation were written by Steve Majewski.

8.5 dlI — Call C functions in shared objects

Thedl module defines an interface to tiwpen() function, which is the most common interface onid plat-
forms for handling dynamically linked libraries. It allows the program to call arbitary functions in such a library.

Note: This module will not work unless
sizeof(int) == sizeof(long) == sizeof(char *)

If this is not the caseSystemError — will be raised on import.
Thedl module defines the following function:

open (name{, mode = RTLD_LAZY])
Open a shared object file, and return a handle. Mode signifies late bifiThdX(LAZY) or immediate binding
(RTLD_NOW Default isRTLD_LAZY. Note that some sytems do not sup@@miLD_NOW

Return value is a dlobject.
Thedl module defines the following constants:

RTLD_LAZY
Useful as an argument tipen() .

RTLD_NOW
Useful as an argument tipen() . Note that on systems which do not support immediate binding, this constant

8.4. crypt — Function used to check UNIx passwords 169

will not appear in the module. For maximum portability, Ueesattr() to determine if the system supports
immediate binding.

Thedl module defines the following exception:

error
Exception raised when an error has occured inside the dynamic loading and linking routines.

Example:

>>> import dl, time

>>> a=dl.open(/lib/libc.s0.6")
>>> a.call(’time’), time.time()
(929723914, 929723914.498)

This example was tried on a Debian GNU/Linux system, and is a good example of the fact that using this module is
usually a bad alternative.

8.5.1 DI Objects

Dl objects, as returned bypen() above, have the following methods:

close ()
Free all resources, except the memory.

sym(nam@
Return the pointer for the function namerdme as a number, if it exists in the referenced shared object, other-
wiseNone. This is useful in code like:

>>> if a.sym(’time’):
a.call('time’)
. else:
time.time()

(Note that this function will return a non-zero number, as zero is\tbeL pointer)

call (name[, argl[, arg2..]])
Call the function namedamein the referenced shared object. The arguments must be either Python integers,

which will be passed as is, Python strings, to which a pointer will be passéthra, which will be passed as
NULL Note that strings should only be passed to functionoast char* , as Python will not like its string
mutated.

There must be at most 10 arguments, and arguments not given will be tredletiesThe function’s return
value must be a ®ng , which is a Python integer.

8.6 dbm— Simple “database” interface

Thedbmmodule provides an interface to theilx (n)dbm library. Dbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printing a dbm object doesn't print the keys and values, and the
items() andvalues() methods are not supported.

See also thgdbm module, which provides a similar interface using the GNU GDBM library.
The module defines the following constant and functions:

error

170 Chapter 8. Unix Specific Services

Raised on dbm-specific errors, such as I/O erndeiError is raised for general mapping errors like specify-
ing an incorrect key.

open (filename,[flag, [mode]])
Open a dbm database and return a dbm object.fillr@ameargument is the name of the database file (without
the “dir’ or ‘ .pag’ extensions).
The optionaflagargument can b (to open an existing database for reading only — default), (to open
an existing database for reading and writirig), (which creates the database if it doesn't existjnor (which
always creates a new empty database).

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 .

See Also:

Moduleanydbm (section 7.7):
Generic interface tdbm-style databases.

Modulewhichdb (section 7.10):
Utility module used to determine the type of an existing database.

8.7 gdbm— GNU's reinterpretation of dom

This module is quite similar to thdbm module, but usegdbm instead to provide some additional functionality.
Please note that the file formats createdydipm anddbmare incompatible.

Thegdbm module provides an interface to the GNU DBM libragglbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printigdbem object doesn't print the keys and values, and the
items() andvalues() methods are not supported.

The module defines the following constant and functions:

error
Raised orgdbm-specific errors, such as 1/O errokéeyError is raised for general mapping errors like speci-
fying an incorrect key.

open (filename,[flag, [mode]])
Open agdbm database and returrgalbm object. Thefilenameargument is the name of the database file.

The optionaflagargument can be (to open an existing database for reading only — default), (to open
an existing database for reading and writirig), (which creates the database if it doesn’t existjnor (which
always creates a new empty database).

Appending f ' to the flag opens the database in fast mode; altered data will not automatically be written to the
disk after every change. This results in faster writes to the database, but may result in an inconsistent database
if the program crashes while the database is still open. Ussyiing) method to force any unwritten data to

be written to the disk.

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 .

In addition to the dictionary-like methodgdbm objects have the following methods:

firstkey ()
It's possible to loop over every key in the database using this method antegtieey() = method. The
traversal is ordered bydbm'’s internal hash values, and won't be sorted by the key values. This method returns
the starting key.

nextkey (key)
Returns the key that followleeyin the traversal. The following code prints every key in the databbsavithout
having to create a list in memory that contains them all:

8.7. gdbm — GNU'’s reinterpretation of dbm 171

k = db.firstkey()

while k != None:
print k
k = db.nextkey(k)

reorganize ()
If you have carried out a lot of deletions and would like to shrink the space used dgthefile, this routine will
reorganize the databaggdbm will not shorten the length of a database file except by using this reorganization;
otherwise, deleted file space will be kept and reused as new (key, value) pairs are added.

sync ()
When the database has been opened in fast mode, this method forces any unwritten data to be written to the
disk.

See Also:

Moduleanydbm (section 7.7):
Generic interface tdbm-style databases.

Modulewhichdb (section 7.10):
Utility module used to determine the type of an existing database.

8.8 termios — POSIX style tty control

This module provides an interface to the POSIX calls for tty I/O control. For a complete description of these calls, see
the POSIX or Wix manual pages. It is only available for thosely¥ versions that support POSKE€rmiosstyle tty
I/0 control (and then only if configured at installation time).

All functions in this module take a file descriptfat as their first argument. This must be an integer file descriptor,
such as returned kgys.stdin.fileno()

This module should be used in conjunction with TieRMIOSmodule, which defines the relevant symbolic constants
(see the next section).

The module defines the following functions:

tcgetattr (fd)
Return a list containing the tty attributes for file descripfyr as follows: [iflag, oflag cflag Iflag, ispeed
ospeedcc] whereccis a list of the tty special characters (each a string of length 1, except the items with indices
TERMIOS.VMIN andTERMIOS.VTIME, which are integers when these fields are defined). The interpretation
of the flags and the speeds as well as the indexing irt¢taray must be done using the symbolic constants
defined in theTERMIOSmodule.

tcsetattr (fd, when, attributes
Set the tty attributes for file descriptdd from the attributes which is a list like the one returned by
tcgetattr() . The whenargument determines when the attributes are chang&RMIOS.TCSANOW
to change immediately, TERMIOS.TCSADRAIN to change after transmitting all queued output, or
TERMIOS.TCSAFLUSHo change after transmitting all queued output and discarding all queued input.

tcsendbreak (fd, duration)
Send a break on file descriptfat. A zerodurationsends a break for 0.25-0.5 seconds; a nonderation has
a system dependent meaning.

tcdrain (fd)
Wait until all output written to file descriptdd has been transmitted.

tcflush (fd, queug
Discard queued data on file descriptdr The queueselector specifies which queueERMIOS.TCIFLUSH

172 Chapter 8. Unix Specific Services

for the input queueTERMIOS.TCOFLUSHor the output queue, o0FEERMIOS.TCIOFLUSHfor both queues.

tcflow (fd, action
Suspend or resume input or output on file descrifetomTheactionargument can bEERMIOS.TCOOFFRo sus-
pend outputTERMIOS.TCOON restart outpuffERMIOS. TCIOFF to suspend input, OFERMIOS.TCION
to restart input.

See Also:

Module TERMIOS(section 8.9):
Constants for use wittermios

Moduletty (section 8.10):
Convenience functions for common terminal control operations.

8.8.1 Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a geperate
tattr() call and atry ... finally statement to ensure that the old tty attributes are restored exactly no matter
what happens:

def getpass(prompt = "Password: "):
import termios, TERMIOS, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & "TERMIOS.ECHO # Iflags

try:
termios.tcsetattr(fd, TERMIOS.TCSADRAIN, new)
passwd = raw_input(prompt)
finally:
termios.tcsetattr(fd, TERMIOS.TCSADRAIN, old)
return passwd

8.9 TERMIOS— Constants used with the termios module

This module defines the symbolic constants required to useetiréos module (see the previous section). See the
POSIX or INIX manual pages (or the source) for a list of those constants.

