
Reston/San Diego, July 25, 2001 1

O'Reilly Open Source
Convention 2001

San Diego, CA
Python Track Keynote

Guido van Rossum
Zope Corporation
guido@zope.com
guido@python.org

Reston/San Diego, July 25, 2001 2

Sorry I Couldn't Make It!

• My wife spent a night in the hospital
– Complications with her pregnancy

• She and our baby are doing fine now
– But this is scary stuff!

• Our due date is November 2nd
– I'll disappear for 3-6 weeks around then…

Reston/San Diego, July 25, 2001 3

Where to Start?

• So much to talk about!
– New Python release(s!)
– New Python license
– New Python logo
– New corporate name
– Have you flamed me on c.l.py recently?

Reston/San Diego, July 25, 2001 4

New Corporate Name

• On Monday, Digital
Creations officially
changed its name to
Zope Corporation

• Also known as Zope
• Website: Zope.com
• Zope CVS opened up
• Little else changes

Reston/San Diego, July 25, 2001 5

New Python Logo

Designed by Just van Rossum and Erik van Blokland
www.letterror.com

Reston/San Diego, July 25, 2001 6

Many Logo Variations

Reston/San Diego, July 25, 2001 7

Python Software Foundation

• Owns and releases Python software
• Established in Delaware
• Bylaws on line: www.python.org/psf/
• Applying for non-profit status

Reston/San Diego, July 25, 2001 8

Next Python Conference

• February 4-7, 2002
– Alexandria, VA (near Washington, DC)

• Four tracks:
– Refereed Papers
– Zope
– Python Tools
– Business-to-Business

• CFP: see www.python10.org

Reston/San Diego, July 25, 2001 9

New Python License

• At last, Python is GPL-compatible again
• Which versions are GPL-compatible?

– 1.5.2 and before, 2.0.1, 2.1.1, 2.2 and later
– But not: 1.6, 1.6.1, 2.0, 2.1

• Why were those not GPL-compatible?
– Mostly, choice of law clause in CNRI license

• Who cares?
– FSF; Debian, other binary release builders

Reston/San Diego, July 25, 2001 10

What Is GPL-compatibility?

• GPL-compatibility allows release of
Python linked with GPL-licensed library
– For example, GNU readline

• Python is Open Source Compliant
– A much more liberal requirement

• Python is not released under the GPL!
– No "viral" requirements in license

Reston/San Diego, July 25, 2001 11

Recent Python Releases

• 2.0.1 - GPL-compatible bug fix release
– June 2001

• 2.1.1 - GPL-compatible bug fix release
– July 2001

• 2.2a1 - first alpha of new release
– July 2001; 2.2 final planned for October

Reston/San Diego, July 25, 2001 12

What's A Bug Fix Release

• Idea introduced by PEP 6; thanks Aahz!
• Fix bugs without any incompatibilities
• Full binary and byte code compatibility
• No new features

• I.e. full two-way compatibility; code developed
under 2.1.1 will run the same under 2.1 (unless it
hits a bug in 2.1, obviously); even extensions!

• Thanks to the release managers!
• Moshe Zadka (2.0.1), Thomas Wouters (2.1.1)

Reston/San Diego, July 25, 2001 13

About Python 2.2

• What's new?
– Nested scopes are the law
– Iterators and Generators
– Type/Class unification
– Unicode, UCS-4
– XML-RPC
– IPv6
– New division, phase 1

Reston/San Diego, July 25, 2001 14

Nested Scopes: It's The Law!

• Introduced in 2.1 with future statement:
– from __future__ import nested_scopes

• Future statement is unnecessary in 2.2
– But still allowed

• Motivating example:
def new_adder(n):

return lambda x: return x+n

Reston/San Diego, July 25, 2001 15

Iterators: Cool Stuff

• Generalization of for loop machinery
• New standard protocols:

– 'get iterator' protocol on any object:
• it = iter(x) # returns iterator for x

– 'next value' protocol on iterator objects:
• it.next() # returns next value
• # raises StopIteration when exhausted

Reston/San Diego, July 25, 2001 16

Iterators: For Loops

• Equivalency between these two:
– for el in sequence: print el
– __it = iter(sequence)

while 1:
try:

el = __it.next()
except StopIteration:

break
print el

Reston/San Diego, July 25, 2001 17

Iterators: Why

• No need to fake sequence protocol to
support 'for' loop (a common pattern):
– for key in dict: …
– for line in file: …
– for message in mailbox: …
– for node in tree: …