Note: this module resides in a system-dependent subdirectory of the Python library directory. You may have to
generate it for your particular system using the scfipbfs/scripts/h2py.py’.

8.10 tty — Terminal control functions

Thetty module defines functions for putting the tty into cbreak and raw modes.
Because it requires thermios module, it will work only on LNIX.
Thetty module defines the following functions:

setraw (fd[, when])
Change the mode of the file descripfdito raw. If whenis omitted, it defaults t& ERMIOS. TCAFLUSHand
is passed ttermios.tcsetattr()

8.9. TERMIOS— Constants used with the termios module 173

setcbreak (fd[, when])
Change the mode of file descriptiorto cbreak. Ifwhenis omitted, it defaults t&f ERMIOS. TCAFLUSHand
is passed ttermios.tcsetattr()

See Also:

Moduletermios (section 8.8):
Low-level terminal control interface.

Module TERMIOS(section 8.9):
Constants useful for terminal control operations.

8.11 pty — Pseudo-terminal utilities

Thepty module defines operations for handling the pseudo-terminal concept: starting another process and being able
to write to and read from its controlling terminal programmatically.

Because pseudo-terminal handling is highly platform dependant, there is code to do it only for SGI and Linux. (The
Linux code is supposed to work on other platforms, but hasn’t been tested yet.)

Thepty module defines the following functions:

fork ()
Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return valugids fd) . Note that the
child getspid 0, and thdd is invalid. The parent’s return value is thpéd of the child, andd is a file descriptor
connected to the child’s controlling terminal (and also to the child’s standard input and output.

spawn (argv[, masteLread[, stdin_read]])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This is often used
to baffle programs which insist on reading from the controlling terminal.

The functionamaster read andstdin_read should be functions which read from a file-descriptor. The defaults
try to read 1024 bytes each time they are called.

8.12 fcntl — The fentl() and ioctl() system calls

This module performs file control and 1/O control on file descriptors. Itis an interface foriti@ andioctl()
UNIX routines. File descriptors can be obtained withftleao() method of a file or socket object.

The module defines the following functions:

fentl (fd, op{, arg])
Perform the requested operation on file descrifdorThe operation is defined kgp and is operating system
dependent. Typically these codes can be retrieved from the library me@ie&L The argumerwrgis optional,
and defaults to the integer valOe When present, it can either be an integer value, or a string. With the argument
missing or an integer value, the return value of this function is the integer return value of¢chd(C call.
When the argument is a string it represents a binary structure, e.g. creasgddiypack() . The binary
data is copied to a buffer whose address is passed to fheti) call. The return value after a successful
call is the contents of the buffer, converted to a string object. In cadenti@ fails, anlOError is raised.

ioctl (fd, op, arg
This function is identical to th&entl() function, except that the operations are typically defined in the library
modulelOCTL.

flock (fd, op
Perform the lock operatioop on file descriptofd. See the Wiix manualflock(3) for details. (On some systems,
this function is emulated usiffgntl())

174 Chapter 8. Unix Specific Services

lockf (fd, code,[len, [start, [whencd]])
This is a wrapper around theCNTL.F_SETLK and FCNTL.F_SETLKW fcntl() calls. See the Wix

manual for details.

If the library modulesFCNTL or IOCTL are missing, you can find the opcodes in the C include files
<sys/fentl.h> and <sys/ioctl.h> . You can create the modules yourself with th2py script, found in
the ‘Tools/scripts/’ directory.

Examples (all on a SVR4 compliant system):

import struct, fcntl, FCNTL

file = open(...)
rv = fentl(file.fileno(), FCNTL.O_NDELAY, 1)

lockdata = struct.pack(’hhllhh’, FCNTL.F_WRLCK, 0, 0, 0, 0, 0)
rv = fentl.fentl(file.fileno(), FCNTL.F_SETLKW, lockdata)

Note that in the first example the return value variakilewill hold an integer value; in the second example it will hold
a string value. The structure lay-out for tleekdatavariable is system dependent — therefore usingfitk()
call may be better.

8.13 pipes — Interface to shell pipelines

Thepipes module defines a class to abstract the conceptpypeline— a sequence of convertors from one file to
another.

Because the module uséén/sh command lines, a POSIX or compatible shelldstsystem() andos.popen()
is required.

Thepipes module defines the following class:

Template ()
An abstraction of a pipeline.

Example:

>>> import pipes

>>> t=pipes.Template()

>>> tappend(tr a-z A-Z', '--')
>>> f=t.open(/tmp/1’, 'w’)
>>> f.write('hello world’)

>>> f.close()

>>> open(/tmp/1’).read()
'HELLO WORLD'

8.13.1 Template Objects

Template objects following methods:

reset ()
Restore a pipeline template to its initial state.

clone ()

8.13. pipes — Interface to shell pipelines 175

Return a new, equivalent, pipeline template.

debug (flag)
If flag is true, turn debugging on. Otherwise, turn debugging off. When debugging is on, commands to be
executed are printed, and the shell is gigeh -x command to be more verbose.

append (cmd, kind
Append a new action at the end. Tbmdvariable must be a valid bourne shell command. Kimgl variable
consists of two letters.

The first letter can be either 6f (which means the command reads its standard inffut), (which means
the commands reads a given file on the command ling) or (which means the commands reads no input, and
hence must be first.)

Similarily, the second letter can be either'of (which means the command writes to standard outgut),
(which means the command writes a file on the command ling€) or (which means the command does not
write anything, and hence must be last.)

prepend (cmd, kind
Add a new action at the beginning. Smgpend() for explanations of the arguments.
open (file, mod¢
Return a file-like object, open ftiile, but read from or written to by the pipeline. Note that only onérof ,
‘W' may be given.
copy (infile, outfilg
Copyinfile to outfilethrough the pipe.

8.14 posixfile — File-like objects with locking support

Note: This module will become obsolete in a future release. The locking operation that it provides is done better and
more portably by thécntl.lockf() call.

This module implements some additional functionality over the built-in file objects. In particular, it implements file
locking, control over the file flags, and an easy interface to duplicate the file object. The module defines a new file
object, the posixfile object. It has all the standard file object methods and adds the methods described below. This
module only works for certain flavors ofNux, since it usegcntl.fcntl() for file locking.

To instantiate a posixfile object, use thygen() function in theposixfile module. The resulting object looks and
feels roughly the same as a standard file object.

Theposixfile module defines the following constants:

SEEK_SET
Offset is calculated from the start of the file.

SEEK_CUR
Offset is calculated from the current position in the file.

SEEK_END
Offset is calculated from the end of the file.

The posixfile module defines the following functions:

open (filename{, mode[, bufsizd])
Create a new posixfile object with the given filename and mode fildmame modeandbufsizearguments are
interpreted the same way as by the builbpen() function.

fileopen (fileobjec)
Create a new posixfile object with the given standard file object. The resulting object has the same filename and
mode as the original file object.

176 Chapter 8. Unix Specific Services

The posixfile object defines the following additional methods:

lock (fmt, [Ien[, starl{, Whencd]])
Lock the specified section of the file that the file object is referring to. The format is explained below in a table.
Thelen argument specifies the length of the section that should be locked. The defautitést specifies the
starting offset of the section, where the defauld isThewhenceargument specifies where the offset is relative
to. It accepts one of the constar8&EK _SET, SEEK_CURor SEEK_END The default iSSEEK_SET. For
more information about the arguments refer tofttvel(2) manual page on your system.

flags ([flags])
Set the specified flags for the file that the file object is referring to. The new flags are ORed with the old
flags, unless specified otherwise. The format is explained below in a table. Withdlagbhargument a string
indicating the current flags is returned (this is the same as?henbdifier). For more information about the
flags refer to thécntl(2) manual page on your system.

dup()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object behaves as if it

were newly opened.

dup2 (fd)
Duplicate the file object and the underlying file pointer and file descriptor. The new object will have the given
file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file ()
Return the standard file object that the posixfile object is based on. This is sometimes necessary for functions
that insist on a standard file object.

All methods raisdOError when the request fails.
Format characters for tHeck() = method have the following meaning:

Format | Meaning

u unlock the specified region
‘r’ request a read lock for the specified section
‘W request a write lock for the specified section

In addition the following modifiers can be added to the format:

Modifier | Meaning | Notes
17 wait until the lock has been granted
! return the first lock conflicting with the requested lockNmmne if there is no conflict.| (1)
Note:

(1) The lock returned is in the form&tmode len, start, whence pid) wheremodeis a character representing
the type of lock ('’ or 'w’). This modifier prevents a request from being granted; it is for query purposes only.

Format characters for tHlags() method have the following meanings:

Format | Meaning

a append only flag

‘c’ close on exec flag

‘n’ no delay flag (also called non-blocking flag)
‘s’ synchronization flag

In addition the following modifiers can be added to the format:

8.14. posixfile — File-like objects with locking support 177

Modifier | Meaning | Notes

e turn the specified flags 'off’, instead of the default 'on’ Q)
= replace the flags, instead of the default 'OR’ operation 1)
‘2 return a string in which the characters represent the flags that are sg)

Notes:

(1) The 1" and ‘=" modifiers are mutually exclusive.

(2) This string represents the flags after they may have been altered by the same call.

Examples:

import posixfile

file = posixfile.open('/tmp/test’, 'w’)
file.lock('w]|’)

file.lock('u’)
file.close()

8.15 resource — Resource usage information

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Symbolic constants are used to specify particular system resources and to request usage information about either the
current process or its children.

A single exception is defined for errors:

error
The functions described below may raise this error if the underlying system call failures unexpectedly.

8.15.1 Resource Limits

Resources usage can be limited usinggaglimit() function described below. Each resource is controlled by

a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered or raised by a
process over time. The soft limit can never exceed the hard limit. The hard limit can be lowered to any value greater
than the soft limit, but not raised. (Only processes with the effective UID of the super-user can raise a hard limit.)

The specific resources that can be limited are system dependent. They are describgdtitirtii#2) man page. The
resources listed below are supported when the underlying operating system supports them; resources which cannot be
checked or controlled by the operating system are not defined in this module for those platforms.

getrlimit (resourcé
Returns a tupl€ soft hard) with the current soft and hard limits eésource RaisesValueError if an
invalid resource is specified, error if the underyling system call fails unexpectedly.

setrlimit (resource, limit}
Sets new limits of consumption eésource Thelimits argument must be a tup{esoft hard) of two integers
describing the new limits. A value el can be used to specify the maximum possible upper limit.

RaisesValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a
process tries to raise its hard limit (unless the process has an effective UID of super-user). Can asoraise
if the underyling system call fails.

178 Chapter 8. Unix Specific Services

These symbols define resources whose consumption can be controlled usietylimt() andgetrlimit()
functions described below. The values of these symbols are exactly the constants used by C programs.

The UNIX man page fogetrlimit(2) lists the available resources. Note that not all systems use the same symbol or
same value to denote the same resource.

RLIMIT _CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in the creation of
a partial core file if a larger core would be required to contain the entire process image.

RLIMIT _CPU
The maximum amount of CPU time (in seconds) that a process can use. If this limit is exceXGPU
signal is sent to the process. (See$lmal module documentation for information about how to catch this
signal and do something useful, e.g. flush open files to disk.)

RLIMIT _FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main thread in a
multi-threaded process.

RLIMIT _DATA
The maximum size (in bytes) of the process’s heap.

RLIMIT _STACK
The maximum size (in bytes) of the call stack for the current process.

RLIMIT _RSS
The maximum resident set size that should be made available to the process.

RLIMIT _NPROC
The maximum number of processes the current process may create.

RLIMIT _NOFILE
The maximum number of open file descriptors for the current process.

RLIMIT _OFILE
The BSD name foRLIMIT _NOFILE.

RLIMIT _MEMLOC
The maximm address space which may be locked in memory.

RLIMIT _VMEM
The largest area of mapped memory which the process may occupy.

RLIMIT _AS
The maximum area (in bytes) of address space which may be taken by the process.

8.15.2 Resource Usage

These functiona are used to retrieve resource usage information:

getrusage (who
This function returns a large tuple that describes the resources consumed by either the current process or its
children, as specified by thehoparameter. Thevhoparameter should be specified using one oRIESAGE*
constants described below.

The elements of the return value each describe how a particular system resource has been used, e.g. amount of
time spent running is user mode or number of times the process was swapped out of main memory. Some values
are dependent on the clock tick internal, e.g. the amount of memory the process is using.

The first two elements of the return value are floating point values representing the amount of time spent execut-
ing in user mode and the amount of time spent executing in system mode, respectively. The remaining values
are integers. Consult trgetrusag€2) man page for detailed information about these values. A brief summary

8.15. resource — Resource usage information 179

is presented here:

Offset | Resource

time in user mode (float)
time in system mode (float)
maximum resident set size
shared memory size
unshared memory size
unshared stack size

page faults not requiring I1/0O
page faults requiring 1/0
number of swap outs

block input operations

10 | block output operations

11 | messages sent

12 | messages received

13 | signals received

14 | voluntary context switches
15 | involuntary context switches

©CoOo~NOoOUTA~,WNEO

This function will raise avalueError if an invalid who parameter is specified. It may also raeseor
exception in unusual circumstances.

getpagesize ()
Returns the number of bytes in a system page. (This need not be the same as the hardware page size.) This
function is useful for determining the number of bytes of memory a process is using. The third element of the
tuple returned bgetrusage() = describes memory usage in pages; multiplying by page size produces number
of bytes.

The followingRUSAGE* symbols are passed to thetrusage() function to specify which processes information
should be provided for.

RUSAGESELF
RUSAGESELF should be used to request information pertaining only to the process itself.

RUSAGECHILDREN
Pass taetrusage() to request resource information for child processes of the calling process.

RUSAGEBOTH
Pass tagetrusage() to request resources consumed by both the current process and child processes. May
not be available on all systems.

8.16 nis — Interface to Sun’s NIS (Yello Pages)

Thenis module gives a thin wrapper around the NIS library, useful for central administration of several hosts.
Because NIS exists only onNux systems, this module is only available fonLX.
Thenis module defines the following functions:

match (key, mapname
Return the match fokeyin mapmapnameor raise an errornfs.error) if there is none. Both should be
strings,keyis 8-bit clean. Return value is an arbitary array of bytes (i.e., may coNtdirland other joys).

Note thatmapnameas first checked if it is an alias to another name. XXX Describe list of all aliases? Internal
for the C code, so I'm not sure it's a good idea.

cat (mapnamg
Return a dictionary mappinkgeyto valuesuch thamatch(key, mapnamy== value Note that both keys and

180 Chapter 8. Unix Specific Services

values of the dictionary are arbitary arrays of bytes.
Note thatmapnameés first checked if it is an alias to another name.

maps()
Return a list of all valid maps.

Thenis module defines the following exception:

error
An error raised when a NIS function returns an error code.

8.17 syslog — UNIXx syslog library routines

This module provides an interface to thestd syslog library routines. Refer to the ilx manual pages for a
detailed description of theyslog facility.

The module defines the following functions:

syslog ([priority,] messagge
Send the stringnessageo the system logger. A trailing newline is added if necessary. Each message is tagged
with a priority composed of tacility and alevel The optionapriority argument, which defaults tcdOG_INFO,
determines the message priority. If the facility is not encodegriarity using logical-or LOG._INFO |
LOG_USER, the value given in thepenlog() call is used.

openlog (idem[, Iogopl[, facility]])
Logging options other than the defaults can be set by explicitly opening the log fileopéthlog() prior
to callingsyslog() . The defaults are (usuallydient="syslog’ , logopt= 0, facility = LOG_.USER The
identargument is a string which is prepended to every message. The ogtgoatargument is a bit field -
see below for possible values to combine. The optifaeility argument sets the default facility for messages
which do not have a facility explicitly encoded.

closelog ()
Close the log file.

setlogmask (maskpr)
Set the priority mask tonaskpriand return the previous mask value. Callsyslog() with a priority level
not set inmaskpriare ignored. The default is to log all priorities. The functiddG_MASK(pri) calculates the
mask for the individual priorityri. The functionLOG . UPTO(pri) calculates the mask for all priorities up to
and includingpri.