• Lazy generation of sequence values
• Can do iterator algebra, e.g. zipiter()

Reston/San Diego, July 25, 2001 18

Iterators: More

• Some non-sequences have iterators:
– Dictionaries

• for k in dict: print key, dict[k]
• for k, v in dict.iteritems(): print k, v
• Related feature: if k in dict: print k, dict[k]

– Files
• for line in open("/etc/passwd"): print line,

– Class instances
• Define your own __iter__() method

Reston/San Diego, July 25, 2001 19

Generators: Really Cool Stuff

• An easy way to write iterators
– Thanks to Neil Schemenauer & Tim Peters

• from __future__ import generators
def inorder(t):

if t:
for x in inorder(t.left): yield x
yield t.label
for x in inorder(t.right): yield x

Reston/San Diego, July 25, 2001 20

Generator: Example

• def zipiter(a, b):
while 1:

yield a.next(), b.next()
• for x, y in zipiter(range(5), "abcde"):

print (x, y),
• (0, 'a') (1, 'b') (2, 'c') (3, 'd') (4, 'e')

Reston/San Diego, July 25, 2001 21

Generators: Why

• Often an algorithm that generates a particular
sequence uses some local state expressed by
a combination of variables and "program
counter"

• For example: tokenizer, tree walker
• Generating the whole sequence at once is nice

but can cost too much memory
• Saving all the state in instance variables

makes the algorithm much less readable
• Using a callback is cumbersome for the

consumer of the values

Reston/San Diego, July 25, 2001 22

Generators: How

• Presence of yield signals the parser
– Implementation "suspends" the frame

• Calling the generator function:
– Creates the frame in suspended mode
– Returns a special-purpose iterator

• Calling the iterator's next():
– Resumes the frame until a yield is reached
– Raises StopIteration when upon return

• Or upon falling off the end

Reston/San Diego, July 25, 2001 23

Type/Class Unification

• class mydict(dictionary):
def __getitem__(self, key):

try:
return dictionary.__getitem__(self, key)

except KeyError:
return 0.0 # default value

• a = range(10)
• assert a.__class__ is type(a) is list
• list.append.__doc__
• list.append(a, 11)
• list.__getitem__(a, 4)

Reston/San Diego, July 25, 2001 24

Method Resolution Order

• Order in which bases are searched for methods
• Trivial with single inheritance
• Relevant for multiple inheritance
• Classic Python rule: left-right depth-first
• Classic rules makes a lot of sense; natural

extension of single inheritance rule for tree-
shaped inheritance graph; but…

• Classic rule breaks down when there is a
common base class

Reston/San Diego, July 25, 2001 25

CB

D

A

class A:
…
def save(self):

…save A's state…

class C(A):
…
def save(self):

A.save(self)
…save C's state…

class B(A):
… # no save()

class D(B,C):
… # no save()

>>> x = D()
>>> x.save()
is C's state saved???

Reston/San Diego, July 25, 2001 26

Proposed New MRO

• Informal requirements:
– Same as classic rule when dependency

graph is a tree (no common base classes)
– Most derived method wins

• Algorithm embeds a topological sort in
a total ordering

• In diamond example: [D, B, C, A]
• Metaclass can override MRO policy

Reston/San Diego, July 25, 2001 27

Pros And Cons

• Pro: avoids the diamond surprise
• Pro: matches other languages' rules
• Con: harder to explain

– But: same as classic unless shared base!

• IMO, classic rule makes common bases
too hard to use

• Neither rule deals with conflicts

Reston/San Diego, July 25, 2001 28

Common Base Class

• 'object' class: the ultimate base class
• Defines standard methods:

– __repr__, __str__
– __getattr__, __setattr__, __delattr__
– __cmp__, __hash__, __lt__, __eq__, …

• Override __getattr__ properly:
class C(object):

def __getattr__(self, name):
if name == 'x': return …
return object.__getattr__(self, name)

Reston/San Diego, July 25, 2001 29

Conflicts

• What if both B and C define a save()
method?

• D has to implement a save() that somehow
maintains the combined invariant

• Should the system detect such
conflicts?