The module defines the following constants:
Priority levels (high to low): LOGEMERG LOGALERT, LOGCRIT, LOGERR LOGWARNING
LOG_NOTICE, LOG.INFO, LOG DEBUG

Facilites: LOG.KERN LOGUSER LOGMAIL, LOGDAEMON LOGAUTH LOGLPR LOGNEWS
LOG.UUCRLOG.CRONiNdLOG LOCALOto LOG LOCALY.

Log options: LOG_PID, LOG.CONS LOG NDELAY LOG_.NOWAITand LOG_PERROR(f defined in <sys-
log.h>

8.18 popen2 — Subprocesses with accessible 1/0 streams

This module allows you to spawn processes and connect their input/output/error pipes and obtain their return codes
under WNIX. Similar functionality exists for Windows platforms using thn32pipe module provided as part of
Mark Hammond’s Windows extensions.

8.17. syslog — UNIX syslog library routines 181

The primary interface offered by this module is a pair of factory functions:

popen2 (cmc{, bufsizd)
Executecmd as a sub-process. Mufsizeis specified, it specifies the buffer size for the I/O pipes. Returns
(child_stdout child_stdin) .

popen3 (cm({, bufsizd)
Executescmd as a sub-process. Hufsizeis specified, it specifies the buffer size for the I/O pipes. Returns
(child_stdout child_stdin, child_stderr) .

The class defining the objects returned by the factory functions is also available:

Popen3 (cmc{, capturestderf, bufsize]])
This class represents a child process. Normdlypen3 instances are created using the factory functions
described above.

If not using one off the helper functions to cre®epen3 objects, the parametemdis the shell command to
execute in a sub-process. Ttapturestderiflag, if true, specifies that the object should capture standard error
output of the child process. The default is false. If Hudsizeparameter is specified, it specifies the size of the
I/0 buffers to/from the child process.

8.18.1 Popen3 Objects

Instances of th®open3 class have the following methods:

poll ()
Returns-1 if child process hasn’t completed yet, or its return code otherwise.
wait ()

Waits for and returns the return code of the child process.
The following attributes oPopen3 objects are also available:

fromchild
A file object that provides output from the child process.

tochild
A file object that provides input to the child process.

childerr

Where the standard error from the child process goeapturestderwas true for the constructor, dlone.
pid

The process ID of the child process.

8.19 commands — Utilities for running commands

Thecommands module contains wrapper functions fas.popen() which take a system command as a string and
return any output generated by the command and, optionally, the exit status.

Thecommands module defines the following functions:

getstatusoutput (cmad
Execute the stringmdin a shell withos.popen() and return a 2-tuplé status outpu) . cmdis actually
run as{ cmd ; }2>&1 , so that the returned output will contain output or error messages. A trailing newline
is stripped from the output. The exit status for the command can be interpreted according to the rules for the C
functionwait()

getoutput (cmd
Like getstatusoutput() , except the exit status is ignored and the return value is a string containing the

182 Chapter 8. Unix Specific Services

command’s output.

getstatus (file)
Return the output ofls -Id file’ as a string. This function uses tigetoutput() function, and properly
escapes backslashes and dollar signs in the argument.

Example:

>>> jmport commands

>>> commands.getstatusoutput(ls /bin/Is’)

(0, '/bin/ls’)

>>> commands.getstatusoutput('cat /bin/junk’)
(256, ’cat: /bin/junk: No such file or directory’)
>>> commands.getstatusoutput(’/bin/junk’)

(256, ’'sh: /binfjunk: not found’)

>>> commands.getoutput(’ls /bin/Is’)

'Ibin/ls’
>>> commands.getstatus(’/bin/Is’)
-rwxr-xr-x 1 root 13352 Oct 14 1994 /bin/ls’

8.19. commands — Utilities for running commands 183

184

CHAPTER
NINE

The Python Debugger

The modulepdb defines an interactive source code debugger for Python programs. It supports setting (conditional)
breakpoints and single stepping at the source line level, inspection of stack frames, source code listing, and evaluation
of arbitrary Python code in the context of any stack frame. It also supports post-mortem debugging and can be called
under program control.

The debugger is extensible — it is actually defined as the d®aks This is currently undocumented but easily
understood by reading the source. The extension interface uses the nmmthilesxdocumented) ancind.

A primitive windowing version of the debugger also exists — this is mogulb, which requirestdwin

The debugger’s prompt igPdb) . Typical usage to run a program under control of the debugger is:

>>> import pdb

>>> import mymodule

>>> pdb.run(’mymodule.test()’)
> <string>(0)?()

(Pdb) continue

> <string>(1)?()

(Pdb) continue

NameError: 'spam’

> <string>(1)?()

(Pdb)

‘pdb.py’ can also be invoked as a script to debug other scripts. For example:

python /ust/local/lib/python1.5/pdb.py myscript.py

Typical usage to inspect a crashed program is:

185

>>> import pdb
>>> jmport mymodule
>>> mymodule.test()
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "./mymodule.py”, line 4, in test
test2()
File "./mymodule.py”, line 3, in test2
print spam
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

run (statemer{t, globals{, Iocals]])
Execute thestatemen(given as a string) under debugger control. The debugger prompt appears before any code
is executed; you can set breakpoints and typatinue ’, or you can step through the statement usstgp ’
or ‘next ' (all these commands are explained below). The optighatbalsandlocals arguments specify the
environment in which the code is executed; by default the dictionary of the madutain __ is used. (See
the explanation of thexec statement or theval() built-in function.)

runeval (expressioﬁ, globals[, Iocals]])
Evaluate theexpressior{given as a a string) under debugger control. Whareval() returns, it returns the
value of the expression. Otherwise this function is similanuim)

runcall (functior[, argument, ..])
Call thefunction (a function or method object, not a string) with the given arguments. Winecall()
returns, it returns whatever the function call returned. The debugger prompt appears as soon as the function is
entered.

set _trace ()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point in a
program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post _mortem (tracebacl
Enter post-mortem debugging of the givieacebackobject.

pm()

Enter post-mortem debugging of the traceback fourgymlast _traceback

9.1 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbreviated to one or two letters; e.g.
‘h(elp) 'means that eithe’ or ‘help ' can be used to enter the help command (but het or ‘hel ’, nor ‘H or

‘Help ’ or *HELP). Arguments to commands must be separated by whitespace (spaces or tabs). Optional arguments
are enclosed in square brackef$ () in the command syntax; the square brackets must not be typed. Alternatives in
the command syntax are separated by a vertical bar. (*

Entering a blank line repeats the last command entered. Exception: if the last commandistas’acbmmand, the
next 11 lines are listed.

Commands that the debugger doesn't recognize are assumed to be Python statements and are executed in the context
of the program being debugged. Python statements can also be prefixed with an exclamatioh poifibi§ is a

186 Chapter 9. The Python Debugger

powerful way to inspect the program being debugged; it is even possible to change a variable or call a function. When
an exception occurs in such a statement, the exception name is printed but the debugger’s state is not changed.

Multiple commands may be entered on a single line, separateg by(A single *; ’ is not used as it is the separator
for multiple commands in a line that is passed to the Python parser.) No intelligence is applied to separating the
commands; the input is split at the first *’ pair, even if it is in the middle of a quoted string.

The debugger supports aliases. Aliases can have parameters which allows one a certain level of adaptability to the
context under examination.

If a file ‘.pdbrc’ exists in the user's home directory or in the current directory, it is read in and executed as if it had
been typed at the debugger prompt. This is particularly useful for aliases. If both files exist, the one in the home
directory is read first and aliases defined there can be overriden by the local file.

h(elp) [command] Without argument, print the list of available commands. Witoenmandas argument, print help
about that commandhelp pdb ' displays the full documentation file; if the environment variable $PAGER
is defined, the file is piped through that command instead. Sinceothenandargument must be an identifier,
‘help exec ’must be entered to get help on tHe command.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame, which
determines the context of most commands.

d(own) Move the current frame one level down in the stack trace (to an older frame).

u(p) Move the current frame one level up in the stack trace (to a newer frame).

b(reak) [[filename]Iineno| function[, condition]] With a lineno argument, set a break there in the current file.
With a functionargument, set a break at the first executable statement within that function. The line number
may be prefixed with a filename and a colon, to specify a breakpoint in another file (probably one that hasn'’t
been loaded yet). The file is searchedsgn.path . Note that each breakpoint is assigned a number to which
all the other breakpoint commands refer.

If a second argument is present, it is an expression which must evaluate to true before the breakpoint is honored.

Without argument, list all breaks, including for each breakpoint, the number of times that breakpoint has been
hit, the current ignore count, and the associated condition if any.

tbreak [[filename]Iineno| function[, condition]] Temporary breakpoint, which is removed automatically when
it is first hit. The arguments are the same as break.

cl(ear) [bpnumber[bpnumber]] With a space separated list of breakpoint numbers, clear those breakpoints.
Without argument, clear all breaks (but first ask confirmation).

disable [bpnumber[bpnumber]] Disables the breakpoints given as a space separated list of breakpoint numbers.
Disabling a breakpoint means it cannot cause the program to stop execution, but unlike clearing a breakpoint, it
remains in the list of breakpoints and can be (re-)enabled.

enable[bpnumber[bpnumber]] Enables the breakpoints specified.

ignore bpnumber[count] Sets the ignore count for the given breakpoint number. If count is omitted, the ignore count
is setto 0. A breakpoint becomes active when the ignore countis zero. When non-zero, the count is decremented
each time the breakpoint is reached and the breakpoint is not disabled and any associated condition evaluates to
true.

condition bpnumber[condition] Condition is an expression which must evaluate to true before the breakpoint is
honored. If condition is absent, any existing condition is removed; i.e., the breakpoint is made unconditional.

s(tep) Execute the current line, stop at the first possible occasion (either in a function that is called or on the next line
in the current function).

9.1. Debugger Commands 187

n(ext) Continue execution until the next line in the current function is reached or it returns. (The difference between
‘next ' and ‘step ' is that ‘step ’ stops inside a called function, whileéxt ' executes called functions at
(nearly) full speed, only stopping at the next line in the current function.)

r(eturn) Continue execution until the current function returns.
c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

I(ist) [first[, Iast]] List source code for the current file. Without arguments, list 11 lines around the current line or
continue the previous listing. With one argument, list 11 lines around at that line. With two arguments, list the
given range; if the second argument is less than the first, it is interpreted as a count.

a(rgs) Print the argument list of the current function.

p expressionEvaluate theexpressiorin the current context and print its value. (Notpriht ’ can also be used, but
is not a debugger command — this executes the Pypliolh ~ statement.)

alias [name[command]] Creates an alias callethmethat executesommand The command mustotbe enclosed
in quotes. Replaceable parameters can be indicatetbliy“%2, and so on, while %* is replaced by all the
parameters. If no command is given, the current alias&neis shown. If no arguments are given, all aliases
are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note that internal
pdb commandsanbe overridden by aliases. Such a command is then hidden until the alias is removed. Aliasing
is recursively applied to the first word of the command line; all other words in the line are left alone.

As an example, here are two useful aliases (especially when placed ipdhe™file):

#Print instance variables (usage "pi classinst")

alias pi for k in %1._ dict__.keys(): print "%1."k,"=",9%1.__ dict__[K]
#Print instance variables in self

alias ps pi self

unalias name Deletes the specified alias.

[!]statementExecute the (one-linegtatementn the context of the current stack frame. The exclamation point can
be omitted unless the first word of the statement resembles a debugger command. To set a global variable, you
can prefix the assignment command witlglbbbal ' command on the same line, e.g.:

(Pdb) global list_options; list_options = [-I]
(Pdb)

g(uit) Quit from the debugger. The program being executed is aborted.

9.2 How It Works

Some changes were made to the interpreter:

e sys.settrace(fung sets the global trace function

e there can also a local trace function (see later)

188 Chapter 9. The Python Debugger

Trace functions have three argumentsame event andarg. frameis the current stack frameeventis a string:
‘call ,’line’ | ’return’ or 'exception’ . arg depends on the event type.

The global trace function is invoked (witventset to’call’) whenever a new local scope is entered; it should
return a reference to the local trace function to be used that scopenerif the scope shouldn't be traced.

The local trace function should return a reference to itself (or to another function for further tracing in that scope), or
None to turn off tracing in that scope.

Instance methods are accepted (and very useful!) as trace functions.
The events have the following meaning:

‘call’ A function is called (or some other code block entered). The global trace function is called; arg is the
argument list to the function; the return value specifies the local trace function.

'line’ The interpreter is about to execute a new line of code (sometimes multiple line events on one line exist).
The local trace function is called; arg in None; the return value specifies the new local trace function.

return’ A function (or other code block) is about to return. The local trace function is called; arg is the value that
will be returned. The trace function’s return value is ignored.

‘'exception’ An exception has occurred. The local trace function is called; arg is a triple (exception, value,
traceback); the return value specifies the new local trace function

Note that as an exception is propagated down the chain of callelex@eption’ event is generated at each level.
For more information on code and frame objects, refer tdPython Reference Manual

9.2. How It Works 189

190

CHAPTER
TEN

The Python Profiler

Copyright(© 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskint.

Permission to use, copy, modify, and distribute this Python software and its associated documentation for any purpose
(subject to the restriction in the following sentence) without fee is hereby granted, provided that the above copyright
notice appears in all copies, and that both that copyright notice and this permission notice appear in supporting doc-
umentation, and that the name of InfoSeek not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. This permission is explicitly restricted to the copying and modifi-
cation of the software to remain in Python, compiled Python, or other languages (such as C) wherein the modified or
derived code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, IN-
CLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks. As a result, it is probably clumsy code, but |
don't know for sure yet 'cause I'm a beginner :-). | did work hard to make the code run fast, so that profiling would
be a reasonable thing to do. | tried not to repeat code fragments, but I'm sure | did some stuff in really awkward ways
at times. Please send suggestions for improvementar@netscape.com. | won't promiseany support. ...but I'd
appreciate the feedback.

10.1 Introduction to the profiler

A profiler is a program that describes the run time performance of a program, providing a variety of statistics. This
documentation describes the profiler functionality provided in the moduriefie andpstats . This profiler
providesdeterministic profilingof any Python programs. It also provides a series of report generation tools to allow
users to rapidly examine the results of a profile operation.

10.2 How Is This Profiler Different From The Old Profiler?

(This section is of historical importance only; the old profiler discussed here was last seen in Python 1.1.)

The big changes from old profiling module are that you get more information, and you pay less CPU time. It's not a
trade-off, it's a trade-up.

1Updated and converted t8TEX by Guido van Rossum. The references to the old profiler are left in the text, although it no longer exists.

191

To be specific:

Bugs removed: Local stack frame is no longer molested, execution time is now charged to correct functions.

Accuracy increased: Profiler execution time is no longer charged to user’s code, calibration for platform is supported,
file reads are not dortgy profiler during profiling (and charged to user’s code!).

Speed increased:Overhead CPU cost was reduced by more than a factor of two (perhaps a factor of five), lightweight
profiler module is all that must be loaded, and the report generating mqeitkty) is not needed during
profiling.

Recursive functions support: Cumulative times in recursive functions are correctly calculated; recursive entries are
counted.

Large growth in report generating Ul: Distinct profiles runs can be added together forming a comprehensive re-
port; functions that import statistics take arbitrary lists of files; sorting criteria is now based on keywords (in-
stead of 4 integer options); reports shows what functions were profiled as well as what profile file was referenced;
output format has been improved.