• Probably, but maybe not by default, since current
practice allows this and so flagging the conflicts
as errors would break code. Maybe a warning
could be issued, or maybe it could be a metaclass
policy

Reston/San Diego, July 25, 2001 30

Unicode, UCS-4

• ./configure --enable-unicode=ucs4
– Not yet on Windows

• Compiles with Py_UNICODE capable of
holding 21 bits
– Trades space for capability to handle all 17

Unicode planes

• Alternative: UTF-16 and surrogates
– Indexing characters would be too slow

Reston/San Diego, July 25, 2001 31

XML-RPC

• XML-RPC: easy, interoperable RPC
• Code by Fredrik Lundh
• Client is a library module (xmlrpclib)
• Server frameworks in Demo/xmlrpc/
• See http://www.xmlrpc.com

Reston/San Diego, July 25, 2001 32

IPv6

• ./configure --enable-ipv6
• Code by Jun-ichro "itojun" Hagino
• Integration by Martin von Loewis
• Modified socket module:

– socket.getaddrinfo(host, port, …)
– socket.getnameinfo(sockaddr, flags)
– socket.AF_INET6 address type, if enabled

• Supported by httplib

Reston/San Diego, July 25, 2001 33

Have You Flamed Me On
C.L.PY Recently?

• The problem: int and float are not really
two types, more one-and-a-half…

• 1+x == 1.0+x, 2*x == 2.0*x, etc.
– x can be int or float
– Result has same mathematical value

• But not: 1/x == 1.0/x
– Result depends on type of x

Reston/San Diego, July 25, 2001 34

Why Is This A Problem?

• def velocity(distance, time):
return distance/time

• velocity(50, 60) # returns 0
• Violated principle (only by division):

– In an expression involving numerical values
of different types, the mathematical value
of the result (barring round-off errors)
depends only on the mathematical values of
the inputs, regardless of their types

Reston/San Diego, July 25, 2001 35

In Other Words…

• There are really two different operators,
"int division" and "float division", both
of which make sense for numerical
values

• In expressions yielding float results, int
inputs are usually okay, except when
division is used

Reston/San Diego, July 25, 2001 36

Why Is This A Problem?

• Python has no type declarations
• In statically typed languages, velocity()

would have explicit float arguments
• The work-around is really ugly:

– x = float(x) # Broken if x is complex
– x = x+0.0 # Broken if x is -0.0
– x = x*1.0

• Works, but what if x is a Numeric array…

Reston/San Diego, July 25, 2001 37

Proposed Solution

• Eventually (in Python 3.0? :-)
– Use / for float division, // for int division

• Transitional phase (at least two years):
– Enable // immediately (in Python 2.2)
– Use "from __future__ import division" to

enable / as float division
– Command line switch to override default

• Will remain for a while after transition

– Standard library will work either way

Reston/San Diego, July 25, 2001 38

Variations

• Spell int division as x div y
– New keyword creates additional problems

• Spell int division as div(x, y)
– Hard to do a global substitute

Reston/San Diego, July 25, 2001 39

How About Python <= 2.1?

• If you have to maintain code that must
run correctly under Python 2.1 or older
as well as under the eventual scheme,
you can't use // or the future statement

• Use divmod(x,y)[0] for int division
• Use x*1.0/y for float division
• But it would be much easier to use the

command line switch, if you can

Reston/San Diego, July 25, 2001 40

Alternatives

• Status quo
– Real problems in some application domains

• Use // for float division
– The / operator remains ambivalent

• Directive for division semantics
– Makes the original design bug a permanent

wart in the language (violates TOOWTDI)

• Drop automatic coercion int to float :-)

Reston/San Diego, July 25, 2001 41

Why Not Rational Numbers?

• Rationals would be a fine solution
• But there is discussion about the design

– To normalize or not; performance

• Changing int/int to return a rational
breaks just as much code, so would
require the same transitional measures

• Switching int/int from float to rational
later won't break much code
– Mathematical values are the same

Reston/San Diego, July 25, 2001 42

A Proper Numeric Tower

• Eventually, Python may have a proper
numeric tower, like Scheme, where the
different numeric types are just
representational optimizations

• int < long < rational < float < complex
• Implies 1 and 1.0 should act the same
• Requires int/int to be float or rational
• Float division switch is enabler!

Reston/San Diego, July 25, 2001 43

Decimal Floating Point

• An alternative to binary floating point
• Just as inexact
• Slower, because emulated in software
• But no surprises like this:

>>> 1.1
1.1000000000000001
>>>

Reston/San Diego, July 25, 2001 44

Case Insensitivity

[ducks :-]

Reston/San Diego, July 25, 2001 45

Some Of My Favorite Apps

• Jython
• wxPython
• PyChecker
• IDLE fork
• Pippy (Python on Palm)
• Python on iPAQ (Linux "familiar" 0.4)
• PySol