10.3 Instant Users Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview, and allows a
user to rapidly perform profiling on an existing application.

To profile an application with a main entry point é66() ’, you would add the following to your module:

import profile
profile.run(’foo()’)

The above action would caus®6() ’to be run, and a series of informative lines (the profile) to be printed. The
above approach is most useful when working with the interpreter. If you would like to save the results of a profile into
a file for later examination, you can supply a file name as the second argumentua(he function:

import profile
profile.run(*foo()’, 'fooprof’)

The file ‘profile.py’ can also be invoked as a script to profile another script. For example:

python /ustr/local/lib/pythonl.5/profile.py myscript.py

When you wish to review the profile, you should use the methods ipstees module. Typically you would load
the statistics data as follows:

import pstats
p = pstats.Stats('fooprof’)

The classStats (the above code just created an instance of this class) has a variety of methods for manipulating and
printing the data that was just read infi3.' When you rarprofile.run() above, what was printed was the result
of three method calls:

192 Chapter 10. The Python Profiler

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted all the entries
according to the standard module/line/name string that is printed (this is to comply with the semantics of the old
profiler). The third method printed out all the statistics. You might try the following sort calls:

p.sort_stats('name’)
p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics. The following
are some interesting calls to experiment with:

p.sort_stats(’cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you want
to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats('time’).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(’file’).print_stats('__init__")

This will sort all the statistics by file name, and then print out statistics for only the class init methods (‘cause they are
spelled with *__init __"in them). As one final example, you could try:

p.sort_stats('time’, 'cum’).print_stats(.5, 'init’)

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out some
of the statistics. To be specific, the list is first culled down to 50% (rg:") of its original size, then only lines
containinginit ~ are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could npWwiq'still sorted according to the last
criteria) do:

p.print_callers(.5, ’init’)

and you would get a list of callers for each of the listed functions.

If you want more functionality, you're going to have to read the manual, or guess what the following functions do:

10.3. Instant Users Manual 193

p.print_callees()
p.add(’fooprof’)

10.4 What Is Deterministic Profiling?

Deterministic profilingis meant to reflect the fact that dlinction call function return and exceptionevents are
monitored, and precise timings are made for the intervals between these events (during which time the user’s code
is executing). In contrasstatistical profiling(which is not done by this module) randomly samples the effective
instruction pointer, and deduces where time is being spent. The latter technique traditionally involves less overhead
(as the code does not need to be instrumented), but provides only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not required to
do deterministic profiling. Python automatically providesaok (optional callback) for each event. In addition, the
interpreted nature of Python tends to add so much overhead to execution, that deterministic profiling tends to only add
small processing overhead in typical applications. The result is that deterministic profiling is not that expensive, yet
provides extensive run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-expansion
points (high call counts). Internal time statistics can be used to identify “hot loops” that should be carefully optimized.
Cumulative time statistics should be used to identify high level errors in the selection of algorithms. Note that the
unusual handling of cumulative times in this profiler allows statistics for recursive implementations of algorithms to
be directly compared to iterative implementations.

10.5 Reference Manual

The primary entry point for the profiler is the global functiprofile.run() . It is typically used to create any
profile information. The reports are formatted and printed using methods of thgstass Stats . The following

is a description of all of these standard entry points and functions. For a more in-depth view of some of the code,
consider reading the later section on Profiler Extensions, which includes discussion of how to derive “better” profilers
from the classes presented, or reading the source code for these modules.

run (string[, filenam(E,]])
This function takes a single argument that has can be passeddrebestatement, and an optional file name.
In all cases this routine attemptsegrec its first argument, and gather profiling statistics from the execution. If
no file name is present, then this function automatically prints a simple profiling report, sorted by the standard
name string (file/line/function-name) that is presented in each line. The following is a typical output from such
acall:

main()
2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)
43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)

The first line indicates that this profile was generated by the call:
profile.run(’main()’) , and hence the exec’ed string’main()’ . The second line indicates that
2706 calls were monitored. Of those calls, 2004 wmimitive. We defineprimitive to mean that the call was

194 Chapter 10. The Python Profiler

not induced via recursion. The next lin@rdered by: standard name , indicates that the text string in
the far right column was used to sort the output. The column headings include:

ncalls for the number of calls,
tottime for the total time spent in the given function (and excluding time made in calls to sub-functions),
percall is the quotient ofottime divided byncalls

cumtime is the total time spent in this and all subfunctions (i.e., from invocation till exit). This figure is accurate
evenfor recursive functions.

percall is the quotient otumtime divided by primitive calls
filename:lineno(function) provides the respective data of each function

When there are two numbers in the first column (e 43/3 "), then the latter is the number of primitive calls,
and the former is the actual number of calls. Note that when the function does not recurse, these two values are
the same, and only the single figure is printed.

Analysis of the profiler data is done using this class frompstats module:
Stats (filenam({,])

This class constructor creates an instance of a “statistics object” fidename(or set of filenames)Stats
objects are manipulated by methods, in order to print useful reports.

The file selected by the above constructor must have been created by the corresponding versitie of .
To be specific, there ino file compatibility guaranteed with future versions of this profiler, and there is no
compatibility with files produced by other profilers (e.g., the old system profiler).

If several files are provided, all the statistics for identical functions will be coalesced, so that an overall view of
several processes can be considered in a single report. If additional files need to be combined with data in an
existingStats object, theadd() method can be used.

10.5.1 The Stats Class

Stats objects have the following methods:

strip

_dirs ()
This method for theStats class removes all leading path information from file names. It is very useful in
reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the
stripped information is lost. After performing a strip operation, the object is considered to have its entries in a
“random” order, as it was just after object initialization and loadingstiip _dirs() causes two function
names to be indistinguishable (i.e., they are on the same line of the same filename, and have the same function
name), then the statistics for these two entries are accumulated into a single entry.

add (filenamg, ...])

sort

This method of theStats class accumulates additional profiling information into the current profiling object.
Its arguments should refer to filenames created by the corresponding versgimofilef.run() . Statistics
for identically named (re: file, line, name) functions are automatically accumulated into single function statistics.

_stats (ke>{,])
This method modifies th&tats object by sorting it according to the supplied criteria. The argument s typically

a string identifying the basis of a sort (exampténe’ or’name’).

When more than one key is provided, then additional keys are used as secondary criteria when the there is
equality in all keys selected before them. For examlert' _stats('name’, ‘file’) "will sort all the

entries according to their function name, and resolve all ties (identical function names) by sorting by file name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are
the keys currently defined:

10.5. Reference Manual 195

Valid Arg Meaning

‘calls’ call count
‘cumulative’ cumulative time
file’ file name
'module’ file name
‘pealls’ primitive call count
‘line’ line number
‘name’ function name
'nfl’ namef/file/line
'stdname’ standard name
'time’ internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first), where as name,
file, and line number searches are in ascending order (i.e., alphabetical). The subtle distinction nétween
and’'stdname’ is that the standard name is a sort of the name as printed, which means that the embedded line
numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same)
appear in the string order 20, 3 and 40. In contrafif, = does a numeric compare of the line numbers. In fact,

sort _stats('nfl’) is the same asort _stats('name’, file’, ’line’)

For compatibility with the old profiler, the numeric argumerits 0, 1, and2 are permitted. They are interpreted
as’'stdname’ , ’calls’ ,'time’ | and’cumulative’ respectively. If this old style format (numeric) is
used, only one sort key (the numeric key) will be used, and additional arguments will be silently ignored.

reverse _order ()

print

print

This method for theStats class reverses the ordering of the basic list within the object. This method is
provided primarily for compatibility with the old profiler. Its utility is questionable now that ascending vs
descending order is properly selected based on the sort key of choice.

_stats (restrictior{,])
This method for théstats class prints out a report as described inphafile.run() definition.

The order of the printing is based on the Isstt _stats() operation done on the object (subject to caveats
inadd() andstrip _dirs()

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list is
taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count of lines),
or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular expression (to
pattern match the standard name that is printed; as of Python 1.5b1, this uses the Perl-style regular expression
syntax defined by thee module). If several restrictions are provided, then they are applied sequentially. For
example:

print_stats(.1, 'foo:’)

would first limit the printing to first 10% of list, and then only print functions that were part of filename
“*foo: . In contrast, the command:

print_stats(‘foo:’, .1)

would limit the list to all functions having file namegfoo: ', and then proceed to only print the first 10% of
them.

_callers (restrictions[,])
This method for thé&Stats class prints a list of all functions that called each function in the profiled database.
The ordering is identical to that provided pyint _stats() , and the definition of the restricting argument
is also identical. For convenience, a number is shown in parentheses after each caller to show how many times
this specific call was made. A second non-parenthesized number is the cumulative time spent in the function at
the right.

196

Chapter 10. The Python Profiler

print _callees (restrictions[,])
This method for théStats class prints a list of all function that were called by the indicated function. Aside
from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are identical to
theprint _callers() method.

ignore ()
Deprecated since release 1.5.This is not needed in modern versions of PytRon.

10.6 Limitations

There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter to dispatch
call, return, andexceptiorevents. Compiled C code does not get interpreted, and hence is “invisible” to the profiler.
All time spent in C code (including built-in functions) will be charged to the Python function that invoked the C code.
If the C code calls out to some native Python code, then those calls will be profiled properly.

The second limitation has to do with accuracy of timing information. There is a fundamental problem with determin-
istic profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at a rate
(typically) of about .001 seconds. Hence no measurements will be more accurate that that underlying clock. If enough
measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first error induces a
second source of error...

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to get the time
actuallygetsthe state of the clock. Similarly, there is a certain lag when exiting the profiler event handler from the
time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again executing. As
a result, functions that are called many times, or call many functions, will typically accumulate this error. The error
that accumulates in this fashion is typically less than the accuracy of the clock (i.e., less than one clock tick), but it
canaccumulate and become very significant. This profiler provides a means of calibrating itself for a given platform
so that this error can be probabilistically (i.e., on the average) removed. After the profiler is calibrated, it will be more
accurate (in a least square sense), but it will sometimes produce negative numbers (when call counts are exceptionally
low, and the gods of probability work against you :-).) Dot be alarmed by negative numbers in the profile. They
shouldonly appear if you have calibrated your profiler, and the results are actually better than without calibration.

10.7 Calibration

The profiler class has a hard coded constant that is added to each event handling time to compensate for the overhead
of calling the time function, and socking away the results. The following procedure can be used to obtain this constant
for a given platform (see discussion in section Limitations above).

import profile

pr = profile.Profile()
print pr.calibrate(100)
print pr.calibrate(100)
print pr.calibrate(100)

The argument tealibrate() is the number of times to try to do the sample calls to get the CPU times. If your
computer isveryfast, you might have to do:

pr.calibrate(1000)

2This was once necessary, when Python would print any unused expression result thatMasendthe method is still defined for backward
compatibility.

10.6. Limitations 197

or even:

pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a consistent answer, you are ready to use
that number in the source code. For a Sun Sparcstation 1000 running Solaris 2.3, the magical number is about .00053.
If you have a choice, you are better off with a smaller constant, and your results will “less often” show up as negative
in profile statistics.

The following shows how the traceéispatch() method in the Profile class should be modified to install the calibration
constant on a Sun Sparcstation 1000:

def trace_dispatch(self, frame, event, arg):
t = self.timer()
t = t[0] + t[1] - self.t - .00053 # Calibration constant

=

self.dispatch[event](frame,t):
t = self.timer()
self.t = t[0] + t[1]

else:

r = self.timer()

self.t = rf[0] + r[1] - t # put back unrecorded delta
return

Note that if there is no calibration constant, then the line containing the callibration constant should simply say:

t = t[0] + t[1] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will actually run equally fast!!), but the
above method is the simplest to use. | could have made the profiler “self calibrating”, but it would have made the
initialization of the profiler class slower, and would have required seangfancy coding, or else the use of a variable
where the constant00053 ’ was placed in the code shown. This i¥&RY critical performance section, and there

is no reason to use a variable lookup at this point, when a constant can be used.

10.8 Extensions — Deriving Better Profilers

TheProfile class of modulgrofile was written so that derived classes could be developed to extend the profiler.
Rather than describing all the details of such an effort, I'll just present the following two examples of derived classes
that can be used to do profiling. If the reader is an avid Python programmer, then it should be possible to use these as
a model and create similar (and perchance better) profile classes.

If all you want to do is change how the timer is called, or which timer function is used, then the basic class has an
option for that in the constructor for the class. Consider passing the name of a function to call into the constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will calyour _time _func() instead ofos.times() . The function should return either a
single number or a list of numbers (like whad.times() returns). If the function returns a single time number, or
the list of returned numbers has length 2, then you will get an especially fast version of the dispatch routine.

198 Chapter 10. The Python Profiler

Be warned that yoshouldcalibrate the profiler class for the timer function that you choose. For most machines, atimer
that returns a lone integer value will provide the best results in terms of low overhead during prafinign€s()

is prettybad, 'cause it returns a tuple of floating point values, so all arithmetic is floating point in the profiler!). If you
want to substitute a better timer in the cleanest fashion, you should derive a class, and simply put in the replacement
dispatch method that better handles your timer call, along with the appropriate calibration constant :-).

10.8.1 OldProfile Class

The following derived profiler simulates the old style profiler, providing errant results on recursive functions. The
reason for the usefulness of this profiler is that it runs faster (i.e., less overhead) than the old profiler. It still creates all
the caller stats, and is quite useful when thenedsecursion in the user’s code. It is also a lot more accurate than the
old profiler, as it does not charge all its overhead time to the user’s code.

10.8. Extensions — Deriving Better Profilers 199

class OldProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rct, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:
return self.trace_dispatch_return(rframe, t)
return 0

def trace_dispatch_call(self, frame, t):
fn = ‘frame.f_code’

self.cur = (t, 0, 0, fn, frame, self.cur)
if self.timings.has_key(fn):
tt, ct, callers = self.timings[fn]
self.timings[fn] = tt, ct, callers
else:
self.timings[fn] = 0, O, {}
return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, rct, rfn, frame, rcur = self.cur
rt =t + t
sft = rtt + rct

pt, ptt, pct, pfn, pframe, pcur = rcur
self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur

tt, ct, callers = self.timings[rfn]
if callers.has_key(pfn):
callers[pfn] = callers[pfn] + 1
else:
callers[pfn] = 1
self.timings[rfn] = tt+rtt, ct + sft, callers

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():
tt, ct, callers = self.timings[func]
nor_func = self.func_normalize(func)
nor_callers = {}
nc =0
for func_caller in callers.keys():
nor_callers[self.func_normalize(func_caller)] = \
callers[func_caller]
nc = nc + callers[func_caller]
self.stats[nor_func] = nc, nc, tt, ct, nor_callers

10.8.2 HotProfile Class

This profiler is the fastest derived profile example. It does not calculate caller-callee relationships, and does not
calculate cumulative time under a function. It only calculates time spent in a function, so it runs very quickly (re: very
low overhead). In truth, the basic profiler is so fast, that is probably not worth the savings to give up the data, but this

200 Chapter 10. The Python Profiler

class still provides a nice example.

class HotProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)
return O

def trace_dispatch_call(self, frame, t):

self.cur = (t, 0, frame, self.cur)
return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, frame, rcur = self.cur

rfn = ‘frame.f_code’

pt, ptt, pframe, pcur = rcur
self.cur = pt, ptt+rt, pframe, pcur

if self.timings.has_key(rfn):
nc, tt = self.timings[rfn]

self.timings[rfn] = nc + 1, rt + rtt + tt
else:

self.timings[rfn] = 1, rt + rtt

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():
nc, tt = self.timings[func]
nor_func = self.func_normalize(func)
self.stats[nor_func] = nc, nc, tt, 0, {}

10.8. Extensions — Deriving Better Profilers 201

202

CHAPTER
ELEVEN

Internet Protocols and Support

The modules described in this chapter implement Internet protocols and support for related technology. They are all
implemented in Python. Some of these modules require the presence of the system-dependesbuiaulewhich
is currently only fully supported on Mix and Windows NT. Here is an overview:

cqi

urllib

httplib

ftplib

gopherlib

poplib

imaplib

nntplib

smtplib

telnetlib

urlparse
SocketServer
BaseHTTPServer
SimpleHTTPServer
CGIHTTPServer
asyncore

Common Gateway Interface support, used to interpret forms in server-side scripts.
Open an arbitrary object given by URL (requires sockets).

HTTP protocol client (requires sockets).

FTP protocol client (requires sockets).

Gopher protocol client (requires sockets).

POP3 protocol client (requires sockets).

IMAP4 protocol client (requires sockets).

NNTP protocol client (requires sockets).

SMTP protocol client (requires sockets).

Telnet client class.

Parse URLs into components.

A framework for network servers.

Basic HTTP server (base class faimpleHTTPServer andCGIHTTPServer).
This module provides a request handler for HTTP servers.

This module provides a request handler for HTTP servers which can run CGlI scripts.
A base class for developing asyncronous socket handling services.

11.1 cgi — Common Gateway Interface support.

Support module for CGl (Common Gateway Interface) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

11.1.1 Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted through an €HORM>or

<ISINDEX> element.

Most often, CGlI scripts live in the server’s speciai-bin’ directory. The HTTP server places all sorts of information
about the request (such as the client’s hostname, the requested URL, the query string, and lots of other goodies) in the
script’s shell environment, executes the script, and sends the script’s output back to the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other times the form
data is passed via the “query string” part of the URL. This module is intended to take care of the different cases and
provide a simpler interface to the Python script. It also provides a number of utilities that help in debugging scripts,

203

and the latest addition is support for file uploads from a form (if your browser supports it — Grail 0.3 and Netscape
2.0 do).

The output of a CGlI script should consist of two sections, separated by a blank line. The first section contains a number
of headers, telling the client what kind of data is following. Python code to generate a minimal header section looks
like this:

print "Content-type: text/html" # HTML is following
print # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text with header,
in-line images, etc. Here's Python code that prints a simple piece of HTML:

print "<TITLE>CGI script output</TITLE>"
print "<H1>This is my first CGI script</H1>"
print "Hello, world!"

(It may not be fully legal HTML according to the letter of the standard, but any browser will understand it.)

11.1.2 Using the cgi module

Begin by writing import cgi . Do not use from cgi import * " — the module defines all sorts of names
for its own use or for backward compatibility that you don’t want in your namespace.

It's best to use th&ieldStorage class. The other classes defined in this module are provided mostly for backward
compatibility. Instantiate it exactly once, without arguments. This reads the form contents from standard input or the
environment (depending on the value of various environment variables set according to the CGI standard). Since it
may consume standard input, it should be instantiated only once.

The FieldStorage instance can be accessed as if it were a Python dictionary. For instance, the following code
(which assumes that thmontent-type header and blank line have already been printed) checks that the fields
name andaddr are both set to a non-empty string:

form = cgi.FieldStorage()
form_ok = 0
if form.has_key("name") and form.has_key("addr"):
if form["name"].value != ™ and form["addr"].value !'= ™
form_ok = 1
if not form_ok:
print "<H1>Error</H1>"
print "Please fill in the name and addr fields."
return
...further form processing here...

Here the fields, accessed throudbrm[ke)] ', are themselves instances BieldStorage (or MiniField-
Storage , depending on the form encoding).

If the submitted form data contains more than one field with the same name, the object retrief@tbyKe] ' is

not aFieldStorage or MiniFieldStorage instance but a list of such instances. If you expect this possibility

(i.e., when your HTML form comtains multiple fields with the same name), uséyphef) function to determine

whether you have a single instance or a list of instances. For example, here’s code that concatenates any number of
username fields, separated by commas:

204 Chapter 11. Internet Protocols and Support

username = form['username"]
if type(username) is type([]):
Multiple username fields specified
usernames = "
for item in username:
if usernames:
Next item -- insert comma
usernames = usernames + "," + item.value
else:
First item -- don’t insert comma
usernames = item.value
else:
Single username field specified
usernames = username.value

If a field represents an uploaded file, the value attribute reads the entire file in memory as a string. This may not be
what you want. You can test for an uploaded file by testing either the filename attribute or the file attribute. You can
then read the data at leasure from the file attribute:

fileitem = form["userfile"]
if fileitem.file:
It's an uploaded file; count lines
linecount = 0
while 1:
line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a recursive
multipart/* encoding). When this occurs, the item will be a dictionary-HieldStorage item. This can be deter-
mined by testing itdype attribute, which should benultipart/form-data (or perhaps another MIME type matching
multipart/*). In this case, it can be iterated over recursively just like the top-level form object.

When a form is submitted in the “old” format (as the query string or as a single data part ciitylmation/x-www-
form-urlencoded), the items will actually be instances of the cladmiFieldStorage . In this case, the list, file
and filename attributes are alwaysne.

11.1.3 Old classes

These classes, present in earlier versions ofctlie module, are still supported for backward compatibility. New
applications should use tli@eldStorage class.

SvFormContentDict stores single value form content as dictionary; it assumes each field name occurs in the form
only once.

FormContentDict stores multiple value form content as a dictionary (the form items are lists of values). Useful if
your form contains multiple fields with the same name.

Other classesHormContent , InterpFormContentDict) are present for backwards compatibility with really
old applications only. If you still use these and would be inconvenienced when they disappeared from a next version
of this module, drop me a note.

11.1. cgi — Common Gateway Interface support. 205

11.1.4 Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented in this
module in other circumstances.

parse (fp)
Parse a query in the environment or from a file (defay#t.stdin).

parse _gs(qs[, keep_blank_values, stricharsing])
Parse a query string given as a string argument (data of dypkcation/x-www-form-urlencoded). Data are
returned as a dictionary. The dictionary keys are the unique query variable names and the values are lists of
vales for each name.

The optional argumerkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

The optional argumersgtrict_parsingis a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

parse _gsl (qs[, keep_blank_values, stricharsing])
Parse a query string given as a string argument (data of dyplkcation/x-www-form-urlencoded). Data are
returned as a list of name, value pairs.

The optional argumerkeep_blank_valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

The optional argumerdtrict_parsingis a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

parse _multipart (fp, pdic)
Parse input of typenultipart/form-data (for file uploads). Arguments affp for the input file andodict for the
dictionary containing other parameterscointent-type header

Returns a dictionary just likparse _gs() keys are the field names, each value is a list of values for that field.
This is easy to use but not much good if you are expecting megabytes to be uploaded — in that case, use the
FieldStorage class instead which is much more flexible. Note tt@ttent-type is the raw, unparsed
contents of theontent-type header.

Note that this does not parse nested multipart parts —ieddStorage for that.

parse _header (string)
Parse a header likeontent-type into a main content-type and a dictionary of parameters.

test ()
Robust test CGlI script, usable as main program. Writes minimal HTTP headers and formats all information

provided to the scriptin HTML form.

print _environ ()
Format the shell environment in HTML.

print _form (form)
Format a form in HTML.

print _directory ()
Format the current directory in HTML.

print _environ _usage ()
Print a list of useful (used by CGI) environment variables in HTML.

escape (s[, quote])
Convert the character&”, ‘ <’ and >’ in string sto HTML-safe sequences. Use this if you need to display text

206 Chapter 11. Internet Protocols and Support

that might contain such characters in HTML. If the optional fiamteis true, the double quote character’|’
is also translated,; this helps for inclusion in an HTML attribute value, e. gAINHREF="...">

11.1.5 Caring about security

There’s one important rule: if you invoke an external program (e.g. vi@ast®ystem() oros.popen() func-

tions), make very sure you don'’t pass arbitrary strings received from the client to the shell. This is a well-known
security hole whereby clever hackers anywhere on the web can exploit a gullible CGI script to invoke arbitrary shell
commands. Even parts of the URL or field names cannot be trusted, since the request doesn’t have to come from your
form!

To be on the safe si